/* SSL socket module SSL support based on patches by Brian E Gallew and Laszlo Kovacs. Re-worked a bit by Bill Janssen to add server-side support and certificate decoding. This module is imported by ssl.py. It should *not* be used directly. XXX should partial writes be enabled, SSL_MODE_ENABLE_PARTIAL_WRITE? XXX what about SSL_MODE_AUTO_RETRY */ #include "Python.h" #ifdef WITH_THREAD #include "pythread.h" #define PySSL_BEGIN_ALLOW_THREADS { \ PyThreadState *_save; \ if (_ssl_locks_count>0) {_save = PyEval_SaveThread();} #define PySSL_BLOCK_THREADS if (_ssl_locks_count>0){PyEval_RestoreThread(_save)}; #define PySSL_UNBLOCK_THREADS if (_ssl_locks_count>0){_save = PyEval_SaveThread()}; #define PySSL_END_ALLOW_THREADS if (_ssl_locks_count>0){PyEval_RestoreThread(_save);} \ } #else /* no WITH_THREAD */ #define PySSL_BEGIN_ALLOW_THREADS #define PySSL_BLOCK_THREADS #define PySSL_UNBLOCK_THREADS #define PySSL_END_ALLOW_THREADS #endif enum py_ssl_error { /* these mirror ssl.h */ PY_SSL_ERROR_NONE, PY_SSL_ERROR_SSL, PY_SSL_ERROR_WANT_READ, PY_SSL_ERROR_WANT_WRITE, PY_SSL_ERROR_WANT_X509_LOOKUP, PY_SSL_ERROR_SYSCALL, /* look at error stack/return value/errno */ PY_SSL_ERROR_ZERO_RETURN, PY_SSL_ERROR_WANT_CONNECT, /* start of non ssl.h errorcodes */ PY_SSL_ERROR_EOF, /* special case of SSL_ERROR_SYSCALL */ PY_SSL_ERROR_INVALID_ERROR_CODE }; enum py_ssl_server_or_client { PY_SSL_CLIENT, PY_SSL_SERVER }; enum py_ssl_cert_requirements { PY_SSL_CERT_NONE, PY_SSL_CERT_OPTIONAL, PY_SSL_CERT_REQUIRED }; enum py_ssl_version { PY_SSL_VERSION_SSL2, PY_SSL_VERSION_SSL3, PY_SSL_VERSION_SSL23, PY_SSL_VERSION_TLS1, }; /* Include symbols from _socket module */ #include "socketmodule.h" #if defined(HAVE_POLL_H) #include #elif defined(HAVE_SYS_POLL_H) #include #endif /* Include OpenSSL header files */ #include "openssl/rsa.h" #include "openssl/crypto.h" #include "openssl/x509.h" #include "openssl/x509v3.h" #include "openssl/pem.h" #include "openssl/ssl.h" #include "openssl/err.h" #include "openssl/rand.h" /* SSL error object */ static PyObject *PySSLErrorObject; #ifdef WITH_THREAD /* serves as a flag to see whether we've initialized the SSL thread support. */ /* 0 means no, greater than 0 means yes */ static unsigned int _ssl_locks_count = 0; #endif /* def WITH_THREAD */ /* SSL socket object */ #define X509_NAME_MAXLEN 256 /* RAND_* APIs got added to OpenSSL in 0.9.5 */ #if OPENSSL_VERSION_NUMBER >= 0x0090500fL # define HAVE_OPENSSL_RAND 1 #else # undef HAVE_OPENSSL_RAND #endif typedef struct { PyObject_HEAD PySocketSockObject *Socket; /* Socket on which we're layered */ SSL_CTX* ctx; SSL* ssl; X509* peer_cert; char server[X509_NAME_MAXLEN]; char issuer[X509_NAME_MAXLEN]; } PySSLObject; static PyTypeObject PySSL_Type; static PyObject *PySSL_SSLwrite(PySSLObject *self, PyObject *args); static PyObject *PySSL_SSLread(PySSLObject *self, PyObject *args); static int check_socket_and_wait_for_timeout(PySocketSockObject *s, int writing); static PyObject *PySSL_peercert(PySSLObject *self, PyObject *args); static PyObject *PySSL_cipher(PySSLObject *self); #define PySSLObject_Check(v) (Py_Type(v) == &PySSL_Type) typedef enum { SOCKET_IS_NONBLOCKING, SOCKET_IS_BLOCKING, SOCKET_HAS_TIMED_OUT, SOCKET_HAS_BEEN_CLOSED, SOCKET_TOO_LARGE_FOR_SELECT, SOCKET_OPERATION_OK } timeout_state; /* Wrap error strings with filename and line # */ #define STRINGIFY1(x) #x #define STRINGIFY2(x) STRINGIFY1(x) #define ERRSTR1(x,y,z) (x ":" y ": " z) #define ERRSTR(x) ERRSTR1("_ssl.c", STRINGIFY2(__LINE__), x) /* XXX It might be helpful to augment the error message generated below with the name of the SSL function that generated the error. I expect it's obvious most of the time. */ static PyObject * PySSL_SetError(PySSLObject *obj, int ret, char *filename, int lineno) { PyObject *v; char buf[2048]; char *errstr; int err; enum py_ssl_error p = PY_SSL_ERROR_NONE; assert(ret <= 0); if (obj->ssl != NULL) { err = SSL_get_error(obj->ssl, ret); switch (err) { case SSL_ERROR_ZERO_RETURN: errstr = "TLS/SSL connection has been closed"; p = PY_SSL_ERROR_ZERO_RETURN; break; case SSL_ERROR_WANT_READ: errstr = "The operation did not complete (read)"; p = PY_SSL_ERROR_WANT_READ; break; case SSL_ERROR_WANT_WRITE: p = PY_SSL_ERROR_WANT_WRITE; errstr = "The operation did not complete (write)"; break; case SSL_ERROR_WANT_X509_LOOKUP: p = PY_SSL_ERROR_WANT_X509_LOOKUP; errstr = "The operation did not complete (X509 lookup)"; break; case SSL_ERROR_WANT_CONNECT: p = PY_SSL_ERROR_WANT_CONNECT; errstr = "The operation did not complete (connect)"; break; case SSL_ERROR_SYSCALL: { unsigned long e = ERR_get_error(); if (e == 0) { if (ret == 0 || !obj->Socket) { p = PY_SSL_ERROR_EOF; errstr = "EOF occurred in violation of protocol"; } else if (ret == -1) { /* underlying BIO reported an I/O error */ return obj->Socket->errorhandler(); } else { /* possible? */ p = PY_SSL_ERROR_SYSCALL; errstr = "Some I/O error occurred"; } } else { p = PY_SSL_ERROR_SYSCALL; /* XXX Protected by global interpreter lock */ errstr = ERR_error_string(e, NULL); } break; } case SSL_ERROR_SSL: { unsigned long e = ERR_get_error(); p = PY_SSL_ERROR_SSL; if (e != 0) /* XXX Protected by global interpreter lock */ errstr = ERR_error_string(e, NULL); else { /* possible? */ errstr = "A failure in the SSL library occurred"; } break; } default: p = PY_SSL_ERROR_INVALID_ERROR_CODE; errstr = "Invalid error code"; } } else { errstr = ERR_error_string(ERR_peek_last_error(), NULL); } PyOS_snprintf(buf, sizeof(buf), "_ssl.c:%d: %s", lineno, errstr); v = Py_BuildValue("(is)", p, buf); if (v != NULL) { PyErr_SetObject(PySSLErrorObject, v); Py_DECREF(v); } return NULL; } static PyObject * _setSSLError (char *errstr, int errcode, char *filename, int lineno) { char buf[2048]; PyObject *v; if (errstr == NULL) { errcode = ERR_peek_last_error(); errstr = ERR_error_string(errcode, NULL); } PyOS_snprintf(buf, sizeof(buf), "_ssl.c:%d: %s", lineno, errstr); v = Py_BuildValue("(is)", errcode, buf); if (v != NULL) { PyErr_SetObject(PySSLErrorObject, v); Py_DECREF(v); } return NULL; } static PySSLObject * newPySSLObject(PySocketSockObject *Sock, char *key_file, char *cert_file, enum py_ssl_server_or_client socket_type, enum py_ssl_cert_requirements certreq, enum py_ssl_version proto_version, char *cacerts_file) { PySSLObject *self; char *errstr = NULL; int ret; int err; int sockstate; int verification_mode; self = PyObject_New(PySSLObject, &PySSL_Type); /* Create new object */ if (self == NULL) return NULL; memset(self->server, '\0', sizeof(char) * X509_NAME_MAXLEN); memset(self->issuer, '\0', sizeof(char) * X509_NAME_MAXLEN); self->peer_cert = NULL; self->ssl = NULL; self->ctx = NULL; self->Socket = NULL; /* Make sure the SSL error state is initialized */ (void) ERR_get_state(); ERR_clear_error(); if ((key_file && !cert_file) || (!key_file && cert_file)) { errstr = ERRSTR("Both the key & certificate files " "must be specified"); goto fail; } if ((socket_type == PY_SSL_SERVER) && ((key_file == NULL) || (cert_file == NULL))) { errstr = ERRSTR("Both the key & certificate files " "must be specified for server-side operation"); goto fail; } PySSL_BEGIN_ALLOW_THREADS if (proto_version == PY_SSL_VERSION_TLS1) self->ctx = SSL_CTX_new(TLSv1_method()); /* Set up context */ else if (proto_version == PY_SSL_VERSION_SSL3) self->ctx = SSL_CTX_new(SSLv3_method()); /* Set up context */ else if (proto_version == PY_SSL_VERSION_SSL2) self->ctx = SSL_CTX_new(SSLv2_method()); /* Set up context */ else if (proto_version == PY_SSL_VERSION_SSL23) self->ctx = SSL_CTX_new(SSLv23_method()); /* Set up context */ PySSL_END_ALLOW_THREADS if (self->ctx == NULL) { errstr = ERRSTR("Invalid SSL protocol variant specified."); goto fail; } if (certreq != PY_SSL_CERT_NONE) { if (cacerts_file == NULL) { errstr = ERRSTR("No root certificates specified for " "verification of other-side certificates."); goto fail; } else { PySSL_BEGIN_ALLOW_THREADS ret = SSL_CTX_load_verify_locations(self->ctx, cacerts_file, NULL); PySSL_END_ALLOW_THREADS if (ret != 1) { _setSSLError(NULL, 0, __FILE__, __LINE__); goto fail; } } } if (key_file) { PySSL_BEGIN_ALLOW_THREADS ret = SSL_CTX_use_PrivateKey_file(self->ctx, key_file, SSL_FILETYPE_PEM); PySSL_END_ALLOW_THREADS if (ret != 1) { _setSSLError(NULL, ret, __FILE__, __LINE__); goto fail; } PySSL_BEGIN_ALLOW_THREADS ret = SSL_CTX_use_certificate_chain_file(self->ctx, cert_file); PySSL_END_ALLOW_THREADS if (ret != 1) { /* fprintf(stderr, "ret is %d, errcode is %lu, %lu, with file \"%s\"\n", ret, ERR_peek_error(), ERR_peek_last_error(), cert_file); */ if (ERR_peek_last_error() != 0) { _setSSLError(NULL, ret, __FILE__, __LINE__); goto fail; } } } /* ssl compatibility */ SSL_CTX_set_options(self->ctx, SSL_OP_ALL); verification_mode = SSL_VERIFY_NONE; if (certreq == PY_SSL_CERT_OPTIONAL) verification_mode = SSL_VERIFY_PEER; else if (certreq == PY_SSL_CERT_REQUIRED) verification_mode = (SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT); SSL_CTX_set_verify(self->ctx, verification_mode, NULL); /* set verify lvl */ PySSL_BEGIN_ALLOW_THREADS self->ssl = SSL_new(self->ctx); /* New ssl struct */ PySSL_END_ALLOW_THREADS SSL_set_fd(self->ssl, Sock->sock_fd); /* Set the socket for SSL */ /* If the socket is in non-blocking mode or timeout mode, set the BIO * to non-blocking mode (blocking is the default) */ if (Sock->sock_timeout >= 0.0) { /* Set both the read and write BIO's to non-blocking mode */ BIO_set_nbio(SSL_get_rbio(self->ssl), 1); BIO_set_nbio(SSL_get_wbio(self->ssl), 1); } PySSL_BEGIN_ALLOW_THREADS if (socket_type == PY_SSL_CLIENT) SSL_set_connect_state(self->ssl); else SSL_set_accept_state(self->ssl); PySSL_END_ALLOW_THREADS /* Actually negotiate SSL connection */ /* XXX If SSL_connect() returns 0, it's also a failure. */ sockstate = 0; do { PySSL_BEGIN_ALLOW_THREADS if (socket_type == PY_SSL_CLIENT) ret = SSL_connect(self->ssl); else ret = SSL_accept(self->ssl); err = SSL_get_error(self->ssl, ret); PySSL_END_ALLOW_THREADS if(PyErr_CheckSignals()) { goto fail; } if (err == SSL_ERROR_WANT_READ) { sockstate = check_socket_and_wait_for_timeout(Sock, 0); } else if (err == SSL_ERROR_WANT_WRITE) { sockstate = check_socket_and_wait_for_timeout(Sock, 1); } else { sockstate = SOCKET_OPERATION_OK; } if (sockstate == SOCKET_HAS_TIMED_OUT) { PyErr_SetString(PySSLErrorObject, ERRSTR("The connect operation timed out")); goto fail; } else if (sockstate == SOCKET_HAS_BEEN_CLOSED) { PyErr_SetString(PySSLErrorObject, ERRSTR("Underlying socket has been closed.")); goto fail; } else if (sockstate == SOCKET_TOO_LARGE_FOR_SELECT) { PyErr_SetString(PySSLErrorObject, ERRSTR("Underlying socket too large for select().")); goto fail; } else if (sockstate == SOCKET_IS_NONBLOCKING) { break; } } while (err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE); if (ret < 1) { PySSL_SetError(self, ret, __FILE__, __LINE__); goto fail; } self->ssl->debug = 1; PySSL_BEGIN_ALLOW_THREADS if ((self->peer_cert = SSL_get_peer_certificate(self->ssl))) { X509_NAME_oneline(X509_get_subject_name(self->peer_cert), self->server, X509_NAME_MAXLEN); X509_NAME_oneline(X509_get_issuer_name(self->peer_cert), self->issuer, X509_NAME_MAXLEN); } PySSL_END_ALLOW_THREADS self->Socket = Sock; Py_INCREF(self->Socket); return self; fail: if (errstr) PyErr_SetString(PySSLErrorObject, errstr); Py_DECREF(self); return NULL; } static PyObject * PySSL_sslwrap(PyObject *self, PyObject *args) { PySocketSockObject *Sock; int server_side = 0; int verification_mode = PY_SSL_CERT_NONE; int protocol = PY_SSL_VERSION_SSL23; char *key_file = NULL; char *cert_file = NULL; char *cacerts_file = NULL; if (!PyArg_ParseTuple(args, "O!i|zziiz:sslwrap", PySocketModule.Sock_Type, &Sock, &server_side, &key_file, &cert_file, &verification_mode, &protocol, &cacerts_file)) return NULL; /* fprintf(stderr, "server_side is %d, keyfile %p, certfile %p, verify_mode %d, " "protocol %d, certs %p\n", server_side, key_file, cert_file, verification_mode, protocol, cacerts_file); */ return (PyObject *) newPySSLObject(Sock, key_file, cert_file, server_side, verification_mode, protocol, cacerts_file); } PyDoc_STRVAR(ssl_doc, "sslwrap(socket, server_side, [keyfile, certfile, certs_mode, protocol,\n" " cacertsfile]) -> sslobject"); /* SSL object methods */ static PyObject * PySSL_server(PySSLObject *self) { return PyUnicode_FromString(self->server); } static PyObject * PySSL_issuer(PySSLObject *self) { return PyUnicode_FromString(self->issuer); } static PyObject * _create_tuple_for_attribute (ASN1_OBJECT *name, ASN1_STRING *value) { char namebuf[X509_NAME_MAXLEN]; int buflen; PyObject *name_obj; PyObject *value_obj; PyObject *attr; unsigned char *valuebuf = NULL; buflen = OBJ_obj2txt(namebuf, sizeof(namebuf), name, 0); if (buflen < 0) { _setSSLError(NULL, 0, __FILE__, __LINE__); goto fail; } name_obj = PyString_FromStringAndSize(namebuf, buflen); if (name_obj == NULL) goto fail; buflen = ASN1_STRING_to_UTF8(&valuebuf, value); if (buflen < 0) { _setSSLError(NULL, 0, __FILE__, __LINE__); Py_DECREF(name_obj); goto fail; } value_obj = PyUnicode_DecodeUTF8((char *) valuebuf, buflen, "strict"); OPENSSL_free(valuebuf); if (value_obj == NULL) { Py_DECREF(name_obj); goto fail; } attr = PyTuple_New(2); if (attr == NULL) { Py_DECREF(name_obj); Py_DECREF(value_obj); goto fail; } PyTuple_SET_ITEM(attr, 0, name_obj); PyTuple_SET_ITEM(attr, 1, value_obj); return attr; fail: return NULL; } static PyObject * _create_tuple_for_X509_NAME (X509_NAME *xname) { PyObject *dn = NULL; /* tuple which represents the "distinguished name" */ PyObject *rdn = NULL; /* tuple to hold a "relative distinguished name" */ PyObject *rdnt; PyObject *attr = NULL; /* tuple to hold an attribute */ int entry_count = X509_NAME_entry_count(xname); X509_NAME_ENTRY *entry; ASN1_OBJECT *name; ASN1_STRING *value; int index_counter; int rdn_level = -1; int retcode; dn = PyList_New(0); if (dn == NULL) return NULL; /* now create another tuple to hold the top-level RDN */ rdn = PyList_New(0); if (rdn == NULL) goto fail0; for (index_counter = 0; index_counter < entry_count; index_counter++) { entry = X509_NAME_get_entry(xname, index_counter); /* check to see if we've gotten to a new RDN */ if (rdn_level >= 0) { if (rdn_level != entry->set) { /* yes, new RDN */ /* add old RDN to DN */ rdnt = PyList_AsTuple(rdn); Py_DECREF(rdn); if (rdnt == NULL) goto fail0; retcode = PyList_Append(dn, rdnt); Py_DECREF(rdnt); if (retcode < 0) goto fail0; /* create new RDN */ rdn = PyList_New(0); if (rdn == NULL) goto fail0; } } rdn_level = entry->set; /* now add this attribute to the current RDN */ name = X509_NAME_ENTRY_get_object(entry); value = X509_NAME_ENTRY_get_data(entry); attr = _create_tuple_for_attribute(name, value); /* fprintf(stderr, "RDN level %d, attribute %s: %s\n", entry->set, PyString_AS_STRING(PyTuple_GET_ITEM(attr, 0)), PyString_AS_STRING(PyTuple_GET_ITEM(attr, 1))); */ if (attr == NULL) goto fail1; retcode = PyList_Append(rdn, attr); Py_DECREF(attr); if (retcode < 0) goto fail1; } /* now, there's typically a dangling RDN */ if ((rdn != NULL) && (PyList_Size(rdn) > 0)) { rdnt = PyList_AsTuple(rdn); Py_DECREF(rdn); if (rdnt == NULL) goto fail0; retcode = PyList_Append(dn, rdnt); Py_DECREF(rdnt); if (retcode < 0) goto fail0; } /* convert list to tuple */ rdnt = PyList_AsTuple(dn); Py_DECREF(dn); if (rdnt == NULL) return NULL; return rdnt; fail1: Py_XDECREF(rdn); fail0: Py_XDECREF(dn); return NULL; } static PyObject * _get_peer_alt_names (X509 *certificate) { /* this code follows the procedure outlined in OpenSSL's crypto/x509v3/v3_prn.c:X509v3_EXT_print() function to extract the STACK_OF(GENERAL_NAME), then iterates through the stack to add the names. */ int i, j; PyObject *peer_alt_names = Py_None; PyObject *v, *t; X509_EXTENSION *ext = NULL; GENERAL_NAMES *names = NULL; GENERAL_NAME *name; X509V3_EXT_METHOD *method; BIO *biobuf = NULL; char buf[2048]; char *vptr; int len; unsigned char *p; if (certificate == NULL) return peer_alt_names; /* get a memory buffer */ biobuf = BIO_new(BIO_s_mem()); i = 0; while ((i = X509_get_ext_by_NID( certificate, NID_subject_alt_name, i)) >= 0) { if (peer_alt_names == Py_None) { peer_alt_names = PyList_New(0); if (peer_alt_names == NULL) goto fail; } /* now decode the altName */ ext = X509_get_ext(certificate, i); if(!(method = X509V3_EXT_get(ext))) { PyErr_SetString(PySSLErrorObject, ERRSTR("No method for internalizing subjectAltName!")); goto fail; } p = ext->value->data; if(method->it) names = (GENERAL_NAMES*) (ASN1_item_d2i(NULL, &p, ext->value->length, ASN1_ITEM_ptr(method->it))); else names = (GENERAL_NAMES*) (method->d2i(NULL, &p, ext->value->length)); for(j = 0; j < sk_GENERAL_NAME_num(names); j++) { /* get a rendering of each name in the set of names */ name = sk_GENERAL_NAME_value(names, j); if (name->type == GEN_DIRNAME) { /* we special-case DirName as a tuple of tuples of attributes */ t = PyTuple_New(2); if (t == NULL) { goto fail; } v = PyString_FromString("DirName"); if (v == NULL) { Py_DECREF(t); goto fail; } PyTuple_SET_ITEM(t, 0, v); v = _create_tuple_for_X509_NAME (name->d.dirn); if (v == NULL) { Py_DECREF(t); goto fail; } PyTuple_SET_ITEM(t, 1, v); } else { /* for everything else, we use the OpenSSL print form */ (void) BIO_reset(biobuf); GENERAL_NAME_print(biobuf, name); len = BIO_gets(biobuf, buf, sizeof(buf)-1); if (len < 0) { _setSSLError(NULL, 0, __FILE__, __LINE__); goto fail; } vptr = strchr(buf, ':'); if (vptr == NULL) goto fail; t = PyTuple_New(2); if (t == NULL) goto fail; v = PyString_FromStringAndSize(buf, (vptr - buf)); if (v == NULL) { Py_DECREF(t); goto fail; } PyTuple_SET_ITEM(t, 0, v); v = PyString_FromStringAndSize((vptr + 1), (len - (vptr - buf + 1))); if (v == NULL) { Py_DECREF(t); goto fail; } PyTuple_SET_ITEM(t, 1, v); } /* and add that rendering to the list */ if (PyList_Append(peer_alt_names, t) < 0) { Py_DECREF(t); goto fail; } Py_DECREF(t); } } BIO_free(biobuf); if (peer_alt_names != Py_None) { v = PyList_AsTuple(peer_alt_names); Py_DECREF(peer_alt_names); return v; } else { return peer_alt_names; } fail: if (biobuf != NULL) BIO_free(biobuf); if (peer_alt_names != Py_None) { Py_XDECREF(peer_alt_names); } return NULL; } static PyObject * _decode_certificate (X509 *certificate, int verbose) { PyObject *retval = NULL; BIO *biobuf = NULL; PyObject *peer; PyObject *peer_alt_names = NULL; PyObject *issuer; PyObject *version; PyObject *sn_obj; ASN1_INTEGER *serialNumber; char buf[2048]; int len; ASN1_TIME *notBefore, *notAfter; PyObject *pnotBefore, *pnotAfter; retval = PyDict_New(); if (retval == NULL) return NULL; peer = _create_tuple_for_X509_NAME( X509_get_subject_name(certificate)); if (peer == NULL) goto fail0; if (PyDict_SetItemString(retval, (const char *) "subject", peer) < 0) { Py_DECREF(peer); goto fail0; } Py_DECREF(peer); if (verbose) { issuer = _create_tuple_for_X509_NAME( X509_get_issuer_name(certificate)); if (issuer == NULL) goto fail0; if (PyDict_SetItemString(retval, (const char *)"issuer", issuer) < 0) { Py_DECREF(issuer); goto fail0; } Py_DECREF(issuer); version = PyInt_FromLong(X509_get_version(certificate) + 1); if (PyDict_SetItemString(retval, "version", version) < 0) { Py_DECREF(version); goto fail0; } Py_DECREF(version); } /* get a memory buffer */ biobuf = BIO_new(BIO_s_mem()); if (verbose) { (void) BIO_reset(biobuf); serialNumber = X509_get_serialNumber(certificate); /* should not exceed 20 octets, 160 bits, so buf is big enough */ i2a_ASN1_INTEGER(biobuf, serialNumber); len = BIO_gets(biobuf, buf, sizeof(buf)-1); if (len < 0) { _setSSLError(NULL, 0, __FILE__, __LINE__); goto fail1; } sn_obj = PyString_FromStringAndSize(buf, len); if (sn_obj == NULL) goto fail1; if (PyDict_SetItemString(retval, "serialNumber", sn_obj) < 0) { Py_DECREF(sn_obj); goto fail1; } Py_DECREF(sn_obj); (void) BIO_reset(biobuf); notBefore = X509_get_notBefore(certificate); ASN1_TIME_print(biobuf, notBefore); len = BIO_gets(biobuf, buf, sizeof(buf)-1); if (len < 0) { _setSSLError(NULL, 0, __FILE__, __LINE__); goto fail1; } pnotBefore = PyString_FromStringAndSize(buf, len); if (pnotBefore == NULL) goto fail1; if (PyDict_SetItemString(retval, "notBefore", pnotBefore) < 0) { Py_DECREF(pnotBefore); goto fail1; } Py_DECREF(pnotBefore); } (void) BIO_reset(biobuf); notAfter = X509_get_notAfter(certificate); ASN1_TIME_print(biobuf, notAfter); len = BIO_gets(biobuf, buf, sizeof(buf)-1); if (len < 0) { _setSSLError(NULL, 0, __FILE__, __LINE__); goto fail1; } pnotAfter = PyString_FromStringAndSize(buf, len); if (pnotAfter == NULL) goto fail1; if (PyDict_SetItemString(retval, "notAfter", pnotAfter) < 0) { Py_DECREF(pnotAfter); goto fail1; } Py_DECREF(pnotAfter); /* Now look for subjectAltName */ peer_alt_names = _get_peer_alt_names(certificate); if (peer_alt_names == NULL) goto fail1; else if (peer_alt_names != Py_None) { if (PyDict_SetItemString(retval, "subjectAltName", peer_alt_names) < 0) { Py_DECREF(peer_alt_names); goto fail1; } Py_DECREF(peer_alt_names); } BIO_free(biobuf); return retval; fail1: if (biobuf != NULL) BIO_free(biobuf); fail0: Py_XDECREF(retval); return NULL; } static PyObject * PySSL_test_decode_certificate (PyObject *mod, PyObject *args) { PyObject *retval = NULL; char *filename = NULL; X509 *x=NULL; BIO *cert; int verbose = 1; if (!PyArg_ParseTuple(args, "s|i:test_decode_certificate", &filename, &verbose)) return NULL; if ((cert=BIO_new(BIO_s_file())) == NULL) { PyErr_SetString(PySSLErrorObject, "Can't malloc memory to read file"); goto fail0; } if (BIO_read_filename(cert,filename) <= 0) { PyErr_SetString(PySSLErrorObject, "Can't open file"); goto fail0; } x = PEM_read_bio_X509_AUX(cert,NULL, NULL, NULL); if (x == NULL) { PyErr_SetString(PySSLErrorObject, "Error decoding PEM-encoded file"); goto fail0; } retval = _decode_certificate(x, verbose); fail0: if (cert != NULL) BIO_free(cert); return retval; } static PyObject * PySSL_peercert(PySSLObject *self, PyObject *args) { PyObject *retval = NULL; int len; int verification; PyObject *binary_mode = Py_None; if (!PyArg_ParseTuple(args, "|O:peer_certificate", &binary_mode)) return NULL; if (!self->peer_cert) Py_RETURN_NONE; if (PyObject_IsTrue(binary_mode)) { /* return cert in DER-encoded format */ unsigned char *bytes_buf = NULL; bytes_buf = NULL; len = i2d_X509(self->peer_cert, &bytes_buf); if (len < 0) { PySSL_SetError(self, len, __FILE__, __LINE__); return NULL; } retval = PyString_FromStringAndSize((const char *) bytes_buf, len); OPENSSL_free(bytes_buf); return retval; } else { verification = SSL_CTX_get_verify_mode(self->ctx); if ((verification & SSL_VERIFY_PEER) == 0) return PyDict_New(); else return _decode_certificate (self->peer_cert, 0); } } PyDoc_STRVAR(PySSL_peercert_doc, "peer_certificate([der=False]) -> certificate\n\ \n\ Returns the certificate for the peer. If no certificate was provided,\n\ returns None. If a certificate was provided, but not validated, returns\n\ an empty dictionary. Otherwise returns a dict containing information\n\ about the peer certificate.\n\ \n\ If the optional argument is True, returns a DER-encoded copy of the\n\ peer certificate, or None if no certificate was provided. This will\n\ return the certificate even if it wasn't validated."); static PyObject *PySSL_cipher (PySSLObject *self) { PyObject *retval, *v; SSL_CIPHER *current; char *cipher_name; char *cipher_protocol; if (self->ssl == NULL) return Py_None; current = SSL_get_current_cipher(self->ssl); if (current == NULL) return Py_None; retval = PyTuple_New(3); if (retval == NULL) return NULL; cipher_name = (char *) SSL_CIPHER_get_name(current); if (cipher_name == NULL) { PyTuple_SET_ITEM(retval, 0, Py_None); } else { v = PyString_FromString(cipher_name); if (v == NULL) goto fail0; PyTuple_SET_ITEM(retval, 0, v); } cipher_protocol = SSL_CIPHER_get_version(current); if (cipher_protocol == NULL) { PyTuple_SET_ITEM(retval, 1, Py_None); } else { v = PyString_FromString(cipher_protocol); if (v == NULL) goto fail0; PyTuple_SET_ITEM(retval, 1, v); } v = PyInt_FromLong(SSL_CIPHER_get_bits(current, NULL)); if (v == NULL) goto fail0; PyTuple_SET_ITEM(retval, 2, v); return retval; fail0: Py_DECREF(retval); return NULL; } static void PySSL_dealloc(PySSLObject *self) { if (self->peer_cert) /* Possible not to have one? */ X509_free (self->peer_cert); if (self->ssl) SSL_free(self->ssl); if (self->ctx) SSL_CTX_free(self->ctx); Py_XDECREF(self->Socket); PyObject_Del(self); } /* If the socket has a timeout, do a select()/poll() on the socket. The argument writing indicates the direction. Returns one of the possibilities in the timeout_state enum (above). */ static int check_socket_and_wait_for_timeout(PySocketSockObject *s, int writing) { fd_set fds; struct timeval tv; int rc; /* Nothing to do unless we're in timeout mode (not non-blocking) */ if (s->sock_timeout < 0.0) return SOCKET_IS_BLOCKING; else if (s->sock_timeout == 0.0) return SOCKET_IS_NONBLOCKING; /* Guard against closed socket */ if (s->sock_fd < 0) return SOCKET_HAS_BEEN_CLOSED; /* Prefer poll, if available, since you can poll() any fd * which can't be done with select(). */ #ifdef HAVE_POLL { struct pollfd pollfd; int timeout; pollfd.fd = s->sock_fd; pollfd.events = writing ? POLLOUT : POLLIN; /* s->sock_timeout is in seconds, timeout in ms */ timeout = (int)(s->sock_timeout * 1000 + 0.5); PySSL_BEGIN_ALLOW_THREADS rc = poll(&pollfd, 1, timeout); PySSL_END_ALLOW_THREADS goto normal_return; } #endif /* Guard against socket too large for select*/ #ifndef Py_SOCKET_FD_CAN_BE_GE_FD_SETSIZE if (s->sock_fd >= FD_SETSIZE) return SOCKET_TOO_LARGE_FOR_SELECT; #endif /* Construct the arguments to select */ tv.tv_sec = (int)s->sock_timeout; tv.tv_usec = (int)((s->sock_timeout - tv.tv_sec) * 1e6); FD_ZERO(&fds); FD_SET(s->sock_fd, &fds); /* See if the socket is ready */ PySSL_BEGIN_ALLOW_THREADS if (writing) rc = select(s->sock_fd+1, NULL, &fds, NULL, &tv); else rc = select(s->sock_fd+1, &fds, NULL, NULL, &tv); PySSL_END_ALLOW_THREADS normal_return: /* Return SOCKET_TIMED_OUT on timeout, SOCKET_OPERATION_OK otherwise (when we are able to write or when there's something to read) */ return rc == 0 ? SOCKET_HAS_TIMED_OUT : SOCKET_OPERATION_OK; } static PyObject *PySSL_SSLwrite(PySSLObject *self, PyObject *args) { char *data; int len; int count; int sockstate; int err; if (!PyArg_ParseTuple(args, "s#:write", &data, &count)) return NULL; sockstate = check_socket_and_wait_for_timeout(self->Socket, 1); if (sockstate == SOCKET_HAS_TIMED_OUT) { PyErr_SetString(PySSLErrorObject, "The write operation timed out"); return NULL; } else if (sockstate == SOCKET_HAS_BEEN_CLOSED) { PyErr_SetString(PySSLErrorObject, "Underlying socket has been closed."); return NULL; } else if (sockstate == SOCKET_TOO_LARGE_FOR_SELECT) { PyErr_SetString(PySSLErrorObject, "Underlying socket too large for select()."); return NULL; } do { err = 0; PySSL_BEGIN_ALLOW_THREADS len = SSL_write(self->ssl, data, count); err = SSL_get_error(self->ssl, len); PySSL_END_ALLOW_THREADS if(PyErr_CheckSignals()) { return NULL; } if (err == SSL_ERROR_WANT_READ) { sockstate = check_socket_and_wait_for_timeout(self->Socket, 0); } else if (err == SSL_ERROR_WANT_WRITE) { sockstate = check_socket_and_wait_for_timeout(self->Socket, 1); } else { sockstate = SOCKET_OPERATION_OK; } if (sockstate == SOCKET_HAS_TIMED_OUT) { PyErr_SetString(PySSLErrorObject, "The write operation timed out"); return NULL; } else if (sockstate == SOCKET_HAS_BEEN_CLOSED) { PyErr_SetString(PySSLErrorObject, "Underlying socket has been closed."); return NULL; } else if (sockstate == SOCKET_IS_NONBLOCKING) { break; } } while (err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE); if (len > 0) return PyInt_FromLong(len); else return PySSL_SetError(self, len, __FILE__, __LINE__); } PyDoc_STRVAR(PySSL_SSLwrite_doc, "write(s) -> len\n\ \n\ Writes the string s into the SSL object. Returns the number\n\ of bytes written."); static PyObject *PySSL_SSLread(PySSLObject *self, PyObject *args) { PyObject *buf; int count = 0; int len = 1024; int sockstate; int err; if (!PyArg_ParseTuple(args, "|i:read", &len)) return NULL; if (!(buf = PyBytes_FromStringAndSize((char *) 0, len))) return NULL; /* first check if there are bytes ready to be read */ PySSL_BEGIN_ALLOW_THREADS count = SSL_pending(self->ssl); PySSL_END_ALLOW_THREADS if (!count) { sockstate = check_socket_and_wait_for_timeout(self->Socket, 0); if (sockstate == SOCKET_HAS_TIMED_OUT) { PyErr_SetString(PySSLErrorObject, "The read operation timed out"); Py_DECREF(buf); return NULL; } else if (sockstate == SOCKET_TOO_LARGE_FOR_SELECT) { PyErr_SetString(PySSLErrorObject, "Underlying socket too large for select()."); Py_DECREF(buf); return NULL; } else if (sockstate == SOCKET_HAS_BEEN_CLOSED) { /* should contain a zero-length string */ _PyString_Resize(&buf, 0); return buf; } } do { err = 0; PySSL_BEGIN_ALLOW_THREADS count = SSL_read(self->ssl, PyBytes_AS_STRING(buf), len); err = SSL_get_error(self->ssl, count); PySSL_END_ALLOW_THREADS if(PyErr_CheckSignals()) { Py_DECREF(buf); return NULL; } if (err == SSL_ERROR_WANT_READ) { sockstate = check_socket_and_wait_for_timeout(self->Socket, 0); } else if (err == SSL_ERROR_WANT_WRITE) { sockstate = check_socket_and_wait_for_timeout(self->Socket, 1); } else if ((err == SSL_ERROR_ZERO_RETURN) && (SSL_get_shutdown(self->ssl) == SSL_RECEIVED_SHUTDOWN)) { _PyString_Resize(&buf, 0); return buf; } else { sockstate = SOCKET_OPERATION_OK; } if (sockstate == SOCKET_HAS_TIMED_OUT) { PyErr_SetString(PySSLErrorObject, "The read operation timed out"); Py_DECREF(buf); return NULL; } else if (sockstate == SOCKET_IS_NONBLOCKING) { break; } } while (err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE); if (count <= 0) { Py_DECREF(buf); return PySSL_SetError(self, count, __FILE__, __LINE__); } if (count != len) if (PyBytes_Resize(buf, count) < 0) { Py_DECREF(buf); return NULL; } return buf; } PyDoc_STRVAR(PySSL_SSLread_doc, "read([len]) -> bytes\n\ \n\ Read up to len bytes from the SSL socket."); static PyMethodDef PySSLMethods[] = { {"write", (PyCFunction)PySSL_SSLwrite, METH_VARARGS, PySSL_SSLwrite_doc}, {"read", (PyCFunction)PySSL_SSLread, METH_VARARGS, PySSL_SSLread_doc}, {"server", (PyCFunction)PySSL_server, METH_NOARGS}, {"issuer", (PyCFunction)PySSL_issuer, METH_NOARGS}, {"peer_certificate", (PyCFunction)PySSL_peercert, METH_VARARGS, PySSL_peercert_doc}, {"cipher", (PyCFunction)PySSL_cipher, METH_NOARGS}, {NULL, NULL} }; static PyObject *PySSL_getattr(PySSLObject *self, char *name) { return Py_FindMethod(PySSLMethods, (PyObject *)self, name); } static PyTypeObject PySSL_Type = { PyVarObject_HEAD_INIT(NULL, 0) "ssl.SSLContext", /*tp_name*/ sizeof(PySSLObject), /*tp_basicsize*/ 0, /*tp_itemsize*/ /* methods */ (destructor)PySSL_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ (getattrfunc)PySSL_getattr, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ }; #ifdef HAVE_OPENSSL_RAND /* helper routines for seeding the SSL PRNG */ static PyObject * PySSL_RAND_add(PyObject *self, PyObject *args) { char *buf; int len; double entropy; if (!PyArg_ParseTuple(args, "s#d:RAND_add", &buf, &len, &entropy)) return NULL; RAND_add(buf, len, entropy); Py_INCREF(Py_None); return Py_None; } PyDoc_STRVAR(PySSL_RAND_add_doc, "RAND_add(string, entropy)\n\ \n\ Mix string into the OpenSSL PRNG state. entropy (a float) is a lower\n\ bound on the entropy contained in string. See RFC 1750."); static PyObject * PySSL_RAND_status(PyObject *self) { return PyBool_FromLong(RAND_status()); } PyDoc_STRVAR(PySSL_RAND_status_doc, "RAND_status() -> 0 or 1\n\ \n\ Returns True if the OpenSSL PRNG has been seeded with enough data and\n\ False if not. It is necessary to seed the PRNG with RAND_add()\n\ on some platforms before using the ssl() function."); static PyObject * PySSL_RAND_egd(PyObject *self, PyObject *arg) { int bytes; if (!PyString_Check(arg)) return PyErr_Format(PyExc_TypeError, "RAND_egd() expected string, found %s", Py_Type(arg)->tp_name); bytes = RAND_egd(PyString_AS_STRING(arg)); if (bytes == -1) { PyErr_SetString(PySSLErrorObject, "EGD connection failed or EGD did not return " "enough data to seed the PRNG"); return NULL; } return PyInt_FromLong(bytes); } PyDoc_STRVAR(PySSL_RAND_egd_doc, "RAND_egd(path) -> bytes\n\ \n\ Queries the entropy gather daemon (EGD) on the socket named by 'path'.\n\ Returns number of bytes read. Raises SSLError if connection to EGD\n\ fails or if it does provide enough data to seed PRNG."); #endif /* List of functions exported by this module. */ static PyMethodDef PySSL_methods[] = { {"sslwrap", PySSL_sslwrap, METH_VARARGS, ssl_doc}, {"_test_decode_cert", PySSL_test_decode_certificate, METH_VARARGS}, #ifdef HAVE_OPENSSL_RAND {"RAND_add", PySSL_RAND_add, METH_VARARGS, PySSL_RAND_add_doc}, {"RAND_egd", PySSL_RAND_egd, METH_O, PySSL_RAND_egd_doc}, {"RAND_status", (PyCFunction)PySSL_RAND_status, METH_NOARGS, PySSL_RAND_status_doc}, #endif {NULL, NULL} /* Sentinel */ }; #ifdef WITH_THREAD /* an implementation of OpenSSL threading operations in terms of the Python C thread library */ static PyThread_type_lock *_ssl_locks = NULL; static unsigned long _ssl_thread_id_function (void) { return PyThread_get_thread_ident(); } static void _ssl_thread_locking_function (int mode, int n, const char *file, int line) { /* this function is needed to perform locking on shared data structures. (Note that OpenSSL uses a number of global data structures that will be implicitly shared whenever multiple threads use OpenSSL.) Multi-threaded applications will crash at random if it is not set. locking_function() must be able to handle up to CRYPTO_num_locks() different mutex locks. It sets the n-th lock if mode & CRYPTO_LOCK, and releases it otherwise. file and line are the file number of the function setting the lock. They can be useful for debugging. */ if ((_ssl_locks == NULL) || (n < 0) || (n >= _ssl_locks_count)) return; if (mode & CRYPTO_LOCK) { PyThread_acquire_lock(_ssl_locks[n], 1); } else { PyThread_release_lock(_ssl_locks[n]); } } static int _setup_ssl_threads(void) { int i; if (_ssl_locks == NULL) { _ssl_locks_count = CRYPTO_num_locks(); _ssl_locks = (PyThread_type_lock *) malloc(sizeof(PyThread_type_lock) * _ssl_locks_count); if (_ssl_locks == NULL) return 0; memset(_ssl_locks, 0, sizeof(PyThread_type_lock) * _ssl_locks_count); for (i = 0; i < _ssl_locks_count; i++) { _ssl_locks[i] = PyThread_allocate_lock(); if (_ssl_locks[i] == NULL) { int j; for (j = 0; j < i; j++) { PyThread_free_lock(_ssl_locks[j]); } free(_ssl_locks); return 0; } } CRYPTO_set_locking_callback(_ssl_thread_locking_function); CRYPTO_set_id_callback(_ssl_thread_id_function); } return 1; } #endif /* def HAVE_THREAD */ PyDoc_STRVAR(module_doc, "Implementation module for SSL socket operations. See the socket module\n\ for documentation."); PyMODINIT_FUNC init_ssl(void) { PyObject *m, *d; Py_Type(&PySSL_Type) = &PyType_Type; m = Py_InitModule3("_ssl", PySSL_methods, module_doc); if (m == NULL) return; d = PyModule_GetDict(m); /* Load _socket module and its C API */ if (PySocketModule_ImportModuleAndAPI()) return; /* Init OpenSSL */ SSL_load_error_strings(); #ifdef WITH_THREAD /* note that this will start threading if not already started */ if (!_setup_ssl_threads()) { return; } #endif SSLeay_add_ssl_algorithms(); /* Add symbols to module dict */ PySSLErrorObject = PyErr_NewException("ssl.SSLError", PySocketModule.error, NULL); if (PySSLErrorObject == NULL) return; if (PyDict_SetItemString(d, "SSLError", PySSLErrorObject) != 0) return; if (PyDict_SetItemString(d, "SSLType", (PyObject *)&PySSL_Type) != 0) return; PyModule_AddIntConstant(m, "SSL_ERROR_ZERO_RETURN", PY_SSL_ERROR_ZERO_RETURN); PyModule_AddIntConstant(m, "SSL_ERROR_WANT_READ", PY_SSL_ERROR_WANT_READ); PyModule_AddIntConstant(m, "SSL_ERROR_WANT_WRITE", PY_SSL_ERROR_WANT_WRITE); PyModule_AddIntConstant(m, "SSL_ERROR_WANT_X509_LOOKUP", PY_SSL_ERROR_WANT_X509_LOOKUP); PyModule_AddIntConstant(m, "SSL_ERROR_SYSCALL", PY_SSL_ERROR_SYSCALL); PyModule_AddIntConstant(m, "SSL_ERROR_SSL", PY_SSL_ERROR_SSL); PyModule_AddIntConstant(m, "SSL_ERROR_WANT_CONNECT", PY_SSL_ERROR_WANT_CONNECT); /* non ssl.h errorcodes */ PyModule_AddIntConstant(m, "SSL_ERROR_EOF", PY_SSL_ERROR_EOF); PyModule_AddIntConstant(m, "SSL_ERROR_INVALID_ERROR_CODE", PY_SSL_ERROR_INVALID_ERROR_CODE); /* cert requirements */ PyModule_AddIntConstant(m, "CERT_NONE", PY_SSL_CERT_NONE); PyModule_AddIntConstant(m, "CERT_OPTIONAL", PY_SSL_CERT_OPTIONAL); PyModule_AddIntConstant(m, "CERT_REQUIRED", PY_SSL_CERT_REQUIRED); /* protocol versions */ PyModule_AddIntConstant(m, "PROTOCOL_SSLv2", PY_SSL_VERSION_SSL2); PyModule_AddIntConstant(m, "PROTOCOL_SSLv3", PY_SSL_VERSION_SSL3); PyModule_AddIntConstant(m, "PROTOCOL_SSLv23", PY_SSL_VERSION_SSL23); PyModule_AddIntConstant(m, "PROTOCOL_TLSv1", PY_SSL_VERSION_TLS1); }