/* Complex math module */ /* much code borrowed from mathmodule.c */ #include "Python.h" #include "mymath.h" #ifdef i860 /* Cray APP has bogus definition of HUGE_VAL in */ #undef HUGE_VAL #endif #ifdef HUGE_VAL #define CHECK(x) if (errno != 0) ; \ else if (-HUGE_VAL <= (x) && (x) <= HUGE_VAL) ; \ else errno = ERANGE #else #define CHECK(x) /* Don't know how to check */ #endif #ifndef M_PI #define M_PI (3.141592653589793239) #endif /* First, the C functions that do the real work */ /* constants */ static Py_complex c_1 = {1., 0.}; static Py_complex c_half = {0.5, 0.}; static Py_complex c_i = {0., 1.}; static Py_complex c_i2 = {0., 0.5}; #if 0 static Py_complex c_mi = {0., -1.}; static Py_complex c_pi2 = {M_PI/2., 0.}; #endif /* forward declarations */ staticforward Py_complex c_log(); staticforward Py_complex c_prodi(); staticforward Py_complex c_sqrt(); static Py_complex c_acos(x) Py_complex x; { return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i, c_sqrt(c_diff(c_1,c_prod(x,x)))))))); } static Py_complex c_acosh(x) Py_complex x; { return c_log(c_sum(x,c_prod(c_i, c_sqrt(c_diff(c_1,c_prod(x,x)))))); } static Py_complex c_asin(x) Py_complex x; { return c_neg(c_prodi(c_log(c_sum(c_prod(c_i,x), c_sqrt(c_diff(c_1,c_prod(x,x))))))); } static Py_complex c_asinh(x) Py_complex x; { return c_neg(c_log(c_diff(c_sqrt(c_sum(c_1,c_prod(x,x))),x))); } static Py_complex c_atan(x) Py_complex x; { return c_prod(c_i2,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x)))); } static Py_complex c_atanh(x) Py_complex x; { return c_prod(c_half,c_log(c_quot(c_sum(c_1,x),c_diff(c_1,x)))); } static Py_complex c_cos(x) Py_complex x; { Py_complex r; r.real = cos(x.real)*cosh(x.imag); r.imag = -sin(x.real)*sinh(x.imag); return r; } static Py_complex c_cosh(x) Py_complex x; { Py_complex r; r.real = cos(x.imag)*cosh(x.real); r.imag = sin(x.imag)*sinh(x.real); return r; } static Py_complex c_exp(x) Py_complex x; { Py_complex r; double l = exp(x.real); r.real = l*cos(x.imag); r.imag = l*sin(x.imag); return r; } static Py_complex c_log(x) Py_complex x; { Py_complex r; double l = hypot(x.real,x.imag); r.imag = atan2(x.imag, x.real); r.real = log(l); return r; } static Py_complex c_log10(x) Py_complex x; { Py_complex r; double l = hypot(x.real,x.imag); r.imag = atan2(x.imag, x.real)/log(10.); r.real = log10(l); return r; } static Py_complex c_prodi(x) Py_complex x; { Py_complex r; r.real = -x.imag; r.imag = x.real; return r; } static Py_complex c_sin(x) Py_complex x; { Py_complex r; r.real = sin(x.real)*cosh(x.imag); r.imag = cos(x.real)*sinh(x.imag); return r; } static Py_complex c_sinh(x) Py_complex x; { Py_complex r; r.real = cos(x.imag)*sinh(x.real); r.imag = sin(x.imag)*cosh(x.real); return r; } static Py_complex c_sqrt(x) Py_complex x; { Py_complex r; double s,d; if (x.real == 0. && x.imag == 0.) r = x; else { s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag))); d = 0.5*x.imag/s; if (x.real > 0.) { r.real = s; r.imag = d; } else if (x.imag >= 0.) { r.real = d; r.imag = s; } else { r.real = -d; r.imag = -s; } } return r; } static Py_complex c_tan(x) Py_complex x; { Py_complex r; double sr,cr,shi,chi; double rs,is,rc,ic; double d; sr = sin(x.real); cr = cos(x.real); shi = sinh(x.imag); chi = cosh(x.imag); rs = sr*chi; is = cr*shi; rc = cr*chi; ic = -sr*shi; d = rc*rc + ic*ic; r.real = (rs*rc+is*ic)/d; r.imag = (is*rc-rs*ic)/d; return r; } static Py_complex c_tanh(x) Py_complex x; { Py_complex r; double si,ci,shr,chr; double rs,is,rc,ic; double d; si = sin(x.imag); ci = cos(x.imag); shr = sinh(x.real); chr = cosh(x.real); rs = ci*shr; is = si*chr; rc = ci*chr; ic = si*shr; d = rc*rc + ic*ic; r.real = (rs*rc+is*ic)/d; r.imag = (is*rc-rs*ic)/d; return r; } /* And now the glue to make them available from Python: */ static PyObject * math_error() { if (errno == EDOM) PyErr_SetString(PyExc_ValueError, "math domain error"); else if (errno == ERANGE) PyErr_SetString(PyExc_OverflowError, "math range error"); else /* Unexpected math error */ PyErr_SetFromErrno(PyExc_ValueError); return NULL; } static PyObject * math_1(args, func) PyObject *args; Py_complex (*func) Py_FPROTO((Py_complex)); { Py_complex x; if (!PyArg_ParseTuple(args, "D", &x)) return NULL; errno = 0; PyFPE_START_PROTECT("complex function", return 0) x = (*func)(x); PyFPE_END_PROTECT(x) CHECK(x.real); CHECK(x.imag); if (errno != 0) return math_error(); else return PyComplex_FromCComplex(x); } #define FUNC1(stubname, func) \ static PyObject * stubname(self, args) PyObject *self, *args; { \ return math_1(args, func); \ } FUNC1(cmath_acos, c_acos) FUNC1(cmath_acosh, c_acosh) FUNC1(cmath_asin, c_asin) FUNC1(cmath_asinh, c_asinh) FUNC1(cmath_atan, c_atan) FUNC1(cmath_atanh, c_atanh) FUNC1(cmath_cos, c_cos) FUNC1(cmath_cosh, c_cosh) FUNC1(cmath_exp, c_exp) FUNC1(cmath_log, c_log) FUNC1(cmath_log10, c_log10) FUNC1(cmath_sin, c_sin) FUNC1(cmath_sinh, c_sinh) FUNC1(cmath_sqrt, c_sqrt) FUNC1(cmath_tan, c_tan) FUNC1(cmath_tanh, c_tanh) static PyMethodDef cmath_methods[] = { {"acos", cmath_acos, 1}, {"acosh", cmath_acosh, 1}, {"asin", cmath_asin, 1}, {"asinh", cmath_asinh, 1}, {"atan", cmath_atan, 1}, {"atanh", cmath_atanh, 1}, {"cos", cmath_cos, 1}, {"cosh", cmath_cosh, 1}, {"exp", cmath_exp, 1}, {"log", cmath_log, 1}, {"log10", cmath_log10, 1}, {"sin", cmath_sin, 1}, {"sinh", cmath_sinh, 1}, {"sqrt", cmath_sqrt, 1}, {"tan", cmath_tan, 1}, {"tanh", cmath_tanh, 1}, {NULL, NULL} /* sentinel */ }; DL_EXPORT(void) initcmath() { PyObject *m, *d, *v; m = Py_InitModule("cmath", cmath_methods); d = PyModule_GetDict(m); PyDict_SetItemString(d, "pi", v = PyFloat_FromDouble(atan(1.0) * 4.0)); Py_DECREF(v); PyDict_SetItemString(d, "e", v = PyFloat_FromDouble(exp(1.0))); Py_DECREF(v); }