/* * Copyright (c) 2008-2012 Stefan Krah. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef UMODARITH_H #define UMODARITH_H #include "constants.h" #include "mpdecimal.h" #include "typearith.h" /* Bignum: Low level routines for unsigned modular arithmetic. These are used in the fast convolution functions for very large coefficients. */ /**************************************************************************/ /* ANSI modular arithmetic */ /**************************************************************************/ /* * Restrictions: a < m and b < m * ACL2 proof: umodarith.lisp: addmod-correct */ static inline mpd_uint_t addmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m) { mpd_uint_t s; s = a + b; s = (s < a) ? s - m : s; s = (s >= m) ? s - m : s; return s; } /* * Restrictions: a < m and b < m * ACL2 proof: umodarith.lisp: submod-2-correct */ static inline mpd_uint_t submod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m) { mpd_uint_t d; d = a - b; d = (a < b) ? d + m : d; return d; } /* * Restrictions: a < 2m and b < 2m * ACL2 proof: umodarith.lisp: section ext-submod */ static inline mpd_uint_t ext_submod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m) { mpd_uint_t d; a = (a >= m) ? a - m : a; b = (b >= m) ? b - m : b; d = a - b; d = (a < b) ? d + m : d; return d; } /* * Reduce double word modulo m. * Restrictions: m != 0 * ACL2 proof: umodarith.lisp: section dw-reduce */ static inline mpd_uint_t dw_reduce(mpd_uint_t hi, mpd_uint_t lo, mpd_uint_t m) { mpd_uint_t r1, r2, w; _mpd_div_word(&w, &r1, hi, m); _mpd_div_words(&w, &r2, r1, lo, m); return r2; } /* * Subtract double word from a. * Restrictions: a < m * ACL2 proof: umodarith.lisp: section dw-submod */ static inline mpd_uint_t dw_submod(mpd_uint_t a, mpd_uint_t hi, mpd_uint_t lo, mpd_uint_t m) { mpd_uint_t d, r; r = dw_reduce(hi, lo, m); d = a - r; d = (a < r) ? d + m : d; return d; } #ifdef CONFIG_64 /**************************************************************************/ /* 64-bit modular arithmetic */ /**************************************************************************/ /* * A proof of the algorithm is in literature/mulmod-64.txt. An ACL2 * proof is in umodarith.lisp: section "Fast modular reduction". * * Algorithm: calculate (a * b) % p: * * a) hi, lo <- a * b # Calculate a * b. * * b) hi, lo <- R(hi, lo) # Reduce modulo p. * * c) Repeat step b) until 0 <= hi * 2**64 + lo < 2*p. * * d) If the result is less than p, return lo. Otherwise return lo - p. */ static inline mpd_uint_t x64_mulmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m) { mpd_uint_t hi, lo, x, y; _mpd_mul_words(&hi, &lo, a, b); if (m & (1ULL<<32)) { /* P1 */ /* first reduction */ x = y = hi; hi >>= 32; x = lo - x; if (x > lo) hi--; y <<= 32; lo = y + x; if (lo < y) hi++; /* second reduction */ x = y = hi; hi >>= 32; x = lo - x; if (x > lo) hi--; y <<= 32; lo = y + x; if (lo < y) hi++; return (hi || lo >= m ? lo - m : lo); } else if (m & (1ULL<<34)) { /* P2 */ /* first reduction */ x = y = hi; hi >>= 30; x = lo - x; if (x > lo) hi--; y <<= 34; lo = y + x; if (lo < y) hi++; /* second reduction */ x = y = hi; hi >>= 30; x = lo - x; if (x > lo) hi--; y <<= 34; lo = y + x; if (lo < y) hi++; /* third reduction */ x = y = hi; hi >>= 30; x = lo - x; if (x > lo) hi--; y <<= 34; lo = y + x; if (lo < y) hi++; return (hi || lo >= m ? lo - m : lo); } else { /* P3 */ /* first reduction */ x = y = hi; hi >>= 24; x = lo - x; if (x > lo) hi--; y <<= 40; lo = y + x; if (lo < y) hi++; /* second reduction */ x = y = hi; hi >>= 24; x = lo - x; if (x > lo) hi--; y <<= 40; lo = y + x; if (lo < y) hi++; /* third reduction */ x = y = hi; hi >>= 24; x = lo - x; if (x > lo) hi--; y <<= 40; lo = y + x; if (lo < y) hi++; return (hi || lo >= m ? lo - m : lo); } } static inline void x64_mulmod2c(mpd_uint_t *a, mpd_uint_t *b, mpd_uint_t w, mpd_uint_t m) { *a = x64_mulmod(*a, w, m); *b = x64_mulmod(*b, w, m); } static inline void x64_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1, mpd_uint_t m) { *a0 = x64_mulmod(*a0, b0, m); *a1 = x64_mulmod(*a1, b1, m); } static inline mpd_uint_t x64_powmod(mpd_uint_t base, mpd_uint_t exp, mpd_uint_t umod) { mpd_uint_t r = 1; while (exp > 0) { if (exp & 1) r = x64_mulmod(r, base, umod); base = x64_mulmod(base, base, umod); exp >>= 1; } return r; } /* END CONFIG_64 */ #else /* CONFIG_32 */ /**************************************************************************/ /* 32-bit modular arithmetic */ /**************************************************************************/ #if defined(ANSI) #if !defined(LEGACY_COMPILER) /* HAVE_UINT64_T */ static inline mpd_uint_t std_mulmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m) { return ((mpd_uuint_t) a * b) % m; } static inline void std_mulmod2c(mpd_uint_t *a, mpd_uint_t *b, mpd_uint_t w, mpd_uint_t m) { *a = ((mpd_uuint_t) *a * w) % m; *b = ((mpd_uuint_t) *b * w) % m; } static inline void std_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1, mpd_uint_t m) { *a0 = ((mpd_uuint_t) *a0 * b0) % m; *a1 = ((mpd_uuint_t) *a1 * b1) % m; } /* END HAVE_UINT64_T */ #else /* LEGACY_COMPILER */ static inline mpd_uint_t std_mulmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m) { mpd_uint_t hi, lo, q, r; _mpd_mul_words(&hi, &lo, a, b); _mpd_div_words(&q, &r, hi, lo, m); return r; } static inline void std_mulmod2c(mpd_uint_t *a, mpd_uint_t *b, mpd_uint_t w, mpd_uint_t m) { *a = std_mulmod(*a, w, m); *b = std_mulmod(*b, w, m); } static inline void std_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1, mpd_uint_t m) { *a0 = std_mulmod(*a0, b0, m); *a1 = std_mulmod(*a1, b1, m); } /* END LEGACY_COMPILER */ #endif static inline mpd_uint_t std_powmod(mpd_uint_t base, mpd_uint_t exp, mpd_uint_t umod) { mpd_uint_t r = 1; while (exp > 0) { if (exp & 1) r = std_mulmod(r, base, umod); base = std_mulmod(base, base, umod); exp >>= 1; } return r; } #endif /* ANSI CONFIG_32 */ /**************************************************************************/ /* Pentium Pro modular arithmetic */ /**************************************************************************/ /* * A proof of the algorithm is in literature/mulmod-ppro.txt. The FPU * control word must be set to 64-bit precision and truncation mode * prior to using these functions. * * Algorithm: calculate (a * b) % p: * * p := prime < 2**31 * pinv := (long double)1.0 / p (precalculated) * * a) n = a * b # Calculate exact product. * b) qest = n * pinv # Calculate estimate for q = n / p. * c) q = (qest+2**63)-2**63 # Truncate qest to the exact quotient. * d) r = n - q * p # Calculate remainder. * * Remarks: * * - p = dmod and pinv = dinvmod. * - dinvmod points to an array of three uint32_t, which is interpreted * as an 80 bit long double by fldt. * - Intel compilers prior to version 11 do not seem to handle the * __GNUC__ inline assembly correctly. * - random tests are provided in tests/extended/ppro_mulmod.c */ #if defined(PPRO) #if defined(ASM) /* Return (a * b) % dmod */ static inline mpd_uint_t ppro_mulmod(mpd_uint_t a, mpd_uint_t b, double *dmod, uint32_t *dinvmod) { mpd_uint_t retval; __asm__ ( "fildl %2\n\t" "fildl %1\n\t" "fmulp %%st, %%st(1)\n\t" "fldt (%4)\n\t" "fmul %%st(1), %%st\n\t" "flds %5\n\t" "fadd %%st, %%st(1)\n\t" "fsubrp %%st, %%st(1)\n\t" "fldl (%3)\n\t" "fmulp %%st, %%st(1)\n\t" "fsubrp %%st, %%st(1)\n\t" "fistpl %0\n\t" : "=m" (retval) : "m" (a), "m" (b), "r" (dmod), "r" (dinvmod), "m" (MPD_TWO63) : "st", "memory" ); return retval; } /* * Two modular multiplications in parallel: * *a0 = (*a0 * w) % dmod * *a1 = (*a1 * w) % dmod */ static inline void ppro_mulmod2c(mpd_uint_t *a0, mpd_uint_t *a1, mpd_uint_t w, double *dmod, uint32_t *dinvmod) { __asm__ ( "fildl %2\n\t" "fildl (%1)\n\t" "fmul %%st(1), %%st\n\t" "fxch %%st(1)\n\t" "fildl (%0)\n\t" "fmulp %%st, %%st(1) \n\t" "fldt (%4)\n\t" "flds %5\n\t" "fld %%st(2)\n\t" "fmul %%st(2)\n\t" "fadd %%st(1)\n\t" "fsub %%st(1)\n\t" "fmull (%3)\n\t" "fsubrp %%st, %%st(3)\n\t" "fxch %%st(2)\n\t" "fistpl (%0)\n\t" "fmul %%st(2)\n\t" "fadd %%st(1)\n\t" "fsubp %%st, %%st(1)\n\t" "fmull (%3)\n\t" "fsubrp %%st, %%st(1)\n\t" "fistpl (%1)\n\t" : : "r" (a0), "r" (a1), "m" (w), "r" (dmod), "r" (dinvmod), "m" (MPD_TWO63) : "st", "memory" ); } /* * Two modular multiplications in parallel: * *a0 = (*a0 * b0) % dmod * *a1 = (*a1 * b1) % dmod */ static inline void ppro_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1, double *dmod, uint32_t *dinvmod) { __asm__ ( "fildl %3\n\t" "fildl (%2)\n\t" "fmulp %%st, %%st(1)\n\t" "fildl %1\n\t" "fildl (%0)\n\t" "fmulp %%st, %%st(1)\n\t" "fldt (%5)\n\t" "fld %%st(2)\n\t" "fmul %%st(1), %%st\n\t" "fxch %%st(1)\n\t" "fmul %%st(2), %%st\n\t" "flds %6\n\t" "fldl (%4)\n\t" "fxch %%st(3)\n\t" "fadd %%st(1), %%st\n\t" "fxch %%st(2)\n\t" "fadd %%st(1), %%st\n\t" "fxch %%st(2)\n\t" "fsub %%st(1), %%st\n\t" "fxch %%st(2)\n\t" "fsubp %%st, %%st(1)\n\t" "fxch %%st(1)\n\t" "fmul %%st(2), %%st\n\t" "fxch %%st(1)\n\t" "fmulp %%st, %%st(2)\n\t" "fsubrp %%st, %%st(3)\n\t" "fsubrp %%st, %%st(1)\n\t" "fxch %%st(1)\n\t" "fistpl (%2)\n\t" "fistpl (%0)\n\t" : : "r" (a0), "m" (b0), "r" (a1), "m" (b1), "r" (dmod), "r" (dinvmod), "m" (MPD_TWO63) : "st", "memory" ); } /* END PPRO GCC ASM */ #elif defined(MASM) /* Return (a * b) % dmod */ static inline mpd_uint_t __cdecl ppro_mulmod(mpd_uint_t a, mpd_uint_t b, double *dmod, uint32_t *dinvmod) { mpd_uint_t retval; __asm { mov eax, dinvmod mov edx, dmod fild b fild a fmulp st(1), st fld TBYTE PTR [eax] fmul st, st(1) fld MPD_TWO63 fadd st(1), st fsubp st(1), st fld QWORD PTR [edx] fmulp st(1), st fsubp st(1), st fistp retval } return retval; } /* * Two modular multiplications in parallel: * *a0 = (*a0 * w) % dmod * *a1 = (*a1 * w) % dmod */ static inline mpd_uint_t __cdecl ppro_mulmod2c(mpd_uint_t *a0, mpd_uint_t *a1, mpd_uint_t w, double *dmod, uint32_t *dinvmod) { __asm { mov ecx, dmod mov edx, a1 mov ebx, dinvmod mov eax, a0 fild w fild DWORD PTR [edx] fmul st, st(1) fxch st(1) fild DWORD PTR [eax] fmulp st(1), st fld TBYTE PTR [ebx] fld MPD_TWO63 fld st(2) fmul st, st(2) fadd st, st(1) fsub st, st(1) fmul QWORD PTR [ecx] fsubp st(3), st fxch st(2) fistp DWORD PTR [eax] fmul st, st(2) fadd st, st(1) fsubrp st(1), st fmul QWORD PTR [ecx] fsubp st(1), st fistp DWORD PTR [edx] } } /* * Two modular multiplications in parallel: * *a0 = (*a0 * b0) % dmod * *a1 = (*a1 * b1) % dmod */ static inline void __cdecl ppro_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1, double *dmod, uint32_t *dinvmod) { __asm { mov ecx, dmod mov edx, a1 mov ebx, dinvmod mov eax, a0 fild b1 fild DWORD PTR [edx] fmulp st(1), st fild b0 fild DWORD PTR [eax] fmulp st(1), st fld TBYTE PTR [ebx] fld st(2) fmul st, st(1) fxch st(1) fmul st, st(2) fld DWORD PTR MPD_TWO63 fld QWORD PTR [ecx] fxch st(3) fadd st, st(1) fxch st(2) fadd st, st(1) fxch st(2) fsub st, st(1) fxch st(2) fsubrp st(1), st fxch st(1) fmul st, st(2) fxch st(1) fmulp st(2), st fsubp st(3), st fsubp st(1), st fxch st(1) fistp DWORD PTR [edx] fistp DWORD PTR [eax] } } #endif /* PPRO MASM (_MSC_VER) */ /* Return (base ** exp) % dmod */ static inline mpd_uint_t ppro_powmod(mpd_uint_t base, mpd_uint_t exp, double *dmod, uint32_t *dinvmod) { mpd_uint_t r = 1; while (exp > 0) { if (exp & 1) r = ppro_mulmod(r, base, dmod, dinvmod); base = ppro_mulmod(base, base, dmod, dinvmod); exp >>= 1; } return r; } #endif /* PPRO */ #endif /* CONFIG_32 */ #endif /* UMODARITH_H */