/* MIT License * * Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation * Copyright (c) 2022-2023 HACL* Contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "Hacl_Streaming_SHA2.h" #include "internal/Hacl_SHA2_Generic.h" static inline void sha256_init(uint32_t *hash) { KRML_MAYBE_FOR8(i, (uint32_t)0U, (uint32_t)8U, (uint32_t)1U, uint32_t *os = hash; uint32_t x = Hacl_Impl_SHA2_Generic_h256[i]; os[i] = x;); } static inline void sha256_update0(uint8_t *b, uint32_t *hash) { uint32_t hash_old[8U] = { 0U }; uint32_t ws[16U] = { 0U }; memcpy(hash_old, hash, (uint32_t)8U * sizeof (uint32_t)); uint8_t *b10 = b; uint32_t u = load32_be(b10); ws[0U] = u; uint32_t u0 = load32_be(b10 + (uint32_t)4U); ws[1U] = u0; uint32_t u1 = load32_be(b10 + (uint32_t)8U); ws[2U] = u1; uint32_t u2 = load32_be(b10 + (uint32_t)12U); ws[3U] = u2; uint32_t u3 = load32_be(b10 + (uint32_t)16U); ws[4U] = u3; uint32_t u4 = load32_be(b10 + (uint32_t)20U); ws[5U] = u4; uint32_t u5 = load32_be(b10 + (uint32_t)24U); ws[6U] = u5; uint32_t u6 = load32_be(b10 + (uint32_t)28U); ws[7U] = u6; uint32_t u7 = load32_be(b10 + (uint32_t)32U); ws[8U] = u7; uint32_t u8 = load32_be(b10 + (uint32_t)36U); ws[9U] = u8; uint32_t u9 = load32_be(b10 + (uint32_t)40U); ws[10U] = u9; uint32_t u10 = load32_be(b10 + (uint32_t)44U); ws[11U] = u10; uint32_t u11 = load32_be(b10 + (uint32_t)48U); ws[12U] = u11; uint32_t u12 = load32_be(b10 + (uint32_t)52U); ws[13U] = u12; uint32_t u13 = load32_be(b10 + (uint32_t)56U); ws[14U] = u13; uint32_t u14 = load32_be(b10 + (uint32_t)60U); ws[15U] = u14; KRML_MAYBE_FOR4(i0, (uint32_t)0U, (uint32_t)4U, (uint32_t)1U, KRML_MAYBE_FOR16(i, (uint32_t)0U, (uint32_t)16U, (uint32_t)1U, uint32_t k_t = Hacl_Impl_SHA2_Generic_k224_256[(uint32_t)16U * i0 + i]; uint32_t ws_t = ws[i]; uint32_t a0 = hash[0U]; uint32_t b0 = hash[1U]; uint32_t c0 = hash[2U]; uint32_t d0 = hash[3U]; uint32_t e0 = hash[4U]; uint32_t f0 = hash[5U]; uint32_t g0 = hash[6U]; uint32_t h02 = hash[7U]; uint32_t k_e_t = k_t; uint32_t t1 = h02 + ((e0 << (uint32_t)26U | e0 >> (uint32_t)6U) ^ ((e0 << (uint32_t)21U | e0 >> (uint32_t)11U) ^ (e0 << (uint32_t)7U | e0 >> (uint32_t)25U))) + ((e0 & f0) ^ (~e0 & g0)) + k_e_t + ws_t; uint32_t t2 = ((a0 << (uint32_t)30U | a0 >> (uint32_t)2U) ^ ((a0 << (uint32_t)19U | a0 >> (uint32_t)13U) ^ (a0 << (uint32_t)10U | a0 >> (uint32_t)22U))) + ((a0 & b0) ^ ((a0 & c0) ^ (b0 & c0))); uint32_t a1 = t1 + t2; uint32_t b1 = a0; uint32_t c1 = b0; uint32_t d1 = c0; uint32_t e1 = d0 + t1; uint32_t f1 = e0; uint32_t g1 = f0; uint32_t h12 = g0; hash[0U] = a1; hash[1U] = b1; hash[2U] = c1; hash[3U] = d1; hash[4U] = e1; hash[5U] = f1; hash[6U] = g1; hash[7U] = h12;); if (i0 < (uint32_t)3U) { KRML_MAYBE_FOR16(i, (uint32_t)0U, (uint32_t)16U, (uint32_t)1U, uint32_t t16 = ws[i]; uint32_t t15 = ws[(i + (uint32_t)1U) % (uint32_t)16U]; uint32_t t7 = ws[(i + (uint32_t)9U) % (uint32_t)16U]; uint32_t t2 = ws[(i + (uint32_t)14U) % (uint32_t)16U]; uint32_t s1 = (t2 << (uint32_t)15U | t2 >> (uint32_t)17U) ^ ((t2 << (uint32_t)13U | t2 >> (uint32_t)19U) ^ t2 >> (uint32_t)10U); uint32_t s0 = (t15 << (uint32_t)25U | t15 >> (uint32_t)7U) ^ ((t15 << (uint32_t)14U | t15 >> (uint32_t)18U) ^ t15 >> (uint32_t)3U); ws[i] = s1 + t7 + s0 + t16;); }); KRML_MAYBE_FOR8(i, (uint32_t)0U, (uint32_t)8U, (uint32_t)1U, uint32_t *os = hash; uint32_t x = hash[i] + hash_old[i]; os[i] = x;); } static inline void sha256_update_nblocks(uint32_t len, uint8_t *b, uint32_t *st) { uint32_t blocks = len / (uint32_t)64U; for (uint32_t i = (uint32_t)0U; i < blocks; i++) { uint8_t *b0 = b; uint8_t *mb = b0 + i * (uint32_t)64U; sha256_update0(mb, st); } } static inline void sha256_update_last(uint64_t totlen, uint32_t len, uint8_t *b, uint32_t *hash) { uint32_t blocks; if (len + (uint32_t)8U + (uint32_t)1U <= (uint32_t)64U) { blocks = (uint32_t)1U; } else { blocks = (uint32_t)2U; } uint32_t fin = blocks * (uint32_t)64U; uint8_t last[128U] = { 0U }; uint8_t totlen_buf[8U] = { 0U }; uint64_t total_len_bits = totlen << (uint32_t)3U; store64_be(totlen_buf, total_len_bits); uint8_t *b0 = b; memcpy(last, b0, len * sizeof (uint8_t)); last[len] = (uint8_t)0x80U; memcpy(last + fin - (uint32_t)8U, totlen_buf, (uint32_t)8U * sizeof (uint8_t)); uint8_t *last00 = last; uint8_t *last10 = last + (uint32_t)64U; uint8_t *l0 = last00; uint8_t *l1 = last10; uint8_t *lb0 = l0; uint8_t *lb1 = l1; uint8_t *last0 = lb0; uint8_t *last1 = lb1; sha256_update0(last0, hash); if (blocks > (uint32_t)1U) { sha256_update0(last1, hash); return; } } static inline void sha256_finish(uint32_t *st, uint8_t *h) { uint8_t hbuf[32U] = { 0U }; KRML_MAYBE_FOR8(i, (uint32_t)0U, (uint32_t)8U, (uint32_t)1U, store32_be(hbuf + i * (uint32_t)4U, st[i]);); memcpy(h, hbuf, (uint32_t)32U * sizeof (uint8_t)); } static inline void sha224_init(uint32_t *hash) { KRML_MAYBE_FOR8(i, (uint32_t)0U, (uint32_t)8U, (uint32_t)1U, uint32_t *os = hash; uint32_t x = Hacl_Impl_SHA2_Generic_h224[i]; os[i] = x;); } static inline void sha224_update_nblocks(uint32_t len, uint8_t *b, uint32_t *st) { sha256_update_nblocks(len, b, st); } static void sha224_update_last(uint64_t totlen, uint32_t len, uint8_t *b, uint32_t *st) { sha256_update_last(totlen, len, b, st); } static inline void sha224_finish(uint32_t *st, uint8_t *h) { uint8_t hbuf[32U] = { 0U }; KRML_MAYBE_FOR8(i, (uint32_t)0U, (uint32_t)8U, (uint32_t)1U, store32_be(hbuf + i * (uint32_t)4U, st[i]);); memcpy(h, hbuf, (uint32_t)28U * sizeof (uint8_t)); } void Hacl_SHA2_Scalar32_sha512_init(uint64_t *hash) { KRML_MAYBE_FOR8(i, (uint32_t)0U, (uint32_t)8U, (uint32_t)1U, uint64_t *os = hash; uint64_t x = Hacl_Impl_SHA2_Generic_h512[i]; os[i] = x;); } static inline void sha512_update(uint8_t *b, uint64_t *hash) { uint64_t hash_old[8U] = { 0U }; uint64_t ws[16U] = { 0U }; memcpy(hash_old, hash, (uint32_t)8U * sizeof (uint64_t)); uint8_t *b10 = b; uint64_t u = load64_be(b10); ws[0U] = u; uint64_t u0 = load64_be(b10 + (uint32_t)8U); ws[1U] = u0; uint64_t u1 = load64_be(b10 + (uint32_t)16U); ws[2U] = u1; uint64_t u2 = load64_be(b10 + (uint32_t)24U); ws[3U] = u2; uint64_t u3 = load64_be(b10 + (uint32_t)32U); ws[4U] = u3; uint64_t u4 = load64_be(b10 + (uint32_t)40U); ws[5U] = u4; uint64_t u5 = load64_be(b10 + (uint32_t)48U); ws[6U] = u5; uint64_t u6 = load64_be(b10 + (uint32_t)56U); ws[7U] = u6; uint64_t u7 = load64_be(b10 + (uint32_t)64U); ws[8U] = u7; uint64_t u8 = load64_be(b10 + (uint32_t)72U); ws[9U] = u8; uint64_t u9 = load64_be(b10 + (uint32_t)80U); ws[10U] = u9; uint64_t u10 = load64_be(b10 + (uint32_t)88U); ws[11U] = u10; uint64_t u11 = load64_be(b10 + (uint32_t)96U); ws[12U] = u11; uint64_t u12 = load64_be(b10 + (uint32_t)104U); ws[13U] = u12; uint64_t u13 = load64_be(b10 + (uint32_t)112U); ws[14U] = u13; uint64_t u14 = load64_be(b10 + (uint32_t)120U); ws[15U] = u14; KRML_MAYBE_FOR5(i0, (uint32_t)0U, (uint32_t)5U, (uint32_t)1U, KRML_MAYBE_FOR16(i, (uint32_t)0U, (uint32_t)16U, (uint32_t)1U, uint64_t k_t = Hacl_Impl_SHA2_Generic_k384_512[(uint32_t)16U * i0 + i]; uint64_t ws_t = ws[i]; uint64_t a0 = hash[0U]; uint64_t b0 = hash[1U]; uint64_t c0 = hash[2U]; uint64_t d0 = hash[3U]; uint64_t e0 = hash[4U]; uint64_t f0 = hash[5U]; uint64_t g0 = hash[6U]; uint64_t h02 = hash[7U]; uint64_t k_e_t = k_t; uint64_t t1 = h02 + ((e0 << (uint32_t)50U | e0 >> (uint32_t)14U) ^ ((e0 << (uint32_t)46U | e0 >> (uint32_t)18U) ^ (e0 << (uint32_t)23U | e0 >> (uint32_t)41U))) + ((e0 & f0) ^ (~e0 & g0)) + k_e_t + ws_t; uint64_t t2 = ((a0 << (uint32_t)36U | a0 >> (uint32_t)28U) ^ ((a0 << (uint32_t)30U | a0 >> (uint32_t)34U) ^ (a0 << (uint32_t)25U | a0 >> (uint32_t)39U))) + ((a0 & b0) ^ ((a0 & c0) ^ (b0 & c0))); uint64_t a1 = t1 + t2; uint64_t b1 = a0; uint64_t c1 = b0; uint64_t d1 = c0; uint64_t e1 = d0 + t1; uint64_t f1 = e0; uint64_t g1 = f0; uint64_t h12 = g0; hash[0U] = a1; hash[1U] = b1; hash[2U] = c1; hash[3U] = d1; hash[4U] = e1; hash[5U] = f1; hash[6U] = g1; hash[7U] = h12;); if (i0 < (uint32_t)4U) { KRML_MAYBE_FOR16(i, (uint32_t)0U, (uint32_t)16U, (uint32_t)1U, uint64_t t16 = ws[i]; uint64_t t15 = ws[(i + (uint32_t)1U) % (uint32_t)16U]; uint64_t t7 = ws[(i + (uint32_t)9U) % (uint32_t)16U]; uint64_t t2 = ws[(i + (uint32_t)14U) % (uint32_t)16U]; uint64_t s1 = (t2 << (uint32_t)45U | t2 >> (uint32_t)19U) ^ ((t2 << (uint32_t)3U | t2 >> (uint32_t)61U) ^ t2 >> (uint32_t)6U); uint64_t s0 = (t15 << (uint32_t)63U | t15 >> (uint32_t)1U) ^ ((t15 << (uint32_t)56U | t15 >> (uint32_t)8U) ^ t15 >> (uint32_t)7U); ws[i] = s1 + t7 + s0 + t16;); }); KRML_MAYBE_FOR8(i, (uint32_t)0U, (uint32_t)8U, (uint32_t)1U, uint64_t *os = hash; uint64_t x = hash[i] + hash_old[i]; os[i] = x;); } static inline void sha512_update_nblocks(uint32_t len, uint8_t *b, uint64_t *st) { uint32_t blocks = len / (uint32_t)128U; for (uint32_t i = (uint32_t)0U; i < blocks; i++) { uint8_t *b0 = b; uint8_t *mb = b0 + i * (uint32_t)128U; sha512_update(mb, st); } } static inline void sha512_update_last(FStar_UInt128_uint128 totlen, uint32_t len, uint8_t *b, uint64_t *hash) { uint32_t blocks; if (len + (uint32_t)16U + (uint32_t)1U <= (uint32_t)128U) { blocks = (uint32_t)1U; } else { blocks = (uint32_t)2U; } uint32_t fin = blocks * (uint32_t)128U; uint8_t last[256U] = { 0U }; uint8_t totlen_buf[16U] = { 0U }; FStar_UInt128_uint128 total_len_bits = FStar_UInt128_shift_left(totlen, (uint32_t)3U); store128_be(totlen_buf, total_len_bits); uint8_t *b0 = b; memcpy(last, b0, len * sizeof (uint8_t)); last[len] = (uint8_t)0x80U; memcpy(last + fin - (uint32_t)16U, totlen_buf, (uint32_t)16U * sizeof (uint8_t)); uint8_t *last00 = last; uint8_t *last10 = last + (uint32_t)128U; uint8_t *l0 = last00; uint8_t *l1 = last10; uint8_t *lb0 = l0; uint8_t *lb1 = l1; uint8_t *last0 = lb0; uint8_t *last1 = lb1; sha512_update(last0, hash); if (blocks > (uint32_t)1U) { sha512_update(last1, hash); return; } } static inline void sha512_finish(uint64_t *st, uint8_t *h) { uint8_t hbuf[64U] = { 0U }; KRML_MAYBE_FOR8(i, (uint32_t)0U, (uint32_t)8U, (uint32_t)1U, store64_be(hbuf + i * (uint32_t)8U, st[i]);); memcpy(h, hbuf, (uint32_t)64U * sizeof (uint8_t)); } static inline void sha384_init(uint64_t *hash) { KRML_MAYBE_FOR8(i, (uint32_t)0U, (uint32_t)8U, (uint32_t)1U, uint64_t *os = hash; uint64_t x = Hacl_Impl_SHA2_Generic_h384[i]; os[i] = x;); } static inline void sha384_update_nblocks(uint32_t len, uint8_t *b, uint64_t *st) { sha512_update_nblocks(len, b, st); } static void sha384_update_last(FStar_UInt128_uint128 totlen, uint32_t len, uint8_t *b, uint64_t *st) { sha512_update_last(totlen, len, b, st); } static inline void sha384_finish(uint64_t *st, uint8_t *h) { uint8_t hbuf[64U] = { 0U }; KRML_MAYBE_FOR8(i, (uint32_t)0U, (uint32_t)8U, (uint32_t)1U, store64_be(hbuf + i * (uint32_t)8U, st[i]);); memcpy(h, hbuf, (uint32_t)48U * sizeof (uint8_t)); } /** Allocate initial state for the SHA2_256 hash. The state is to be freed by calling `free_256`. */ Hacl_Streaming_MD_state_32 *Hacl_Streaming_SHA2_create_in_256(void) { uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)64U, sizeof (uint8_t)); uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint32_t)); Hacl_Streaming_MD_state_32 s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; Hacl_Streaming_MD_state_32 *p = (Hacl_Streaming_MD_state_32 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_32)); p[0U] = s; sha256_init(block_state); return p; } /** Copies the state passed as argument into a newly allocated state (deep copy). The state is to be freed by calling `free_256`. Cloning the state this way is useful, for instance, if your control-flow diverges and you need to feed more (different) data into the hash in each branch. */ Hacl_Streaming_MD_state_32 *Hacl_Streaming_SHA2_copy_256(Hacl_Streaming_MD_state_32 *s0) { Hacl_Streaming_MD_state_32 scrut = *s0; uint32_t *block_state0 = scrut.block_state; uint8_t *buf0 = scrut.buf; uint64_t total_len0 = scrut.total_len; uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)64U, sizeof (uint8_t)); memcpy(buf, buf0, (uint32_t)64U * sizeof (uint8_t)); uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint32_t)); memcpy(block_state, block_state0, (uint32_t)8U * sizeof (uint32_t)); Hacl_Streaming_MD_state_32 s = { .block_state = block_state, .buf = buf, .total_len = total_len0 }; Hacl_Streaming_MD_state_32 *p = (Hacl_Streaming_MD_state_32 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_32)); p[0U] = s; return p; } /** Reset an existing state to the initial hash state with empty data. */ void Hacl_Streaming_SHA2_init_256(Hacl_Streaming_MD_state_32 *s) { Hacl_Streaming_MD_state_32 scrut = *s; uint8_t *buf = scrut.buf; uint32_t *block_state = scrut.block_state; sha256_init(block_state); Hacl_Streaming_MD_state_32 tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; s[0U] = tmp; } static inline uint32_t update_224_256(Hacl_Streaming_MD_state_32 *p, uint8_t *data, uint32_t len) { Hacl_Streaming_MD_state_32 s = *p; uint64_t total_len = s.total_len; if ((uint64_t)len > (uint64_t)2305843009213693951U - total_len) { return (uint32_t)1U; } uint32_t sz; if (total_len % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len > (uint64_t)0U) { sz = (uint32_t)64U; } else { sz = (uint32_t)(total_len % (uint64_t)(uint32_t)64U); } if (len <= (uint32_t)64U - sz) { Hacl_Streaming_MD_state_32 s1 = *p; uint32_t *block_state1 = s1.block_state; uint8_t *buf = s1.buf; uint64_t total_len1 = s1.total_len; uint32_t sz1; if (total_len1 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len1 > (uint64_t)0U) { sz1 = (uint32_t)64U; } else { sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)64U); } uint8_t *buf2 = buf + sz1; memcpy(buf2, data, len * sizeof (uint8_t)); uint64_t total_len2 = total_len1 + (uint64_t)len; *p = ( (Hacl_Streaming_MD_state_32){ .block_state = block_state1, .buf = buf, .total_len = total_len2 } ); } else if (sz == (uint32_t)0U) { Hacl_Streaming_MD_state_32 s1 = *p; uint32_t *block_state1 = s1.block_state; uint8_t *buf = s1.buf; uint64_t total_len1 = s1.total_len; uint32_t sz1; if (total_len1 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len1 > (uint64_t)0U) { sz1 = (uint32_t)64U; } else { sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)64U); } if (!(sz1 == (uint32_t)0U)) { sha256_update_nblocks((uint32_t)64U, buf, block_state1); } uint32_t ite; if ((uint64_t)len % (uint64_t)(uint32_t)64U == (uint64_t)0U && (uint64_t)len > (uint64_t)0U) { ite = (uint32_t)64U; } else { ite = (uint32_t)((uint64_t)len % (uint64_t)(uint32_t)64U); } uint32_t n_blocks = (len - ite) / (uint32_t)64U; uint32_t data1_len = n_blocks * (uint32_t)64U; uint32_t data2_len = len - data1_len; uint8_t *data1 = data; uint8_t *data2 = data + data1_len; sha256_update_nblocks(data1_len, data1, block_state1); uint8_t *dst = buf; memcpy(dst, data2, data2_len * sizeof (uint8_t)); *p = ( (Hacl_Streaming_MD_state_32){ .block_state = block_state1, .buf = buf, .total_len = total_len1 + (uint64_t)len } ); } else { uint32_t diff = (uint32_t)64U - sz; uint8_t *data1 = data; uint8_t *data2 = data + diff; Hacl_Streaming_MD_state_32 s1 = *p; uint32_t *block_state10 = s1.block_state; uint8_t *buf0 = s1.buf; uint64_t total_len10 = s1.total_len; uint32_t sz10; if (total_len10 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len10 > (uint64_t)0U) { sz10 = (uint32_t)64U; } else { sz10 = (uint32_t)(total_len10 % (uint64_t)(uint32_t)64U); } uint8_t *buf2 = buf0 + sz10; memcpy(buf2, data1, diff * sizeof (uint8_t)); uint64_t total_len2 = total_len10 + (uint64_t)diff; *p = ( (Hacl_Streaming_MD_state_32){ .block_state = block_state10, .buf = buf0, .total_len = total_len2 } ); Hacl_Streaming_MD_state_32 s10 = *p; uint32_t *block_state1 = s10.block_state; uint8_t *buf = s10.buf; uint64_t total_len1 = s10.total_len; uint32_t sz1; if (total_len1 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len1 > (uint64_t)0U) { sz1 = (uint32_t)64U; } else { sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)64U); } if (!(sz1 == (uint32_t)0U)) { sha256_update_nblocks((uint32_t)64U, buf, block_state1); } uint32_t ite; if ( (uint64_t)(len - diff) % (uint64_t)(uint32_t)64U == (uint64_t)0U && (uint64_t)(len - diff) > (uint64_t)0U ) { ite = (uint32_t)64U; } else { ite = (uint32_t)((uint64_t)(len - diff) % (uint64_t)(uint32_t)64U); } uint32_t n_blocks = (len - diff - ite) / (uint32_t)64U; uint32_t data1_len = n_blocks * (uint32_t)64U; uint32_t data2_len = len - diff - data1_len; uint8_t *data11 = data2; uint8_t *data21 = data2 + data1_len; sha256_update_nblocks(data1_len, data11, block_state1); uint8_t *dst = buf; memcpy(dst, data21, data2_len * sizeof (uint8_t)); *p = ( (Hacl_Streaming_MD_state_32){ .block_state = block_state1, .buf = buf, .total_len = total_len1 + (uint64_t)(len - diff) } ); } return (uint32_t)0U; } /** Feed an arbitrary amount of data into the hash. This function returns 0 for success, or 1 if the combined length of all of the data passed to `update_256` (since the last call to `init_256`) exceeds 2^61-1 bytes. This function is identical to the update function for SHA2_224. */ uint32_t Hacl_Streaming_SHA2_update_256( Hacl_Streaming_MD_state_32 *p, uint8_t *input, uint32_t input_len ) { return update_224_256(p, input, input_len); } /** Write the resulting hash into `dst`, an array of 32 bytes. The state remains valid after a call to `finish_256`, meaning the user may feed more data into the hash via `update_256`. (The finish_256 function operates on an internal copy of the state and therefore does not invalidate the client-held state `p`.) */ void Hacl_Streaming_SHA2_finish_256(Hacl_Streaming_MD_state_32 *p, uint8_t *dst) { Hacl_Streaming_MD_state_32 scrut = *p; uint32_t *block_state = scrut.block_state; uint8_t *buf_ = scrut.buf; uint64_t total_len = scrut.total_len; uint32_t r; if (total_len % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len > (uint64_t)0U) { r = (uint32_t)64U; } else { r = (uint32_t)(total_len % (uint64_t)(uint32_t)64U); } uint8_t *buf_1 = buf_; uint32_t tmp_block_state[8U] = { 0U }; memcpy(tmp_block_state, block_state, (uint32_t)8U * sizeof (uint32_t)); uint32_t ite; if (r % (uint32_t)64U == (uint32_t)0U && r > (uint32_t)0U) { ite = (uint32_t)64U; } else { ite = r % (uint32_t)64U; } uint8_t *buf_last = buf_1 + r - ite; uint8_t *buf_multi = buf_1; sha256_update_nblocks((uint32_t)0U, buf_multi, tmp_block_state); uint64_t prev_len_last = total_len - (uint64_t)r; sha256_update_last(prev_len_last + (uint64_t)r, r, buf_last, tmp_block_state); sha256_finish(tmp_block_state, dst); } /** Free a state allocated with `create_in_256`. This function is identical to the free function for SHA2_224. */ void Hacl_Streaming_SHA2_free_256(Hacl_Streaming_MD_state_32 *s) { Hacl_Streaming_MD_state_32 scrut = *s; uint8_t *buf = scrut.buf; uint32_t *block_state = scrut.block_state; KRML_HOST_FREE(block_state); KRML_HOST_FREE(buf); KRML_HOST_FREE(s); } /** Hash `input`, of len `input_len`, into `dst`, an array of 32 bytes. */ void Hacl_Streaming_SHA2_sha256(uint8_t *input, uint32_t input_len, uint8_t *dst) { uint8_t *ib = input; uint8_t *rb = dst; uint32_t st[8U] = { 0U }; sha256_init(st); uint32_t rem = input_len % (uint32_t)64U; uint64_t len_ = (uint64_t)input_len; sha256_update_nblocks(input_len, ib, st); uint32_t rem1 = input_len % (uint32_t)64U; uint8_t *b0 = ib; uint8_t *lb = b0 + input_len - rem1; sha256_update_last(len_, rem, lb, st); sha256_finish(st, rb); } Hacl_Streaming_MD_state_32 *Hacl_Streaming_SHA2_create_in_224(void) { uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)64U, sizeof (uint8_t)); uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint32_t)); Hacl_Streaming_MD_state_32 s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; Hacl_Streaming_MD_state_32 *p = (Hacl_Streaming_MD_state_32 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_32)); p[0U] = s; sha224_init(block_state); return p; } void Hacl_Streaming_SHA2_init_224(Hacl_Streaming_MD_state_32 *s) { Hacl_Streaming_MD_state_32 scrut = *s; uint8_t *buf = scrut.buf; uint32_t *block_state = scrut.block_state; sha224_init(block_state); Hacl_Streaming_MD_state_32 tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; s[0U] = tmp; } uint32_t Hacl_Streaming_SHA2_update_224( Hacl_Streaming_MD_state_32 *p, uint8_t *input, uint32_t input_len ) { return update_224_256(p, input, input_len); } /** Write the resulting hash into `dst`, an array of 28 bytes. The state remains valid after a call to `finish_224`, meaning the user may feed more data into the hash via `update_224`. */ void Hacl_Streaming_SHA2_finish_224(Hacl_Streaming_MD_state_32 *p, uint8_t *dst) { Hacl_Streaming_MD_state_32 scrut = *p; uint32_t *block_state = scrut.block_state; uint8_t *buf_ = scrut.buf; uint64_t total_len = scrut.total_len; uint32_t r; if (total_len % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len > (uint64_t)0U) { r = (uint32_t)64U; } else { r = (uint32_t)(total_len % (uint64_t)(uint32_t)64U); } uint8_t *buf_1 = buf_; uint32_t tmp_block_state[8U] = { 0U }; memcpy(tmp_block_state, block_state, (uint32_t)8U * sizeof (uint32_t)); uint32_t ite; if (r % (uint32_t)64U == (uint32_t)0U && r > (uint32_t)0U) { ite = (uint32_t)64U; } else { ite = r % (uint32_t)64U; } uint8_t *buf_last = buf_1 + r - ite; uint8_t *buf_multi = buf_1; sha224_update_nblocks((uint32_t)0U, buf_multi, tmp_block_state); uint64_t prev_len_last = total_len - (uint64_t)r; sha224_update_last(prev_len_last + (uint64_t)r, r, buf_last, tmp_block_state); sha224_finish(tmp_block_state, dst); } void Hacl_Streaming_SHA2_free_224(Hacl_Streaming_MD_state_32 *p) { Hacl_Streaming_SHA2_free_256(p); } /** Hash `input`, of len `input_len`, into `dst`, an array of 28 bytes. */ void Hacl_Streaming_SHA2_sha224(uint8_t *input, uint32_t input_len, uint8_t *dst) { uint8_t *ib = input; uint8_t *rb = dst; uint32_t st[8U] = { 0U }; sha224_init(st); uint32_t rem = input_len % (uint32_t)64U; uint64_t len_ = (uint64_t)input_len; sha224_update_nblocks(input_len, ib, st); uint32_t rem1 = input_len % (uint32_t)64U; uint8_t *b0 = ib; uint8_t *lb = b0 + input_len - rem1; sha224_update_last(len_, rem, lb, st); sha224_finish(st, rb); } Hacl_Streaming_MD_state_64 *Hacl_Streaming_SHA2_create_in_512(void) { uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)128U, sizeof (uint8_t)); uint64_t *block_state = (uint64_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint64_t)); Hacl_Streaming_MD_state_64 s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; Hacl_Streaming_MD_state_64 *p = (Hacl_Streaming_MD_state_64 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_64)); p[0U] = s; Hacl_SHA2_Scalar32_sha512_init(block_state); return p; } /** Copies the state passed as argument into a newly allocated state (deep copy). The state is to be freed by calling `free_512`. Cloning the state this way is useful, for instance, if your control-flow diverges and you need to feed more (different) data into the hash in each branch. */ Hacl_Streaming_MD_state_64 *Hacl_Streaming_SHA2_copy_512(Hacl_Streaming_MD_state_64 *s0) { Hacl_Streaming_MD_state_64 scrut = *s0; uint64_t *block_state0 = scrut.block_state; uint8_t *buf0 = scrut.buf; uint64_t total_len0 = scrut.total_len; uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)128U, sizeof (uint8_t)); memcpy(buf, buf0, (uint32_t)128U * sizeof (uint8_t)); uint64_t *block_state = (uint64_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint64_t)); memcpy(block_state, block_state0, (uint32_t)8U * sizeof (uint64_t)); Hacl_Streaming_MD_state_64 s = { .block_state = block_state, .buf = buf, .total_len = total_len0 }; Hacl_Streaming_MD_state_64 *p = (Hacl_Streaming_MD_state_64 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_64)); p[0U] = s; return p; } void Hacl_Streaming_SHA2_init_512(Hacl_Streaming_MD_state_64 *s) { Hacl_Streaming_MD_state_64 scrut = *s; uint8_t *buf = scrut.buf; uint64_t *block_state = scrut.block_state; Hacl_SHA2_Scalar32_sha512_init(block_state); Hacl_Streaming_MD_state_64 tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; s[0U] = tmp; } static inline uint32_t update_384_512(Hacl_Streaming_MD_state_64 *p, uint8_t *data, uint32_t len) { Hacl_Streaming_MD_state_64 s = *p; uint64_t total_len = s.total_len; if ((uint64_t)len > (uint64_t)18446744073709551615U - total_len) { return (uint32_t)1U; } uint32_t sz; if (total_len % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len > (uint64_t)0U) { sz = (uint32_t)128U; } else { sz = (uint32_t)(total_len % (uint64_t)(uint32_t)128U); } if (len <= (uint32_t)128U - sz) { Hacl_Streaming_MD_state_64 s1 = *p; uint64_t *block_state1 = s1.block_state; uint8_t *buf = s1.buf; uint64_t total_len1 = s1.total_len; uint32_t sz1; if (total_len1 % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len1 > (uint64_t)0U) { sz1 = (uint32_t)128U; } else { sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)128U); } uint8_t *buf2 = buf + sz1; memcpy(buf2, data, len * sizeof (uint8_t)); uint64_t total_len2 = total_len1 + (uint64_t)len; *p = ( (Hacl_Streaming_MD_state_64){ .block_state = block_state1, .buf = buf, .total_len = total_len2 } ); } else if (sz == (uint32_t)0U) { Hacl_Streaming_MD_state_64 s1 = *p; uint64_t *block_state1 = s1.block_state; uint8_t *buf = s1.buf; uint64_t total_len1 = s1.total_len; uint32_t sz1; if (total_len1 % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len1 > (uint64_t)0U) { sz1 = (uint32_t)128U; } else { sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)128U); } if (!(sz1 == (uint32_t)0U)) { sha512_update_nblocks((uint32_t)128U, buf, block_state1); } uint32_t ite; if ((uint64_t)len % (uint64_t)(uint32_t)128U == (uint64_t)0U && (uint64_t)len > (uint64_t)0U) { ite = (uint32_t)128U; } else { ite = (uint32_t)((uint64_t)len % (uint64_t)(uint32_t)128U); } uint32_t n_blocks = (len - ite) / (uint32_t)128U; uint32_t data1_len = n_blocks * (uint32_t)128U; uint32_t data2_len = len - data1_len; uint8_t *data1 = data; uint8_t *data2 = data + data1_len; sha512_update_nblocks(data1_len, data1, block_state1); uint8_t *dst = buf; memcpy(dst, data2, data2_len * sizeof (uint8_t)); *p = ( (Hacl_Streaming_MD_state_64){ .block_state = block_state1, .buf = buf, .total_len = total_len1 + (uint64_t)len } ); } else { uint32_t diff = (uint32_t)128U - sz; uint8_t *data1 = data; uint8_t *data2 = data + diff; Hacl_Streaming_MD_state_64 s1 = *p; uint64_t *block_state10 = s1.block_state; uint8_t *buf0 = s1.buf; uint64_t total_len10 = s1.total_len; uint32_t sz10; if (total_len10 % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len10 > (uint64_t)0U) { sz10 = (uint32_t)128U; } else { sz10 = (uint32_t)(total_len10 % (uint64_t)(uint32_t)128U); } uint8_t *buf2 = buf0 + sz10; memcpy(buf2, data1, diff * sizeof (uint8_t)); uint64_t total_len2 = total_len10 + (uint64_t)diff; *p = ( (Hacl_Streaming_MD_state_64){ .block_state = block_state10, .buf = buf0, .total_len = total_len2 } ); Hacl_Streaming_MD_state_64 s10 = *p; uint64_t *block_state1 = s10.block_state; uint8_t *buf = s10.buf; uint64_t total_len1 = s10.total_len; uint32_t sz1; if (total_len1 % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len1 > (uint64_t)0U) { sz1 = (uint32_t)128U; } else { sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)128U); } if (!(sz1 == (uint32_t)0U)) { sha512_update_nblocks((uint32_t)128U, buf, block_state1); } uint32_t ite; if ( (uint64_t)(len - diff) % (uint64_t)(uint32_t)128U == (uint64_t)0U && (uint64_t)(len - diff) > (uint64_t)0U ) { ite = (uint32_t)128U; } else { ite = (uint32_t)((uint64_t)(len - diff) % (uint64_t)(uint32_t)128U); } uint32_t n_blocks = (len - diff - ite) / (uint32_t)128U; uint32_t data1_len = n_blocks * (uint32_t)128U; uint32_t data2_len = len - diff - data1_len; uint8_t *data11 = data2; uint8_t *data21 = data2 + data1_len; sha512_update_nblocks(data1_len, data11, block_state1); uint8_t *dst = buf; memcpy(dst, data21, data2_len * sizeof (uint8_t)); *p = ( (Hacl_Streaming_MD_state_64){ .block_state = block_state1, .buf = buf, .total_len = total_len1 + (uint64_t)(len - diff) } ); } return (uint32_t)0U; } /** Feed an arbitrary amount of data into the hash. This function returns 0 for success, or 1 if the combined length of all of the data passed to `update_512` (since the last call to `init_512`) exceeds 2^125-1 bytes. This function is identical to the update function for SHA2_384. */ uint32_t Hacl_Streaming_SHA2_update_512( Hacl_Streaming_MD_state_64 *p, uint8_t *input, uint32_t input_len ) { return update_384_512(p, input, input_len); } /** Write the resulting hash into `dst`, an array of 64 bytes. The state remains valid after a call to `finish_512`, meaning the user may feed more data into the hash via `update_512`. (The finish_512 function operates on an internal copy of the state and therefore does not invalidate the client-held state `p`.) */ void Hacl_Streaming_SHA2_finish_512(Hacl_Streaming_MD_state_64 *p, uint8_t *dst) { Hacl_Streaming_MD_state_64 scrut = *p; uint64_t *block_state = scrut.block_state; uint8_t *buf_ = scrut.buf; uint64_t total_len = scrut.total_len; uint32_t r; if (total_len % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len > (uint64_t)0U) { r = (uint32_t)128U; } else { r = (uint32_t)(total_len % (uint64_t)(uint32_t)128U); } uint8_t *buf_1 = buf_; uint64_t tmp_block_state[8U] = { 0U }; memcpy(tmp_block_state, block_state, (uint32_t)8U * sizeof (uint64_t)); uint32_t ite; if (r % (uint32_t)128U == (uint32_t)0U && r > (uint32_t)0U) { ite = (uint32_t)128U; } else { ite = r % (uint32_t)128U; } uint8_t *buf_last = buf_1 + r - ite; uint8_t *buf_multi = buf_1; sha512_update_nblocks((uint32_t)0U, buf_multi, tmp_block_state); uint64_t prev_len_last = total_len - (uint64_t)r; sha512_update_last(FStar_UInt128_add(FStar_UInt128_uint64_to_uint128(prev_len_last), FStar_UInt128_uint64_to_uint128((uint64_t)r)), r, buf_last, tmp_block_state); sha512_finish(tmp_block_state, dst); } /** Free a state allocated with `create_in_512`. This function is identical to the free function for SHA2_384. */ void Hacl_Streaming_SHA2_free_512(Hacl_Streaming_MD_state_64 *s) { Hacl_Streaming_MD_state_64 scrut = *s; uint8_t *buf = scrut.buf; uint64_t *block_state = scrut.block_state; KRML_HOST_FREE(block_state); KRML_HOST_FREE(buf); KRML_HOST_FREE(s); } /** Hash `input`, of len `input_len`, into `dst`, an array of 64 bytes. */ void Hacl_Streaming_SHA2_sha512(uint8_t *input, uint32_t input_len, uint8_t *dst) { uint8_t *ib = input; uint8_t *rb = dst; uint64_t st[8U] = { 0U }; Hacl_SHA2_Scalar32_sha512_init(st); uint32_t rem = input_len % (uint32_t)128U; FStar_UInt128_uint128 len_ = FStar_UInt128_uint64_to_uint128((uint64_t)input_len); sha512_update_nblocks(input_len, ib, st); uint32_t rem1 = input_len % (uint32_t)128U; uint8_t *b0 = ib; uint8_t *lb = b0 + input_len - rem1; sha512_update_last(len_, rem, lb, st); sha512_finish(st, rb); } Hacl_Streaming_MD_state_64 *Hacl_Streaming_SHA2_create_in_384(void) { uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)128U, sizeof (uint8_t)); uint64_t *block_state = (uint64_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint64_t)); Hacl_Streaming_MD_state_64 s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; Hacl_Streaming_MD_state_64 *p = (Hacl_Streaming_MD_state_64 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_64)); p[0U] = s; sha384_init(block_state); return p; } void Hacl_Streaming_SHA2_init_384(Hacl_Streaming_MD_state_64 *s) { Hacl_Streaming_MD_state_64 scrut = *s; uint8_t *buf = scrut.buf; uint64_t *block_state = scrut.block_state; sha384_init(block_state); Hacl_Streaming_MD_state_64 tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; s[0U] = tmp; } uint32_t Hacl_Streaming_SHA2_update_384( Hacl_Streaming_MD_state_64 *p, uint8_t *input, uint32_t input_len ) { return update_384_512(p, input, input_len); } /** Write the resulting hash into `dst`, an array of 48 bytes. The state remains valid after a call to `finish_384`, meaning the user may feed more data into the hash via `update_384`. */ void Hacl_Streaming_SHA2_finish_384(Hacl_Streaming_MD_state_64 *p, uint8_t *dst) { Hacl_Streaming_MD_state_64 scrut = *p; uint64_t *block_state = scrut.block_state; uint8_t *buf_ = scrut.buf; uint64_t total_len = scrut.total_len; uint32_t r; if (total_len % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len > (uint64_t)0U) { r = (uint32_t)128U; } else { r = (uint32_t)(total_len % (uint64_t)(uint32_t)128U); } uint8_t *buf_1 = buf_; uint64_t tmp_block_state[8U] = { 0U }; memcpy(tmp_block_state, block_state, (uint32_t)8U * sizeof (uint64_t)); uint32_t ite; if (r % (uint32_t)128U == (uint32_t)0U && r > (uint32_t)0U) { ite = (uint32_t)128U; } else { ite = r % (uint32_t)128U; } uint8_t *buf_last = buf_1 + r - ite; uint8_t *buf_multi = buf_1; sha384_update_nblocks((uint32_t)0U, buf_multi, tmp_block_state); uint64_t prev_len_last = total_len - (uint64_t)r; sha384_update_last(FStar_UInt128_add(FStar_UInt128_uint64_to_uint128(prev_len_last), FStar_UInt128_uint64_to_uint128((uint64_t)r)), r, buf_last, tmp_block_state); sha384_finish(tmp_block_state, dst); } void Hacl_Streaming_SHA2_free_384(Hacl_Streaming_MD_state_64 *p) { Hacl_Streaming_SHA2_free_512(p); } /** Hash `input`, of len `input_len`, into `dst`, an array of 48 bytes. */ void Hacl_Streaming_SHA2_sha384(uint8_t *input, uint32_t input_len, uint8_t *dst) { uint8_t *ib = input; uint8_t *rb = dst; uint64_t st[8U] = { 0U }; sha384_init(st); uint32_t rem = input_len % (uint32_t)128U; FStar_UInt128_uint128 len_ = FStar_UInt128_uint64_to_uint128((uint64_t)input_len); sha384_update_nblocks(input_len, ib, st); uint32_t rem1 = input_len % (uint32_t)128U; uint8_t *b0 = ib; uint8_t *lb = b0 + input_len - rem1; sha384_update_last(len_, rem, lb, st); sha384_finish(st, rb); }