/* parsermodule.c * * Copyright 1995-1996 by Fred L. Drake, Jr. and Virginia Polytechnic * Institute and State University, Blacksburg, Virginia, USA. * Portions copyright 1991-1995 by Stichting Mathematisch Centrum, * Amsterdam, The Netherlands. Copying is permitted under the terms * associated with the main Python distribution, with the additional * restriction that this additional notice be included and maintained * on all distributed copies. * * This module serves to replace the original parser module written * by Guido. The functionality is not matched precisely, but the * original may be implemented on top of this. This is desirable * since the source of the text to be parsed is now divorced from * this interface. * * Unlike the prior interface, the ability to give a parse tree * produced by Python code as a tuple to the compiler is enabled by * this module. See the documentation for more details. * * I've added some annotations that help with the lint code-checking * program, but they're not complete by a long shot. The real errors * that lint detects are gone, but there are still warnings with * Py_[X]DECREF() and Py_[X]INCREF() macros. The lint annotations * look like "NOTE(...)". */ #include "Python.h" /* general Python API */ #include "graminit.h" /* symbols defined in the grammar */ #include "node.h" /* internal parser structure */ #include "token.h" /* token definitions */ /* ISTERMINAL() / ISNONTERMINAL() */ #include "compile.h" /* PyNode_Compile() */ #ifdef lint #include #else #define NOTE(x) #endif #ifdef macintosh char *strdup(char *); #endif /* String constants used to initialize module attributes. * */ static char* parser_copyright_string = "Copyright 1995-1996 by Virginia Polytechnic Institute & State\n\ University, Blacksburg, Virginia, USA, and Fred L. Drake, Jr., Reston,\n\ Virginia, USA. Portions copyright 1991-1995 by Stichting Mathematisch\n\ Centrum, Amsterdam, The Netherlands."; static char* parser_doc_string = "This is an interface to Python's internal parser."; static char* parser_version_string = "0.5"; typedef PyObject* (*SeqMaker) (int length); typedef int (*SeqInserter) (PyObject* sequence, int index, PyObject* element); /* The function below is copyrighted by Stichting Mathematisch Centrum. The * original copyright statement is included below, and continues to apply * in full to the function immediately following. All other material is * original, copyrighted by Fred L. Drake, Jr. and Virginia Polytechnic * Institute and State University. Changes were made to comply with the * new naming conventions. Added arguments to provide support for creating * lists as well as tuples, and optionally including the line numbers. */ static PyObject* node2tuple(node *n, /* node to convert */ SeqMaker mkseq, /* create sequence */ SeqInserter addelem, /* func. to add elem. in seq. */ int lineno) /* include line numbers? */ { if (n == NULL) { Py_INCREF(Py_None); return (Py_None); } if (ISNONTERMINAL(TYPE(n))) { int i; PyObject *v; PyObject *w; v = mkseq(1 + NCH(n)); if (v == NULL) return (v); w = PyInt_FromLong(TYPE(n)); if (w == NULL) { Py_DECREF(v); return ((PyObject*) NULL); } (void) addelem(v, 0, w); for (i = 0; i < NCH(n); i++) { w = node2tuple(CHILD(n, i), mkseq, addelem, lineno); if (w == NULL) { Py_DECREF(v); return ((PyObject*) NULL); } (void) addelem(v, i+1, w); } return (v); } else if (ISTERMINAL(TYPE(n))) { PyObject *result = mkseq(2 + lineno); if (result != NULL) { (void) addelem(result, 0, PyInt_FromLong(TYPE(n))); (void) addelem(result, 1, PyString_FromString(STR(n))); if (lineno == 1) (void) addelem(result, 2, PyInt_FromLong(n->n_lineno)); } return (result); } else { PyErr_SetString(PyExc_SystemError, "unrecognized parse tree node type"); return ((PyObject*) NULL); } } /* * End of material copyrighted by Stichting Mathematisch Centrum. */ /* There are two types of intermediate objects we're interested in: * 'eval' and 'exec' types. These constants can be used in the ast_type * field of the object type to identify which any given object represents. * These should probably go in an external header to allow other extensions * to use them, but then, we really should be using C++ too. ;-) * * The PyAST_FRAGMENT type is not currently supported. Maybe not useful? * Haven't decided yet. */ #define PyAST_EXPR 1 #define PyAST_SUITE 2 #define PyAST_FRAGMENT 3 /* These are the internal objects and definitions required to implement the * AST type. Most of the internal names are more reminiscent of the 'old' * naming style, but the code uses the new naming convention. */ static PyObject* parser_error = 0; typedef struct _PyAST_Object { PyObject_HEAD /* standard object header */ node* ast_node; /* the node* returned by the parser */ int ast_type; /* EXPR or SUITE ? */ } PyAST_Object; staticforward void parser_free(PyAST_Object *ast); staticforward int parser_compare(PyAST_Object *left, PyAST_Object *right); staticforward PyObject * parser_getattr(PyObject *self, char *name); static PyTypeObject PyAST_Type = { PyObject_HEAD_INIT(NULL) 0, "ast", /* tp_name */ (int) sizeof(PyAST_Object), /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)parser_free, /* tp_dealloc */ 0, /* tp_print */ parser_getattr, /* tp_getattr */ 0, /* tp_setattr */ (cmpfunc)parser_compare, /* tp_compare */ 0, /* tp_repr */ 0, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ 0, /* tp_getattro */ 0, /* tp_setattro */ /* Functions to access object as input/output buffer */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT, /* tp_flags */ /* __doc__ */ "Intermediate representation of a Python parse tree." }; /* PyAST_Type */ static int parser_compare_nodes(node *left, node *right) { int j; if (TYPE(left) < TYPE(right)) return (-1); if (TYPE(right) < TYPE(left)) return (1); if (ISTERMINAL(TYPE(left))) return (strcmp(STR(left), STR(right))); if (NCH(left) < NCH(right)) return (-1); if (NCH(right) < NCH(left)) return (1); for (j = 0; j < NCH(left); ++j) { int v = parser_compare_nodes(CHILD(left, j), CHILD(right, j)); if (v != 0) return (v); } return (0); } /* int parser_compare(PyAST_Object* left, PyAST_Object* right) * * Comparison function used by the Python operators ==, !=, <, >, <=, >= * This really just wraps a call to parser_compare_nodes() with some easy * checks and protection code. * */ static int parser_compare(PyAST_Object *left, PyAST_Object *right) { if (left == right) return (0); if ((left == 0) || (right == 0)) return (-1); return (parser_compare_nodes(left->ast_node, right->ast_node)); } /* parser_newastobject(node* ast) * * Allocates a new Python object representing an AST. This is simply the * 'wrapper' object that holds a node* and allows it to be passed around in * Python code. * */ static PyObject* parser_newastobject(node *ast, int type) { PyAST_Object* o = PyObject_New(PyAST_Object, &PyAST_Type); if (o != 0) { o->ast_node = ast; o->ast_type = type; } else { PyNode_Free(ast); } return ((PyObject*)o); } /* void parser_free(PyAST_Object* ast) * * This is called by a del statement that reduces the reference count to 0. * */ static void parser_free(PyAST_Object *ast) { PyNode_Free(ast->ast_node); PyObject_Del(ast); } /* parser_ast2tuple(PyObject* self, PyObject* args, PyObject* kw) * * This provides conversion from a node* to a tuple object that can be * returned to the Python-level caller. The AST object is not modified. * */ static PyObject* parser_ast2tuple(PyAST_Object *self, PyObject *args, PyObject *kw) { PyObject *line_option = 0; PyObject *res = 0; int ok; static char *keywords[] = {"ast", "line_info", NULL}; if (self == NULL) { ok = PyArg_ParseTupleAndKeywords(args, kw, "O!|O:ast2tuple", keywords, &PyAST_Type, &self, &line_option); } else ok = PyArg_ParseTupleAndKeywords(args, kw, "|O:totuple", &keywords[1], &line_option); if (ok != 0) { int lineno = 0; if (line_option != NULL) { lineno = (PyObject_IsTrue(line_option) != 0) ? 1 : 0; } /* * Convert AST into a tuple representation. Use Guido's function, * since it's known to work already. */ res = node2tuple(((PyAST_Object*)self)->ast_node, PyTuple_New, PyTuple_SetItem, lineno); } return (res); } /* parser_ast2list(PyObject* self, PyObject* args, PyObject* kw) * * This provides conversion from a node* to a list object that can be * returned to the Python-level caller. The AST object is not modified. * */ static PyObject* parser_ast2list(PyAST_Object *self, PyObject *args, PyObject *kw) { PyObject *line_option = 0; PyObject *res = 0; int ok; static char *keywords[] = {"ast", "line_info", NULL}; if (self == NULL) ok = PyArg_ParseTupleAndKeywords(args, kw, "O!|O:ast2list", keywords, &PyAST_Type, &self, &line_option); else ok = PyArg_ParseTupleAndKeywords(args, kw, "|O:tolist", &keywords[1], &line_option); if (ok) { int lineno = 0; if (line_option != 0) { lineno = PyObject_IsTrue(line_option) ? 1 : 0; } /* * Convert AST into a tuple representation. Use Guido's function, * since it's known to work already. */ res = node2tuple(self->ast_node, PyList_New, PyList_SetItem, lineno); } return (res); } /* parser_compileast(PyObject* self, PyObject* args) * * This function creates code objects from the parse tree represented by * the passed-in data object. An optional file name is passed in as well. * */ static PyObject* parser_compileast(PyAST_Object *self, PyObject *args, PyObject *kw) { PyObject* res = 0; char* str = ""; int ok; static char *keywords[] = {"ast", "filename", NULL}; if (self == NULL) ok = PyArg_ParseTupleAndKeywords(args, kw, "O!|s:compileast", keywords, &PyAST_Type, &self, &str); else ok = PyArg_ParseTupleAndKeywords(args, kw, "|s:compile", &keywords[1], &str); if (ok) res = (PyObject *)PyNode_Compile(self->ast_node, str); return (res); } /* PyObject* parser_isexpr(PyObject* self, PyObject* args) * PyObject* parser_issuite(PyObject* self, PyObject* args) * * Checks the passed-in AST object to determine if it is an expression or * a statement suite, respectively. The return is a Python truth value. * */ static PyObject* parser_isexpr(PyAST_Object *self, PyObject *args, PyObject *kw) { PyObject* res = 0; int ok; static char *keywords[] = {"ast", NULL}; if (self == NULL) ok = PyArg_ParseTupleAndKeywords(args, kw, "O!:isexpr", keywords, &PyAST_Type, &self); else ok = PyArg_ParseTupleAndKeywords(args, kw, ":isexpr", &keywords[1]); if (ok) { /* Check to see if the AST represents an expression or not. */ res = (self->ast_type == PyAST_EXPR) ? Py_True : Py_False; Py_INCREF(res); } return (res); } static PyObject* parser_issuite(PyAST_Object *self, PyObject *args, PyObject *kw) { PyObject* res = 0; int ok; static char *keywords[] = {"ast", NULL}; if (self == NULL) ok = PyArg_ParseTupleAndKeywords(args, kw, "O!:issuite", keywords, &PyAST_Type, &self); else ok = PyArg_ParseTupleAndKeywords(args, kw, ":issuite", &keywords[1]); if (ok) { /* Check to see if the AST represents an expression or not. */ res = (self->ast_type == PyAST_EXPR) ? Py_False : Py_True; Py_INCREF(res); } return (res); } #define PUBLIC_METHOD_TYPE (METH_VARARGS|METH_KEYWORDS) static PyMethodDef parser_methods[] = { {"compile", (PyCFunction)parser_compileast, PUBLIC_METHOD_TYPE, "Compile this AST object into a code object."}, {"isexpr", (PyCFunction)parser_isexpr, PUBLIC_METHOD_TYPE, "Determines if this AST object was created from an expression."}, {"issuite", (PyCFunction)parser_issuite, PUBLIC_METHOD_TYPE, "Determines if this AST object was created from a suite."}, {"tolist", (PyCFunction)parser_ast2list, PUBLIC_METHOD_TYPE, "Creates a list-tree representation of this AST."}, {"totuple", (PyCFunction)parser_ast2tuple, PUBLIC_METHOD_TYPE, "Creates a tuple-tree representation of this AST."}, {NULL, NULL, 0, NULL} }; static PyObject* parser_getattr(PyObject *self, char *name) { return (Py_FindMethod(parser_methods, self, name)); } /* err_string(char* message) * * Sets the error string for an exception of type ParserError. * */ static void err_string(char *message) { PyErr_SetString(parser_error, message); } /* PyObject* parser_do_parse(PyObject* args, int type) * * Internal function to actually execute the parse and return the result if * successful, or set an exception if not. * */ static PyObject* parser_do_parse(PyObject *args, PyObject *kw, char *argspec, int type) { char* string = 0; PyObject* res = 0; static char *keywords[] = {"source", NULL}; if (PyArg_ParseTupleAndKeywords(args, kw, argspec, keywords, &string)) { node* n = PyParser_SimpleParseString(string, (type == PyAST_EXPR) ? eval_input : file_input); if (n != 0) res = parser_newastobject(n, type); else err_string("could not parse string"); } return (res); } /* PyObject* parser_expr(PyObject* self, PyObject* args) * PyObject* parser_suite(PyObject* self, PyObject* args) * * External interfaces to the parser itself. Which is called determines if * the parser attempts to recognize an expression ('eval' form) or statement * suite ('exec' form). The real work is done by parser_do_parse() above. * */ static PyObject* parser_expr(PyAST_Object *self, PyObject *args, PyObject *kw) { NOTE(ARGUNUSED(self)) return (parser_do_parse(args, kw, "s:expr", PyAST_EXPR)); } static PyObject* parser_suite(PyAST_Object *self, PyObject *args, PyObject *kw) { NOTE(ARGUNUSED(self)) return (parser_do_parse(args, kw, "s:suite", PyAST_SUITE)); } /* This is the messy part of the code. Conversion from a tuple to an AST * object requires that the input tuple be valid without having to rely on * catching an exception from the compiler. This is done to allow the * compiler itself to remain fast, since most of its input will come from * the parser directly, and therefore be known to be syntactically correct. * This validation is done to ensure that we don't core dump the compile * phase, returning an exception instead. * * Two aspects can be broken out in this code: creating a node tree from * the tuple passed in, and verifying that it is indeed valid. It may be * advantageous to expand the number of AST types to include funcdefs and * lambdadefs to take advantage of the optimizer, recognizing those ASTs * here. They are not necessary, and not quite as useful in a raw form. * For now, let's get expressions and suites working reliably. */ staticforward node* build_node_tree(PyObject *tuple); staticforward int validate_expr_tree(node *tree); staticforward int validate_file_input(node *tree); /* PyObject* parser_tuple2ast(PyObject* self, PyObject* args) * * This is the public function, called from the Python code. It receives a * single tuple object from the caller, and creates an AST object if the * tuple can be validated. It does this by checking the first code of the * tuple, and, if acceptable, builds the internal representation. If this * step succeeds, the internal representation is validated as fully as * possible with the various validate_*() routines defined below. * * This function must be changed if support is to be added for PyAST_FRAGMENT * AST objects. * */ static PyObject* parser_tuple2ast(PyAST_Object *self, PyObject *args, PyObject *kw) { NOTE(ARGUNUSED(self)) PyObject *ast = 0; PyObject *tuple; node *tree; static char *keywords[] = {"sequence", NULL}; if (!PyArg_ParseTupleAndKeywords(args, kw, "O:sequence2ast", keywords, &tuple)) return (0); if (!PySequence_Check(tuple)) { PyErr_SetString(PyExc_ValueError, "sequence2ast() requires a single sequence argument"); return (0); } /* * Convert the tree to the internal form before checking it. */ tree = build_node_tree(tuple); if (tree != 0) { int start_sym = TYPE(tree); if (start_sym == eval_input) { /* Might be an eval form. */ if (validate_expr_tree(tree)) ast = parser_newastobject(tree, PyAST_EXPR); } else if (start_sym == file_input) { /* This looks like an exec form so far. */ if (validate_file_input(tree)) ast = parser_newastobject(tree, PyAST_SUITE); } else { /* This is a fragment, at best. */ PyNode_Free(tree); err_string("parse tree does not use a valid start symbol"); } } /* Make sure we throw an exception on all errors. We should never * get this, but we'd do well to be sure something is done. */ if ((ast == 0) && !PyErr_Occurred()) err_string("unspecified AST error occurred"); return (ast); } /* node* build_node_children() * * Iterate across the children of the current non-terminal node and build * their structures. If successful, return the root of this portion of * the tree, otherwise, 0. Any required exception will be specified already, * and no memory will have been deallocated. * */ static node* build_node_children(PyObject *tuple, node *root, int *line_num) { int len = PyObject_Size(tuple); int i; for (i = 1; i < len; ++i) { /* elem must always be a sequence, however simple */ PyObject* elem = PySequence_GetItem(tuple, i); int ok = elem != NULL; long type = 0; char *strn = 0; if (ok) ok = PySequence_Check(elem); if (ok) { PyObject *temp = PySequence_GetItem(elem, 0); if (temp == NULL) ok = 0; else { ok = PyInt_Check(temp); if (ok) type = PyInt_AS_LONG(temp); Py_DECREF(temp); } } if (!ok) { PyErr_SetObject(parser_error, Py_BuildValue("os", elem, "Illegal node construct.")); Py_XDECREF(elem); return (0); } if (ISTERMINAL(type)) { int len = PyObject_Size(elem); PyObject *temp; if ((len != 2) && (len != 3)) { err_string("terminal nodes must have 2 or 3 entries"); return 0; } temp = PySequence_GetItem(elem, 1); if (temp == NULL) return 0; if (!PyString_Check(temp)) { PyErr_Format(parser_error, "second item in terminal node must be a string," " found %s", ((PyTypeObject*)PyObject_Type(temp))->tp_name); Py_DECREF(temp); return 0; } if (len == 3) { PyObject *o = PySequence_GetItem(elem, 2); if (o != NULL) { if (PyInt_Check(o)) *line_num = PyInt_AS_LONG(o); else { PyErr_Format(parser_error, "third item in terminal node must be an" " integer, found %s", ((PyTypeObject*)PyObject_Type(temp))->tp_name); Py_DECREF(o); Py_DECREF(temp); return 0; } Py_DECREF(o); } } len = PyString_GET_SIZE(temp) + 1; strn = (char *)PyMem_MALLOC(len); if (strn != NULL) (void) memcpy(strn, PyString_AS_STRING(temp), len); Py_DECREF(temp); } else if (!ISNONTERMINAL(type)) { /* * It has to be one or the other; this is an error. * Throw an exception. */ PyErr_SetObject(parser_error, Py_BuildValue("os", elem, "unknown node type.")); Py_XDECREF(elem); return (0); } PyNode_AddChild(root, type, strn, *line_num); if (ISNONTERMINAL(type)) { node* new_child = CHILD(root, i - 1); if (new_child != build_node_children(elem, new_child, line_num)) { Py_XDECREF(elem); return (0); } } else if (type == NEWLINE) { /* It's true: we increment the */ ++(*line_num); /* line number *after* the newline! */ } Py_XDECREF(elem); } return (root); } static node* build_node_tree(PyObject *tuple) { node* res = 0; PyObject *temp = PySequence_GetItem(tuple, 0); long num = -1; if (temp != NULL) num = PyInt_AsLong(temp); Py_XDECREF(temp); if (ISTERMINAL(num)) { /* * The tuple is simple, but it doesn't start with a start symbol. * Throw an exception now and be done with it. */ tuple = Py_BuildValue("os", tuple, "Illegal ast tuple; cannot start with terminal symbol."); PyErr_SetObject(parser_error, tuple); } else if (ISNONTERMINAL(num)) { /* * Not efficient, but that can be handled later. */ int line_num = 0; res = PyNode_New(num); if (res != build_node_children(tuple, res, &line_num)) { PyNode_Free(res); res = 0; } } else /* The tuple is illegal -- if the number is neither TERMINAL nor * NONTERMINAL, we can't use it. Not sure the implementation * allows this condition, but the API doesn't preclude it. */ PyErr_SetObject(parser_error, Py_BuildValue("os", tuple, "Illegal component tuple.")); return (res); } /* * Validation routines used within the validation section: */ staticforward int validate_terminal(node *terminal, int type, char *string); #define validate_ampersand(ch) validate_terminal(ch, AMPER, "&") #define validate_circumflex(ch) validate_terminal(ch, CIRCUMFLEX, "^") #define validate_colon(ch) validate_terminal(ch, COLON, ":") #define validate_comma(ch) validate_terminal(ch, COMMA, ",") #define validate_dedent(ch) validate_terminal(ch, DEDENT, "") #define validate_equal(ch) validate_terminal(ch, EQUAL, "=") #define validate_indent(ch) validate_terminal(ch, INDENT, (char*)NULL) #define validate_lparen(ch) validate_terminal(ch, LPAR, "(") #define validate_newline(ch) validate_terminal(ch, NEWLINE, (char*)NULL) #define validate_rparen(ch) validate_terminal(ch, RPAR, ")") #define validate_semi(ch) validate_terminal(ch, SEMI, ";") #define validate_star(ch) validate_terminal(ch, STAR, "*") #define validate_vbar(ch) validate_terminal(ch, VBAR, "|") #define validate_doublestar(ch) validate_terminal(ch, DOUBLESTAR, "**") #define validate_dot(ch) validate_terminal(ch, DOT, ".") #define validate_name(ch, str) validate_terminal(ch, NAME, str) #define VALIDATER(n) static int validate_##n(node *tree) VALIDATER(node); VALIDATER(small_stmt); VALIDATER(class); VALIDATER(node); VALIDATER(parameters); VALIDATER(suite); VALIDATER(testlist); VALIDATER(varargslist); VALIDATER(fpdef); VALIDATER(fplist); VALIDATER(stmt); VALIDATER(simple_stmt); VALIDATER(expr_stmt); VALIDATER(power); VALIDATER(print_stmt); VALIDATER(del_stmt); VALIDATER(return_stmt); VALIDATER(list_iter); VALIDATER(raise_stmt); VALIDATER(import_stmt); VALIDATER(global_stmt); VALIDATER(list_if); VALIDATER(assert_stmt); VALIDATER(list_for); VALIDATER(exec_stmt); VALIDATER(compound_stmt); VALIDATER(while); VALIDATER(for); VALIDATER(try); VALIDATER(except_clause); VALIDATER(test); VALIDATER(and_test); VALIDATER(not_test); VALIDATER(comparison); VALIDATER(comp_op); VALIDATER(expr); VALIDATER(xor_expr); VALIDATER(and_expr); VALIDATER(shift_expr); VALIDATER(arith_expr); VALIDATER(term); VALIDATER(factor); VALIDATER(atom); VALIDATER(lambdef); VALIDATER(trailer); VALIDATER(subscript); VALIDATER(subscriptlist); VALIDATER(sliceop); VALIDATER(exprlist); VALIDATER(dictmaker); VALIDATER(arglist); VALIDATER(argument); VALIDATER(listmaker); #undef VALIDATER #define is_even(n) (((n) & 1) == 0) #define is_odd(n) (((n) & 1) == 1) static int validate_ntype(node *n, int t) { if (TYPE(n) != t) { PyErr_Format(parser_error, "Expected node type %d, got %d.", t, TYPE(n)); return 0; } return 1; } /* Verifies that the number of child nodes is exactly 'num', raising * an exception if it isn't. The exception message does not indicate * the exact number of nodes, allowing this to be used to raise the * "right" exception when the wrong number of nodes is present in a * specific variant of a statement's syntax. This is commonly used * in that fashion. */ static int validate_numnodes(node *n, int num, const char *const name) { if (NCH(n) != num) { PyErr_Format(parser_error, "Illegal number of children for %s node.", name); return 0; } return 1; } static int validate_terminal(node *terminal, int type, char *string) { int res = (validate_ntype(terminal, type) && ((string == 0) || (strcmp(string, STR(terminal)) == 0))); if (!res && !PyErr_Occurred()) { PyErr_Format(parser_error, "Illegal terminal: expected \"%s\"", string); } return (res); } /* X (',' X) [','] */ static int validate_repeating_list(node *tree, int ntype, int (*vfunc)(node *), const char *const name) { int nch = NCH(tree); int res = (nch && validate_ntype(tree, ntype) && vfunc(CHILD(tree, 0))); if (!res && !PyErr_Occurred()) (void) validate_numnodes(tree, 1, name); else { if (is_even(nch)) res = validate_comma(CHILD(tree, --nch)); if (res && nch > 1) { int pos = 1; for ( ; res && pos < nch; pos += 2) res = (validate_comma(CHILD(tree, pos)) && vfunc(CHILD(tree, pos + 1))); } } return (res); } /* validate_class() * * classdef: * 'class' NAME ['(' testlist ')'] ':' suite */ static int validate_class(node *tree) { int nch = NCH(tree); int res = validate_ntype(tree, classdef) && ((nch == 4) || (nch == 7)); if (res) { res = (validate_name(CHILD(tree, 0), "class") && validate_ntype(CHILD(tree, 1), NAME) && validate_colon(CHILD(tree, nch - 2)) && validate_suite(CHILD(tree, nch - 1))); } else (void) validate_numnodes(tree, 4, "class"); if (res && (nch == 7)) { res = (validate_lparen(CHILD(tree, 2)) && validate_testlist(CHILD(tree, 3)) && validate_rparen(CHILD(tree, 4))); } return (res); } /* if_stmt: * 'if' test ':' suite ('elif' test ':' suite)* ['else' ':' suite] */ static int validate_if(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, if_stmt) && (nch >= 4) && validate_name(CHILD(tree, 0), "if") && validate_test(CHILD(tree, 1)) && validate_colon(CHILD(tree, 2)) && validate_suite(CHILD(tree, 3))); if (res && ((nch % 4) == 3)) { /* ... 'else' ':' suite */ res = (validate_name(CHILD(tree, nch - 3), "else") && validate_colon(CHILD(tree, nch - 2)) && validate_suite(CHILD(tree, nch - 1))); nch -= 3; } else if (!res && !PyErr_Occurred()) (void) validate_numnodes(tree, 4, "if"); if ((nch % 4) != 0) /* Will catch the case for nch < 4 */ res = validate_numnodes(tree, 0, "if"); else if (res && (nch > 4)) { /* ... ('elif' test ':' suite)+ ... */ int j = 4; while ((j < nch) && res) { res = (validate_name(CHILD(tree, j), "elif") && validate_colon(CHILD(tree, j + 2)) && validate_test(CHILD(tree, j + 1)) && validate_suite(CHILD(tree, j + 3))); j += 4; } } return (res); } /* parameters: * '(' [varargslist] ')' * */ static int validate_parameters(node *tree) { int nch = NCH(tree); int res = validate_ntype(tree, parameters) && ((nch == 2) || (nch == 3)); if (res) { res = (validate_lparen(CHILD(tree, 0)) && validate_rparen(CHILD(tree, nch - 1))); if (res && (nch == 3)) res = validate_varargslist(CHILD(tree, 1)); } else { (void) validate_numnodes(tree, 2, "parameters"); } return (res); } /* validate_suite() * * suite: * simple_stmt * | NEWLINE INDENT stmt+ DEDENT */ static int validate_suite(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, suite) && ((nch == 1) || (nch >= 4))); if (res && (nch == 1)) res = validate_simple_stmt(CHILD(tree, 0)); else if (res) { /* NEWLINE INDENT stmt+ DEDENT */ res = (validate_newline(CHILD(tree, 0)) && validate_indent(CHILD(tree, 1)) && validate_stmt(CHILD(tree, 2)) && validate_dedent(CHILD(tree, nch - 1))); if (res && (nch > 4)) { int i = 3; --nch; /* forget the DEDENT */ for ( ; res && (i < nch); ++i) res = validate_stmt(CHILD(tree, i)); } else if (nch < 4) res = validate_numnodes(tree, 4, "suite"); } return (res); } static int validate_testlist(node *tree) { return (validate_repeating_list(tree, testlist, validate_test, "testlist")); } /* '*' NAME [',' '**' NAME] | '**' NAME */ static int validate_varargslist_trailer(node *tree, int start) { int nch = NCH(tree); int res = 0; int sym; if (nch <= start) { err_string("expected variable argument trailer for varargslist"); return 0; } sym = TYPE(CHILD(tree, start)); if (sym == STAR) { /* * ('*' NAME [',' '**' NAME] */ if (nch-start == 2) res = validate_name(CHILD(tree, start+1), NULL); else if (nch-start == 5) res = (validate_name(CHILD(tree, start+1), NULL) && validate_comma(CHILD(tree, start+2)) && validate_doublestar(CHILD(tree, start+3)) && validate_name(CHILD(tree, start+4), NULL)); } else if (sym == DOUBLESTAR) { /* * '**' NAME */ if (nch-start == 2) res = validate_name(CHILD(tree, start+1), NULL); } if (!res) err_string("illegal variable argument trailer for varargslist"); return res; } /* validate_varargslist() * * varargslist: * (fpdef ['=' test] ',')* * ('*' NAME [',' '**' NAME] * | '**' NAME) * | fpdef ['=' test] (',' fpdef ['=' test])* [','] * */ static int validate_varargslist(node *tree) { int nch = NCH(tree); int res = validate_ntype(tree, varargslist) && (nch != 0); int sym; if (!res) return 0; if (nch < 1) { err_string("varargslist missing child nodes"); return 0; } sym = TYPE(CHILD(tree, 0)); if (sym == STAR || sym == DOUBLESTAR) /* whole thing matches: * '*' NAME [',' '**' NAME] | '**' NAME */ res = validate_varargslist_trailer(tree, 0); else if (sym == fpdef) { int i = 0; sym = TYPE(CHILD(tree, nch-1)); if (sym == NAME) { /* * (fpdef ['=' test] ',')+ * ('*' NAME [',' '**' NAME] * | '**' NAME) */ /* skip over (fpdef ['=' test] ',')+ */ while (res && (i+2 <= nch)) { res = validate_fpdef(CHILD(tree, i)); ++i; if (res && TYPE(CHILD(tree, i)) == EQUAL && (i+2 <= nch)) { res = (validate_equal(CHILD(tree, i)) && validate_test(CHILD(tree, i+1))); if (res) i += 2; } if (res && i < nch) { res = validate_comma(CHILD(tree, i)); ++i; if (res && i < nch && (TYPE(CHILD(tree, i)) == DOUBLESTAR || TYPE(CHILD(tree, i)) == STAR)) break; } } /* ... '*' NAME [',' '**' NAME] | '**' NAME * i --^^^ */ if (res) res = validate_varargslist_trailer(tree, i); } else { /* * fpdef ['=' test] (',' fpdef ['=' test])* [','] */ /* strip trailing comma node */ if (sym == COMMA) { res = validate_comma(CHILD(tree, nch-1)); if (!res) return 0; --nch; } /* * fpdef ['=' test] (',' fpdef ['=' test])* */ res = validate_fpdef(CHILD(tree, 0)); ++i; if (res && (i+2 <= nch) && TYPE(CHILD(tree, i)) == EQUAL) { res = (validate_equal(CHILD(tree, i)) && validate_test(CHILD(tree, i+1))); i += 2; } /* * ... (',' fpdef ['=' test])* * i ---^^^ */ while (res && (nch - i) >= 2) { res = (validate_comma(CHILD(tree, i)) && validate_fpdef(CHILD(tree, i+1))); i += 2; if (res && (nch - i) >= 2 && TYPE(CHILD(tree, i)) == EQUAL) { res = (validate_equal(CHILD(tree, i)) && validate_test(CHILD(tree, i+1))); i += 2; } } if (res && nch - i != 0) { res = 0; err_string("illegal formation for varargslist"); } } } return res; } /* list_iter: list_for | list_if */ static int validate_list_iter(node *tree) { int res = (validate_ntype(tree, list_iter) && validate_numnodes(tree, 1, "list_iter")); if (res && TYPE(CHILD(tree, 0)) == list_for) res = validate_list_for(CHILD(tree, 0)); else res = validate_list_if(CHILD(tree, 0)); return res; } /* list_for: 'for' exprlist 'in' testlist [list_iter] */ static int validate_list_for(node *tree) { int nch = NCH(tree); int res; if (nch == 5) res = validate_list_iter(CHILD(tree, 4)); else res = validate_numnodes(tree, 4, "list_for"); if (res) res = (validate_name(CHILD(tree, 0), "for") && validate_exprlist(CHILD(tree, 1)) && validate_name(CHILD(tree, 2), "in") && validate_testlist(CHILD(tree, 3))); return res; } /* list_if: 'if' test [list_iter] */ static int validate_list_if(node *tree) { int nch = NCH(tree); int res; if (nch == 3) res = validate_list_iter(CHILD(tree, 2)); else res = validate_numnodes(tree, 2, "list_if"); if (res) res = (validate_name(CHILD(tree, 0), "if") && validate_test(CHILD(tree, 1))); return res; } /* validate_fpdef() * * fpdef: * NAME * | '(' fplist ')' */ static int validate_fpdef(node *tree) { int nch = NCH(tree); int res = validate_ntype(tree, fpdef); if (res) { if (nch == 1) res = validate_ntype(CHILD(tree, 0), NAME); else if (nch == 3) res = (validate_lparen(CHILD(tree, 0)) && validate_fplist(CHILD(tree, 1)) && validate_rparen(CHILD(tree, 2))); else res = validate_numnodes(tree, 1, "fpdef"); } return (res); } static int validate_fplist(node *tree) { return (validate_repeating_list(tree, fplist, validate_fpdef, "fplist")); } /* simple_stmt | compound_stmt * */ static int validate_stmt(node *tree) { int res = (validate_ntype(tree, stmt) && validate_numnodes(tree, 1, "stmt")); if (res) { tree = CHILD(tree, 0); if (TYPE(tree) == simple_stmt) res = validate_simple_stmt(tree); else res = validate_compound_stmt(tree); } return (res); } /* small_stmt (';' small_stmt)* [';'] NEWLINE * */ static int validate_simple_stmt(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, simple_stmt) && (nch >= 2) && validate_small_stmt(CHILD(tree, 0)) && validate_newline(CHILD(tree, nch - 1))); if (nch < 2) res = validate_numnodes(tree, 2, "simple_stmt"); --nch; /* forget the NEWLINE */ if (res && is_even(nch)) res = validate_semi(CHILD(tree, --nch)); if (res && (nch > 2)) { int i; for (i = 1; res && (i < nch); i += 2) res = (validate_semi(CHILD(tree, i)) && validate_small_stmt(CHILD(tree, i + 1))); } return (res); } static int validate_small_stmt(node *tree) { int nch = NCH(tree); int res = validate_numnodes(tree, 1, "small_stmt"); if (res) { int ntype = TYPE(CHILD(tree, 0)); if ( (ntype == expr_stmt) || (ntype == print_stmt) || (ntype == del_stmt) || (ntype == pass_stmt) || (ntype == flow_stmt) || (ntype == import_stmt) || (ntype == global_stmt) || (ntype == assert_stmt) || (ntype == exec_stmt)) res = validate_node(CHILD(tree, 0)); else { res = 0; err_string("illegal small_stmt child type"); } } else if (nch == 1) { res = 0; PyErr_Format(parser_error, "Unrecognized child node of small_stmt: %d.", TYPE(CHILD(tree, 0))); } return (res); } /* compound_stmt: * if_stmt | while_stmt | for_stmt | try_stmt | funcdef | classdef */ static int validate_compound_stmt(node *tree) { int res = (validate_ntype(tree, compound_stmt) && validate_numnodes(tree, 1, "compound_stmt")); int ntype; if (!res) return (0); tree = CHILD(tree, 0); ntype = TYPE(tree); if ( (ntype == if_stmt) || (ntype == while_stmt) || (ntype == for_stmt) || (ntype == try_stmt) || (ntype == funcdef) || (ntype == classdef)) res = validate_node(tree); else { res = 0; PyErr_Format(parser_error, "Illegal compound statement type: %d.", TYPE(tree)); } return (res); } static int validate_expr_stmt(node *tree) { int j; int nch = NCH(tree); int res = (validate_ntype(tree, expr_stmt) && is_odd(nch) && validate_testlist(CHILD(tree, 0))); if (res && nch == 3 && TYPE(CHILD(tree, 1)) == augassign) { res = (validate_numnodes(CHILD(tree, 1), 1, "augassign") && validate_testlist(CHILD(tree, 2))); if (res) { char *s = STR(CHILD(CHILD(tree, 1), 0)); res = (strcmp(s, "+=") == 0 || strcmp(s, "-=") == 0 || strcmp(s, "*=") == 0 || strcmp(s, "/=") == 0 || strcmp(s, "%=") == 0 || strcmp(s, "&=") == 0 || strcmp(s, "|=") == 0 || strcmp(s, "^=") == 0 || strcmp(s, "<<=") == 0 || strcmp(s, ">>=") == 0 || strcmp(s, "**=") == 0); if (!res) err_string("illegal augmmented assignment operator"); } } else { for (j = 1; res && (j < nch); j += 2) res = (validate_equal(CHILD(tree, j)) && validate_testlist(CHILD(tree, j + 1))); } return (res); } /* print_stmt: * * 'print' ( [ test (',' test)* [','] ] * | '>>' test [ (',' test)+ [','] ] ) */ static int validate_print_stmt(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, print_stmt) && (nch > 0) && validate_name(CHILD(tree, 0), "print")); if (res && nch > 1) { int sym = TYPE(CHILD(tree, 1)); int i = 1; int allow_trailing_comma = 1; if (sym == test) res = validate_test(CHILD(tree, i++)); else { if (nch < 3) res = validate_numnodes(tree, 3, "print_stmt"); else { res = (validate_ntype(CHILD(tree, i), RIGHTSHIFT) && validate_test(CHILD(tree, i+1))); i += 2; allow_trailing_comma = 0; } } if (res) { /* ... (',' test)* [','] */ while (res && i+2 <= nch) { res = (validate_comma(CHILD(tree, i)) && validate_test(CHILD(tree, i+1))); allow_trailing_comma = 1; i += 2; } if (res && !allow_trailing_comma) res = validate_numnodes(tree, i, "print_stmt"); else if (res && i < nch) res = validate_comma(CHILD(tree, i)); } } return (res); } static int validate_del_stmt(node *tree) { return (validate_numnodes(tree, 2, "del_stmt") && validate_name(CHILD(tree, 0), "del") && validate_exprlist(CHILD(tree, 1))); } static int validate_return_stmt(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, return_stmt) && ((nch == 1) || (nch == 2)) && validate_name(CHILD(tree, 0), "return")); if (res && (nch == 2)) res = validate_testlist(CHILD(tree, 1)); return (res); } static int validate_raise_stmt(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, raise_stmt) && ((nch == 1) || (nch == 2) || (nch == 4) || (nch == 6))); if (res) { res = validate_name(CHILD(tree, 0), "raise"); if (res && (nch >= 2)) res = validate_test(CHILD(tree, 1)); if (res && nch > 2) { res = (validate_comma(CHILD(tree, 2)) && validate_test(CHILD(tree, 3))); if (res && (nch > 4)) res = (validate_comma(CHILD(tree, 4)) && validate_test(CHILD(tree, 5))); } } else (void) validate_numnodes(tree, 2, "raise"); if (res && (nch == 4)) res = (validate_comma(CHILD(tree, 2)) && validate_test(CHILD(tree, 3))); return (res); } static int validate_import_as_name(node *tree) { int nch = NCH(tree); int ok = validate_ntype(tree, import_as_name); if (ok) { if (nch == 1) ok = validate_name(CHILD(tree, 0), NULL); else if (nch == 3) ok = (validate_name(CHILD(tree, 0), NULL) && validate_name(CHILD(tree, 1), "as") && validate_name(CHILD(tree, 2), NULL)); else ok = validate_numnodes(tree, 3, "import_as_name"); } return ok; } /* dotted_name: NAME ("." NAME)* */ static int validate_dotted_name(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, dotted_name) && is_odd(nch) && validate_name(CHILD(tree, 0), NULL)); int i; for (i = 1; res && (i < nch); i += 2) { res = (validate_dot(CHILD(tree, i)) && validate_name(CHILD(tree, i+1), NULL)); } return res; } /* dotted_as_name: dotted_name [NAME NAME] */ static int validate_dotted_as_name(node *tree) { int nch = NCH(tree); int res = validate_ntype(tree, dotted_as_name); if (res) { if (nch == 1) res = validate_dotted_name(CHILD(tree, 0)); else if (nch == 3) res = (validate_dotted_name(CHILD(tree, 0)) && validate_name(CHILD(tree, 1), "as") && validate_name(CHILD(tree, 2), NULL)); else { res = 0; err_string("illegal number of children for dotted_as_name"); } } return res; } /* import_stmt: * * 'import' dotted_as_name (',' dotted_as_name)* * | 'from' dotted_name 'import' ('*' | import_as_name (',' import_as_name)*) */ static int validate_import_stmt(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, import_stmt) && (nch >= 2) && is_even(nch) && validate_ntype(CHILD(tree, 0), NAME)); if (res && (strcmp(STR(CHILD(tree, 0)), "import") == 0)) { int j; res = validate_dotted_as_name(CHILD(tree, 1)); for (j = 2; res && (j < nch); j += 2) res = (validate_comma(CHILD(tree, j)) && validate_dotted_as_name(CHILD(tree, j + 1))); } else if (res && (res = validate_name(CHILD(tree, 0), "from"))) { res = ((nch >= 4) && is_even(nch) && validate_dotted_name(CHILD(tree, 1)) && validate_name(CHILD(tree, 2), "import")); if (nch == 4) { if (TYPE(CHILD(tree, 3)) == import_as_name) res = validate_import_as_name(CHILD(tree, 3)); else res = validate_star(CHILD(tree, 3)); } else { /* 'from' dotted_name 'import' import_as_name * (',' import_as_name)+ */ int j; res = validate_import_as_name(CHILD(tree, 3)); for (j = 4; res && (j < nch); j += 2) res = (validate_comma(CHILD(tree, j)) && validate_import_as_name(CHILD(tree, j + 1))); } } else res = 0; return (res); } static int validate_global_stmt(node *tree) { int j; int nch = NCH(tree); int res = (validate_ntype(tree, global_stmt) && is_even(nch) && (nch >= 2)); if (res) res = (validate_name(CHILD(tree, 0), "global") && validate_ntype(CHILD(tree, 1), NAME)); for (j = 2; res && (j < nch); j += 2) res = (validate_comma(CHILD(tree, j)) && validate_ntype(CHILD(tree, j + 1), NAME)); return (res); } /* exec_stmt: * * 'exec' expr ['in' test [',' test]] */ static int validate_exec_stmt(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, exec_stmt) && ((nch == 2) || (nch == 4) || (nch == 6)) && validate_name(CHILD(tree, 0), "exec") && validate_expr(CHILD(tree, 1))); if (!res && !PyErr_Occurred()) err_string("illegal exec statement"); if (res && (nch > 2)) res = (validate_name(CHILD(tree, 2), "in") && validate_test(CHILD(tree, 3))); if (res && (nch == 6)) res = (validate_comma(CHILD(tree, 4)) && validate_test(CHILD(tree, 5))); return (res); } /* assert_stmt: * * 'assert' test [',' test] */ static int validate_assert_stmt(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, assert_stmt) && ((nch == 2) || (nch == 4)) && (validate_name(CHILD(tree, 0), "__assert__") || validate_name(CHILD(tree, 0), "assert")) && validate_test(CHILD(tree, 1))); if (!res && !PyErr_Occurred()) err_string("illegal assert statement"); if (res && (nch > 2)) res = (validate_comma(CHILD(tree, 2)) && validate_test(CHILD(tree, 3))); return (res); } static int validate_while(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, while_stmt) && ((nch == 4) || (nch == 7)) && validate_name(CHILD(tree, 0), "while") && validate_test(CHILD(tree, 1)) && validate_colon(CHILD(tree, 2)) && validate_suite(CHILD(tree, 3))); if (res && (nch == 7)) res = (validate_name(CHILD(tree, 4), "else") && validate_colon(CHILD(tree, 5)) && validate_suite(CHILD(tree, 6))); return (res); } static int validate_for(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, for_stmt) && ((nch == 6) || (nch == 9)) && validate_name(CHILD(tree, 0), "for") && validate_exprlist(CHILD(tree, 1)) && validate_name(CHILD(tree, 2), "in") && validate_testlist(CHILD(tree, 3)) && validate_colon(CHILD(tree, 4)) && validate_suite(CHILD(tree, 5))); if (res && (nch == 9)) res = (validate_name(CHILD(tree, 6), "else") && validate_colon(CHILD(tree, 7)) && validate_suite(CHILD(tree, 8))); return (res); } /* try_stmt: * 'try' ':' suite (except_clause ':' suite)+ ['else' ':' suite] * | 'try' ':' suite 'finally' ':' suite * */ static int validate_try(node *tree) { int nch = NCH(tree); int pos = 3; int res = (validate_ntype(tree, try_stmt) && (nch >= 6) && ((nch % 3) == 0)); if (res) res = (validate_name(CHILD(tree, 0), "try") && validate_colon(CHILD(tree, 1)) && validate_suite(CHILD(tree, 2)) && validate_colon(CHILD(tree, nch - 2)) && validate_suite(CHILD(tree, nch - 1))); else if (!PyErr_Occurred()) { const char* name = "except"; if (TYPE(CHILD(tree, nch - 3)) != except_clause) name = STR(CHILD(tree, nch - 3)); PyErr_Format(parser_error, "Illegal number of children for try/%s node.", name); } /* Skip past except_clause sections: */ while (res && (TYPE(CHILD(tree, pos)) == except_clause)) { res = (validate_except_clause(CHILD(tree, pos)) && validate_colon(CHILD(tree, pos + 1)) && validate_suite(CHILD(tree, pos + 2))); pos += 3; } if (res && (pos < nch)) { res = validate_ntype(CHILD(tree, pos), NAME); if (res && (strcmp(STR(CHILD(tree, pos)), "finally") == 0)) res = (validate_numnodes(tree, 6, "try/finally") && validate_colon(CHILD(tree, 4)) && validate_suite(CHILD(tree, 5))); else if (res) { if (nch == (pos + 3)) { res = ((strcmp(STR(CHILD(tree, pos)), "except") == 0) || (strcmp(STR(CHILD(tree, pos)), "else") == 0)); if (!res) err_string("illegal trailing triple in try statement"); } else if (nch == (pos + 6)) { res = (validate_name(CHILD(tree, pos), "except") && validate_colon(CHILD(tree, pos + 1)) && validate_suite(CHILD(tree, pos + 2)) && validate_name(CHILD(tree, pos + 3), "else")); } else res = validate_numnodes(tree, pos + 3, "try/except"); } } return (res); } static int validate_except_clause(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, except_clause) && ((nch == 1) || (nch == 2) || (nch == 4)) && validate_name(CHILD(tree, 0), "except")); if (res && (nch > 1)) res = validate_test(CHILD(tree, 1)); if (res && (nch == 4)) res = (validate_comma(CHILD(tree, 2)) && validate_test(CHILD(tree, 3))); return (res); } static int validate_test(node *tree) { int nch = NCH(tree); int res = validate_ntype(tree, test) && is_odd(nch); if (res && (TYPE(CHILD(tree, 0)) == lambdef)) res = ((nch == 1) && validate_lambdef(CHILD(tree, 0))); else if (res) { int pos; res = validate_and_test(CHILD(tree, 0)); for (pos = 1; res && (pos < nch); pos += 2) res = (validate_name(CHILD(tree, pos), "or") && validate_and_test(CHILD(tree, pos + 1))); } return (res); } static int validate_and_test(node *tree) { int pos; int nch = NCH(tree); int res = (validate_ntype(tree, and_test) && is_odd(nch) && validate_not_test(CHILD(tree, 0))); for (pos = 1; res && (pos < nch); pos += 2) res = (validate_name(CHILD(tree, pos), "and") && validate_not_test(CHILD(tree, 0))); return (res); } static int validate_not_test(node *tree) { int nch = NCH(tree); int res = validate_ntype(tree, not_test) && ((nch == 1) || (nch == 2)); if (res) { if (nch == 2) res = (validate_name(CHILD(tree, 0), "not") && validate_not_test(CHILD(tree, 1))); else if (nch == 1) res = validate_comparison(CHILD(tree, 0)); } return (res); } static int validate_comparison(node *tree) { int pos; int nch = NCH(tree); int res = (validate_ntype(tree, comparison) && is_odd(nch) && validate_expr(CHILD(tree, 0))); for (pos = 1; res && (pos < nch); pos += 2) res = (validate_comp_op(CHILD(tree, pos)) && validate_expr(CHILD(tree, pos + 1))); return (res); } static int validate_comp_op(node *tree) { int res = 0; int nch = NCH(tree); if (!validate_ntype(tree, comp_op)) return (0); if (nch == 1) { /* * Only child will be a terminal with a well-defined symbolic name * or a NAME with a string of either 'is' or 'in' */ tree = CHILD(tree, 0); switch (TYPE(tree)) { case LESS: case GREATER: case EQEQUAL: case EQUAL: case LESSEQUAL: case GREATEREQUAL: case NOTEQUAL: res = 1; break; case NAME: res = ((strcmp(STR(tree), "in") == 0) || (strcmp(STR(tree), "is") == 0)); if (!res) { PyErr_Format(parser_error, "illegal operator '%s'", STR(tree)); } break; default: err_string("illegal comparison operator type"); break; } } else if ((res = validate_numnodes(tree, 2, "comp_op")) != 0) { res = (validate_ntype(CHILD(tree, 0), NAME) && validate_ntype(CHILD(tree, 1), NAME) && (((strcmp(STR(CHILD(tree, 0)), "is") == 0) && (strcmp(STR(CHILD(tree, 1)), "not") == 0)) || ((strcmp(STR(CHILD(tree, 0)), "not") == 0) && (strcmp(STR(CHILD(tree, 1)), "in") == 0)))); if (!res && !PyErr_Occurred()) err_string("unknown comparison operator"); } return (res); } static int validate_expr(node *tree) { int j; int nch = NCH(tree); int res = (validate_ntype(tree, expr) && is_odd(nch) && validate_xor_expr(CHILD(tree, 0))); for (j = 2; res && (j < nch); j += 2) res = (validate_xor_expr(CHILD(tree, j)) && validate_vbar(CHILD(tree, j - 1))); return (res); } static int validate_xor_expr(node *tree) { int j; int nch = NCH(tree); int res = (validate_ntype(tree, xor_expr) && is_odd(nch) && validate_and_expr(CHILD(tree, 0))); for (j = 2; res && (j < nch); j += 2) res = (validate_circumflex(CHILD(tree, j - 1)) && validate_and_expr(CHILD(tree, j))); return (res); } static int validate_and_expr(node *tree) { int pos; int nch = NCH(tree); int res = (validate_ntype(tree, and_expr) && is_odd(nch) && validate_shift_expr(CHILD(tree, 0))); for (pos = 1; res && (pos < nch); pos += 2) res = (validate_ampersand(CHILD(tree, pos)) && validate_shift_expr(CHILD(tree, pos + 1))); return (res); } static int validate_chain_two_ops(node *tree, int (*termvalid)(node *), int op1, int op2) { int pos = 1; int nch = NCH(tree); int res = (is_odd(nch) && (*termvalid)(CHILD(tree, 0))); for ( ; res && (pos < nch); pos += 2) { if (TYPE(CHILD(tree, pos)) != op1) res = validate_ntype(CHILD(tree, pos), op2); if (res) res = (*termvalid)(CHILD(tree, pos + 1)); } return (res); } static int validate_shift_expr(node *tree) { return (validate_ntype(tree, shift_expr) && validate_chain_two_ops(tree, validate_arith_expr, LEFTSHIFT, RIGHTSHIFT)); } static int validate_arith_expr(node *tree) { return (validate_ntype(tree, arith_expr) && validate_chain_two_ops(tree, validate_term, PLUS, MINUS)); } static int validate_term(node *tree) { int pos = 1; int nch = NCH(tree); int res = (validate_ntype(tree, term) && is_odd(nch) && validate_factor(CHILD(tree, 0))); for ( ; res && (pos < nch); pos += 2) res = (((TYPE(CHILD(tree, pos)) == STAR) || (TYPE(CHILD(tree, pos)) == SLASH) || (TYPE(CHILD(tree, pos)) == PERCENT)) && validate_factor(CHILD(tree, pos + 1))); return (res); } /* factor: * * factor: ('+'|'-'|'~') factor | power */ static int validate_factor(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, factor) && (((nch == 2) && ((TYPE(CHILD(tree, 0)) == PLUS) || (TYPE(CHILD(tree, 0)) == MINUS) || (TYPE(CHILD(tree, 0)) == TILDE)) && validate_factor(CHILD(tree, 1))) || ((nch == 1) && validate_power(CHILD(tree, 0))))); return (res); } /* power: * * power: atom trailer* ('**' factor)* */ static int validate_power(node *tree) { int pos = 1; int nch = NCH(tree); int res = (validate_ntype(tree, power) && (nch >= 1) && validate_atom(CHILD(tree, 0))); while (res && (pos < nch) && (TYPE(CHILD(tree, pos)) == trailer)) res = validate_trailer(CHILD(tree, pos++)); if (res && (pos < nch)) { if (!is_even(nch - pos)) { err_string("illegal number of nodes for 'power'"); return (0); } for ( ; res && (pos < (nch - 1)); pos += 2) res = (validate_doublestar(CHILD(tree, pos)) && validate_factor(CHILD(tree, pos + 1))); } return (res); } static int validate_atom(node *tree) { int pos; int nch = NCH(tree); int res = validate_ntype(tree, atom); if (res && nch < 1) res = validate_numnodes(tree, nch+1, "atom"); if (res) { switch (TYPE(CHILD(tree, 0))) { case LPAR: res = ((nch <= 3) && (validate_rparen(CHILD(tree, nch - 1)))); if (res && (nch == 3)) res = validate_testlist(CHILD(tree, 1)); break; case LSQB: if (nch == 2) res = validate_ntype(CHILD(tree, 1), RSQB); else if (nch == 3) res = (validate_listmaker(CHILD(tree, 1)) && validate_ntype(CHILD(tree, 2), RSQB)); else { res = 0; err_string("illegal list display atom"); } break; case LBRACE: res = ((nch <= 3) && validate_ntype(CHILD(tree, nch - 1), RBRACE)); if (res && (nch == 3)) res = validate_dictmaker(CHILD(tree, 1)); break; case BACKQUOTE: res = ((nch == 3) && validate_testlist(CHILD(tree, 1)) && validate_ntype(CHILD(tree, 2), BACKQUOTE)); break; case NAME: case NUMBER: res = (nch == 1); break; case STRING: for (pos = 1; res && (pos < nch); ++pos) res = validate_ntype(CHILD(tree, pos), STRING); break; default: res = 0; break; } } return (res); } /* listmaker: * test ( list_for | (',' test)* [','] ) */ static int validate_listmaker(node *tree) { int nch = NCH(tree); int ok = nch; if (nch == 0) err_string("missing child nodes of listmaker"); else ok = validate_test(CHILD(tree, 0)); /* * list_iter | (',' test)* [','] */ if (nch == 2 && TYPE(CHILD(tree, 1)) == list_for) ok = validate_list_for(CHILD(tree, 1)); else { /* (',' test)* [','] */ int i = 1; while (ok && nch - i >= 2) { ok = (validate_comma(CHILD(tree, i)) && validate_test(CHILD(tree, i+1))); i += 2; } if (ok && i == nch-1) ok = validate_comma(CHILD(tree, i)); else if (i != nch) { ok = 0; err_string("illegal trailing nodes for listmaker"); } } return ok; } /* funcdef: * 'def' NAME parameters ':' suite * */ static int validate_funcdef(node *tree) { return (validate_ntype(tree, funcdef) && validate_numnodes(tree, 5, "funcdef") && validate_name(CHILD(tree, 0), "def") && validate_ntype(CHILD(tree, 1), NAME) && validate_colon(CHILD(tree, 3)) && validate_parameters(CHILD(tree, 2)) && validate_suite(CHILD(tree, 4))); } static int validate_lambdef(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, lambdef) && ((nch == 3) || (nch == 4)) && validate_name(CHILD(tree, 0), "lambda") && validate_colon(CHILD(tree, nch - 2)) && validate_test(CHILD(tree, nch - 1))); if (res && (nch == 4)) res = validate_varargslist(CHILD(tree, 1)); else if (!res && !PyErr_Occurred()) (void) validate_numnodes(tree, 3, "lambdef"); return (res); } /* arglist: * * (argument ',')* (argument [','] | '*' test [',' '**' test] | '**' test) */ static int validate_arglist(node *tree) { int nch = NCH(tree); int i = 0; int ok = 1; if (nch <= 0) /* raise the right error from having an invalid number of children */ return validate_numnodes(tree, nch + 1, "arglist"); while (ok && nch-i >= 2) { /* skip leading (argument ',') */ ok = (validate_argument(CHILD(tree, i)) && validate_comma(CHILD(tree, i+1))); if (ok) i += 2; else PyErr_Clear(); } ok = 1; if (nch-i > 0) { /* * argument | '*' test [',' '**' test] | '**' test */ int sym = TYPE(CHILD(tree, i)); if (sym == argument) { ok = validate_argument(CHILD(tree, i)); if (ok && i+1 != nch) { err_string("illegal arglist specification" " (extra stuff on end)"); ok = 0; } } else if (sym == STAR) { ok = validate_star(CHILD(tree, i)); if (ok && (nch-i == 2)) ok = validate_test(CHILD(tree, i+1)); else if (ok && (nch-i == 5)) ok = (validate_test(CHILD(tree, i+1)) && validate_comma(CHILD(tree, i+2)) && validate_doublestar(CHILD(tree, i+3)) && validate_test(CHILD(tree, i+4))); else { err_string("illegal use of '*' in arglist"); ok = 0; } } else if (sym == DOUBLESTAR) { if (nch-i == 2) ok = (validate_doublestar(CHILD(tree, i)) && validate_test(CHILD(tree, i+1))); else { err_string("illegal use of '**' in arglist"); ok = 0; } } else { err_string("illegal arglist specification"); ok = 0; } } return (ok); } /* argument: * * [test '='] test */ static int validate_argument(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, argument) && ((nch == 1) || (nch == 3)) && validate_test(CHILD(tree, 0))); if (res && (nch == 3)) res = (validate_equal(CHILD(tree, 1)) && validate_test(CHILD(tree, 2))); return (res); } /* trailer: * * '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME */ static int validate_trailer(node *tree) { int nch = NCH(tree); int res = validate_ntype(tree, trailer) && ((nch == 2) || (nch == 3)); if (res) { switch (TYPE(CHILD(tree, 0))) { case LPAR: res = validate_rparen(CHILD(tree, nch - 1)); if (res && (nch == 3)) res = validate_arglist(CHILD(tree, 1)); break; case LSQB: res = (validate_numnodes(tree, 3, "trailer") && validate_subscriptlist(CHILD(tree, 1)) && validate_ntype(CHILD(tree, 2), RSQB)); break; case DOT: res = (validate_numnodes(tree, 2, "trailer") && validate_ntype(CHILD(tree, 1), NAME)); break; default: res = 0; break; } } else { (void) validate_numnodes(tree, 2, "trailer"); } return (res); } /* subscriptlist: * * subscript (',' subscript)* [','] */ static int validate_subscriptlist(node *tree) { return (validate_repeating_list(tree, subscriptlist, validate_subscript, "subscriptlist")); } /* subscript: * * '.' '.' '.' | test | [test] ':' [test] [sliceop] */ static int validate_subscript(node *tree) { int offset = 0; int nch = NCH(tree); int res = validate_ntype(tree, subscript) && (nch >= 1) && (nch <= 4); if (!res) { if (!PyErr_Occurred()) err_string("invalid number of arguments for subscript node"); return (0); } if (TYPE(CHILD(tree, 0)) == DOT) /* take care of ('.' '.' '.') possibility */ return (validate_numnodes(tree, 3, "subscript") && validate_dot(CHILD(tree, 0)) && validate_dot(CHILD(tree, 1)) && validate_dot(CHILD(tree, 2))); if (nch == 1) { if (TYPE(CHILD(tree, 0)) == test) res = validate_test(CHILD(tree, 0)); else res = validate_colon(CHILD(tree, 0)); return (res); } /* Must be [test] ':' [test] [sliceop], * but at least one of the optional components will * be present, but we don't know which yet. */ if ((TYPE(CHILD(tree, 0)) != COLON) || (nch == 4)) { res = validate_test(CHILD(tree, 0)); offset = 1; } if (res) res = validate_colon(CHILD(tree, offset)); if (res) { int rem = nch - ++offset; if (rem) { if (TYPE(CHILD(tree, offset)) == test) { res = validate_test(CHILD(tree, offset)); ++offset; --rem; } if (res && rem) res = validate_sliceop(CHILD(tree, offset)); } } return (res); } static int validate_sliceop(node *tree) { int nch = NCH(tree); int res = ((nch == 1) || validate_numnodes(tree, 2, "sliceop")) && validate_ntype(tree, sliceop); if (!res && !PyErr_Occurred()) { res = validate_numnodes(tree, 1, "sliceop"); } if (res) res = validate_colon(CHILD(tree, 0)); if (res && (nch == 2)) res = validate_test(CHILD(tree, 1)); return (res); } static int validate_exprlist(node *tree) { return (validate_repeating_list(tree, exprlist, validate_expr, "exprlist")); } static int validate_dictmaker(node *tree) { int nch = NCH(tree); int res = (validate_ntype(tree, dictmaker) && (nch >= 3) && validate_test(CHILD(tree, 0)) && validate_colon(CHILD(tree, 1)) && validate_test(CHILD(tree, 2))); if (res && ((nch % 4) == 0)) res = validate_comma(CHILD(tree, --nch)); else if (res) res = ((nch % 4) == 3); if (res && (nch > 3)) { int pos = 3; /* ( ',' test ':' test )* */ while (res && (pos < nch)) { res = (validate_comma(CHILD(tree, pos)) && validate_test(CHILD(tree, pos + 1)) && validate_colon(CHILD(tree, pos + 2)) && validate_test(CHILD(tree, pos + 3))); pos += 4; } } return (res); } static int validate_eval_input(node *tree) { int pos; int nch = NCH(tree); int res = (validate_ntype(tree, eval_input) && (nch >= 2) && validate_testlist(CHILD(tree, 0)) && validate_ntype(CHILD(tree, nch - 1), ENDMARKER)); for (pos = 1; res && (pos < (nch - 1)); ++pos) res = validate_ntype(CHILD(tree, pos), NEWLINE); return (res); } static int validate_node(node *tree) { int nch = 0; /* num. children on current node */ int res = 1; /* result value */ node* next = 0; /* node to process after this one */ while (res & (tree != 0)) { nch = NCH(tree); next = 0; switch (TYPE(tree)) { /* * Definition nodes. */ case funcdef: res = validate_funcdef(tree); break; case classdef: res = validate_class(tree); break; /* * "Trivial" parse tree nodes. * (Why did I call these trivial?) */ case stmt: res = validate_stmt(tree); break; case small_stmt: /* * expr_stmt | print_stmt | del_stmt | pass_stmt | flow_stmt * | import_stmt | global_stmt | exec_stmt | assert_stmt */ res = validate_small_stmt(tree); break; case flow_stmt: res = (validate_numnodes(tree, 1, "flow_stmt") && ((TYPE(CHILD(tree, 0)) == break_stmt) || (TYPE(CHILD(tree, 0)) == continue_stmt) || (TYPE(CHILD(tree, 0)) == return_stmt) || (TYPE(CHILD(tree, 0)) == raise_stmt))); if (res) next = CHILD(tree, 0); else if (nch == 1) err_string("illegal flow_stmt type"); break; /* * Compound statements. */ case simple_stmt: res = validate_simple_stmt(tree); break; case compound_stmt: res = validate_compound_stmt(tree); break; /* * Fundamental statements. */ case expr_stmt: res = validate_expr_stmt(tree); break; case print_stmt: res = validate_print_stmt(tree); break; case del_stmt: res = validate_del_stmt(tree); break; case pass_stmt: res = (validate_numnodes(tree, 1, "pass") && validate_name(CHILD(tree, 0), "pass")); break; case break_stmt: res = (validate_numnodes(tree, 1, "break") && validate_name(CHILD(tree, 0), "break")); break; case continue_stmt: res = (validate_numnodes(tree, 1, "continue") && validate_name(CHILD(tree, 0), "continue")); break; case return_stmt: res = validate_return_stmt(tree); break; case raise_stmt: res = validate_raise_stmt(tree); break; case import_stmt: res = validate_import_stmt(tree); break; case global_stmt: res = validate_global_stmt(tree); break; case exec_stmt: res = validate_exec_stmt(tree); break; case assert_stmt: res = validate_assert_stmt(tree); break; case if_stmt: res = validate_if(tree); break; case while_stmt: res = validate_while(tree); break; case for_stmt: res = validate_for(tree); break; case try_stmt: res = validate_try(tree); break; case suite: res = validate_suite(tree); break; /* * Expression nodes. */ case testlist: res = validate_testlist(tree); break; case test: res = validate_test(tree); break; case and_test: res = validate_and_test(tree); break; case not_test: res = validate_not_test(tree); break; case comparison: res = validate_comparison(tree); break; case exprlist: res = validate_exprlist(tree); break; case comp_op: res = validate_comp_op(tree); break; case expr: res = validate_expr(tree); break; case xor_expr: res = validate_xor_expr(tree); break; case and_expr: res = validate_and_expr(tree); break; case shift_expr: res = validate_shift_expr(tree); break; case arith_expr: res = validate_arith_expr(tree); break; case term: res = validate_term(tree); break; case factor: res = validate_factor(tree); break; case power: res = validate_power(tree); break; case atom: res = validate_atom(tree); break; default: /* Hopefully never reached! */ err_string("unrecognized node type"); res = 0; break; } tree = next; } return (res); } static int validate_expr_tree(node *tree) { int res = validate_eval_input(tree); if (!res && !PyErr_Occurred()) err_string("could not validate expression tuple"); return (res); } /* file_input: * (NEWLINE | stmt)* ENDMARKER */ static int validate_file_input(node *tree) { int j = 0; int nch = NCH(tree) - 1; int res = ((nch >= 0) && validate_ntype(CHILD(tree, nch), ENDMARKER)); for ( ; res && (j < nch); ++j) { if (TYPE(CHILD(tree, j)) == stmt) res = validate_stmt(CHILD(tree, j)); else res = validate_newline(CHILD(tree, j)); } /* This stays in to prevent any internal failures from getting to the * user. Hopefully, this won't be needed. If a user reports getting * this, we have some debugging to do. */ if (!res && !PyErr_Occurred()) err_string("VALIDATION FAILURE: report this to the maintainer!"); return (res); } static PyObject* pickle_constructor = NULL; static PyObject* parser__pickler(PyObject *self, PyObject *args) { NOTE(ARGUNUSED(self)) PyObject *result = NULL; PyObject *ast = NULL; PyObject *empty_dict = NULL; if (PyArg_ParseTuple(args, "O!:_pickler", &PyAST_Type, &ast)) { PyObject *newargs; PyObject *tuple; if ((empty_dict = PyDict_New()) == NULL) goto finally; if ((newargs = Py_BuildValue("Oi", ast, 1)) == NULL) goto finally; tuple = parser_ast2tuple((PyAST_Object*)NULL, newargs, empty_dict); if (tuple != NULL) { result = Py_BuildValue("O(O)", pickle_constructor, tuple); Py_DECREF(tuple); } Py_DECREF(empty_dict); Py_DECREF(newargs); } finally: Py_XDECREF(empty_dict); return (result); } /* Functions exported by this module. Most of this should probably * be converted into an AST object with methods, but that is better * done directly in Python, allowing subclasses to be created directly. * We'd really have to write a wrapper around it all anyway to allow * inheritance. */ static PyMethodDef parser_functions[] = { {"ast2tuple", (PyCFunction)parser_ast2tuple, PUBLIC_METHOD_TYPE, "Creates a tuple-tree representation of an AST."}, {"ast2list", (PyCFunction)parser_ast2list, PUBLIC_METHOD_TYPE, "Creates a list-tree representation of an AST."}, {"compileast", (PyCFunction)parser_compileast, PUBLIC_METHOD_TYPE, "Compiles an AST object into a code object."}, {"expr", (PyCFunction)parser_expr, PUBLIC_METHOD_TYPE, "Creates an AST object from an expression."}, {"isexpr", (PyCFunction)parser_isexpr, PUBLIC_METHOD_TYPE, "Determines if an AST object was created from an expression."}, {"issuite", (PyCFunction)parser_issuite, PUBLIC_METHOD_TYPE, "Determines if an AST object was created from a suite."}, {"suite", (PyCFunction)parser_suite, PUBLIC_METHOD_TYPE, "Creates an AST object from a suite."}, {"sequence2ast", (PyCFunction)parser_tuple2ast, PUBLIC_METHOD_TYPE, "Creates an AST object from a tree representation."}, {"tuple2ast", (PyCFunction)parser_tuple2ast, PUBLIC_METHOD_TYPE, "Creates an AST object from a tree representation."}, /* private stuff: support pickle module */ {"_pickler", (PyCFunction)parser__pickler, METH_VARARGS, "Returns the pickle magic to allow ast objects to be pickled."}, {NULL, NULL, 0, NULL} }; DL_EXPORT(void) initparser(void); /* supply a prototype */ DL_EXPORT(void) initparser(void) { PyObject* module; PyObject* dict; PyAST_Type.ob_type = &PyType_Type; module = Py_InitModule("parser", parser_functions); dict = PyModule_GetDict(module); if (parser_error == 0) parser_error = PyErr_NewException("parser.ParserError", NULL, NULL); if ((parser_error == 0) || (PyDict_SetItemString(dict, "ParserError", parser_error) != 0)) { /* caller will check PyErr_Occurred() */ return; } /* * Nice to have, but don't cry if we fail. */ Py_INCREF(&PyAST_Type); PyDict_SetItemString(dict, "ASTType", (PyObject*)&PyAST_Type); PyDict_SetItemString(dict, "__copyright__", PyString_FromString(parser_copyright_string)); PyDict_SetItemString(dict, "__doc__", PyString_FromString(parser_doc_string)); PyDict_SetItemString(dict, "__version__", PyString_FromString(parser_version_string)); /* register to support pickling */ module = PyImport_ImportModule("copy_reg"); if (module != NULL) { PyObject *func, *pickler; func = PyObject_GetAttrString(module, "pickle"); pickle_constructor = PyDict_GetItemString(dict, "sequence2ast"); pickler = PyDict_GetItemString(dict, "_pickler"); Py_XINCREF(pickle_constructor); if ((func != NULL) && (pickle_constructor != NULL) && (pickler != NULL)) { PyObject *res; res = PyObject_CallFunction( func, "OOO", &PyAST_Type, pickler, pickle_constructor); Py_XDECREF(res); } Py_XDECREF(func); Py_DECREF(module); } } ' href='#n2139'>2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 * Copyright by The HDF Group.                                               *
 * Copyright by the Board of Trustees of the University of Illinois.         *
 * All rights reserved.                                                      *
 *                                                                           *
 * This file is part of HDF5.  The full HDF5 copyright notice, including     *
 * terms governing use, modification, and redistribution, is contained in    *
 * the files COPYING and Copyright.html.  COPYING can be found at the root   *
 * of the source code distribution tree; Copyright.html can be found at the  *
 * root level of an installed copy of the electronic HDF5 document set and   *
 * is linked from the top-level documents page.  It can also be found at     *
 * http://hdfgroup.org/HDF5/doc/Copyright.html.  If you do not have          *
 * access to either file, you may request a copy from help@hdfgroup.org.     *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
 * Programmer:  Quincey Koziol <koziol@ncsa.uiuc.edu>
 *              Thursday, June 18, 1998
 *
 * Purpose:	Hyperslab selection data space I/O functions.
 */

#define H5S_PACKAGE		/*suppress error about including H5Spkg	  */


#include "H5private.h"		/* Generic Functions			*/
#include "H5Eprivate.h"		/* Error handling			*/
#include "H5FLprivate.h"	/* Free Lists				*/
#include "H5Iprivate.h"		/* ID Functions				*/
#include "H5Spkg.h"		/* Dataspace functions			*/
#include "H5Vprivate.h"         /* Vector functions			*/

/* Local datatypes */

/* Static function prototypes */
static herr_t H5S_hyper_free_span_info(H5S_hyper_span_info_t *span_info);
static herr_t H5S_hyper_free_span(H5S_hyper_span_t *span);
static H5S_hyper_span_info_t *H5S_hyper_copy_span(H5S_hyper_span_info_t *spans);
static void H5S_hyper_span_scratch(H5S_hyper_span_info_t *spans, void *scr_value);
static herr_t H5S_hyper_span_precompute(H5S_hyper_span_info_t *spans, size_t elmt_size);
static herr_t H5S_generate_hyperslab(H5S_t *space, H5S_seloper_t op,
    const hsize_t start[], const hsize_t stride[], const hsize_t count[], const hsize_t block[]);
static herr_t H5S_hyper_generate_spans(H5S_t *space);
/* Needed for use in hyperslab code (H5Shyper.c) */
#ifdef NEW_HYPERSLAB_API
static herr_t H5S_select_select (H5S_t *space1, H5S_seloper_t op, H5S_t *space2);
#endif /*NEW_HYPERSLAB_API*/

/* Selection callbacks */
static herr_t H5S_hyper_copy(H5S_t *dst, const H5S_t *src, hbool_t share_selection);
static herr_t H5S_hyper_get_seq_list(const H5S_t *space, unsigned flags,
    H5S_sel_iter_t *iter, size_t maxseq, size_t maxbytes,
    size_t *nseq, size_t *nbytes, hsize_t *off, size_t *len);
static herr_t H5S_hyper_release(H5S_t *space);
static htri_t H5S_hyper_is_valid(const H5S_t *space);
static hssize_t H5S_hyper_serial_size(const H5S_t *space);
static herr_t H5S_hyper_serialize(const H5S_t *space, uint8_t *buf);
static herr_t H5S_hyper_deserialize(H5S_t *space, const uint8_t *buf);
static herr_t H5S_hyper_bounds(const H5S_t *space, hsize_t *start, hsize_t *end);
static herr_t H5S_hyper_offset(const H5S_t *space, hsize_t *offset);
static htri_t H5S_hyper_is_contiguous(const H5S_t *space);
static htri_t H5S_hyper_is_single(const H5S_t *space);
static htri_t H5S_hyper_is_regular(const H5S_t *space);
static herr_t H5S_hyper_adjust_u(H5S_t *space, const hsize_t *offset);
static herr_t H5S_hyper_project_scalar(const H5S_t *space, hsize_t *offset);
static herr_t H5S_hyper_project_simple(const H5S_t *space, H5S_t *new_space, hsize_t *offset);
static herr_t H5S_hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space);

/* Selection iteration callbacks */
static herr_t H5S_hyper_iter_coords(const H5S_sel_iter_t *iter, hsize_t *coords);
static herr_t H5S_hyper_iter_block(const H5S_sel_iter_t *iter, hsize_t *start, hsize_t *end);
static hsize_t H5S_hyper_iter_nelmts(const H5S_sel_iter_t *iter);
static htri_t H5S_hyper_iter_has_next_block(const H5S_sel_iter_t *sel_iter);
static herr_t H5S_hyper_iter_next(H5S_sel_iter_t *sel_iter, size_t nelem);
static herr_t H5S_hyper_iter_next_block(H5S_sel_iter_t *sel_iter);
static herr_t H5S_hyper_iter_release(H5S_sel_iter_t *sel_iter);

/* Static function for optimizing hyperslab */
static hbool_t H5S_hyper_rebuild_helper(const H5S_hyper_span_t *span,
    H5S_hyper_dim_t span_slab_info[], unsigned rank);
static htri_t H5S_hyper_rebuild(H5S_t *space);

/* Selection properties for hyperslab selections */
const H5S_select_class_t H5S_sel_hyper[1] = {{
    H5S_SEL_HYPERSLABS,

    /* Methods on selection */
    H5S_hyper_copy,
    H5S_hyper_get_seq_list,
    H5S_hyper_release,
    H5S_hyper_is_valid,
    H5S_hyper_serial_size,
    H5S_hyper_serialize,
    H5S_hyper_deserialize,
    H5S_hyper_bounds,
    H5S_hyper_offset,
    H5S_hyper_is_contiguous,
    H5S_hyper_is_single,
    H5S_hyper_is_regular,
    H5S_hyper_adjust_u,
    H5S_hyper_project_scalar,
    H5S_hyper_project_simple,
    H5S_hyper_iter_init,
}};

/* Iteration properties for hyperslab selections */
static const H5S_sel_iter_class_t H5S_sel_iter_hyper[1] = {{
    H5S_SEL_HYPERSLABS,

    /* Methods on selection iterator */
    H5S_hyper_iter_coords,
    H5S_hyper_iter_block,
    H5S_hyper_iter_nelmts,
    H5S_hyper_iter_has_next_block,
    H5S_hyper_iter_next,
    H5S_hyper_iter_next_block,
    H5S_hyper_iter_release,
}};

/* Static variables */

/* Array for default stride, block, etc. */
static const hsize_t _ones[H5O_LAYOUT_NDIMS]={
    1,1,1,1, 1,1,1,1,
    1,1,1,1, 1,1,1,1,
    1,1,1,1, 1,1,1,1,
    1,1,1,1, 1,1,1,1,1};

/* Declare a free list to manage the H5S_hyper_sel_t struct */
H5FL_DEFINE_STATIC(H5S_hyper_sel_t);

/* Declare a free list to manage the H5S_hyper_span_t struct */
H5FL_DEFINE_STATIC(H5S_hyper_span_t);

/* Declare a free list to manage the H5S_hyper_span_info_t struct */
H5FL_DEFINE_STATIC(H5S_hyper_span_info_t);

/* #define H5S_HYPER_DEBUG */
#ifdef H5S_HYPER_DEBUG
static herr_t
H5S_hyper_print_spans_helper(FILE *f, struct H5S_hyper_span_t *span,unsigned depth)
{
    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_print_spans_helper)

    while(span) {
        HDfprintf(f,"%s: depth=%u, span=%p, (%d, %d), nelem=%u, pstride=%u\n",FUNC,depth,span,(int)span->low,(int)span->high,(unsigned)span->nelem,(unsigned)span->pstride);
        if(span->down && span->down->head) {
            HDfprintf(f,"%s: spans=%p, count=%u, scratch=%p, head=%p\n",FUNC,span->down,span->down->count,span->down->scratch,span->down->head);
            H5S_hyper_print_spans_helper(f,span->down->head,depth+1);
        } /* end if */
        span=span->next;
    } /* end while */

    FUNC_LEAVE_NOAPI(SUCCEED)
}

herr_t
H5S_hyper_print_spans(FILE *f, const struct H5S_hyper_span_info_t *span_lst)
{
    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_print_spans)

    if(span_lst!=NULL) {
        HDfprintf(f,"%s: spans=%p, count=%u, scratch=%p, head=%p\n",FUNC,span_lst,span_lst->count,span_lst->scratch,span_lst->head);
        H5S_hyper_print_spans_helper(f,span_lst->head,0);
    } /* end if */

    FUNC_LEAVE_NOAPI(SUCCEED)
}

herr_t
H5S_space_print_spans(FILE *f, const H5S_t *space)
{
    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_space_print_spans)

    H5S_hyper_print_spans(f,space->select.sel_info.hslab->span_lst);

    FUNC_LEAVE_NOAPI(SUCCEED)
}

static herr_t
H5S_hyper_print_diminfo_helper(FILE *f, const char *field, unsigned ndims, const H5S_hyper_dim_t *dinfo)
{
    unsigned u;                 /* Local index variable */

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_print_diminfo_helper)

    if(dinfo!=NULL) {
        HDfprintf(f,"%s: %s: start=[",FUNC,field);
        for(u=0; u<ndims; u++)
            HDfprintf(f,"%Hd%s",dinfo[u].start, (u<(ndims-1) ? ", " : "]\n"));
        HDfprintf(f,"%s: %s: stride=[",FUNC,field);
        for(u=0; u<ndims; u++)
            HDfprintf(f,"%Hu%s",dinfo[u].stride, (u<(ndims-1) ? ", " : "]\n"));
        HDfprintf(f,"%s: %s: count=[",FUNC,field);
        for(u=0; u<ndims; u++)
            HDfprintf(f,"%Hu%s",dinfo[u].count, (u<(ndims-1) ? ", " : "]\n"));
        HDfprintf(f,"%s: %s: block=[",FUNC,field);
        for(u=0; u<ndims; u++)
            HDfprintf(f,"%Hu%s",dinfo[u].block, (u<(ndims-1) ? ", " : "]\n"));
    } /* end if */
    else
        HDfprintf(f,"%s: %s==NULL\n",FUNC,field);

    FUNC_LEAVE_NOAPI(SUCCEED)
}

herr_t
H5S_hyper_print_diminfo(FILE *f, const H5S_t *space)
{
    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_print_diminfo)

    H5S_hyper_print_diminfo_helper(f,"opt_diminfo",space->extent.rank,space->select.sel_info.hslab->opt_diminfo);
    H5S_hyper_print_diminfo_helper(f,"app_diminfo",space->extent.rank,space->select.sel_info.hslab->app_diminfo);

    FUNC_LEAVE_NOAPI(SUCCEED)
}
#endif /* H5S_HYPER_DEBUG */


/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_iter_init
 *
 * Purpose:	Initializes iteration information for hyperslab span tree selection.
 *
 * Return:	non-negative on success, negative on failure.
 *
 * Programmer:	Quincey Koziol
 *              Saturday, February 24, 2001
 *
 * Notes:       If the 'elmt_size' parameter is set to zero, the regular
 *              hyperslab selection iterator will not be 'flattened'.  This
 *              is used by the H5S_select_shape_same() code to avoid changing
 *              the rank and appearance of the selection.
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5S_hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space)
{
    const H5S_hyper_dim_t *tdiminfo;    /* Temporary pointer to diminfo information */
    H5S_hyper_span_info_t *spans;   /* Pointer to hyperslab span info node */
    unsigned rank;                  /* Dataspace's dimension rank */
    unsigned u;                     /* Index variable */
    int i;                          /* Index variable */

    FUNC_ENTER_NOAPI_NOFUNC(H5S_hyper_iter_init)

    /* Check args */
    HDassert(space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(space));
    HDassert(iter);

    /* Initialize the number of points to iterate over */
    iter->elmt_left = space->select.num_elem;
    iter->u.hyp.iter_rank = 0;

    /* Get the rank of the dataspace */
    rank = space->extent.rank;

    /* Set the temporary pointer to the dimension information */
    tdiminfo = space->select.sel_info.hslab->opt_diminfo;

    /* Check for the special case of just one H5Sselect_hyperslab call made */
    if(space->select.sel_info.hslab->diminfo_valid) {
/* Initialize the information needed for regular hyperslab I/O */
        const hsize_t *mem_size;    /* Temporary pointer to dataspace extent's dimension sizes */
        hsize_t acc;                /* Accumulator for "flattened" dimension's sizes */
        unsigned cont_dim = 0;      /* # of contiguous dimensions */

        /* Set the temporary pointer to the dataspace extent's dimension sizes */
        mem_size = space->extent.size;

        /*
         * For a regular hyperslab to be contiguous up to some dimension, it
         * must have only one block (i.e. count==1 in all dimensions up to that
         * dimension) and the block size must be the same as the dataspace's
         * extent in that dimension and all dimensions up to that dimension.
         */

        /* Don't flatten adjacent elements into contiguous block if the
         * element size is 0.  This is for the H5S_select_shape_same() code.
         */
        if(iter->elmt_size > 0) {
            /* Check for any "contiguous" blocks that can be flattened */
            for(u = (rank - 1); u > 0; u--) {
                if(tdiminfo[u].count == 1 && tdiminfo[u].block == mem_size[u]) {
                    cont_dim++;
                    iter->u.hyp.flattened[u] = TRUE;
                } /* end if */
                else
                    iter->u.hyp.flattened[u] = FALSE;
            } /* end for */
            iter->u.hyp.flattened[0] = FALSE;
        } /* end if */

        /* Check if the regular selection can be "flattened" */
        if(cont_dim > 0) {
            unsigned last_dim_flattened = 1;    /* Flag to indicate that the last dimension was flattened */
            unsigned flat_rank = rank-cont_dim; /* Number of dimensions after flattening */
            unsigned curr_dim;                  /* Current dimension */

            /* Set the iterator's rank to the contiguous dimensions */
            iter->u.hyp.iter_rank = flat_rank;

            /* "Flatten" dataspace extent and selection information */
            curr_dim = flat_rank - 1;
            for(i = (int)rank - 1, acc = 1; i >= 0; i--) {
                if(tdiminfo[i].block == mem_size[i] && i > 0) {
                    /* "Flatten" this dimension */
                    HDassert(tdiminfo[i].start == 0);
                    acc *= mem_size[i];

                    /* Indicate that the dimension was flattened */
                    last_dim_flattened = 1;
                } /* end if */
                else {
                    if(last_dim_flattened) {
                        /* First dimension after flattened dimensions */
                        iter->u.hyp.diminfo[curr_dim].start = tdiminfo[i].start * acc;

                        /* Special case for single block regular selections */
                        if(tdiminfo[i].count == 1)
                            iter->u.hyp.diminfo[curr_dim].stride = 1;
                        else
                            iter->u.hyp.diminfo[curr_dim].stride = tdiminfo[i].stride * acc;
                        iter->u.hyp.diminfo[curr_dim].count = tdiminfo[i].count;
                        iter->u.hyp.diminfo[curr_dim].block = tdiminfo[i].block * acc;
                        iter->u.hyp.size[curr_dim] = mem_size[i] * acc;
                        iter->u.hyp.sel_off[curr_dim] = space->select.offset[i] * (hssize_t)acc;

                        /* Reset the "last dim flattened" flag to avoid flattened any further dimensions */
                        last_dim_flattened = 0;

                        /* Reset the "accumulator" for possible further dimension flattening */
                        acc = 1;
                    } /* end if */
                    else {
                        /* All other dimensions */
                        iter->u.hyp.diminfo[curr_dim].start = tdiminfo[i].start;
                        iter->u.hyp.diminfo[curr_dim].stride = tdiminfo[i].stride;
                        iter->u.hyp.diminfo[curr_dim].count = tdiminfo[i].count;
                        iter->u.hyp.diminfo[curr_dim].block = tdiminfo[i].block;
                        iter->u.hyp.size[curr_dim] = mem_size[i];
                        iter->u.hyp.sel_off[curr_dim] = space->select.offset[i];
                    } /* end else */

                    /* Decrement "current" flattened dimension */
                    curr_dim--;
                } /* end if */
            } /* end for */

            /* Initialize "flattened" iterator offset to initial location and dataspace extent and selection information to correct values */
            for(u = 0; u < flat_rank; u++)
                iter->u.hyp.off[u] = iter->u.hyp.diminfo[u].start;
        } /* end if */
        else {
            /* Initialize position to initial location */
            /* Also make local copy of the regular selection information */
            for(u = 0; u < rank; u++) {
                /* Regular selection information */
                iter->u.hyp.diminfo[u].start = tdiminfo[u].start;
                iter->u.hyp.diminfo[u].stride = tdiminfo[u].stride;
                iter->u.hyp.diminfo[u].count = tdiminfo[u].count;
                iter->u.hyp.diminfo[u].block = tdiminfo[u].block;

                /* Position information */
                iter->u.hyp.off[u] = tdiminfo[u].start;
            } /* end if */
        } /* end else */

        /* Flag the diminfo information as valid in the iterator */
        iter->u.hyp.diminfo_valid = TRUE;

        /* Initialize irregular region information also (for release) */
        iter->u.hyp.spans = NULL;
    } /* end if */
    else {
/* Initialize the information needed for non-regular hyperslab I/O */
        HDassert(space->select.sel_info.hslab->span_lst);
        /* Make a copy of the span tree to iterate over */
        iter->u.hyp.spans = H5S_hyper_copy_span(space->select.sel_info.hslab->span_lst);

        /* Set the nelem & pstride values according to the element size */
        H5S_hyper_span_precompute(iter->u.hyp.spans,iter->elmt_size);

        /* Initialize the starting span_info's and spans */
        spans = iter->u.hyp.spans;
        for(u = 0; u < rank; u++) {
            /* Set the pointers to the initial span in each dimension */
            HDassert(spans);
            HDassert(spans->head);

            /* Set the pointer to the first span in the list for this node */
            iter->u.hyp.span[u] = spans->head;

            /* Set the initial offset to low bound of span */
            iter->u.hyp.off[u] = iter->u.hyp.span[u]->low;

            /* Get the pointer to the next level down */
            spans = spans->head->down;
        } /* end for */

        /* Flag the diminfo information as not valid in the iterator */
        iter->u.hyp.diminfo_valid = FALSE;
    } /* end else */

    /* Initialize type of selection iterator */
    iter->type = H5S_sel_iter_hyper;

    FUNC_LEAVE_NOAPI(SUCCEED)
}   /* H5S_hyper_iter_init() */


/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_iter_coords
 *
 * Purpose:	Retrieve the current coordinates of iterator for current
 *              selection
 *
 * Return:	non-negative on success, negative on failure
 *
 * Programmer:	Quincey Koziol
 *              Tuesday, April 22, 2003
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_hyper_iter_coords (const H5S_sel_iter_t *iter, hsize_t *coords)
{
    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_iter_coords)

    /* Check args */
    HDassert(iter);
    HDassert(coords);

    /* Copy the offset of the current point */

    /* Check for a single "regular" hyperslab */
    if(iter->u.hyp.diminfo_valid) {
        /* Check if this is a "flattened" regular hyperslab selection */
        if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < iter->rank) {
            int u, v;           /* Dimension indices */

            /* Set the starting rank of both the "natural" & "flattened" dimensions */
            u = (int)iter->rank - 1;
            v = (int)iter->u.hyp.iter_rank - 1;

            /* Construct the "natural" dimensions from a set of flattened coordinates */
            while(u >= 0) {
                if(iter->u.hyp.flattened[u]) {
                    int begin = u;      /* The rank of the first flattened dimension */

                    /* Walk up through as many flattened dimensions as possible */
                    do {
                        u--;
                    } while(u >= 0 && iter->u.hyp.flattened[u]);

                    /* Compensate for possibly overshooting dim 0 */
                    if(u < 0)
                        u = 0;

                    /* Sanity check */
                    HDassert(v >= 0);

                    /* Compute the coords for the flattened dimensions */
                    H5V_array_calc(iter->u.hyp.off[v], (unsigned)((begin - u) + 1), &(iter->dims[u]), &(coords[u]));

                    /* Continue to faster dimension in both indices */
                    u--;
                    v--;
                } /* end if */
                else {
                    /* Walk up through as many non-flattened dimensions as possible */
                    while(u >= 0 && !iter->u.hyp.flattened[u]) {
                        /* Sanity check */
                        HDassert(v >= 0);

                        /* Copy the coordinate */
                        coords[u] = iter->u.hyp.off[v];

                        /* Continue to faster dimension in both indices */
                        u--;
                        v--;
                    } /* end while */
                } /* end else */
            } /* end while */
            HDassert(v < 0);
        } /* end if */
        else
            HDmemcpy(coords, iter->u.hyp.off, sizeof(hsize_t) * iter->rank);
    } /* end if */
    else
        HDmemcpy(coords, iter->u.hyp.off, sizeof(hsize_t) * iter->rank);

    FUNC_LEAVE_NOAPI(SUCCEED)
}   /* H5S_hyper_iter_coords() */


/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_iter_block
 *
 * Purpose:	Retrieve the current block of iterator for current
 *              selection
 *
 * Return:	non-negative on success, negative on failure
 *
 * Programmer:	Quincey Koziol
 *              Monday, June 2, 2003
 *
 * Notes:       This routine assumes that the iterator is always located at
 *              the beginning of a block.
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_hyper_iter_block (const H5S_sel_iter_t *iter, hsize_t *start, hsize_t *end)
{
    unsigned u;                 /* Local index variable */

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_iter_block)

    /* Check args */
    HDassert(iter);
    HDassert(start);
    HDassert(end);

    /* Copy the offset of the current point */

    /* Check for a single "regular" hyperslab */
    if(iter->u.hyp.diminfo_valid) {
        /* Compute the end of the block */
        for(u=0; u<iter->rank; u++) {
            start[u]=iter->u.hyp.off[u];
            end[u]=(start[u]+iter->u.hyp.diminfo[u].block)-1;
        } /* end for */
    } /* end if */
    else {
        /* Copy the start of the block */
        for(u=0; u<iter->rank; u++)
            start[u]=iter->u.hyp.span[u]->low;

        /* Copy the end of the block */
        for(u=0; u<iter->rank; u++)
            end[u]=iter->u.hyp.span[u]->high;
    } /* end else */

    FUNC_LEAVE_NOAPI(SUCCEED)
}   /* H5S_hyper_iter_block() */


/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_iter_nelmts
 *
 * Purpose:	Return number of elements left to process in iterator
 *
 * Return:	non-negative number of elements on success, zero on failure
 *
 * Programmer:	Quincey Koziol
 *              Tuesday, June 16, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static hsize_t
H5S_hyper_iter_nelmts (const H5S_sel_iter_t *iter)
{
    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_iter_nelmts)

    /* Check args */
    HDassert(iter);

    FUNC_LEAVE_NOAPI(iter->elmt_left)
}   /* H5S_hyper_iter_nelmts() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_iter_has_next_block
 PURPOSE
    Check if there is another block left in the current iterator
 USAGE
    htri_t H5S_hyper_iter_has_next_block(iter)
        const H5S_sel_iter_t *iter;       IN: Pointer to selection iterator
 RETURNS
    Non-negative (TRUE/FALSE) on success/Negative on failure
 DESCRIPTION
    Check if there is another block available in the selection iterator.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static htri_t
H5S_hyper_iter_has_next_block(const H5S_sel_iter_t *iter)
{
    unsigned u;                 /* Local index variable */
    htri_t ret_value = FALSE;   /* Return value */

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_iter_has_next_block)

    /* Check args */
    HDassert(iter);

    /* Check for a single "regular" hyperslab */
    if(iter->u.hyp.diminfo_valid) {
        const H5S_hyper_dim_t *tdiminfo;    /* Temporary pointer to diminfo information */
        const hsize_t *toff;               /* Temporary offset in selection */

        /* Check if the offset of the iterator is at the last location in all dimensions */
        tdiminfo = iter->u.hyp.diminfo;
        toff = iter->u.hyp.off;
        for(u = 0; u < iter->rank; u++) {
            /* If there is only one block, continue */
            if(tdiminfo[u].count == 1)
                continue;
            if(toff[u] != (tdiminfo[u].start + ((tdiminfo[u].count - 1) * tdiminfo[u].stride)))
                HGOTO_DONE(TRUE);
        } /* end for */
    } /* end if */
    else {
        /* Check for any levels of the tree with more sequences in them */
        for(u = 0; u < iter->rank; u++)
            if(iter->u.hyp.span[u]->next != NULL)
                HGOTO_DONE(TRUE);
    } /* end else */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_iter_has_next_block() */


/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_iter_next
 *
 * Purpose:	Moves a hyperslab iterator to the beginning of the next sequence
 *      of elements to read.  Handles walking off the end in all dimensions.
 *
 * Return:	Success:	non-negative
 *		Failure:	negative
 *
 * Programmer:	Quincey Koziol
 *              Friday, September 8, 2000
 *
 * Modifications:
 *      Modified for both general and optimized hyperslab I/O
 *      Quincey Koziol, April 17, 2003
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_hyper_iter_next(H5S_sel_iter_t *iter, size_t nelem)
{
    unsigned ndims;     /* Number of dimensions of dataset */
    int fast_dim;       /* Rank of the fastest changing dimension for the dataspace */
    unsigned i;         /* Counters */

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_iter_next)

    /* Check for the special case of just one H5Sselect_hyperslab call made */
    /* (i.e. a regular hyperslab selection */
    if(iter->u.hyp.diminfo_valid) {
        const H5S_hyper_dim_t *tdiminfo;    /* Temporary pointer to diminfo information */
        hsize_t iter_offset[H5O_LAYOUT_NDIMS];
        hsize_t iter_count[H5O_LAYOUT_NDIMS];
        int temp_dim;  /* Temporary rank holder */

        /* Check if this is a "flattened" regular hyperslab selection */
        if(iter->u.hyp.iter_rank!=0 && iter->u.hyp.iter_rank<iter->rank) {
            /* Set the aliases for the dimension rank */
            ndims=iter->u.hyp.iter_rank;
        } /* end if */
        else {
            /* Set the aliases for the dimension rank */
            ndims=iter->rank;
        } /* end else */

        /* Set the fastest dimension rank */
        fast_dim = (int)ndims - 1;

        /* Set the local copy of the diminfo pointer */
        tdiminfo=iter->u.hyp.diminfo;

        /* Calculate the offset and block count for each dimension */
        for(i=0; i<ndims; i++) {
            if(tdiminfo[i].count==1) {
                iter_offset[i]=iter->u.hyp.off[i]-tdiminfo[i].start;
                iter_count[i]=0;
            } /* end if */
            else {
                iter_offset[i]=(iter->u.hyp.off[i]-tdiminfo[i].start)%tdiminfo[i].stride;
                iter_count[i]=(iter->u.hyp.off[i]-tdiminfo[i].start)/tdiminfo[i].stride;
            } /* end else */
        } /* end for */

        /* Loop through, advancing the offset & counts, until all the nelements are accounted for */
        while(nelem>0) {
            /* Start with the fastest changing dimension */
            temp_dim=fast_dim;
            while(temp_dim>=0) {
                if(temp_dim==fast_dim) {
                    size_t actual_elem;     /* Actual # of elements advanced on each iteration through loop */
                    hsize_t block_elem;     /* Number of elements left in a block */

                    /* Compute the number of elements left in block */
                    block_elem=tdiminfo[temp_dim].block-iter_offset[temp_dim];

                    /* Compute the number of actual elements to advance */
                    actual_elem=(size_t)MIN(nelem,block_elem);

                    /* Move the iterator over as many elements as possible */
                    iter_offset[temp_dim]+=actual_elem;

                    /* Decrement the number of elements advanced */
                    nelem-=actual_elem;
                } /* end if */
                else {
                    /* Move to the next row in the current dimension */
                    iter_offset[temp_dim]++;
                } /* end else */

                /* If this block is still in the range of blocks to output for the dimension, break out of loop */
                if(iter_offset[temp_dim]<tdiminfo[temp_dim].block)
                    break;
                else {
                    /* Move to the next block in the current dimension */
                    iter_offset[temp_dim]=0;
                    iter_count[temp_dim]++;

                    /* If this block is still in the range of blocks to output for the dimension, break out of loop */
                    if(iter_count[temp_dim]<tdiminfo[temp_dim].count)
                        break;
                    else
                        iter_count[temp_dim]=0; /* reset back to the beginning of the line */
                } /* end else */

                /* Decrement dimension count */
                temp_dim--;
            } /* end while */
        } /* end while */

        /* Translate current iter_offset and iter_count into iterator position */
        for(i=0; i<ndims; i++)
            iter->u.hyp.off[i]=tdiminfo[i].start+(tdiminfo[i].stride*iter_count[i])+iter_offset[i];
    } /* end if */
    /* Must be an irregular hyperslab selection */
    else {
        H5S_hyper_span_t *curr_span;    /* Current hyperslab span node */
        H5S_hyper_span_t **ispan;       /* Iterator's hyperslab span nodes */
        hsize_t *abs_arr;              /* Absolute hyperslab span position */
        int curr_dim;                   /* Temporary rank holder */

        /* Set the rank of the fastest changing dimension */
        ndims=iter->rank;
        fast_dim = (int)ndims - 1;

        /* Get the pointers to the current span info and span nodes */
        abs_arr=iter->u.hyp.off;
        ispan=iter->u.hyp.span;

        /* Loop through, advancing the span information, until all the nelements are accounted for */
        while(nelem>0) {
            /* Start at the fastest dim */
            curr_dim=fast_dim;

            /* Work back up through the dimensions */
            while(curr_dim>=0) {
                /* Reset the current span */
                curr_span=ispan[curr_dim];

                /* Increment absolute position */
                if(curr_dim==fast_dim) {
                    size_t actual_elem;     /* Actual # of elements advanced on each iteration through loop */
                    hsize_t span_elem;      /* Number of elements left in a span */

                    /* Compute the number of elements left in block */
                    span_elem=(curr_span->high-abs_arr[curr_dim])+1;

                    /* Compute the number of actual elements to advance */
                    actual_elem=(size_t)MIN(nelem,span_elem);

                    /* Move the iterator over as many elements as possible */
                    abs_arr[curr_dim]+=actual_elem;

                    /* Decrement the number of elements advanced */
                    nelem-=actual_elem;
                } /* end if */
                else {
                    /* Move to the next row in the current dimension */
                    abs_arr[curr_dim]++;
                } /* end else */

                /* Check if we are still within the span */
                if(abs_arr[curr_dim]<=curr_span->high) {
                    break;
                } /* end if */
                /* If we walked off that span, advance to the next span */
                else {
                    /* Advance span in this dimension */
                    curr_span=curr_span->next;

                    /* Check if we have a valid span in this dimension still */
                    if(curr_span!=NULL) {
                        /* Reset the span in the current dimension */
                        ispan[curr_dim]=curr_span;

                        /* Reset absolute position */
                        abs_arr[curr_dim]=curr_span->low;

                        break;
                    } /* end if */
                    else {
                        /* If we finished the span list in this dimension, decrement the dimension worked on and loop again */
                        curr_dim--;
                    } /* end else */
                } /* end else */
            } /* end while */

            /* Check if we are finished with the spans in the tree */
            if(curr_dim>=0) {
                /* Walk back down the iterator positions, reseting them */
                while(curr_dim<fast_dim) {
                    HDassert(curr_span);
                    HDassert(curr_span->down);
                    HDassert(curr_span->down->head);

                    /* Increment current dimension */
                    curr_dim++;

                    /* Set the new span_info & span for this dimension */
                    ispan[curr_dim]=curr_span->down->head;

                    /* Advance span down the tree */
                    curr_span=curr_span->down->head;

                    /* Reset the absolute offset for the dim */
                    abs_arr[curr_dim]=curr_span->low;
                } /* end while */

                /* Verify that the curr_span points to the fastest dim */
                HDassert(curr_span==ispan[fast_dim]);
            } /* end if */
        } /* end while */
    } /* end else */

    FUNC_LEAVE_NOAPI(SUCCEED)
} /* H5S_hyper_iter_next() */


/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_iter_next_block
 *
 * Purpose:	Moves a hyperslab iterator to the beginning of the next sequence
 *      of elements to read.  Handles walking off the end in all dimensions.
 *
 * Return:	Success:	non-negative
 *		Failure:	negative
 *
 * Programmer:	Quincey Koziol
 *              Tuesday, June 3, 2003
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_hyper_iter_next_block(H5S_sel_iter_t *iter)
{
    unsigned ndims;     /* Number of dimensions of dataset */
    int fast_dim;       /* Rank of the fastest changing dimension for the dataspace */
    unsigned u;         /* Counters */

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_iter_next_block)

    /* Check for the special case of just one H5Sselect_hyperslab call made */
    /* (i.e. a regular hyperslab selection */
    if(iter->u.hyp.diminfo_valid) {
        const H5S_hyper_dim_t *tdiminfo;    /* Temporary pointer to diminfo information */
        hsize_t iter_offset[H5O_LAYOUT_NDIMS];
        hsize_t iter_count[H5O_LAYOUT_NDIMS];
        int temp_dim;  /* Temporary rank holder */

        /* Check if this is a "flattened" regular hyperslab selection */
        if(iter->u.hyp.iter_rank!=0 && iter->u.hyp.iter_rank<iter->rank) {
            /* Set the aliases for the dimension rank */
            ndims=iter->u.hyp.iter_rank;
        } /* end if */
        else {
            /* Set the aliases for the dimension rank */
            ndims=iter->rank;
        } /* end else */

        /* Set the fastest dimension rank */
        fast_dim = (int)ndims - 1;

        /* Set the local copy of the diminfo pointer */
        tdiminfo=iter->u.hyp.diminfo;

        /* Calculate the offset and block count for each dimension */
        for(u=0; u<ndims; u++) {
            if(tdiminfo[u].count==1) {
                iter_offset[u]=iter->u.hyp.off[u]-tdiminfo[u].start;
                iter_count[u]=0;
            } /* end if */
            else {
                iter_offset[u]=(iter->u.hyp.off[u]-tdiminfo[u].start)%tdiminfo[u].stride;
                iter_count[u]=(iter->u.hyp.off[u]-tdiminfo[u].start)/tdiminfo[u].stride;
            } /* end else */
        } /* end for */

        /* Advance one block */
        temp_dim=fast_dim; /* Start with the fastest changing dimension */
        while(temp_dim>=0) {
            if(temp_dim==fast_dim) {
                /* Move iterator over current block */
                iter_offset[temp_dim]+=tdiminfo[temp_dim].block;
            } /* end if */
            else {
                /* Move to the next row in the current dimension */
                iter_offset[temp_dim]++;
            } /* end else */

            /* If this block is still in the range of blocks to output for the dimension, break out of loop */
            if(iter_offset[temp_dim]<tdiminfo[temp_dim].block)
                break;
            else {
                /* Move to the next block in the current dimension */
                iter_offset[temp_dim]=0;
                iter_count[temp_dim]++;

                /* If this block is still in the range of blocks to output for the dimension, break out of loop */
                if(iter_count[temp_dim]<tdiminfo[temp_dim].count)
                    break;
                else
                    iter_count[temp_dim]=0; /* reset back to the beginning of the line */
            } /* end else */

            /* Decrement dimension count */
            temp_dim--;
        } /* end while */

        /* Translate current iter_offset and iter_count into iterator position */
        for(u=0; u<ndims; u++)
            iter->u.hyp.off[u]=tdiminfo[u].start+(tdiminfo[u].stride*iter_count[u])+iter_offset[u];
    } /* end if */
    /* Must be an irregular hyperslab selection */
    else {
        H5S_hyper_span_t *curr_span;    /* Current hyperslab span node */
        H5S_hyper_span_t **ispan;       /* Iterator's hyperslab span nodes */
        hsize_t *abs_arr;              /* Absolute hyperslab span position */
        int curr_dim;                   /* Temporary rank holder */

        /* Set the rank of the fastest changing dimension */
        ndims = iter->rank;
        fast_dim = (int)ndims - 1;

        /* Get the pointers to the current span info and span nodes */
        abs_arr=iter->u.hyp.off;
        ispan=iter->u.hyp.span;

        /* Loop through, advancing the span information, until all the nelements are accounted for */
        curr_dim=fast_dim; /* Start at the fastest dim */

        /* Work back up through the dimensions */
        while(curr_dim>=0) {
            /* Reset the current span */
            curr_span=ispan[curr_dim];

            /* Increment absolute position */
            if(curr_dim==fast_dim) {
                /* Move the iterator over rest of element in span */
                abs_arr[curr_dim]=curr_span->high+1;
            } /* end if */
            else {
                /* Move to the next row in the current dimension */
                abs_arr[curr_dim]++;
            } /* end else */

            /* Check if we are still within the span */
            if(abs_arr[curr_dim]<=curr_span->high) {
                break;
            } /* end if */
            /* If we walked off that span, advance to the next span */
            else {
                /* Advance span in this dimension */
                curr_span=curr_span->next;

                /* Check if we have a valid span in this dimension still */
                if(curr_span!=NULL) {
                    /* Reset the span in the current dimension */
                    ispan[curr_dim]=curr_span;

                    /* Reset absolute position */
                    abs_arr[curr_dim]=curr_span->low;

                    break;
                } /* end if */
                else {
                    /* If we finished the span list in this dimension, decrement the dimension worked on and loop again */
                    curr_dim--;
                } /* end else */
            } /* end else */
        } /* end while */

        /* Check if we are finished with the spans in the tree */
        if(curr_dim>=0) {
            /* Walk back down the iterator positions, reseting them */
            while(curr_dim<fast_dim) {
                HDassert(curr_span);
                HDassert(curr_span->down);
                HDassert(curr_span->down->head);

                /* Increment current dimension */
                curr_dim++;

                /* Set the new span_info & span for this dimension */
                ispan[curr_dim]=curr_span->down->head;

                /* Advance span down the tree */
                curr_span=curr_span->down->head;

                /* Reset the absolute offset for the dim */
                abs_arr[curr_dim]=curr_span->low;
            } /* end while */

            /* Verify that the curr_span points to the fastest dim */
            HDassert(curr_span == ispan[fast_dim]);
        } /* end if */
    } /* end else */

    FUNC_LEAVE_NOAPI(SUCCEED)
} /* H5S_hyper_iter_next() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_iter_release
 PURPOSE
    Release hyperslab selection iterator information for a dataspace
 USAGE
    herr_t H5S_hyper_iter_release(iter)
        H5S_sel_iter_t *iter;       IN: Pointer to selection iterator
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Releases all information for a dataspace hyperslab selection iterator
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_iter_release (H5S_sel_iter_t *iter)
{
    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_iter_release)

    /* Check args */
    HDassert(iter);

/* Release the information needed for non-regular hyperslab I/O */
    /* Free the copy of the selections span tree */
    if(iter->u.hyp.spans != NULL)
        H5S_hyper_free_span_info(iter->u.hyp.spans);

    FUNC_LEAVE_NOAPI(SUCCEED)
}   /* H5S_hyper_iter_release() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_new_span
 PURPOSE
    Make a new hyperslab span node
 USAGE
    H5S_hyper_span_t *H5S_hyper_new_span(low, high, down, next)
        hsize_t low, high;         IN: Low and high bounds for new span node
        H5S_hyper_span_info_t *down;     IN: Down span tree for new node
        H5S_hyper_span_t *next;     IN: Next span for new node
 RETURNS
    Pointer to next span node on success, NULL on failure
 DESCRIPTION
    Allocate and initialize a new hyperslab span node, filling in the low &
    high bounds, the down span and next span pointers also.  Increment the
    reference count of the 'down span' if applicable.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static H5S_hyper_span_t *
H5S_hyper_new_span(hsize_t low, hsize_t high, H5S_hyper_span_info_t *down, H5S_hyper_span_t *next)
{
    H5S_hyper_span_t *ret_value;

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_new_span)

    /* Allocate a new span node */
    if(NULL == (ret_value = H5FL_MALLOC(H5S_hyper_span_t)))
        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")

    /* Copy the span's basic information */
    ret_value->low = low;
    ret_value->high = high;
    ret_value->nelem = (high - low) + 1;
    ret_value->pstride = 0;
    ret_value->down = down;
    ret_value->next = next;

    /* Increment the reference count of the 'down span' if there is one */
    if(ret_value->down)
        ret_value->down->count++;

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_new_span() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_span_precompute_helper
 PURPOSE
    Helper routine to precompute the nelem and pstrides in bytes.
 USAGE
    herr_t H5S_hyper_span_precompute_helper(span_info, elmt_size)
        H5S_hyper_span_info_t *span_info;      IN/OUT: Span tree to work on
        size_t elmt_size;                      IN: element size to work with
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Change the nelem and pstride values in the span tree from elements to
    bytes using the elmt_size parameter.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_span_precompute_helper (H5S_hyper_span_info_t *spans, size_t elmt_size)
{
    H5S_hyper_span_t *span;     /* Hyperslab span */
    herr_t      ret_value = SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_span_precompute_helper)

    HDassert(spans);

    /* Check if we've already set this down span tree */
    if(spans->scratch!=(H5S_hyper_span_info_t *)~((size_t)NULL)) {
        /* Set the tree's scratch pointer */
        spans->scratch=(H5S_hyper_span_info_t *)~((size_t)NULL);

        /* Set the scratch pointers in all the nodes */
        span=spans->head;

        /* Loop over all the spans for this down span tree */
        while(span!=NULL) {
            /* If there are down spans, set their scratch value also */
            if(span->down!=NULL) {
                if(H5S_hyper_span_precompute_helper(span->down,elmt_size)==FAIL)
                    HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't reset hyperslab scratch pointer")
            } /* end if */

            /* Change the nelem & pstride values into bytes */
            span->nelem *= elmt_size;
            span->pstride *= elmt_size;

            /* Advance to next span */
            span=span->next;
        } /* end while */
    } /* end if */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_span_precompute_helper() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_span_precompute
 PURPOSE
    Precompute the nelem and pstrides in bytes.
 USAGE
    herr_t H5S_hyper_span_precompute(span_info, elmt_size)
        H5S_hyper_span_info_t *span_info;      IN/OUT: Span tree to work on
        size_t elmt_size;                      IN: element size to work with
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Change the nelem and pstride values in the span tree from elements to
    bytes using the elmt_size parameter.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_span_precompute(H5S_hyper_span_info_t *spans, size_t elmt_size)
{
    herr_t      ret_value = SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_span_precompute)

    HDassert(spans);

    /* Call the helper routine to actually do the work */
    if(H5S_hyper_span_precompute_helper(spans, elmt_size) < 0)
        HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't precompute span info")

    /* Reset the scratch pointers for the next routine which needs them */
    H5S_hyper_span_scratch(spans, NULL);

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_span_precompute() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_span_scratch
 PURPOSE
    Set the scratch pointers on hyperslab span trees
 USAGE
    void H5S_hyper_span_scratch(span_info)
        H5S_hyper_span_info_t *span_info;      IN: Span tree to reset
 RETURNS
    <none>
 DESCRIPTION
    Set the scratch pointers on a hyperslab span tree.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static void
H5S_hyper_span_scratch(H5S_hyper_span_info_t *spans, void *scr_value)
{
    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_span_scratch)

    HDassert(spans);

    /* Check if we've already set this down span tree */
    if(spans->scratch != scr_value) {
        H5S_hyper_span_t *span;             /* Hyperslab span */

        /* Set the tree's scratch pointer */
        spans->scratch = (H5S_hyper_span_info_t *)scr_value;

        /* Set the scratch pointers in all the nodes */
        span = spans->head;
        while(span != NULL) {
            /* If there are down spans, set their scratch value also */
            if(span->down != NULL)
                H5S_hyper_span_scratch(span->down, scr_value);

            /* Advance to next span */
            span = span->next;
        } /* end while */
    } /* end if */

    FUNC_LEAVE_NOAPI_VOID
}   /* H5S_hyper_span_scratch() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_copy_span_helper
 PURPOSE
    Helper routine to copy a hyperslab span tree
 USAGE
    H5S_hyper_span_info_t * H5S_hyper_copy_span_helper(spans)
        H5S_hyper_span_info_t *spans;      IN: Span tree to copy
 RETURNS
    Pointer to the copied span tree on success, NULL on failure
 DESCRIPTION
    Copy a hyperslab span tree, using reference counting as appropriate.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static H5S_hyper_span_info_t *
H5S_hyper_copy_span_helper (H5S_hyper_span_info_t *spans)
{
    H5S_hyper_span_t *span;         /* Hyperslab span */
    H5S_hyper_span_t *new_span;     /* Temporary hyperslab span */
    H5S_hyper_span_t *prev_span;    /* Previous hyperslab span */
    H5S_hyper_span_info_t *new_down;    /* New down span tree */
    H5S_hyper_span_info_t *ret_value;

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_copy_span_helper)

    HDassert(spans);

    /* Check if the span tree was already copied */
    if(spans->scratch != NULL && spans->scratch != (H5S_hyper_span_info_t *)~((size_t)NULL)) {
        /* Just return the value of the already copied span tree */
        ret_value = spans->scratch;

        /* Increment the reference count of the span tree */
        ret_value->count++;
    } /* end if */
    else {
        /* Allocate a new span_info node */
        if(NULL == (ret_value = H5FL_MALLOC(H5S_hyper_span_info_t)))
            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span info")

        /* Copy the span_info information */
        ret_value->count = 1;
        ret_value->scratch = NULL;
        ret_value->head = NULL;

        /* Set the scratch pointer in the node being copied to the newly allocated node */
        spans->scratch = ret_value;

        /* Copy over the nodes in the span list */
        span = spans->head;
        prev_span = NULL;
        while(span != NULL) {
            /* Allocate a new node */
            if(NULL == (new_span = H5S_hyper_new_span(span->low, span->high, NULL, NULL)))
                HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")

            /* Append to list of spans */
            if(NULL == prev_span)
                ret_value->head = new_span;
            else
                prev_span->next = new_span;

            /* Copy the pstride */
            new_span->pstride = span->pstride;

            /* Recurse to copy the 'down' spans, if there are any */
            if(span->down != NULL) {
                if(NULL == (new_down = H5S_hyper_copy_span_helper(span->down)))
                    HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, NULL, "can't copy hyperslab spans")
                new_span->down = new_down;
            } /* end if */

            /* Update the previous (new) span */
            prev_span = new_span;

            /* Advance to next span */
            span = span->next;
        } /* end while */
    } /* end else */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_copy_span_helper() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_copy_span
 PURPOSE
    Copy a hyperslab span tree
 USAGE
    H5S_hyper_span_info_t * H5S_hyper_copy_span(span_info)
        H5S_hyper_span_info_t *span_info;      IN: Span tree to copy
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Copy a hyperslab span tree, using reference counting as appropriate.
    (Which means that just the nodes in the top span tree are duplicated and
    the reference counts of their 'down spans' are just incremented)
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static H5S_hyper_span_info_t *
H5S_hyper_copy_span(H5S_hyper_span_info_t *spans)
{
    H5S_hyper_span_info_t *ret_value;

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_copy_span)

    HDassert(spans);

    /* Copy the hyperslab span tree */
    if(NULL == (ret_value = H5S_hyper_copy_span_helper(spans)))
        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, NULL, "can't copy hyperslab span tree")

    /* Reset the scratch pointers for the next routine which needs them */
    H5S_hyper_span_scratch(spans, NULL);

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_copy_span() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_cmp_spans
 PURPOSE
    Check if two hyperslab slabs are the same
 USAGE
    htri_d H5S_hyper_cmp_spans(span1, span2)
        H5S_hyper_span_t *span1;    IN: First span tree to compare
        H5S_hyper_span_t *span2;    IN: Second span tree to compare
 RETURNS
    TRUE (1) or FALSE (0) on success, negative on failure
 DESCRIPTION
    Compare two hyperslab slabs to determine if they refer to the same
    selection.  If span1 & span2 are both NULL, that counts as equal
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static htri_t
H5S_hyper_cmp_spans (H5S_hyper_span_info_t *span_info1, H5S_hyper_span_info_t *span_info2)
{
    H5S_hyper_span_t *span1;
    H5S_hyper_span_t *span2;
    htri_t nest=FAIL;
    htri_t ret_value=FAIL;

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_cmp_spans)

    /* Check for redundant comparison */
    if(span_info1==span_info2)
        ret_value=TRUE;
    else {
        /* Check for both spans being NULL */
        if(span_info1==NULL && span_info2==NULL)
            ret_value=TRUE;
        else {
            /* Check for one span being NULL */
            if(span_info1==NULL || span_info2==NULL)
                ret_value=FALSE;
            else {
                /* Get the pointers to the actual lists of spans */
                span1=span_info1->head;
                span2=span_info2->head;

                /* Sanity checking */
                HDassert(span1);
                HDassert(span2);

                /* infinite loop which must be broken out of */
                while (1) {
                    /* Check for both spans being NULL */
                    if(span1==NULL && span2==NULL) {
                        ret_value=TRUE;
                        break;
                    } /* end if */
                    else {
                        /* Check for one span being NULL */
                        if(span1==NULL || span2==NULL) {
                            ret_value=FALSE;
                            break;
                        } /* end if */
                        else {
                            /* Check if the actual low & high span information is the same */
                            if(span1->low!=span2->low || span1->high!=span2->high) {
                                ret_value=FALSE;
                                break;
                            } /* end if */
                            else {
                                if(span1->down!=NULL || span2!=NULL) {
                                    if((nest=H5S_hyper_cmp_spans(span1->down,span2->down))==FAIL) {
                                        ret_value=FAIL;
                                        break;
                                    } /* end if */
                                    else {
                                        if(nest==FALSE) {
                                            ret_value=FALSE;
                                            break;
                                        } /* end if */
                                        else {
                                            /* Keep going... */
                                        } /* end else */
                                    } /* end else */
                                } /* end if */
                                else {
                                    /* Keep going... */
                                } /* end else */
                            } /* end else */
                        } /* end else */
                    } /* end else */

                    /* Advance to the next nodes in the span list */
                    span1=span1->next;
                    span2=span2->next;
                } /* end while */
            } /* end else */
        } /* end else */
    } /* end else */

    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_cmp_spans() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_free_span_info
 PURPOSE
    Free a hyperslab span info node
 USAGE
    herr_t H5S_hyper_free_span_info(span_info)
        H5S_hyper_span_info_t *span_info;      IN: Span info node to free
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Free a hyperslab span info node, along with all the span nodes and the
    'down spans' from the nodes, if reducing their reference count to zero
    indicates it is appropriate to do so.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_free_span_info (H5S_hyper_span_info_t *span_info)
{
    H5S_hyper_span_t *span, *next_span;
    herr_t      ret_value=SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_free_span_info)

    HDassert(span_info);

    /* Decrement the span tree's reference count */
    span_info->count--;

    /* Free the span tree if the reference count drops to zero */
    if(span_info->count==0) {

        /* Work through the list of spans pointed to by this 'info' node */
        span=span_info->head;
        while(span!=NULL) {
            next_span=span->next;
            if(H5S_hyper_free_span(span)<0)
                HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab span")
            span=next_span;
        } /* end while */

        /* Free this span info */
        span_info = H5FL_FREE(H5S_hyper_span_info_t, span_info);
    } /* end if */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_free_span_info() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_free_span
 PURPOSE
    Free a hyperslab span node
 USAGE
    herr_t H5S_hyper_free_span(span)
        H5S_hyper_span_t *span;      IN: Span node to free
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Free a hyperslab span node, along with the 'down spans' from the node,
    if reducing their reference count to zero indicates it is appropriate to
    do so.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_free_span (H5S_hyper_span_t *span)
{
    herr_t ret_value=SUCCEED;

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_free_span)

    HDassert(span);

    /* Decrement the reference count of the 'down spans', freeing them if appropriate */
    if(span->down!=NULL) {
        if(H5S_hyper_free_span_info(span->down)<0)
            HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab span tree")
    } /* end if */

    /* Free this span */
    span = H5FL_FREE(H5S_hyper_span_t, span);

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_free_span() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_copy
 PURPOSE
    Copy a selection from one dataspace to another
 USAGE
    herr_t H5S_hyper_copy(dst, src)
        H5S_t *dst;  OUT: Pointer to the destination dataspace
        H5S_t *src;  IN: Pointer to the source dataspace
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Copies all the hyperslab selection information from the source
    dataspace to the destination dataspace.

    If the SHARE_SELECTION flag is set, then the selection can be shared
    between the source and destination dataspaces.  (This should only occur in
    situations where the destination dataspace will immediately change to a new
    selection)
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_copy (H5S_t *dst, const H5S_t *src, hbool_t share_selection)
{
    H5S_hyper_sel_t *dst_hslab;         /* Pointer to destination hyperslab info */
    const H5S_hyper_sel_t *src_hslab;   /* Pointer to source hyperslab info */
    herr_t ret_value=SUCCEED;   /* return value */

    FUNC_ENTER_NOAPI(H5S_hyper_copy, FAIL)

    HDassert(src);
    HDassert(dst);

    /* Allocate space for the hyperslab selection information */
    if(NULL == (dst->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t)))
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info")

    /* Set temporary pointers */
    dst_hslab=dst->select.sel_info.hslab;
    src_hslab=src->select.sel_info.hslab;

    /* Copy the hyperslab information */
    dst_hslab->diminfo_valid=src_hslab->diminfo_valid;
    if(src_hslab->diminfo_valid) {
        size_t u;       /* Local index variable */

        for(u=0; u<src->extent.rank; u++) {
            dst_hslab->opt_diminfo[u]=src_hslab->opt_diminfo[u];
            dst_hslab->app_diminfo[u]=src_hslab->app_diminfo[u];
        } /* end for */
    } /* end if */
    dst->select.sel_info.hslab->span_lst=src->select.sel_info.hslab->span_lst;

    /* Check if there is hyperslab span information to copy */
    /* (Regular hyperslab information is copied with the selection structure) */
    if(src->select.sel_info.hslab->span_lst!=NULL) {
        if(share_selection) {
            /* Share the source's span tree by incrementing the reference count on it */
            dst->select.sel_info.hslab->span_lst->count++;
        } /* end if */
        else
            /* Copy the hyperslab span information */
            dst->select.sel_info.hslab->span_lst = H5S_hyper_copy_span(src->select.sel_info.hslab->span_lst);
    } /* end if */

done:
    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_hyper_copy() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_is_valid_helper
 PURPOSE
    Check whether the selection fits within the extent, with the current
    offset defined.
 USAGE
    htri_t H5S_hyper_is_valid_helper(spans, offset, rank);
        const H5S_hyper_span_info_t *spans; IN: Pointer to current hyperslab span tree
        const hssize_t *offset;             IN: Pointer to offset array
        const hsize_t *size;                IN: Pointer to size array
        hsize_t rank;                       IN: Current rank looking at
 RETURNS
    TRUE if the selection fits within the extent, FALSE if it does not and
        Negative on an error.
 DESCRIPTION
    Determines if the current selection at the current offet fits within the
    extent for the dataspace.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static htri_t
H5S_hyper_is_valid_helper (const H5S_hyper_span_info_t *spans, const hssize_t *offset, const hsize_t *size, hsize_t rank)
{
    H5S_hyper_span_t *curr;     /* Hyperslab information nodes */
    htri_t tmp;                 /* temporary return value */
    htri_t ret_value=TRUE;      /* return value */

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_is_valid_helper)

    HDassert(spans);
    HDassert(offset);
    HDassert(size);
    HDassert(rank < H5O_LAYOUT_NDIMS);

    /* Check each point to determine whether selection+offset is within extent */
    curr=spans->head;
    while(curr!=NULL && ret_value==TRUE) {
        /* Check if an offset has been defined */
        /* Bounds check the selected point + offset against the extent */
        if((((hssize_t)curr->low+offset[rank])>=(hssize_t)size[rank])
                || (((hssize_t)curr->low+offset[rank])<0)
                || (((hssize_t)curr->high+offset[rank])>=(hssize_t)size[rank])
                || (((hssize_t)curr->high+offset[rank])<0)) {
            ret_value=FALSE;
            break;
        } /* end if */

        /* Recurse if this node has down spans */
        if(curr->down!=NULL) {
            if((tmp=H5S_hyper_is_valid_helper(curr->down,offset,size,rank+1))!=TRUE) {
                ret_value=tmp;
                break;
            } /* end if */
        } /* end if */

        /* Advance to next node */
        curr=curr->next;
    } /* end while */

    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_hyper_is_valid_helper() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_is_valid
 PURPOSE
    Check whether the selection fits within the extent, with the current
    offset defined.
 USAGE
    htri_t H5S_hyper_is_valid(space);
        H5S_t *space;             IN: Dataspace pointer to query
 RETURNS
    TRUE if the selection fits within the extent, FALSE if it does not and
        Negative on an error.
 DESCRIPTION
    Determines if the current selection at the current offet fits within the
    extent for the dataspace.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
htri_t
H5S_hyper_is_valid (const H5S_t *space)
{
    unsigned u;                    /* Counter */
    htri_t ret_value=TRUE;      /* return value */

    FUNC_ENTER_NOAPI_NOFUNC(H5S_hyper_is_valid)

    HDassert(space);

    /* Check for a "regular" hyperslab selection */
    if(space->select.sel_info.hslab->diminfo_valid) {
        const H5S_hyper_dim_t *diminfo=space->select.sel_info.hslab->opt_diminfo; /* local alias for diminfo */
        hssize_t end;      /* The high bound of a region in a dimension */

        /* Check each dimension */
        for(u=0; u<space->extent.rank; u++) {
            /* if block or count is zero, then can skip the test since */
            /* no data point is chosen */
            if (diminfo[u].count && diminfo[u].block) {
                /* Bounds check the start point in this dimension */
                if(((hssize_t)diminfo[u].start+space->select.offset[u])<0 ||
                        ((hssize_t)diminfo[u].start+space->select.offset[u])>=(hssize_t)space->extent.size[u])
                    HGOTO_DONE(FALSE)

                /* Compute the largest location in this dimension */
                end=(hssize_t)(diminfo[u].start+diminfo[u].stride*(diminfo[u].count-1)+(diminfo[u].block-1))+space->select.offset[u];

                /* Bounds check the end point in this dimension */
                if(end<0 || end>=(hssize_t)space->extent.size[u])
                    HGOTO_DONE(FALSE)
            } /* end if */
        } /* end for */
    } /* end if */
    else {
        /* Call the recursive routine to validate the span tree */
        ret_value=H5S_hyper_is_valid_helper(space->select.sel_info.hslab->span_lst,space->select.offset,space->extent.size,(hsize_t)0);
    } /* end else */

done:
    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_hyper_is_valid() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_span_nblocks
 PURPOSE
    Count the number of blocks in a span tree
 USAGE
    hsize_t H5S_hyper_span_nblocks(spans)
        const H5S_hyper_span_info_t *spans; IN: Hyperslab span tree to count elements of
 RETURNS
    Number of blocks in span tree on success; negative on failure
 DESCRIPTION
    Counts the number of blocks described by the spans in a span tree.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static hsize_t
H5S_hyper_span_nblocks(H5S_hyper_span_info_t *spans)
{
    H5S_hyper_span_t *span;     /* Hyperslab span */
    hsize_t ret_value = 0;      /* Return value */

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_span_nblocks)

    /* Count the number of elements in the span tree */
    if(spans != NULL) {
        span = spans->head;
        while(span != NULL) {
            /* If there are down spans, add the total down span blocks */
            if(span->down!=NULL)
                ret_value += H5S_hyper_span_nblocks(span->down);
            /* If there are no down spans, just count the block in this span */
            else
                ret_value++;

            /* Advance to next span */
            span = span->next;
        } /* end while */
    } /* end else */

    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_span_nblocks() */


/*--------------------------------------------------------------------------
 NAME
    H5S_get_select_hyper_nblocks
 PURPOSE
    Get the number of hyperslab blocks in current hyperslab selection
 USAGE
    hsize_t H5S_get_select_hyper_nblocks(space)
        H5S_t *space;             IN: Dataspace ptr of selection to query
 RETURNS
    The number of hyperslab blocks in selection on success, negative on failure
 DESCRIPTION
    Returns the number of hyperslab blocks in current selection for dataspace.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static hsize_t
H5S_get_select_hyper_nblocks(H5S_t *space)
{
    hsize_t ret_value;         /* return value */

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_get_select_hyper_nblocks)

    HDassert(space);

    /* Check for a "regular" hyperslab selection */
    if(space->select.sel_info.hslab->diminfo_valid) {
        unsigned u;                 /* Local index variable */

        /* Check each dimension */
        for(ret_value = 1, u = 0; u < space->extent.rank; u++)
            ret_value *= space->select.sel_info.hslab->app_diminfo[u].count;
    } /* end if */
    else
        ret_value = H5S_hyper_span_nblocks(space->select.sel_info.hslab->span_lst);

    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_get_select_hyper_nblocks() */


/*--------------------------------------------------------------------------
 NAME
    H5Sget_select_hyper_nblocks
 PURPOSE
    Get the number of hyperslab blocks in current hyperslab selection
 USAGE
    hssize_t H5Sget_select_hyper_nblocks(dsid)
        hid_t dsid;             IN: Dataspace ID of selection to query
 RETURNS
    The number of hyperslab blocks in selection on success, negative on failure
 DESCRIPTION
    Returns the number of hyperslab blocks in current selection for dataspace.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
hssize_t
H5Sget_select_hyper_nblocks(hid_t spaceid)
{
    H5S_t *space;               /* Dataspace to modify selection of */
    hssize_t ret_value;         /* return value */

    FUNC_ENTER_API(H5Sget_select_hyper_nblocks, FAIL)
    H5TRACE1("Hs", "i", spaceid);

    /* Check args */
    if(NULL == (space = (H5S_t *)H5I_object_verify(spaceid, H5I_DATASPACE)))
        HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a data space")
    if(H5S_GET_SELECT_TYPE(space) != H5S_SEL_HYPERSLABS)
        HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a hyperslab selection")

    ret_value = (hssize_t)H5S_get_select_hyper_nblocks(space);

done:
    FUNC_LEAVE_API(ret_value)
}   /* H5Sget_select_hyper_nblocks() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_serial_size
 PURPOSE
    Determine the number of bytes needed to store the serialized hyperslab
        selection information.
 USAGE
    hssize_t H5S_hyper_serial_size(space)
        H5S_t *space;             IN: Dataspace pointer to query
 RETURNS
    The number of bytes required on success, negative on an error.
 DESCRIPTION
    Determines the number of bytes required to serialize the current hyperslab
    selection information for storage on disk.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static hssize_t
H5S_hyper_serial_size(const H5S_t *space)
{
    unsigned u;                 /* Counter */
    hsize_t block_count;       /* block counter for regular hyperslabs */
    hssize_t ret_value;         /* return value */

    FUNC_ENTER_NOAPI_NOFUNC(H5S_hyper_serial_size)

    HDassert(space);

    /* Basic number of bytes required to serialize hyperslab selection:
     *  <type (4 bytes)> + <version (4 bytes)> + <padding (4 bytes)> +
     *      <length (4 bytes)> + <rank (4 bytes)> + <# of blocks (4 bytes)> = 24 bytes
     */
    ret_value = 24;

    /* Check for a "regular" hyperslab selection */
    if(space->select.sel_info.hslab->diminfo_valid) {
        /* Check each dimension */
        for(block_count = 1, u = 0; u < space->extent.rank; u++)
            block_count *= space->select.sel_info.hslab->opt_diminfo[u].count;
    } /* end if */
    else
        /* Spin through hyperslab spans, adding 8 * rank bytes for each block */
        block_count = H5S_hyper_span_nblocks(space->select.sel_info.hslab->span_lst);

    H5_CHECK_OVERFLOW((8 * space->extent.rank * block_count), hsize_t, hssize_t);
    ret_value += (hssize_t)(8 * block_count * space->extent.rank);

    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_hyper_serial_size() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_serialize_helper
 PURPOSE
    Serialize the current selection into a user-provided buffer.
 USAGE
    herr_t H5S_hyper_serialize_helper(spans, start, end, rank, buf)
        H5S_hyper_span_info_t *spans;   IN: Hyperslab span tree to serialize
        hssize_t start[];       IN/OUT: Accumulated start points
        hssize_t end[];         IN/OUT: Accumulated end points
        hsize_t rank;           IN: Current rank looking at
        uint8 *buf;             OUT: Buffer to put serialized selection into
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Serializes the current element selection into a buffer.  (Primarily for
    storing on disk).
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_serialize_helper (const H5S_hyper_span_info_t *spans, hsize_t *start, hsize_t *end, hsize_t rank, uint8_t **buf)
{
    H5S_hyper_span_t *curr;     /* Pointer to current hyperslab span */
    hsize_t u;                  /* Index variable */
    herr_t ret_value=SUCCEED;  /* return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_serialize_helper)

    /* Sanity checks */
    HDassert(spans);
    HDassert(start);
    HDassert(end);
    HDassert(rank < H5O_LAYOUT_NDIMS);
    HDassert(buf && *buf);

    /* Walk through the list of spans, recursing or outputing them */
    curr=spans->head;
    while(curr!=NULL) {
        /* Recurse if this node has down spans */
        if(curr->down!=NULL) {
            /* Add the starting and ending points for this span to the list */
            start[rank]=curr->low;
            end[rank]=curr->high;

            /* Recurse down to the next dimension */
            if(H5S_hyper_serialize_helper(curr->down,start,end,rank+1,buf)<0)
                HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab spans")
        } /* end if */
        else {
            /* Encode all the previous dimensions starting & ending points */

            /* Encode previous starting points */
            for(u=0; u<rank; u++)
                UINT32ENCODE(*buf, (uint32_t)start[u]);

            /* Encode starting point for this span */
            UINT32ENCODE(*buf, (uint32_t)curr->low);

            /* Encode previous ending points */
            for(u=0; u<rank; u++)
                UINT32ENCODE(*buf, (uint32_t)end[u]);

            /* Encode starting point for this span */
            UINT32ENCODE(*buf, (uint32_t)curr->high);
        } /* end else */

        /* Advance to next node */
        curr=curr->next;
    } /* end while */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_serialize_helper() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_serialize
 PURPOSE
    Serialize the current selection into a user-provided buffer.
 USAGE
    herr_t H5S_hyper_serialize(space, buf)
        H5S_t *space;           IN: Dataspace pointer of selection to serialize
        uint8 *buf;             OUT: Buffer to put serialized selection into
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Serializes the current element selection into a buffer.  (Primarily for
    storing on disk).
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_serialize (const H5S_t *space, uint8_t *buf)
{
    const H5S_hyper_dim_t *diminfo;         /* Alias for dataspace's diminfo information */
    hsize_t tmp_count[H5O_LAYOUT_NDIMS];    /* Temporary hyperslab counts */
    hsize_t offset[H5O_LAYOUT_NDIMS];      /* Offset of element in dataspace */
    hsize_t start[H5O_LAYOUT_NDIMS];   /* Location of start of hyperslab */
    hsize_t end[H5O_LAYOUT_NDIMS];     /* Location of end of hyperslab */
    hsize_t temp_off;            /* Offset in a given dimension */
    uint8_t *lenp;          /* pointer to length location for later storage */
    uint32_t len = 0;       /* number of bytes used */
    hsize_t block_count;    /* block counter for regular hyperslabs */
    unsigned fast_dim;      /* Rank of the fastest changing dimension for the dataspace */
    unsigned ndims;         /* Rank of the dataspace */
    int done;               /* Whether we are done with the iteration */

    FUNC_ENTER_NOAPI_NOFUNC(H5S_hyper_serialize)

    HDassert(space);

    /* Store the preamble information */
    UINT32ENCODE(buf, (uint32_t)H5S_GET_SELECT_TYPE(space));  /* Store the type of selection */
    UINT32ENCODE(buf, (uint32_t)1);  /* Store the version number */
    UINT32ENCODE(buf, (uint32_t)0);  /* Store the un-used padding */
    lenp = buf;           /* keep the pointer to the length location for later */
    buf += 4;             /* skip over space for length */

    /* Encode number of dimensions */
    UINT32ENCODE(buf, (uint32_t)space->extent.rank);
    len += 4;

    /* Check for a "regular" hyperslab selection */
    if(space->select.sel_info.hslab->diminfo_valid) {
        unsigned u;     /* Local counting variable */

        /* Set some convienence values */
        ndims = space->extent.rank;
        fast_dim = ndims - 1;
        diminfo=space->select.sel_info.hslab->opt_diminfo;

        /* Check each dimension */
        for(block_count = 1, u = 0; u < ndims; u++)
            block_count *= diminfo[u].count;

        /* Encode number of hyperslabs */
        H5_CHECK_OVERFLOW(block_count, hsize_t, uint32_t);
        UINT32ENCODE(buf, (uint32_t)block_count);
        len+=4;

        /* Now serialize the information for the regular hyperslab */

        /* Build the tables of count sizes as well as the initial offset */
        for(u = 0; u < ndims; u++) {
            tmp_count[u] = diminfo[u].count;
            offset[u] = diminfo[u].start;
        } /* end for */

        /* We're not done with the iteration */
        done=0;

        /* Go iterate over the hyperslabs */
        while(done==0) {
            /* Iterate over the blocks in the fastest dimension */
            while(tmp_count[fast_dim]>0) {
                /* Add 8 bytes times the rank for each hyperslab selected */
                len+=8*ndims;

                /* Encode hyperslab starting location */
                for(u = 0; u < ndims; u++)
                    UINT32ENCODE(buf, (uint32_t)offset[u]);

                /* Encode hyperslab ending location */
                for(u = 0; u < ndims; u++)
                    UINT32ENCODE(buf, (uint32_t)(offset[u] + (diminfo[u].block - 1)));

                /* Move the offset to the next sequence to start */
                offset[fast_dim]+=diminfo[fast_dim].stride;

                /* Decrement the block count */
                tmp_count[fast_dim]--;
            } /* end while */

            /* Work on other dimensions if necessary */
            if(fast_dim > 0) {
                int temp_dim;           /* Temporary rank holder */

                /* Reset the block counts */
                tmp_count[fast_dim]=diminfo[fast_dim].count;

                /* Bubble up the decrement to the slower changing dimensions */
                temp_dim = (int)fast_dim - 1;
                while(temp_dim >= 0 && done == 0) {
                    /* Decrement the block count */
                    tmp_count[temp_dim]--;

                    /* Check if we have more blocks left */
                    if(tmp_count[temp_dim] > 0)
                        break;

                    /* Check for getting out of iterator */
                    if(temp_dim == 0)
                        done = 1;

                    /* Reset the block count in this dimension */
                    tmp_count[temp_dim] = diminfo[temp_dim].count;

                    /* Wrapped a dimension, go up to next dimension */
                    temp_dim--;
                } /* end while */
            } /* end if */
            else
                break;  /* Break out now, for 1-D selections */

            /* Re-compute offset array */
            for(u = 0; u < ndims; u++) {
                temp_off = diminfo[u].start + diminfo[u].stride * (diminfo[u].count - tmp_count[u]);
                offset[u] = temp_off;
            } /* end for */
        } /* end while */
    } /* end if */
    else {
        /* Encode number of hyperslabs */
        block_count = H5S_hyper_span_nblocks(space->select.sel_info.hslab->span_lst);
        H5_CHECK_OVERFLOW(block_count, hsize_t, uint32_t);
        UINT32ENCODE(buf, (uint32_t)block_count);
        len+=4;

        /* Add 8 bytes times the rank for each hyperslab selected */
        H5_CHECK_OVERFLOW((8 * space->extent.rank * block_count), hsize_t, size_t);
        len += (size_t)(8 * space->extent.rank * block_count);

        /* Encode each hyperslab in selection */
        H5S_hyper_serialize_helper(space->select.sel_info.hslab->span_lst, start, end, (hsize_t)0, &buf);
    } /* end else */

    /* Encode length */
    UINT32ENCODE(lenp, (uint32_t)len);  /* Store the length of the extra information */

    FUNC_LEAVE_NOAPI(SUCCEED)
}   /* H5S_hyper_serialize() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_deserialize
 PURPOSE
    Deserialize the current selection from a user-provided buffer.
 USAGE
    herr_t H5S_hyper_deserialize(space, buf)
        H5S_t *space;           IN/OUT: Dataspace pointer to place selection into
        uint8 *buf;             IN: Buffer to retrieve serialized selection from
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Deserializes the current selection into a buffer.  (Primarily for retrieving
    from disk).
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_deserialize (H5S_t *space, const uint8_t *buf)
{
    uint32_t rank;           	/* rank of points */
    size_t num_elem=0;      	/* number of elements in selection */
    hsize_t start[H5O_LAYOUT_NDIMS];	/* hyperslab start information */
    hsize_t end[H5O_LAYOUT_NDIMS];	/* hyperslab end information */
    hsize_t stride[H5O_LAYOUT_NDIMS];   /* hyperslab stride information */
    hsize_t count[H5O_LAYOUT_NDIMS];    /* hyperslab count information */
    hsize_t block[H5O_LAYOUT_NDIMS];    /* hyperslab block information */
    hsize_t *tstart=NULL;	/* temporary hyperslab pointers */
    hsize_t *tend=NULL;		/* temporary hyperslab pointers */
    hsize_t *tstride=NULL;	/* temporary hyperslab pointers */
    hsize_t *tcount=NULL;	/* temporary hyperslab pointers */
    hsize_t *tblock=NULL;	/* temporary hyperslab pointers */
    unsigned i,j;              	/* local counting variables */
    herr_t ret_value=FAIL;  	/* return value */

    FUNC_ENTER_NOAPI(H5S_hyper_deserialize, FAIL)

    /* Check args */
    HDassert(space);
    HDassert(buf);

    /* Deserialize slabs to select */
    buf+=16;    /* Skip over selection header */
    UINT32DECODE(buf,rank);  /* decode the rank of the point selection */
    if(rank!=space->extent.rank)
        HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "rank of pointer does not match dataspace")
    UINT32DECODE(buf,num_elem);  /* decode the number of points */

    /* Set the count & stride for all blocks */
    for(tcount=count,tstride=stride,j=0; j<rank; j++,tstride++,tcount++) {
        *tcount=1;
        *tstride=1;
    } /* end for */

    /* Retrieve the coordinates from the buffer */
    for(i=0; i<num_elem; i++) {
        /* Decode the starting points */
        for(tstart=start,j=0; j<rank; j++,tstart++)
            UINT32DECODE(buf, *tstart);

        /* Decode the ending points */
        for(tend=end,j=0; j<rank; j++,tend++)
            UINT32DECODE(buf, *tend);

        /* Change the ending points into blocks */
        for(tblock=block,tstart=start,tend=end,j=0; j<(unsigned)rank; j++,tstart++,tend++,tblock++)
            *tblock=(*tend-*tstart)+1;

        /* Select or add the hyperslab to the current selection */
        if((ret_value=H5S_select_hyperslab(space,(i==0 ? H5S_SELECT_SET : H5S_SELECT_OR),start,stride,count,block))<0)
            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't change selection")
    } /* end for */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_deserialize() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_span_blocklist
 PURPOSE
    Get a list of hyperslab blocks currently selected
 USAGE
    herr_t H5S_hyper_span_blocklist(spans, start, end, rank, startblock, numblocks, buf)
        H5S_hyper_span_info_t *spans;   IN: Dataspace pointer of selection to query
        hsize_t start[];       IN/OUT: Accumulated start points
        hsize_t end[];         IN/OUT: Accumulated end points
        hsize_t rank;           IN: Rank of dataspace
        hsize_t *startblock;    IN/OUT: Hyperslab block to start with
        hsize_t *numblocks;     IN/OUT: Number of hyperslab blocks to get
        hsize_t **buf;          OUT: List of hyperslab blocks selected
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
        Puts a list of the hyperslab blocks into the user's buffer.  The blocks
    start with the '*startblock'th block in the list of blocks and put
    '*numblocks' number of blocks into the user's buffer (or until the end of
    the list of blocks, whichever happens first)
        The block coordinates have the same dimensionality (rank) as the
    dataspace they are located within.  The list of blocks is formatted as
    follows: <"start" coordinate> immediately followed by <"opposite" corner
    coordinate>, followed by the next "start" and "opposite" coordinate, etc.
    until all the block information requested has been put into the user's
    buffer.
        No guarantee of any order of the blocks is implied.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_span_blocklist(H5S_hyper_span_info_t *spans, hsize_t start[], hsize_t end[], hsize_t rank, hsize_t *startblock, hsize_t *numblocks, hsize_t **buf)
{
    H5S_hyper_span_t *curr;     /* Pointer to current hyperslab span */
    hsize_t u;                  /* Index variable */
    herr_t ret_value = SUCCEED; /* return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_span_blocklist)

    /* Sanity checks */
    HDassert(spans);
    HDassert(rank < H5O_LAYOUT_NDIMS);
    HDassert(start);
    HDassert(end);
    HDassert(startblock);
    HDassert(numblocks && *numblocks > 0);
    HDassert(buf && *buf);

    /* Walk through the list of spans, recursing or outputing them */
    curr = spans->head;
    while(curr != NULL && *numblocks > 0) {
        /* Recurse if this node has down spans */
        if(curr->down != NULL) {
            /* Add the starting and ending points for this span to the list */
            start[rank] = curr->low;
            end[rank] = curr->high;

            /* Recurse down to the next dimension */
            if(H5S_hyper_span_blocklist(curr->down, start, end, (rank + 1), startblock, numblocks, buf) < 0)
                HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab spans")
        } /* end if */
        else {
            /* Skip this block if we haven't skipped all the startblocks yet */
            if(*startblock > 0) {
                /* Decrement the starting block */
                (*startblock)--;
            } /* end if */
            /* Process this block */
            else {
                /* Encode all the previous dimensions starting & ending points */

                /* Copy previous starting points */
                for(u = 0; u < rank; u++, (*buf)++)
                    HDmemcpy(*buf, &start[u], sizeof(hsize_t));

                /* Copy starting point for this span */
                HDmemcpy(*buf, &curr->low, sizeof(hsize_t));
                (*buf)++;

                /* Copy previous ending points */
                for(u = 0; u < rank; u++, (*buf)++)
                    HDmemcpy(*buf, &end[u], sizeof(hsize_t));

                /* Copy starting point for this span */
                HDmemcpy(*buf, &curr->high, sizeof(hsize_t));
                (*buf)++;

                /* Decrement the number of blocks processed */
                (*numblocks)--;
            } /* end else */
        } /* end else */

        /* Advance to next node */
        curr = curr->next;
    } /* end while */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_span_blocklist() */


/*--------------------------------------------------------------------------
 NAME
    H5S_get_select_hyper_blocklist
 PURPOSE
    Get the list of hyperslab blocks currently selected
 USAGE
    herr_t H5S_get_select_hyper_blocklist(space, startblock, numblocks, buf)
        H5S_t *space;           IN: Dataspace pointer of selection to query
        hsize_t startblock;     IN: Hyperslab block to start with
        hsize_t numblocks;      IN: Number of hyperslab blocks to get
        hsize_t *buf;           OUT: List of hyperslab blocks selected
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
        Puts a list of the hyperslab blocks into the user's buffer.  The blocks
    start with the 'startblock'th block in the list of blocks and put
    'numblocks' number of blocks into the user's buffer (or until the end of
    the list of blocks, whichever happens first)
        The block coordinates have the same dimensionality (rank) as the
    dataspace they are located within.  The list of blocks is formatted as
    follows: <"start" coordinate> immediately followed by <"opposite" corner
    coordinate>, followed by the next "start" and "opposite" coordinate, etc.
    until all the block information requested has been put into the user's
    buffer.
        No guarantee of any order of the blocks is implied.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_get_select_hyper_blocklist(H5S_t *space, hbool_t internal, hsize_t startblock, hsize_t numblocks, hsize_t *buf)
{
    herr_t ret_value = SUCCEED; /* Return value */

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_get_select_hyper_blocklist)

    HDassert(space);
    HDassert(buf);

    /* Check for a "regular" hyperslab selection */
    if(space->select.sel_info.hslab->diminfo_valid) {
        const H5S_hyper_dim_t *diminfo; /* Alias for dataspace's diminfo information */
        hsize_t tmp_count[H5O_LAYOUT_NDIMS];    /* Temporary hyperslab counts */
        hsize_t offset[H5O_LAYOUT_NDIMS];      /* Offset of element in dataspace */
        unsigned fast_dim;          /* Rank of the fastest changing dimension for the dataspace */
        unsigned ndims;             /* Rank of the dataspace */
        hbool_t done;               /* Whether we are done with the iteration */
        unsigned u;                 /* Counter */

        /* Set some convienence values */
        ndims = space->extent.rank;
        fast_dim = ndims - 1;

        /* Check which set of dimension information to use */
        if(internal)
            /*
             * Use the "optimized dimension information" to pass back information
             * on the blocks set, not the "application information".
             */
            diminfo = space->select.sel_info.hslab->opt_diminfo;
        else
            /*
             * Use the "application dimension information" to pass back to the user
             * the blocks they set, not the optimized, internal information.
             */
            diminfo = space->select.sel_info.hslab->app_diminfo;

        /* Build the tables of count sizes as well as the initial offset */
        for(u = 0; u < ndims; u++) {
            tmp_count[u] = diminfo[u].count;
            offset[u] = diminfo[u].start;
        } /* end for */

        /* We're not done with the iteration */
        done = FALSE;

        /* Go iterate over the hyperslabs */
        while(!done && numblocks > 0) {
            hsize_t temp_off;           /* Offset in a given dimension */

            /* Iterate over the blocks in the fastest dimension */
            while(tmp_count[fast_dim] > 0 && numblocks > 0) {

                /* Check if we should copy this block information */
                if(startblock == 0) {
                    /* Copy the starting location */
                    HDmemcpy(buf, offset, sizeof(hsize_t) * ndims);
                    buf += ndims;

                    /* Compute the ending location */
                    HDmemcpy(buf, offset, sizeof(hsize_t) * ndims);
                    for(u = 0; u < ndims; u++)
                        buf[u] += (diminfo[u].block - 1);
                    buf += ndims;

                    /* Decrement the number of blocks to retrieve */
                    numblocks--;
                } /* end if */
                else
                    startblock--;

                /* Move the offset to the next sequence to start */
                offset[fast_dim] += diminfo[fast_dim].stride;

                /* Decrement the block count */
                tmp_count[fast_dim]--;
            } /* end while */

            /* Work on other dimensions if necessary */
            if(fast_dim > 0 && numblocks > 0) {
                int temp_dim;               /* Temporary rank holder */

                /* Reset the block counts */
                tmp_count[fast_dim] = diminfo[fast_dim].count;

                /* Bubble up the decrement to the slower changing dimensions */
                temp_dim = (int)(fast_dim - 1);
                while(temp_dim >= 0 && !done) {
                    /* Decrement the block count */
                    tmp_count[temp_dim]--;

                    /* Check if we have more blocks left */
                    if(tmp_count[temp_dim] > 0)
                        break;

                    /* Check for getting out of iterator */
                    if(temp_dim == 0)
                        done = TRUE;

                    /* Reset the block count in this dimension */
                    tmp_count[temp_dim] = diminfo[temp_dim].count;

                    /* Wrapped a dimension, go up to next dimension */
                    temp_dim--;
                } /* end while */
            } /* end if */

            /* Re-compute offset array */
            for(u = 0; u < ndims; u++) {
                temp_off = diminfo[u].start + diminfo[u].stride * (diminfo[u].count - tmp_count[u]);
                offset[u] = temp_off;
            } /* end for */
        } /* end while */
    } /* end if */
    else {
        hsize_t start[H5O_LAYOUT_NDIMS];   /* Location of start of hyperslab */
        hsize_t end[H5O_LAYOUT_NDIMS];     /* Location of end of hyperslab */

        ret_value = H5S_hyper_span_blocklist(space->select.sel_info.hslab->span_lst, start, end, (hsize_t)0, &startblock, &numblocks, &buf);
    } /* end else */

    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_get_select_hyper_blocklist() */


/*--------------------------------------------------------------------------
 NAME
    H5Sget_select_hyper_blocklist
 PURPOSE
    Get the list of hyperslab blocks currently selected
 USAGE
    herr_t H5Sget_select_hyper_blocklist(dsid, startblock, numblocks, buf)
        hid_t dsid;             IN: Dataspace ID of selection to query
        hsize_t startblock;     IN: Hyperslab block to start with
        hsize_t numblocks;      IN: Number of hyperslab blocks to get
        hsize_t buf[];          OUT: List of hyperslab blocks selected
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
        Puts a list of the hyperslab blocks into the user's buffer.  The blocks
    start with the 'startblock'th block in the list of blocks and put
    'numblocks' number of blocks into the user's buffer (or until the end of
    the list of blocks, whichever happen first)
        The block coordinates have the same dimensionality (rank) as the
    dataspace they are located within.  The list of blocks is formatted as
    follows: <"start" coordinate> immediately followed by <"opposite" corner
    coordinate>, followed by the next "start" and "opposite" coordinate, etc.
    until all the block information requested has been put into the user's
    buffer.
        No guarantee of any order of the blocks is implied.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5Sget_select_hyper_blocklist(hid_t spaceid, hsize_t startblock,
    hsize_t numblocks, hsize_t buf[/*numblocks*/])
{
    H5S_t *space;               /* Dataspace to modify selection of */
    herr_t ret_value;           /* return value */

    FUNC_ENTER_API(H5Sget_select_hyper_blocklist, FAIL)
    H5TRACE4("e", "ihh*[a2]h", spaceid, startblock, numblocks, buf);

    /* Check args */
    if(buf == NULL)
        HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "invalid pointer")
    if(NULL == (space = (H5S_t *)H5I_object_verify(spaceid, H5I_DATASPACE)))
        HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a data space")
    if(H5S_GET_SELECT_TYPE(space)!=H5S_SEL_HYPERSLABS)
        HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a hyperslab selection")

    /* Go get the correct number of blocks */
    if(numblocks > 0)
        ret_value = H5S_get_select_hyper_blocklist(space, 0, startblock, numblocks, buf);
    else
        ret_value=SUCCEED;      /* Successfully got 0 blocks... */

done:
    FUNC_LEAVE_API(ret_value)
}   /* H5Sget_select_hyper_blocklist() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_bounds_helper
 PURPOSE
    Gets the bounding box containing the selection.
 USAGE
    htri_t H5S_hyper_bounds_helper(spans, offset, rank);
        const H5S_hyper_span_info_t *spans; IN: Pointer to current hyperslab span tree
        const hssize_t *offset;         IN: Pointer to offset array
        hsize_t rank;                   IN: Current rank looking at
        hsize_t *start;                 OUT: Start array bounds
        hsize_t *end;                   OUT: End array bounds
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Retrieves the bounding box containing the current selection and places
    it into the user's buffers.  The start and end buffers must be large
    enough to hold the dataspace rank number of coordinates.  The bounding box
    exactly contains the selection, ie. if a 2-D element selection is currently
    defined with the following points: (4,5), (6,8) (10,7), the bounding box
    with be (4, 5), (10, 8).
        The bounding box calculations _does_ include the current offset of the
    selection within the dataspace extent.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_bounds_helper(const H5S_hyper_span_info_t *spans, const hssize_t *offset, hsize_t rank, hsize_t *start, hsize_t *end)
{
    H5S_hyper_span_t *curr;             /* Hyperslab information nodes */
    herr_t      ret_value = SUCCEED;    /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_bounds_helper)

    HDassert(spans);
    HDassert(offset);
    HDassert(rank < H5O_LAYOUT_NDIMS);
    HDassert(start);
    HDassert(end);

    /* Check each point to determine whether selection+offset is within extent */
    curr=spans->head;
    while(curr!=NULL) {
        /* Check for offset moving selection negative */
        if(((hssize_t)curr->low + offset[rank]) < 0)
            HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "offset moves selection out of bounds")

        /* Check if the current span extends the bounding box */
        if((curr->low + (hsize_t)offset[rank]) < start[rank])
            start[rank] = curr->low + (hsize_t)offset[rank];
        if((curr->high + (hsize_t)offset[rank]) > end[rank])
            end[rank] = curr->high + (hsize_t)offset[rank];

        /* Recurse if this node has down spans */
        if(curr->down != NULL) {
            if(H5S_hyper_bounds_helper(curr->down, offset, (rank + 1), start, end) < 0)
                HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "failure in lower dimension")
        } /* end if */

        /* Advance to next node */
        curr = curr->next;
    } /* end while */

done:
    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_hyper_bounds_helper() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_bounds
 PURPOSE
    Gets the bounding box containing the selection.
 USAGE
    herr_t H5S_hyper_bounds(space, hsize_t *start, hsize_t *end)
        H5S_t *space;           IN: Dataspace pointer of selection to query
        hsize_t *start;         OUT: Starting coordinate of bounding box
        hsize_t *end;           OUT: Opposite coordinate of bounding box
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Retrieves the bounding box containing the current selection and places
    it into the user's buffers.  The start and end buffers must be large
    enough to hold the dataspace rank number of coordinates.  The bounding box
    exactly contains the selection, ie. if a 2-D element selection is currently
    defined with the following points: (4,5), (6,8) (10,7), the bounding box
    with be (4, 5), (10, 8).
        The bounding box calculations _does_ include the current offset of the
    selection within the dataspace extent.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_bounds(const H5S_t *space, hsize_t *start, hsize_t *end)
{
    unsigned rank;              /* Dataspace rank */
    unsigned i;                 /* index variable */
    herr_t ret_value = SUCCEED; /* Return value */

    FUNC_ENTER_NOAPI(H5S_hyper_bounds, FAIL)

    HDassert(space);
    HDassert(start);
    HDassert(end);

    /* Set the start and end arrays up */
    rank = space->extent.rank;
    for(i = 0; i < rank; i++) {
        start[i] = HSIZET_MAX;
        end[i] = 0;
    } /* end for */

    /* Check for a "regular" hyperslab selection */
    if(space->select.sel_info.hslab->diminfo_valid) {
        const H5S_hyper_dim_t *diminfo = space->select.sel_info.hslab->opt_diminfo; /* local alias for diminfo */

        /* Check each dimension */
        for(i = 0; i < rank; i++) {
            /* Check for offset moving selection negative */
            if((space->select.offset[i] + (hssize_t)diminfo[i].start) < 0)
                HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "offset moves selection out of bounds")

            /* Compute the smallest location in this dimension */
            start[i] = diminfo[i].start + (hsize_t)space->select.offset[i];

            /* Compute the largest location in this dimension */
            end[i] = diminfo[i].start + diminfo[i].stride * (diminfo[i].count - 1) + (diminfo[i].block - 1) + (hsize_t)space->select.offset[i];
        } /* end for */
    } /* end if */
    else {
        /* Call the recursive routine to get the bounds for the span tree */
        ret_value = H5S_hyper_bounds_helper(space->select.sel_info.hslab->span_lst, space->select.offset, (hsize_t)0, start, end);
    } /* end if */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_bounds() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_offset
 PURPOSE
    Gets the linear offset of the first element for the selection.
 USAGE
    herr_t H5S_hyper_offset(space, offset)
        const H5S_t *space;     IN: Dataspace pointer of selection to query
        hsize_t *offset;        OUT: Linear offset of first element in selection
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Retrieves the linear offset (in "units" of elements) of the first element
    selected within the dataspace.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
    Calling this function on a "none" selection returns fail.
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_offset(const H5S_t *space, hsize_t *offset)
{
    const hssize_t *sel_offset; /* Pointer to the selection's offset */
    const hsize_t *dim_size;    /* Pointer to a dataspace's extent */
    hsize_t accum;              /* Accumulator for dimension sizes */
    unsigned rank;              /* Dataspace rank */
    int i;                      /* index variable */
    herr_t ret_value = SUCCEED; /* Return value */

    FUNC_ENTER_NOAPI(H5S_hyper_offset, FAIL)

    HDassert(space);
    HDassert(offset);

    /* Start at linear offset 0 */
    *offset = 0;

    /* Set up pointers to arrays of values */
    rank = space->extent.rank;
    sel_offset = space->select.offset;
    dim_size = space->extent.size;

    /* Check for a "regular" hyperslab selection */
    if(space->select.sel_info.hslab->diminfo_valid) {
        const H5S_hyper_dim_t *diminfo = space->select.sel_info.hslab->opt_diminfo; /* Local alias for diminfo */

        /* Loop through starting coordinates, calculating the linear offset */
        accum = 1;
        for(i = (int)(rank - 1); i >= 0; i--) {
            hssize_t hyp_offset = (hssize_t)diminfo[i].start + sel_offset[i]; /* Hyperslab's offset in this dimension */

            /* Check for offset moving selection out of the dataspace */
            if(hyp_offset < 0 || (hsize_t)hyp_offset >= dim_size[i])
                HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "offset moves selection out of bounds")

            /* Add the hyperslab's offset in this dimension to the total linear offset */
            *offset += (hsize_t)(hyp_offset * (hssize_t)accum);

            /* Increase the accumulator */
            accum *= dim_size[i];
        } /* end for */
    } /* end if */
    else {
        const H5S_hyper_span_t *span;           /* Hyperslab span node */
        hsize_t dim_accum[H5S_MAX_RANK];        /* Accumulators, for each dimension */

        /* Calculate the accumulator for each dimension */
        accum = 1;
        for(i = (int)(rank - 1); i >= 0; i--) {
            /* Set the accumulator for this dimension */
            dim_accum[i] = accum;

            /* Increase the accumulator */
            accum *= dim_size[i];
        } /* end for */

        /* Get information for the first span, in the slowest changing dimension */
        span = space->select.sel_info.hslab->span_lst->head;

        /* Work down the spans, computing the linear offset */
        i = 0;
        while(span) {
            hssize_t hyp_offset = (hssize_t)span->low + sel_offset[i]; /* Hyperslab's offset in this dimension */

            /* Check for offset moving selection out of the dataspace */
            if(hyp_offset < 0 || (hsize_t)hyp_offset >= dim_size[i])
                HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "offset moves selection out of bounds")

            /* Add the hyperslab's offset in this dimension to the total linear offset */
            *offset += (hsize_t)(hyp_offset * (hssize_t)dim_accum[i]);

            /* Advance to first span in "down" dimension */
            if(span->down) {
                HDassert(span->down->head);
                span = span->down->head;
            } /* end if */
            else
                span = NULL;
            i++;
        } /* end while */
    } /* end else */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_offset() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_is_contiguous
 PURPOSE
    Check if a hyperslab selection is contiguous within the dataspace extent.
 USAGE
    htri_t H5S_hyper_is_contiguous(space)
        H5S_t *space;           IN: Dataspace pointer to check
 RETURNS
    TRUE/FALSE/FAIL
 DESCRIPTION
    Checks to see if the current selection in the dataspace is contiguous.
    This is primarily used for reading the entire selection in one swoop.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
htri_t
H5S_hyper_is_contiguous(const H5S_t *space)
{
    unsigned small_contiguous,      /* Flag for small contiguous block */
        large_contiguous;           /* Flag for large contiguous block */
    unsigned u;                     /* index variable */
    htri_t ret_value = FALSE;       /* Return value */

    FUNC_ENTER_NOAPI_NOFUNC(H5S_hyper_is_contiguous)

    HDassert(space);

    /* Check for a "regular" hyperslab selection */
    if(space->select.sel_info.hslab->diminfo_valid) {
        const H5S_hyper_dim_t *diminfo=space->select.sel_info.hslab->opt_diminfo; /* local alias for diminfo */

        /*
         * For a regular hyperslab to be contiguous, it must have only one
         * block (i.e. count==1 in all dimensions) and the block size must be
         * the same as the dataspace extent's in all but the slowest changing
         * dimension. (dubbed "large contiguous" block)
         *
         * OR
         *
         * The selection must have only one block (i.e. count==1) in all
         * dimensions and the block size must be 1 in all but the fastest
         * changing dimension. (dubbed "small contiguous" block)
         */

        /* Initialize flags */
        large_contiguous=TRUE;	/* assume true and reset if the dimensions don't match */
        small_contiguous=FALSE;	/* assume false initially */

        /* Check for a "large contigous" block */
        for(u=0; u<space->extent.rank; u++) {
            if(diminfo[u].count>1) {
                large_contiguous=FALSE;
                break;
            } /* end if */
            if(u>0 && diminfo[u].block!=space->extent.size[u]) {
                large_contiguous=FALSE;
                break;
            } /* end if */
        } /* end for */

        /* If we didn't find a large contiguous block, check for a small one */
        if(large_contiguous==FALSE) {
            small_contiguous=TRUE;
            for(u=0; u<space->extent.rank; u++) {
                if(diminfo[u].count>1) {
                    small_contiguous=FALSE;
                    break;
                } /* end if */
                if(u<(space->extent.rank-1) && diminfo[u].block!=1) {
                    small_contiguous=FALSE;
                    break;
                } /* end if */
            } /* end for */
        } /* end if */

        /* Indicate true if it's either a large or small contiguous block */
        if(large_contiguous || small_contiguous)
            ret_value=TRUE;
    } /* end if */
    else {
        H5S_hyper_span_info_t *spans;   /* Hyperslab span info node */
        H5S_hyper_span_t *span;         /* Hyperslab span node */

        /*
         * For a hyperslab to be contiguous, it must have only one block and
         * (either it's size must be the same as the dataspace extent's in all
         * but the slowest changing dimension
         * OR
         * block size must be 1 in all but the fastest changing dimension).
         */
        /* Initialize flags */
        large_contiguous=TRUE;	/* assume true and reset if the dimensions don't match */
        small_contiguous=FALSE;	/* assume false initially */

        /* Get information for slowest changing information */
        spans=space->select.sel_info.hslab->span_lst;
        span=spans->head;

        /* If there are multiple spans in the slowest changing dimension, the selection isn't contiguous */
        if(span->next!=NULL)
            large_contiguous=FALSE;
        else {
            /* Now check the rest of the dimensions */
            if(span->down!=NULL) {
                u=1;    /* Current dimension working on */

                /* Get the span information for the next fastest dimension */
                spans=span->down;

                /* Cycle down the spans until we run out of down spans or find a non-contiguous span */
                while(spans!=NULL) {
                    span=spans->head;

                    /* Check that this is the only span and it spans the entire dimension */
                    if(span->next!=NULL) {
                        large_contiguous=FALSE;
                        break;
                    } /* end if */
                    else {
                        /* If this span doesn't cover the entire dimension, then this selection isn't contiguous */
                        if(((span->high-span->low)+1)!=space->extent.size[u]) {
                            large_contiguous=FALSE;
                            break;
                        } /* end if */
                        else {
                            /* Walk down to the next span */
                            spans=span->down;

                            /* Increment dimension */
                            u++;
                        } /* end else */
                    } /* end else */
                } /* end while */
            } /* end if */
        } /* end else */

        /* If we didn't find a large contiguous block, check for a small one */
        if(large_contiguous==FALSE) {
            small_contiguous=TRUE;

            /* Get information for slowest changing information */
            spans=space->select.sel_info.hslab->span_lst;
            span=spans->head;

            /* Current dimension working on */
            u=0;

            /* Cycle down the spans until we run out of down spans or find a non-contiguous span */
            while(spans!=NULL) {
                span=spans->head;

                /* Check that this is the only span and it spans the entire dimension */
                if(span->next!=NULL) {
                    small_contiguous=FALSE;
                    break;
                } /* end if */
                else {
                    /* If this span doesn't cover the entire dimension, then this selection isn't contiguous */
                    if(u<(space->extent.rank-1) && ((span->high-span->low)+1)!=1) {
                        small_contiguous=FALSE;
                        break;
                    } /* end if */
                    else {
                        /* Walk down to the next span */
                        spans=span->down;

                        /* Increment dimension */
                        u++;
                    } /* end else */
                } /* end else */
            } /* end while */
        } /* end if */

        /* Indicate true if it's either a large or small contiguous block */
        if(large_contiguous || small_contiguous)
            ret_value=TRUE;
    } /* end else */

    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_is_contiguous() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_is_single
 PURPOSE
    Check if a hyperslab selection is a single block within the dataspace extent.
 USAGE
    htri_t H5S_hyper_is_single(space)
        H5S_t *space;           IN: Dataspace pointer to check
 RETURNS
    TRUE/FALSE/FAIL
 DESCRIPTION
    Checks to see if the current selection in the dataspace is a single block.
    This is primarily used for reading the entire selection in one swoop.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
htri_t
H5S_hyper_is_single(const H5S_t *space)
{
    H5S_hyper_span_info_t *spans;   /* Hyperslab span info node */
    H5S_hyper_span_t *span;         /* Hyperslab span node */
    unsigned u;                     /* index variable */
    htri_t ret_value=TRUE;         /* return value */

    FUNC_ENTER_NOAPI_NOFUNC(H5S_hyper_is_single)

    HDassert(space);

    /* Check for a "single" hyperslab selection */
    if(space->select.sel_info.hslab->diminfo_valid) {
        /*
         * For a regular hyperslab to be single, it must have only one
         * block (i.e. count==1 in all dimensions)
         */

        /* Check for a single block */
        for(u=0; u<space->extent.rank; u++) {
            if(space->select.sel_info.hslab->opt_diminfo[u].count>1)
                HGOTO_DONE(FALSE)
        } /* end for */
    } /* end if */
    else {
        /*
         * For a region to be single, it must have only one block
         */
        /* Get information for slowest changing information */
        spans=space->select.sel_info.hslab->span_lst;

        /* Cycle down the spans until we run out of down spans or find a non-contiguous span */
        while(spans!=NULL) {
            span=spans->head;

            /* Check that this is the only span and it spans the entire dimension */
            if(span->next!=NULL)
                HGOTO_DONE(FALSE)
            else
                /* Walk down to the next span */
                spans=span->down;
        } /* end while */
    } /* end else */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_is_single() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_is_regular
 PURPOSE
    Check if a hyperslab selection is "regular"
 USAGE
    htri_t H5S_hyper_is_regular(space)
        const H5S_t *space;     IN: Dataspace pointer to check
 RETURNS
    TRUE/FALSE/FAIL
 DESCRIPTION
    Checks to see if the current selection in a dataspace is the a regular
    pattern.
    This is primarily used for reading the entire selection in one swoop.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
    Doesn't check for "regular" hyperslab selections composed of spans
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
htri_t
H5S_hyper_is_regular(const H5S_t *space)
{
    htri_t ret_value;  /* return value */

    FUNC_ENTER_NOAPI_NOFUNC(H5S_hyper_is_regular)

    /* Check args */
    HDassert(space);

    /* Only simple check for regular hyperslabs for now... */
    if(space->select.sel_info.hslab->diminfo_valid)
        ret_value=TRUE;
    else
        ret_value=FALSE;

    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_is_regular() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_release
 PURPOSE
    Release hyperslab selection information for a dataspace
 USAGE
    herr_t H5S_hyper_release(space)
        H5S_t *space;       IN: Pointer to dataspace
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Releases all hyperslab selection information for a dataspace
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
 * 	Robb Matzke, 1998-08-25
 *	The fields which are freed are set to NULL to prevent them from being
 *	freed again later.  This fixes some allocation problems where
 *	changing the hyperslab selection of one data space causes a core dump
 *	when closing some other data space.
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_release(H5S_t *space)
{
    herr_t ret_value = SUCCEED;

    FUNC_ENTER_NOAPI(H5S_hyper_release, FAIL)

    /* Check args */
    HDassert(space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(space));

    /* Reset the number of points selected */
    space->select.num_elem = 0;

    /* Release irregular hyperslab information */
    if(space->select.sel_info.hslab->span_lst != NULL) {
        if(H5S_hyper_free_span_info(space->select.sel_info.hslab->span_lst) < 0)
            HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab spans")
    } /* end if */

    /* Release space for the hyperslab selection information */
    space->select.sel_info.hslab = H5FL_FREE(H5S_hyper_sel_t, space->select.sel_info.hslab);

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_release() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_recover_span
 PURPOSE
    Recover a generated span, if appropriate
 USAGE
    herr_t H5S_hyper_recover_span(recover, curr_span, next_span)
        unsigned *recover;                 IN/OUT: Pointer recover flag
        H5S_hyper_span_t **curr_span;   IN/OUT: Pointer to current span in list
        H5S_hyper_span_t *next_span;    IN: Pointer to next span
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Check if the current span needs to be recovered and free it if so.
    Set the current span to the next span in any case.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_recover_span (unsigned *recover, H5S_hyper_span_t **curr_span, H5S_hyper_span_t *next_span)
{
    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_recover_span)

    HDassert(recover);
    HDassert(curr_span);

    /* Check if the span should be recovered */
    if(*recover) {
        H5S_hyper_free_span(*curr_span);
        *recover=0;
    } /* end if */

    /* Set the current span to next span */
    *curr_span=next_span;

    FUNC_LEAVE_NOAPI(SUCCEED)
}   /* H5S_hyper_recover_span() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_coord_to_span
 PURPOSE
    Create a span tree for a single element
 USAGE
    H5S_hyper_span_t *H5S_hyper_coord_to_span(rank, coords)
        unsigned rank;                  IN: Number of dimensions of coordinate
        hsize_t *coords;               IN: Location of element
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Create a span tree for a single element
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static H5S_hyper_span_t *
H5S_hyper_coord_to_span(unsigned rank, hsize_t *coords)
{
    H5S_hyper_span_t *new_span;         /* Pointer to new span tree for coordinate */
    H5S_hyper_span_info_t *down=NULL;   /* Pointer to new span tree for next level down */
    H5S_hyper_span_t *ret_value=NULL;   /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_coord_to_span)

    HDassert(rank > 0);
    HDassert(coords);

    /* Search for location to insert new element in tree */
    if(rank>1) {
        /* Allocate a span info node */
        if((down = H5FL_MALLOC(H5S_hyper_span_info_t))==NULL)
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

        /* Set the reference count */
        down->count=0;

        /* Reset the scratch pad space */
        down->scratch=0;

        /* Build span tree for coordinates below this one */
        if((down->head=H5S_hyper_coord_to_span(rank-1,&coords[1]))==NULL)
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")
    } /* end if */

    /* Build span for this coordinate */
    if((new_span = H5S_hyper_new_span(coords[0],coords[0],down,NULL))==NULL)
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

    /* Set return value */
    ret_value=new_span;

done:
    if(ret_value==NULL) {
        if(down!=NULL)
            H5S_hyper_free_span_info(down);
    } /* end if */

    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_coord_to_span() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_add_span_element_helper
 PURPOSE
    Add a single elment to a span tree
 USAGE
    herr_t H5S_hyper_add_span_element_helper(prev_span, span_tree, rank, coords)
        H5S_hyper_span_info_t *span_tree;  IN/OUT: Pointer to span tree to append to
        unsigned rank;                  IN: Number of dimensions of coordinates
        hsize_t *coords;               IN: Location of element to add to span tree
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Add a single element to an existing span tree.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
    Assumes that the element is not already covered by the span tree
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_add_span_element_helper(H5S_hyper_span_info_t *span_tree, unsigned rank, hsize_t *coords)
{
    H5S_hyper_span_info_t *tspan_info;  /* Temporary pointer to span info */
    H5S_hyper_span_info_t *prev_span_info;  /* Pointer to span info for level above current position */
    H5S_hyper_span_t *tmp_span;         /* Temporary pointer to a span */
    H5S_hyper_span_t *tmp2_span;        /* Another temporary pointer to a span */
    H5S_hyper_span_t *new_span;         /* New span created for element */
    herr_t ret_value=SUCCEED;           /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_add_span_element_helper)

    HDassert(span_tree);
    HDassert(rank > 0);
    HDassert(coords);

    /* Get pointer to last span in span tree */
    tspan_info=span_tree;
    if(span_tree->scratch)
        tmp_span=(H5S_hyper_span_t *)span_tree->scratch;
    else {
        tmp_span=span_tree->head;
        HDassert(tmp_span);
        span_tree->scratch=(H5S_hyper_span_info_t *)tmp_span;
    } /* end else */

    /* Find last span tree which includes a portion of the coordinate */
    prev_span_info=NULL;
    while(coords[0]>=tmp_span->low && coords[0]<=tmp_span->high) {
        /* Move rank & coordinate offset down a dimension */
        rank--;
        coords++;

        /* Remember the span tree we are descending into */
        prev_span_info=tspan_info;
        tspan_info=tmp_span->down;

        /* Get the last span in this span's 'down' tree */
        if(tspan_info->scratch)
            tmp_span=(H5S_hyper_span_t *)tspan_info->scratch;
        else {
            tmp_span=tspan_info->head;
            HDassert(tmp_span);
            tspan_info->scratch=(H5S_hyper_span_info_t *)tmp_span;
        } /* end else */
    } /* end while */

    /* Check if we made it all the way to the bottom span in the tree */
    if(rank>1) {
        /* Before we create another span at this level in the tree, check if
         * the last span's "down tree" was equal to any other spans in this
         * list of spans in the span tree.
         *
         * If so, release last span information and make last span merge into
         * previous span (if possible), or at least share their "down tree"
         * information.
         */
        tmp2_span=tspan_info->head;
        while(tmp2_span!=tmp_span) {
            if(H5S_hyper_cmp_spans(tmp2_span->down,tmp_span->down)==TRUE) {
                /* Check for merging into previous span */
                if(tmp2_span->high+1==tmp_span->low) {
                    /* Release last span created */
                    H5S_hyper_free_span(tmp_span);

                    /* Increase size of previous span */
                    tmp2_span->high++;
                    tmp2_span->nelem++;

                    /* Reset the 'tmp_span' for the rest of this block's algorithm */
                    tmp_span=tmp2_span;
                } /* end if */
                /* Span is disjoint, but has the same "down tree" selection */
                else {
                    /* Release "down tree" information */
                    H5S_hyper_free_span_info(tmp_span->down);

                    /* Point at earlier span's "down tree" */
                    tmp_span->down=tmp2_span->down;

                    /* Increment reference count on shared "down tree" */
                    tmp_span->down->count++;
                } /* end else */

                /* Found span to merge into, break out now */
                break;
            } /* end if */

            /* Advance to next span to check */
            tmp2_span=tmp2_span->next;
        } /* end while */

        /* Make span tree for current coordinates */
        if((new_span=H5S_hyper_coord_to_span(rank,coords))==NULL)
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

        /* Add new span tree as span */
        HDassert(tmp_span);
        tmp_span->next=new_span;

        /* Make scratch pointer point to last span in list */
        HDassert(tspan_info);
        tspan_info->scratch=(H5S_hyper_span_info_t *)new_span;

        /* Set the proper 'pstride' for new span */
        new_span->pstride=new_span->low-tmp_span->low;
    } /* end if */
    else {
        /* Does new node adjoin existing node? */
        if(tmp_span->high+1==coords[0]) {
            tmp_span->high++;
            tmp_span->nelem++;

            /* Check if this span tree should now be merged with a level higher in the tree */
            if(prev_span_info!=NULL) {
                /* Before we create another span at this level in the tree, check if
                 * the last span's "down tree" was equal to any other spans in this
                 * list of spans in the span tree.
                 *
                 * If so, release last span information and make last span merge into
                 * previous span (if possible), or at least share their "down tree"
                 * information.
                 */
                tmp2_span=prev_span_info->head;
                tmp_span=(H5S_hyper_span_t *)prev_span_info->scratch;
                while(tmp2_span!=tmp_span) {
                    if(H5S_hyper_cmp_spans(tmp2_span->down,tmp_span->down)==TRUE) {
                        /* Check for merging into previous span */
                        if(tmp2_span->high+1==tmp_span->low) {
                            /* Release last span created */
                            H5S_hyper_free_span(tmp_span);

                            /* Increase size of previous span */
                            tmp2_span->high++;
                            tmp2_span->nelem++;

                            /* Update pointers */
                            tmp2_span->next=NULL;
                            prev_span_info->scratch=(H5S_hyper_span_info_t *)tmp2_span;
                        } /* end if */
                        /* Span is disjoint, but has the same "down tree" selection */
                        else {
                            /* Release "down tree" information */
                            H5S_hyper_free_span_info(tmp_span->down);

                            /* Point at earlier span's "down tree" */
                            tmp_span->down=tmp2_span->down;

                            /* Increment reference count on shared "down tree" */
                            tmp_span->down->count++;
                        } /* end else */

                        /* Found span to merge into, break out now */
                        break;
                    } /* end if */

                    /* Advance to next span to check */
                    tmp2_span=tmp2_span->next;
                } /* end while */
            } /* end if */
        } /* end if */
        else {
            if((new_span = H5S_hyper_new_span(coords[0],coords[0],NULL,NULL))==NULL)
                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

            /* Add new span tree as span */
            HDassert(tmp_span);
            tmp_span->next=new_span;

            /* Make scratch pointer point to last span in list */
            tspan_info->scratch=(H5S_hyper_span_info_t *)new_span;

            /* Set the proper 'pstride' for new span */
            new_span->pstride=new_span->low-tmp_span->low;
        } /* end else */
    } /* end else */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_add_span_element_helper() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_add_span_element
 PURPOSE
    Add a single elment to a span tree
 USAGE
    herr_t H5S_hyper_add_span_element(space, span_tree, rank, coords)
        H5S_t *space;           IN/OUT: Pointer to dataspace to add coordinate to
        unsigned rank;          IN: Number of dimensions of coordinates
        hsize_t *coords;       IN: Location of element to add to span tree
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Add a single element to an existing span tree.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
    Assumes that the element is not already in the dataspace's selection
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_add_span_element(H5S_t *space, unsigned rank, hsize_t *coords)
{
    H5S_hyper_span_info_t *head = NULL;    /* Pointer to new head of span tree */
    herr_t      ret_value = SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_add_span_element)

    HDassert(space);
    HDassert(rank > 0);
    HDassert(coords);

    /* Check if this is the first element in the selection */
    if(NULL == space->select.sel_info.hslab) {
        /* Allocate a span info node */
        if(NULL == (head = H5FL_MALLOC(H5S_hyper_span_info_t)))
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

        /* Set the reference count */
        head->count = 1;

        /* Reset the scratch pad space */
        head->scratch = 0;

        /* Build span tree for this coordinate */
        if(NULL == (head->head = H5S_hyper_coord_to_span(rank, coords)))
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

        /* Allocate selection info */
        if(NULL == (space->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t)))
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info")

        /* Set the selection to the new span tree */
        space->select.sel_info.hslab->span_lst = head;

        /* Set selection type */
        space->select.type = H5S_sel_hyper;

        /* Reset "regular" hyperslab flag */
        space->select.sel_info.hslab->diminfo_valid = FALSE;

        /* Set # of elements in selection */
        space->select.num_elem = 1;
    } /* end if */
    else {
        if(H5S_hyper_add_span_element_helper(space->select.sel_info.hslab->span_lst, rank, coords) < 0)
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

        /* Increment # of elements in selection */
        space->select.num_elem++;
    } /* end else */

done:
    if(ret_value < 0)
        if(head)
            H5S_hyper_free_span_info(head);

    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_add_span_element() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_reset_scratch
 PURPOSE
    Reset the scratch information for span tree
 USAGE
    herr_t H5S_hyper_reset_scratch(space)
        H5S_t *space;           IN/OUT: Pointer to dataspace to reset scratch pointers
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Resets the "scratch" pointers used for various tasks in computing hyperslab
    spans.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_reset_scratch(H5S_t *space)
{
    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_reset_scratch)

    HDassert(space);

    /* Check if there are spans in the span tree */
    if(space->select.sel_info.hslab->span_lst != NULL)
        /* Reset the scratch pointers for the next routine which needs them */
        H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst, NULL);

    FUNC_LEAVE_NOAPI(SUCCEED)
}   /* H5S_hyper_reset_scratch() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_convert
 PURPOSE
    Convert a compatible selection to span tree form
 USAGE
    herr_t H5S_hyper_convert(space)
        H5S_t *space;           IN/OUT: Pointer to dataspace to convert
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Converts a compatible selection (currently only "all" selections) to the
    span-tree form of a hyperslab selection. (Point and "none" selection aren't
    currently supported and hyperslab selection always have the span-tree form
    available).
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_convert(H5S_t *space)
{
    herr_t      ret_value=SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_convert)

    HDassert(space);

    /* Check the type of selection */
    switch(H5S_GET_SELECT_TYPE(space)) {
        case H5S_SEL_ALL:    /* All elements selected in dataspace */
            /* Convert current "all" selection to "real" hyperslab selection */
            {
                hsize_t tmp_start[H5O_LAYOUT_NDIMS];   /* Temporary start information */
                hsize_t tmp_stride[H5O_LAYOUT_NDIMS];   /* Temporary stride information */
                hsize_t tmp_count[H5O_LAYOUT_NDIMS];    /* Temporary count information */
                hsize_t tmp_block[H5O_LAYOUT_NDIMS];    /* Temporary block information */
                unsigned u;                             /* Local index variable */

                /* Fill in temporary information for the dimensions */
                for(u=0; u<space->extent.rank; u++) {
                    tmp_start[u]=0;
                    tmp_stride[u]=1;
                    tmp_count[u]=1;
                    tmp_block[u]=space->extent.size[u];
                } /* end for */

                /* Convert to hyperslab selection */
                if(H5S_select_hyperslab(space,H5S_SELECT_SET,tmp_start,tmp_stride,tmp_count,tmp_block)<0)
                    HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't convert selection")
            } /* end case */
            break;

        case H5S_SEL_HYPERSLABS:        /* Hyperslab selection */
            break;

        case H5S_SEL_NONE:   /* No elements selected in dataspace */
        case H5S_SEL_POINTS: /* Point selection */
        case H5S_SEL_ERROR:  /* Selection error */
        case H5S_SEL_N:      /* Selection count */
        default:
            HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "can't convert to span tree selection")
    } /* end switch */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_convert() */

#ifdef LATER

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_intersect_helper
 PURPOSE
    Helper routine to detect intersections in span trees
 USAGE
    htri_t H5S_hyper_intersect_helper(spans1, spans2)
        H5S_hyper_span_info_t *spans1;     IN: First span tree to operate with
        H5S_hyper_span_info_t *spans2;     IN: Second span tree to operate with
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Quickly detect intersections between two span trees
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static htri_t
H5S_hyper_intersect_helper (H5S_hyper_span_info_t *spans1, H5S_hyper_span_info_t *spans2)
{
    H5S_hyper_span_t *curr1;    /* Pointer to current span in 1st span tree */
    H5S_hyper_span_t *curr2;    /* Pointer to current span in 2nd span tree */
    htri_t status;              /* Status from recursive call */
    htri_t ret_value=FALSE;     /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_intersect_helper)

    /* Sanity check */
    HDassert((spans1 && spans2) || (spans1 == NULL && spans2 == NULL));

    /* "NULL" span trees compare as overlapping */
    if(spans1==NULL && spans2==NULL)
        HGOTO_DONE(TRUE);

    /* Get the span lists for each span in this tree */
    curr1=spans1->head;
    curr2=spans2->head;

    /* Iterate over the spans in each tree */
    while(curr1!=NULL && curr2!=NULL) {
        /* Check for 1st span entirely before 2nd span */
        if(curr1->high<curr2->low)
            curr1=curr1->next;
        /* Check for 2nd span entirely before 1st span */
        else if(curr2->high<curr1->low)
            curr2=curr2->next;
        /* Spans must overlap */
        else {
            /* Recursively check spans in next dimension down */
            if((status=H5S_hyper_intersect_helper(curr1->down,curr2->down))<0)
                HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab intersection check")

            /* If there is a span intersection in the down dimensions, the span trees overlap */
            if(status==TRUE)
                HGOTO_DONE(TRUE);

            /* No intersection in down dimensions, advance to next span */
            if(curr1->high<curr2->high)
                curr1=curr1->next;
            else
                curr2=curr2->next;
        } /* end else */
    } /* end while */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_intersect_helper() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_intersect
 PURPOSE
    Detect intersections in span trees
 USAGE
    htri_t H5S_hyper_intersect(space1, space2)
        H5S_t *space1;     IN: First dataspace to operate on span tree
        H5S_t *space2;     IN: Second dataspace to operate on span tree
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Quickly detect intersections between two span trees
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
htri_t
H5S_hyper_intersect (H5S_t *space1, H5S_t *space2)
{
    htri_t ret_value=FAIL;      /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_intersect)

    /* Sanity check */
    HDassert(space1);
    HDassert(space2);

    /* Check that the space selections both have span trees */
    if(space1->select.sel_info.hslab->span_lst==NULL ||
            space2->select.sel_info.hslab->span_lst==NULL)
        HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree")

    /* Check that the dataspaces are both the same rank */
    if(space1->extent.rank!=space2->extent.rank)
        HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "dataspace ranks don't match")

    /* Perform the span-by-span intersection check */
    if((ret_value=H5S_hyper_intersect_helper(space1->select.sel_info.hslab->span_lst,space2->select.sel_info.hslab->span_lst))<0)
        HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab intersection check")

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_intersect() */
#endif /* LATER */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_intersect_block_helper
 PURPOSE
    Helper routine to detect intersections in span trees
 USAGE
    htri_t H5S_hyper_intersect_block_helper(spans, start, end)
        H5S_hyper_span_info_t *spans;     IN: First span tree to operate with
        hssize_t *offset;   IN: Selection offset coordinate
        hsize_t *start;    IN: Starting coordinate for block
        hsize_t *end;      IN: Ending coordinate for block
 RETURN
    Non-negative on success, negative on failure
 DESCRIPTION
    Quickly detect intersections between span tree and block
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static htri_t
H5S_hyper_intersect_block_helper (const H5S_hyper_span_info_t *spans, hsize_t *start, hsize_t *end)
{
    H5S_hyper_span_t *curr;     /* Pointer to current span in 1st span tree */
    htri_t status;              /* Status from recursive call */
    htri_t ret_value=FALSE;     /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_intersect_block_helper)

    /* Sanity check */
    HDassert(spans);
    HDassert(start);
    HDassert(end);

    /* Get the span list for spans in this tree */
    curr=spans->head;

    /* Iterate over the spans in the tree */
    while(curr!=NULL) {
        /* Check for span entirely before block */
        if(curr->high < *start)
            /* Advance to next span in this dimension */
            curr=curr->next;
        /* If this span is past the end of the block, then we're done in this dimension */
        else if(curr->low > *end)
            HGOTO_DONE(FALSE)
        /* block & span overlap */
        else {
            if(curr->down==NULL)
                HGOTO_DONE(TRUE)
            else {
                /* Recursively check spans in next dimension down */
                if((status=H5S_hyper_intersect_block_helper(curr->down,start+1,end+1))<0)
                    HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab intersection check")

                /* If there is a span intersection in the down dimensions, the span trees overlap */
                if(status==TRUE)
                    HGOTO_DONE(TRUE);

                /* No intersection in down dimensions, advance to next span */
                curr=curr->next;
            } /* end else */
        } /* end else */
    } /* end while */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_intersect_block_helper() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_intersect_block
 PURPOSE
    Detect intersections in span trees
 USAGE
    htri_t H5S_hyper_intersect_block(space, start, end)
        H5S_t *space;       IN: First dataspace to operate on span tree
        hssize_t *start;    IN: Starting coordinate for block
        hssize_t *end;      IN: Ending coordinate for block
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Quickly detect intersections between span tree and block
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
htri_t
H5S_hyper_intersect_block (H5S_t *space, hsize_t *start, hsize_t *end)
{
    htri_t ret_value=FAIL;      /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_intersect_block)

    /* Sanity check */
    HDassert(space);
    HDassert(start);
    HDassert(end);

    /* Check for 'all' selection, instead of a hyperslab selection */
    /* (Technically, this shouldn't be in the "hyperslab" routines...) */
    if(H5S_GET_SELECT_TYPE(space)==H5S_SEL_ALL)
        HGOTO_DONE(TRUE);

    /* Check that the space selection has a span tree */
    if(space->select.sel_info.hslab->span_lst==NULL)
        if(H5S_hyper_generate_spans(space)<0)
            HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree")

    /* Perform the span-by-span intersection check */
    if((ret_value=H5S_hyper_intersect_block_helper(space->select.sel_info.hslab->span_lst,start,end))<0)
        HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab intersection check")

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_intersect_block() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_adjust_helper_u
 PURPOSE
    Helper routine to adjust offsets in span trees
 USAGE
    herr_t H5S_hyper_adjust_helper_u(spans, offset)
        H5S_hyper_span_info_t *spans;   IN: Span tree to operate with
        const hsize_t *offset;         IN: Offset to subtract
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Adjust the location of the spans in a span tree by subtracting an offset
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_adjust_helper_u (H5S_hyper_span_info_t *spans, const hsize_t *offset)
{
    H5S_hyper_span_t *span;     /* Pointer to current span in span tree */

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_adjust_helper_u)

    /* Sanity check */
    HDassert(spans);
    HDassert(offset);

    /* Check if we've already set this down span tree */
    if(spans->scratch!=(H5S_hyper_span_info_t *)~((size_t)NULL)) {
        /* Set the tree's scratch pointer */
        spans->scratch=(H5S_hyper_span_info_t *)~((size_t)NULL);

        /* Get the span lists for each span in this tree */
        span=spans->head;

        /* Iterate over the spans in tree */
        while(span!=NULL) {
            /* Adjust span offset */
            HDassert(span->low>=*offset);
            span->low-=*offset;
            span->high-=*offset;

            /* Recursively adjust spans in next dimension down */
            if(span->down!=NULL)
                H5S_hyper_adjust_helper_u(span->down,offset+1);

            /* Advance to next span in this dimension */
            span=span->next;
        } /* end while */
    } /* end if */

    FUNC_LEAVE_NOAPI(SUCCEED)
}   /* H5S_hyper_adjust_helper_u() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_adjust_u
 PURPOSE
    Adjust a hyperslab selection by subtracting an offset
 USAGE
    herr_t H5S_hyper_adjust_u(space,offset)
        H5S_t *space;           IN/OUT: Pointer to dataspace to adjust
        const hsize_t *offset; IN: Offset to subtract
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Moves a hyperslab selection by subtracting an offset from it.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_adjust_u(H5S_t *space, const hsize_t *offset)
{
    unsigned u;                         /* Local index variable */
    herr_t      ret_value=SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_adjust_u)

    HDassert(space);
    HDassert(offset);

    /* Subtract the offset from the "regular" coordinates, if they exist */
    if(space->select.sel_info.hslab->diminfo_valid) {
        for(u=0; u<space->extent.rank; u++) {
            HDassert(space->select.sel_info.hslab->opt_diminfo[u].start>=offset[u]);
            space->select.sel_info.hslab->opt_diminfo[u].start-=offset[u];
        } /* end for */
    } /* end if */

    /* Subtract the offset from the span tree coordinates, if they exist */
    if(space->select.sel_info.hslab->span_lst) {
        if(H5S_hyper_adjust_helper_u(space->select.sel_info.hslab->span_lst,offset)<0)
            HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab offset adjustment")

        /* Reset the scratch pointers for the next routine which needs them */
        H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst, NULL);
    } /* end if */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_adjust_u() */


/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_project_scalar
 *
 * Purpose:	Projects a single element hyperslab selection into a scalar
 *              dataspace
 *
 * Return:	non-negative on success, negative on failure.
 *
 * Programmer:	Quincey Koziol
 *              Sunday, July 18, 2010
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_hyper_project_scalar(const H5S_t *space, hsize_t *offset)
{
    hsize_t block[H5S_MAX_RANK];     /* Block selected in base dataspace */
    herr_t ret_value = SUCCEED;         /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_project_scalar)

    /* Check args */
    HDassert(space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(space));
    HDassert(offset);

    /* Check for a "regular" hyperslab selection */
    if(space->select.sel_info.hslab->diminfo_valid) {
        const H5S_hyper_dim_t *diminfo = space->select.sel_info.hslab->opt_diminfo; /* Alias for dataspace's diminfo information */
        unsigned u;                 /* Counter */

        /* Build the table of the initial offset */
        for(u = 0; u < space->extent.rank; u++) {
            block[u] = diminfo[u].start;

            /* Check for more than one hyperslab */
            if(diminfo[u].count > 1 || diminfo[u].block > 1)
                HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "hyperslab selection of one element has more than one node!")
        } /* end for */
    } /* end if */
    else {
        const H5S_hyper_span_t *curr;           /* Pointer to current hyperslab span */
        unsigned curr_dim;                      /* Current dimension being operated on */

        /* Advance down selected spans */
        curr = space->select.sel_info.hslab->span_lst->head;
        curr_dim = 0;
        while(curr) {
            /* Check for more than one span */
            if(curr->next || curr->low != curr->high)
                HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "hyperslab selection of one element has more than one node!")

            /* Save the location of the selection in current dimension */
            block[curr_dim] = curr->low;

            /* Advance down to next dimension */
            curr = curr->down->head;
            curr_dim++;
        } /* end while */
    } /* end else */

    /* Calculate offset of selection in projected buffer */
    *offset = H5V_array_offset(space->extent.rank, space->extent.size, block); 

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_project_scalar() */


/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_project_simple_lower
 *
 * Purpose:	Projects a hyperslab selection onto/into a simple dataspace
 *              of a lower rank
 *
 * Return:	non-negative on success, negative on failure.
 *
 * Programmer:	Quincey Koziol
 *              Sunday, July 18, 2010
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_hyper_project_simple_lower(const H5S_t *base_space, H5S_t *new_space)
{
    H5S_hyper_span_info_t *down;        /* Pointer to list of spans */
    unsigned curr_dim;                  /* Current dimension being operated on */

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_project_simple_lower)

    /* Check args */
    HDassert(base_space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(base_space));
    HDassert(new_space);
    HDassert(new_space->extent.rank < base_space->extent.rank);

    /* Walk down the span tree until we reach the selection to project */
    down = base_space->select.sel_info.hslab->span_lst;
    curr_dim = 0;
    while(down && curr_dim < (base_space->extent.rank - new_space->extent.rank)) {
        /* Sanity check */
        HDassert(NULL == down->head->next);

        /* Advance down to next dimension */
        down = down->head->down;
        curr_dim++;
    } /* end while */
    HDassert(down);

    /* Share the underlying hyperslab span information */
    new_space->select.sel_info.hslab->span_lst = down;
    new_space->select.sel_info.hslab->span_lst->count++;

    FUNC_LEAVE_NOAPI(SUCCEED)
}   /* H5S_hyper_project_simple_lower() */


/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_project_simple_higher
 *
 * Purpose:	Projects a hyperslab selection onto/into a simple dataspace
 *              of a higher rank
 *
 * Return:	non-negative on success, negative on failure.
 *
 * Programmer:	Quincey Koziol
 *              Sunday, July 18, 2010
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_hyper_project_simple_higher(const H5S_t *base_space, H5S_t *new_space)
{
    H5S_hyper_span_t *prev_span = NULL; /* Pointer to previous list of spans */
    unsigned curr_dim;                  /* Current dimension being operated on */
    herr_t ret_value = SUCCEED;         /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_project_simple_higher)

    /* Check args */
    HDassert(base_space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(base_space));
    HDassert(new_space);
    HDassert(new_space->extent.rank > base_space->extent.rank);

    /* Create nodes until reaching the correct # of dimensions */
    new_space->select.sel_info.hslab->span_lst = NULL;
    curr_dim = 0;
    while(curr_dim < (new_space->extent.rank - base_space->extent.rank)) {
        H5S_hyper_span_info_t *new_span_info;  /* Pointer to list of spans */
        H5S_hyper_span_t *new_span;     /* Temporary hyperslab span */

        /* Allocate a new span_info node */
        if(NULL == (new_span_info = H5FL_MALLOC(H5S_hyper_span_info_t))) {
            if(prev_span)
                if(H5S_hyper_free_span(prev_span) < 0)
                    HERROR(H5E_DATASPACE, H5E_CANTFREE, "can't free hyperslab span");
            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span info")
        } /* end if */

        /* Check for linking into higher span */
        if(prev_span)
            prev_span->down = new_span_info;

        /* Allocate a new node */
        if(NULL == (new_span = H5S_hyper_new_span(0, 0, NULL, NULL))) {
            HDassert(new_span_info);
            if(!prev_span)
                (void)H5FL_FREE(H5S_hyper_span_info_t, new_span_info);
            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span")
        } /* end if */

        /* Set the span_info information */
        new_span_info->count = 1;
        new_span_info->scratch = NULL;
        new_span_info->head = new_span;

        /* Attach to new space, if top span info */
        if(NULL == new_space->select.sel_info.hslab->span_lst)
            new_space->select.sel_info.hslab->span_lst = new_span_info;

        /* Remember previous span info */
        prev_span = new_span;

        /* Advance to next dimension */
        curr_dim++;
    } /* end while */
    HDassert(new_space->select.sel_info.hslab->span_lst);
    HDassert(prev_span);

    /* Share the underlying hyperslab span information */
    prev_span->down = base_space->select.sel_info.hslab->span_lst;
    prev_span->down->count++;

done:
    if(ret_value < 0 && new_space->select.sel_info.hslab->span_lst) {
        if(new_space->select.sel_info.hslab->span_lst->head)
            if(H5S_hyper_free_span(
                    new_space->select.sel_info.hslab->span_lst->head) < 0)
                HDONE_ERROR(H5E_DATASPACE, H5E_CANTFREE, FAIL, "can't free hyperslab span")

        new_space->select.sel_info.hslab->span_lst = H5FL_FREE(H5S_hyper_span_info_t, new_space->select.sel_info.hslab->span_lst);
    } /* end if */

    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_project_simple_higher() */


/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_project_simple
 *
 * Purpose:	Projects a hyperslab selection onto/into a simple dataspace
 *              of a different rank
 *
 * Return:	non-negative on success, negative on failure.
 *
 * Programmer:	Quincey Koziol
 *              Sunday, July 18, 2010
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_hyper_project_simple(const H5S_t *base_space, H5S_t *new_space, hsize_t *offset)
{
    herr_t ret_value = SUCCEED;         /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_project_simple)

    /* Check args */
    HDassert(base_space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(base_space));
    HDassert(new_space);
    HDassert(offset);

    /* We are setting a new selection, remove any current selection in new dataspace */
    if(H5S_SELECT_RELEASE(new_space) < 0)
        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection")

    /* Allocate space for the hyperslab selection information */
    if(NULL == (new_space->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t)))
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info")

    /* Check for a "regular" hyperslab selection */
    if(base_space->select.sel_info.hslab->diminfo_valid) {
        unsigned base_space_dim;    /* Current dimension in the base dataspace */
        unsigned new_space_dim;     /* Current dimension in the new dataspace */

        /* Check if the new space's rank is < or > base space's rank */
        if(new_space->extent.rank < base_space->extent.rank) {
            const H5S_hyper_dim_t *opt_diminfo = base_space->select.sel_info.hslab->opt_diminfo; /* Alias for dataspace's diminfo information */
            hsize_t block[H5S_MAX_RANK];     /* Block selected in base dataspace */
            unsigned u;         /* Local index variable */

            /* Compute the offset for the down-projection */
            HDmemset(block, 0, sizeof(block));
            for(u = 0; u < (base_space->extent.rank - new_space->extent.rank); u++)
                block[u] = opt_diminfo[u].start;
            *offset = H5V_array_offset(base_space->extent.rank, base_space->extent.size, block); 

            /* Set the correct dimensions for the base & new spaces */
            base_space_dim = base_space->extent.rank - new_space->extent.rank;
            new_space_dim = 0;
        } /* end if */
        else {
            HDassert(new_space->extent.rank > base_space->extent.rank);

            /* The offset is zero when projected into higher dimensions */
            *offset = 0;

            /* Set the diminfo information for the higher dimensions */
            for(new_space_dim = 0; new_space_dim < (new_space->extent.rank - base_space->extent.rank); new_space_dim++) {
                new_space->select.sel_info.hslab->app_diminfo[new_space_dim].start = 0;
                new_space->select.sel_info.hslab->app_diminfo[new_space_dim].stride = 1;
                new_space->select.sel_info.hslab->app_diminfo[new_space_dim].count = 1;
                new_space->select.sel_info.hslab->app_diminfo[new_space_dim].block = 1;

                new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].start = 0;
                new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].stride = 1;
                new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].count = 1;
                new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].block = 1;
            } /* end for */

            /* Start at beginning of base space's dimension info */
            base_space_dim = 0;
        } /* end else */

        /* Copy the diminfo */
        while(base_space_dim < base_space->extent.rank) {
            new_space->select.sel_info.hslab->app_diminfo[new_space_dim].start = 
                    base_space->select.sel_info.hslab->app_diminfo[base_space_dim].start;
            new_space->select.sel_info.hslab->app_diminfo[new_space_dim].stride = 
                    base_space->select.sel_info.hslab->app_diminfo[base_space_dim].stride;
            new_space->select.sel_info.hslab->app_diminfo[new_space_dim].count = 
                    base_space->select.sel_info.hslab->app_diminfo[base_space_dim].count;
            new_space->select.sel_info.hslab->app_diminfo[new_space_dim].block = 
                    base_space->select.sel_info.hslab->app_diminfo[base_space_dim].block;

            new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].start = 
                    base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].start;
            new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].stride =
                    base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].stride;
            new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].count = 
                    base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].count;
            new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].block = 
                    base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].block;

            /* Advance to next dimensions */
            base_space_dim++;
            new_space_dim++;
        } /* end for */

        /* Indicate that the dimension information is valid */
        new_space->select.sel_info.hslab->diminfo_valid = TRUE;

        /* Indicate that there's no slab information */
        new_space->select.sel_info.hslab->span_lst = NULL;
    } /* end if */
    else {
        /* Check if the new space's rank is < or > base space's rank */
        if(new_space->extent.rank < base_space->extent.rank) {
            const H5S_hyper_span_t *curr;    /* Pointer to current hyperslab span */
            hsize_t block[H5S_MAX_RANK];     /* Block selected in base dataspace */
            unsigned curr_dim;               /* Current dimension being operated on */

            /* Clear the block buffer */
            HDmemset(block, 0, sizeof(block));

            /* Advance down selected spans */
            curr = base_space->select.sel_info.hslab->span_lst->head;
            curr_dim = 0;
            while(curr && curr_dim < (base_space->extent.rank - new_space->extent.rank)) {
                /* Save the location of the selection in current dimension */
                block[curr_dim] = curr->low;

                /* Advance down to next dimension */
                curr = curr->down->head;
                curr_dim++;
            } /* end while */

            /* Compute the offset for the down-projection */
            *offset = H5V_array_offset(base_space->extent.rank, base_space->extent.size, block); 

            /* Project the base space's selection down in less dimensions */
            if(H5S_hyper_project_simple_lower(base_space, new_space) < 0)
                HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't project hyperslab selection into less dimensions")
        } /* end if */
        else {
            HDassert(new_space->extent.rank > base_space->extent.rank);

            /* The offset is zero when projected into higher dimensions */
            *offset = 0;

            /* Project the base space's selection down in less dimensions */
            if(H5S_hyper_project_simple_higher(base_space, new_space) < 0)
                HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't project hyperslab selection into less dimensions")
        } /* end else */

        /* Indicate that the dimension information is not valid */
        new_space->select.sel_info.hslab->diminfo_valid = FALSE;
    } /* end else */

    /* Number of elements selected will be the same */
    new_space->select.num_elem = base_space->select.num_elem;

    /* Set selection type */
    new_space->select.type = H5S_sel_hyper;

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_project_simple() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_adjust_helper_s
 PURPOSE
    Helper routine to adjust offsets in span trees
 USAGE
    herr_t H5S_hyper_adjust_helper_s(spans, offset)
        H5S_hyper_span_info_t *spans;   IN: Span tree to operate with
        const hssize_t *offset;         IN: Offset to subtract
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Adjust the location of the spans in a span tree by subtracting an offset
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_adjust_helper_s(H5S_hyper_span_info_t *spans, const hssize_t *offset)
{
    H5S_hyper_span_t *span;     /* Pointer to current span in span tree */

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_adjust_helper_s)

    /* Sanity check */
    HDassert(spans);
    HDassert(offset);

    /* Check if we've already set this down span tree */
    if(spans->scratch != (H5S_hyper_span_info_t *)~((size_t)NULL)) {
        /* Set the tree's scratch pointer */
        spans->scratch = (H5S_hyper_span_info_t *)~((size_t)NULL);

        /* Get the span lists for each span in this tree */
        span = spans->head;

        /* Iterate over the spans in tree */
        while(span != NULL) {
            /* Adjust span offset */
            HDassert((hssize_t)span->low >= *offset);
            span->low = (hsize_t)((hssize_t)span->low - *offset);
            span->high = (hsize_t)((hssize_t)span->high - *offset);

            /* Recursively adjust spans in next dimension down */
            if(span->down != NULL)
                H5S_hyper_adjust_helper_s(span->down, offset + 1);

            /* Advance to next span in this dimension */
            span = span->next;
        } /* end while */
    } /* end if */

    FUNC_LEAVE_NOAPI(SUCCEED)
}   /* H5S_hyper_adjust_helper_s() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_adjust_s
 PURPOSE
    Adjust a hyperslab selection by subtracting an offset
 USAGE
    herr_t H5S_hyper_adjust_s(space,offset)
        H5S_t *space;           IN/OUT: Pointer to dataspace to adjust
        const hssize_t *offset; IN: Offset to subtract
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Moves a hyperslab selection by subtracting an offset from it.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_adjust_s(H5S_t *space, const hssize_t *offset)
{
    unsigned u;                         /* Local index variable */
    herr_t      ret_value = SUCCEED;    /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_adjust_s)

    HDassert(space);
    HDassert(offset);

    /* Subtract the offset from the "regular" coordinates, if they exist */
    if(space->select.sel_info.hslab->diminfo_valid) {
        for(u = 0; u < space->extent.rank; u++) {
            HDassert((hssize_t)space->select.sel_info.hslab->opt_diminfo[u].start >= offset[u]);
            space->select.sel_info.hslab->opt_diminfo[u].start = (hsize_t)((hssize_t)space->select.sel_info.hslab->opt_diminfo[u].start - offset[u]);
        } /* end for */
    } /* end if */

    /* Subtract the offset from the span tree coordinates, if they exist */
    if(space->select.sel_info.hslab->span_lst) {
        if(H5S_hyper_adjust_helper_s(space->select.sel_info.hslab->span_lst, offset) < 0)
            HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab offset adjustment")

        /* Reset the scratch pointers for the next routine which needs them */
        H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst, NULL);
    } /* end if */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_adjust_s() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_normalize_offset
 PURPOSE
    "Normalize" a hyperslab selection by adjusting it's coordinates by the
    amount of the selection offset.
 USAGE
    herr_t H5S_hyper_normalize_offset(space, old_offset)
        H5S_t *space;           IN/OUT: Pointer to dataspace to move
        hssize_t *old_offset;   OUT: Pointer to space to store old offset
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Copies the current selection offset into the array provided, then
    inverts the selection offset, subtracts the offset from the hyperslab
    selection and resets the offset to zero.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
htri_t
H5S_hyper_normalize_offset(H5S_t *space, hssize_t *old_offset)
{
    unsigned u;                         /* Local index variable */
    herr_t ret_value = FALSE;           /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_normalize_offset)

    HDassert(space);

    /* Check for hyperslab selection & offset changed */
    if(H5S_GET_SELECT_TYPE(space) == H5S_SEL_HYPERSLABS && space->select.offset_changed) {
        /* Copy & invert the selection offset */
        for(u = 0; u<space->extent.rank; u++) {
            old_offset[u] = space->select.offset[u];
            space->select.offset[u] = -space->select.offset[u];
        } /* end for */

        /* Call the existing 'adjust' routine */
        if(H5S_hyper_adjust_s(space, space->select.offset) < 0)
            HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab normalization")

        /* Zero out the selection offset */
        HDmemset(space->select.offset, 0, sizeof(hssize_t) * space->extent.rank);

        /* Indicate that the offset was normalized */
        ret_value = TRUE;
    } /* end if */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_normalize_offset() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_denormalize_offset
 PURPOSE
    "Denormalize" a hyperslab selection by reverse adjusting it's coordinates
    by the amount of the former selection offset.
 USAGE
    herr_t H5S_hyper_normalize_offset(space, old_offset)
        H5S_t *space;           IN/OUT: Pointer to dataspace to move
        hssize_t *old_offset;   IN: Pointer to old offset array
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Subtracts the old offset from the current selection (canceling out the
    effect of the "normalize" routine), then restores the old offset into
    the dataspace.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_denormalize_offset(H5S_t *space, const hssize_t *old_offset)
{
    herr_t      ret_value = SUCCEED;    /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_denormalize_offset)

    HDassert(space);
    HDassert(H5S_GET_SELECT_TYPE(space) == H5S_SEL_HYPERSLABS);

    /* Call the existing 'adjust' routine */
    if(H5S_hyper_adjust_s(space, old_offset) < 0)
        HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab normalization")

    /* Copy the selection offset over */
    HDmemcpy(space->select.offset, old_offset, sizeof(hssize_t) * space->extent.rank);

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_denormalize_offset() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_append_span
 PURPOSE
    Create a new span and append to span list
 USAGE
    herr_t H5S_hyper_append_span(prev_span, span_tree, low, high, down, next)
        H5S_hyper_span_t **prev_span;    IN/OUT: Pointer to previous span in list
        H5S_hyper_span_info_t **span_tree;  IN/OUT: Pointer to span tree to append to
        hsize_t low, high;         IN: Low and high bounds for new span node
        H5S_hyper_span_info_t *down;     IN: Down span tree for new node
        H5S_hyper_span_t *next;     IN: Next span for new node
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Create a new span node and append to a span list.  Update the previous
    span in the list also.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_append_span (H5S_hyper_span_t **prev_span, H5S_hyper_span_info_t ** span_tree, hsize_t low, hsize_t high, H5S_hyper_span_info_t *down, H5S_hyper_span_t *next)
{
    H5S_hyper_span_t *new_span = NULL;
    herr_t      ret_value = SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_append_span)

    HDassert(prev_span);
    HDassert(span_tree);

    /* Check for adding first node to merged spans */
    if(*prev_span==NULL) {
        /* Allocate new span node to append to list */
        if((new_span = H5S_hyper_new_span(low,high,down,next))==NULL)
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

        /* Make first node in span list */

        /* Check that we haven't already allocated a span tree */
        HDassert(*span_tree==NULL);

        /* Allocate a new span_info node */
        if((*span_tree = H5FL_MALLOC(H5S_hyper_span_info_t))==NULL)
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

        /* Set the span tree's basic information */
        (*span_tree)->count=1;
        (*span_tree)->scratch=NULL;
        (*span_tree)->head=new_span;

        /* Update previous merged span */
        *prev_span=new_span;
    } /* end if */
    /* Merge or append to existing merged spans list */
    else {
        /* Check if span can just extend the previous merged span */
        if((((*prev_span)->high+1)==low) &&
                H5S_hyper_cmp_spans(down,(*prev_span)->down)==TRUE) {
            /* Extend previous merged span to include new high bound */
            (*prev_span)->high=high;
            (*prev_span)->nelem+=(high-low)+1;
        } /* end if */
        else {
            /* Allocate new span node to append to list */
            if((new_span = H5S_hyper_new_span(low,high,down,next))==NULL)
                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

            /* Check if there is actually a down span */
            if(new_span->down) {
                /* Check if the down spans for the new span node are the same as the previous span node */
                if(H5S_hyper_cmp_spans(new_span->down,(*prev_span)->down)==TRUE) {
                    /* Release the down span for the new node */
                    H5S_hyper_free_span_info(new_span->down);

                    /* Point the new node's down span at the previous node's down span */
                    new_span->down=(*prev_span)->down;

                    /* Increment the reference count to the shared down span */
                    new_span->down->count++;
                } /* end if */
            } /* end if */

            /* Indicate elements from previous span */
            new_span->pstride=low-(*prev_span)->low;

            /* Append to end of merged spans list */
            (*prev_span)->next=new_span;
            *prev_span=new_span;
        } /* end else */
    } /* end else */

done:
    if(ret_value < 0) {
        if(new_span)
            if(H5S_hyper_free_span(new_span) < 0)
                HDONE_ERROR(H5E_DATASPACE, H5E_CANTFREE, FAIL, "failed to release new hyperslab span")
    } /* end if */

    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_append_span() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_clip_spans
 PURPOSE
    Clip a new span tree against the current spans in the hyperslab selection
 USAGE
    herr_t H5S_hyper_clip_spans(span_a, span_b, a_not_b, a_and_b, b_not_a)
        H5S_hyper_span_t *a_spans;    IN: Span tree 'a' to clip with.
        H5S_hyper_span_t *b_spans;    IN: Span tree 'b' to clip with.
        H5S_hyper_span_t **a_not_b;  OUT: Span tree of 'a' hyperslab spans which
                                            doesn't overlap with 'b' hyperslab
                                            spans.
        H5S_hyper_span_t **a_and_b;  OUT: Span tree of 'a' hyperslab spans which
                                            overlaps with 'b' hyperslab spans.
        H5S_hyper_span_t **b_not_a;  OUT: Span tree of 'b' hyperslab spans which
                                            doesn't overlap with 'a' hyperslab
                                            spans.
 RETURNS
    non-negative on success, negative on failure
 DESCRIPTION
    Clip one span tree ('a') against another span tree ('b').  Creates span
    trees for the area defined by the 'a' span tree which does not overlap the
    'b' span tree, the area defined by the overlap of the 'a' hyperslab span
    tree and the 'b' span tree, and the area defined by the 'b' hyperslab span
    tree which does not overlap the 'a' span tree.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_clip_spans (H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_spans,
    H5S_hyper_span_info_t **a_not_b, H5S_hyper_span_info_t **a_and_b,
    H5S_hyper_span_info_t **b_not_a)
{
    H5S_hyper_span_t *span_a;   /* Pointer to a node in span tree 'a' */
    H5S_hyper_span_t *span_b;   /* Pointer to a node in span tree 'b' */
    H5S_hyper_span_t *tmp_span; /* Temporary pointer to new span */
    H5S_hyper_span_t *last_a_not_b;   /* Pointer to previous node in span tree 'a_not_b' */
    H5S_hyper_span_t *last_a_and_b;   /* Pointer to previous node in span tree 'a_and_b' */
    H5S_hyper_span_t *last_b_not_a;   /* Pointer to previous node in span tree 'b_not_a' */
    H5S_hyper_span_info_t *down_a_not_b; /* Temporary pointer to a_not_b span tree of down spans for overlapping nodes */
    H5S_hyper_span_info_t *down_a_and_b; /* Temporary pointer to a_and_b span tree of down spans for overlapping nodes */
    H5S_hyper_span_info_t *down_b_not_a; /* Temporary pointer to b_and_a span tree of down spans for overlapping nodes */
    unsigned recover_a, recover_b;         /* Flags to indicate when to recover temporary spans */
    herr_t      ret_value=SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_clip_spans)

    /* Check args */
    HDassert(a_spans);
    HDassert(b_spans);
    HDassert(a_not_b);
    HDassert(a_and_b);
    HDassert(b_not_a);

    /* Check if both span trees are not defined */
    if(a_spans==NULL && b_spans==NULL) {
        *a_not_b=NULL;
        *a_and_b=NULL;
        *b_not_a=NULL;
    } /* end if */
    /* If span 'a' is not defined, but 'b' is, copy 'b' and set the other return span trees to empty */
    else if(a_spans==NULL) {
        *a_not_b=NULL;
        *a_and_b=NULL;
        if((*b_not_a=H5S_hyper_copy_span(b_spans))==NULL)
            HGOTO_ERROR(H5E_INTERNAL, H5E_CANTCOPY, FAIL, "can't copy hyperslab span tree")
    } /* end if */
    /* If span 'b' is not defined, but 'a' is, copy 'a' and set the other return span trees to empty */
    else if(b_spans==NULL) {
        if((*a_not_b=H5S_hyper_copy_span(a_spans))==NULL)
            HGOTO_ERROR(H5E_INTERNAL, H5E_CANTCOPY, FAIL, "can't copy hyperslab span tree")
        *a_and_b=NULL;
        *b_not_a=NULL;
    } /* end if */
    /* If span 'a' and 'b' are both defined, calculate the proper span trees */
    else {
        /* Check if both span trees completely overlap */
        if(H5S_hyper_cmp_spans(a_spans,b_spans)==TRUE) {
            *a_not_b=NULL;
            if((*a_and_b=H5S_hyper_copy_span(a_spans))==NULL)
                HGOTO_ERROR(H5E_INTERNAL, H5E_CANTCOPY, FAIL, "can't copy hyperslab span tree")
            *b_not_a=NULL;
        } /* end if */
        else {
            /* Get the pointers to the new and old span lists */
            span_a=a_spans->head;
            span_b=b_spans->head;

            /* Set the pointer to the previous spans */
            last_a_not_b=NULL;
            last_a_and_b=NULL;
            last_b_not_a=NULL;

            /* No spans to recover yet */
            recover_a=recover_b=0;

            /* Work through the list of spans in the new list */
            while(span_a!=NULL && span_b!=NULL) {
                /* Check if span 'a' is completely before span 'b' */
                /*    AAAAAAA                            */
                /* <-----------------------------------> */
                /*             BBBBBBBBBB                */
                if(span_a->high<span_b->low) {
                    /* Copy span 'a' and add to a_not_b list */

                    /* Merge/add span 'a' with/to a_not_b list */
                    if(H5S_hyper_append_span(&last_a_not_b,a_not_b,span_a->low,span_a->high,span_a->down,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                    /* Advance span 'a', leave span 'b' */
                    H5S_hyper_recover_span(&recover_a,&span_a,span_a->next);
                } /* end if */
                /* Check if span 'a' overlaps only the lower bound */
                /*  of span 'b' , up to the upper bound of span 'b' */
                /*    AAAAAAAAAAAA                       */
                /* <-----------------------------------> */
                /*             BBBBBBBBBB                */
                else if(span_a->low<span_b->low && (span_a->high>=span_b->low && span_a->high<=span_b->high)) {
                    /* Split span 'a' into two parts at the low bound of span 'b' */

                    /* Merge/add lower part of span 'a' with/to a_not_b list */
                    if(H5S_hyper_append_span(&last_a_not_b,a_not_b,span_a->low,span_b->low-1,span_a->down,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                    /* Check for overlaps between upper part of span 'a' and lower part of span 'b' */

                    /* Make certain both spans either have a down span or both don't have one */
                    HDassert((span_a->down != NULL && span_b->down != NULL) || (span_a->down == NULL && span_b->down == NULL));

                    /* If there are no down spans, just add the overlapping area to the a_and_b list */
                    if(span_a->down==NULL) {
                        /* Merge/add overlapped part with/to a_and_b list */
                        if(H5S_hyper_append_span(&last_a_and_b,a_and_b,span_b->low,span_a->high,NULL,NULL)==FAIL)
                            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")
                    } /* end if */
                    /* If there are down spans, check for the overlap in them and add to each appropriate list */
                    else {
                        /* NULL out the temporary pointers to clipped areas in down spans */
                        down_a_not_b=NULL;
                        down_a_and_b=NULL;
                        down_b_not_a=NULL;

                        /* Check for overlaps in the 'down spans' of span 'a' & 'b' */
                        if(H5S_hyper_clip_spans(span_a->down,span_b->down,&down_a_not_b,&down_a_and_b,&down_b_not_a)<0)
                            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information")

                        /* Check for additions to the a_not_b list */
                        if(down_a_not_b!=NULL) {
                            /* Merge/add overlapped part with/to a_not_b list */
                            if(H5S_hyper_append_span(&last_a_not_b,a_not_b,span_b->low,span_a->high,down_a_not_b,NULL)==FAIL)
                                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                            /* Release the down span tree generated */
                            H5S_hyper_free_span_info(down_a_not_b);
                        } /* end if */

                        /* Check for additions to the a_and_b list */
                        if(down_a_and_b!=NULL) {
                            /* Merge/add overlapped part with/to a_and_b list */
                            if(H5S_hyper_append_span(&last_a_and_b,a_and_b,span_b->low,span_a->high,down_a_and_b,NULL)==FAIL)
                                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                            /* Release the down span tree generated */
                            H5S_hyper_free_span_info(down_a_and_b);
                        } /* end if */

                        /* Check for additions to the b_not_a list */
                        if(down_b_not_a!=NULL) {
                            /* Merge/add overlapped part with/to b_not_a list */
                            if(H5S_hyper_append_span(&last_b_not_a,b_not_a,span_b->low,span_a->high,down_b_not_a,NULL)==FAIL)
                                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                            /* Release the down span tree generated */
                            H5S_hyper_free_span_info(down_b_not_a);
                        } /* end if */
                    } /* end else */

                    /* Split off upper part of span 'b' at upper span of span 'a' */

                    /* Check if there is actually an upper part of span 'b' to split off */
                    if(span_a->high<span_b->high) {
                        /* Allocate new span node for upper part of span 'b' */
                        if((tmp_span = H5S_hyper_new_span(span_a->high+1,span_b->high,span_b->down,span_b->next))==NULL)
                            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                        /* Advance span 'a' */
                        H5S_hyper_recover_span(&recover_a,&span_a,span_a->next);

                        /* Make upper part of span 'b' into new span 'b' */
                        H5S_hyper_recover_span(&recover_b,&span_b,tmp_span);
                        recover_b=1;
                    } /* end if */
                    /* No upper part of span 'b' to split */
                    else {
                        /* Advance both 'a' and 'b' */
                        H5S_hyper_recover_span(&recover_a,&span_a,span_a->next);
                        H5S_hyper_recover_span(&recover_b,&span_b,span_b->next);
                    } /* end else */
                } /* end if */
                /* Check if span 'a' overlaps the lower & upper bound */
                /*  of span 'b' */
                /*    AAAAAAAAAAAAAAAAAAAAA              */
                /* <-----------------------------------> */
                /*             BBBBBBBBBB                */
                else if(span_a->low<span_b->low && span_a->high>span_b->high) {
                    /* Split off lower part of span 'a' at lower span of span 'b' */

                    /* Merge/add lower part of span 'a' with/to a_not_b list */
                    if(H5S_hyper_append_span(&last_a_not_b,a_not_b,span_a->low,span_b->low-1,span_a->down,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                    /* Check for overlaps between middle part of span 'a' and span 'b' */

                    /* Make certain both spans either have a down span or both don't have one */
                    HDassert((span_a->down != NULL && span_b->down != NULL) || (span_a->down == NULL && span_b->down == NULL));

                    /* If there are no down spans, just add the overlapping area to the a_and_b list */
                    if(span_a->down==NULL) {
                        /* Merge/add overlapped part with/to a_and_b list */
                        if(H5S_hyper_append_span(&last_a_and_b,a_and_b,span_b->low,span_b->high,NULL,NULL)==FAIL)
                            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")
                    } /* end if */
                    /* If there are down spans, check for the overlap in them and add to each appropriate list */
                    else {
                        /* NULL out the temporary pointers to clipped areas in down spans */
                        down_a_not_b=NULL;
                        down_a_and_b=NULL;
                        down_b_not_a=NULL;

                        /* Check for overlaps in the 'down spans' of span 'a' & 'b' */
                        if(H5S_hyper_clip_spans(span_a->down,span_b->down,&down_a_not_b,&down_a_and_b,&down_b_not_a)<0)
                            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information")

                        /* Check for additions to the a_not_b list */
                        if(down_a_not_b!=NULL) {
                            /* Merge/add overlapped part with/to a_not_b list */
                            if(H5S_hyper_append_span(&last_a_not_b,a_not_b,span_b->low,span_b->high,down_a_not_b,NULL)==FAIL)
                                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                            /* Release the down span tree generated */
                            H5S_hyper_free_span_info(down_a_not_b);
                        } /* end if */

                        /* Check for additions to the a_and_b list */
                        if(down_a_and_b!=NULL) {
                            /* Merge/add overlapped part with/to a_and_b list */
                            if(H5S_hyper_append_span(&last_a_and_b,a_and_b,span_b->low,span_b->high,down_a_and_b,NULL)==FAIL)
                                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                            /* Release the down span tree generated */
                            H5S_hyper_free_span_info(down_a_and_b);
                        } /* end if */

                        /* Check for additions to the b_not_a list */
                        if(down_b_not_a!=NULL) {
                            /* Merge/add overlapped part with/to b_not_a list */
                            if(H5S_hyper_append_span(&last_b_not_a,b_not_a,span_b->low,span_b->high,down_b_not_a,NULL)==FAIL)
                                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                            /* Release the down span tree generated */
                            H5S_hyper_free_span_info(down_b_not_a);
                        } /* end if */
                    } /* end else */

                    /* Split off upper part of span 'a' at upper span of span 'b' */

                    /* Allocate new span node for upper part of span 'a' */
                    if((tmp_span = H5S_hyper_new_span(span_b->high+1,span_a->high,span_a->down,span_a->next))==NULL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                    /* Make upper part of span 'a' the new span 'a' */
                    H5S_hyper_recover_span(&recover_a,&span_a,tmp_span);
                    recover_a=1;

                    /* Advance span 'b' */
                    H5S_hyper_recover_span(&recover_b,&span_b,span_b->next);
                } /* end if */
                /* Check if span 'a' is entirely within span 'b' */
                /*                AAAAA                  */
                /* <-----------------------------------> */
                /*             BBBBBBBBBB                */
                else if(span_a->low>=span_b->low && span_a->high<=span_b->high) {
                    /* Split off lower part of span 'b' at lower span of span 'a' */

                    /* Check if there is actually a lower part of span 'b' to split off */
                    if(span_a->low>span_b->low) {
                        /* Merge/add lower part of span 'b' with/to b_not_a list */
                        if(H5S_hyper_append_span(&last_b_not_a,b_not_a,span_b->low,span_a->low-1,span_b->down,NULL)==FAIL)
                            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")
                    } /* end if */
                    else {
                        /* Keep going, nothing to split off */
                    } /* end else */

                    /* Check for overlaps between span 'a' and midle of span 'b' */

                    /* Make certain both spans either have a down span or both don't have one */
                    HDassert((span_a->down != NULL && span_b->down != NULL) || (span_a->down == NULL && span_b->down == NULL));

                    /* If there are no down spans, just add the overlapping area to the a_and_b list */
                    if(span_a->down==NULL) {
                        /* Merge/add overlapped part with/to a_and_b list */
                        if(H5S_hyper_append_span(&last_a_and_b,a_and_b,span_a->low,span_a->high,NULL,NULL)==FAIL)
                            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")
                    } /* end if */
                    /* If there are down spans, check for the overlap in them and add to each appropriate list */
                    else {
                        /* NULL out the temporary pointers to clipped areas in down spans */
                        down_a_not_b=NULL;
                        down_a_and_b=NULL;
                        down_b_not_a=NULL;

                        /* Check for overlaps in the 'down spans' of span 'a' & 'b' */
                        if(H5S_hyper_clip_spans(span_a->down,span_b->down,&down_a_not_b,&down_a_and_b,&down_b_not_a)<0)
                            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information")

                        /* Check for additions to the a_not_b list */
                        if(down_a_not_b!=NULL) {
                            /* Merge/add overlapped part with/to a_not_b list */
                            if(H5S_hyper_append_span(&last_a_not_b,a_not_b,span_a->low,span_a->high,down_a_not_b,NULL)==FAIL)
                                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                            /* Release the down span tree generated */
                            H5S_hyper_free_span_info(down_a_not_b);
                        } /* end if */

                        /* Check for additions to the a_and_b list */
                        if(down_a_and_b!=NULL) {
                            /* Merge/add overlapped part with/to a_and_b list */
                            if(H5S_hyper_append_span(&last_a_and_b,a_and_b,span_a->low,span_a->high,down_a_and_b,NULL)==FAIL)
                                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                            /* Release the down span tree generated */
                            H5S_hyper_free_span_info(down_a_and_b);
                        } /* end if */

                        /* Check for additions to the b_not_a list */
                        if(down_b_not_a!=NULL) {
                            /* Merge/add overlapped part with/to b_not_a list */
                            if(H5S_hyper_append_span(&last_b_not_a,b_not_a,span_a->low,span_a->high,down_b_not_a,NULL)==FAIL)
                                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                            /* Release the down span tree generated */
                            H5S_hyper_free_span_info(down_b_not_a);
                        } /* end if */
                    } /* end else */

                    /* Check if there is actually an upper part of span 'b' to split off */
                    if(span_a->high<span_b->high) {
                        /* Split off upper part of span 'b' at upper span of span 'a' */

                        /* Allocate new span node for upper part of spans 'a' */
                        if((tmp_span = H5S_hyper_new_span(span_a->high+1,span_b->high,span_b->down,span_b->next))==NULL)
                            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                        /* And advance span 'a' */
                        H5S_hyper_recover_span(&recover_a,&span_a,span_a->next);

                        /* Make upper part of span 'b' the new span 'b' */
                        H5S_hyper_recover_span(&recover_b,&span_b,tmp_span);
                        recover_b=1;
                    } /* end if */
                    else {
                        /* Advance both span 'a' & span 'b' */
                        H5S_hyper_recover_span(&recover_a,&span_a,span_a->next);
                        H5S_hyper_recover_span(&recover_b,&span_b,span_b->next);
                    } /* end else */
                } /* end if */
                /* Check if span 'a' overlaps only the upper bound */
                /*  of span 'b' */
                /*                AAAAAAAAAA             */
                /* <-----------------------------------> */
                /*             BBBBBBBBBB                */
                else if((span_a->low>=span_b->low && span_a->low<=span_b->high) && span_a->high>span_b->high) {
                    /* Check if there is actually a lower part of span 'b' to split off */
                    if(span_a->low>span_b->low) {
                        /* Split off lower part of span 'b' at lower span of span 'a' */

                        /* Merge/add lower part of span 'b' with/to b_not_a list */
                        if(H5S_hyper_append_span(&last_b_not_a,b_not_a,span_b->low,span_a->low-1,span_b->down,NULL)==FAIL)
                            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")
                    } /* end if */
                    else {
                        /* Keep going, nothing to split off */
                    } /* end else */

                    /* Check for overlaps between lower part of span 'a' and upper part of span 'b' */

                    /* Make certain both spans either have a down span or both don't have one */
                    HDassert((span_a->down != NULL && span_b->down != NULL) || (span_a->down == NULL && span_b->down == NULL));

                    /* If there are no down spans, just add the overlapping area to the a_and_b list */
                    if(span_a->down==NULL) {
                        /* Merge/add overlapped part with/to a_and_b list */
                        if(H5S_hyper_append_span(&last_a_and_b,a_and_b,span_a->low,span_b->high,NULL,NULL)==FAIL)
                            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")
                    } /* end if */
                    /* If there are down spans, check for the overlap in them and add to each appropriate list */
                    else {
                        /* NULL out the temporary pointers to clipped areas in down spans */
                        down_a_not_b=NULL;
                        down_a_and_b=NULL;
                        down_b_not_a=NULL;

                        /* Check for overlaps in the 'down spans' of span 'a' & 'b' */
                        if(H5S_hyper_clip_spans(span_a->down,span_b->down,&down_a_not_b,&down_a_and_b,&down_b_not_a)<0)
                            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information")

                        /* Check for additions to the a_not_b list */
                        if(down_a_not_b!=NULL) {
                            /* Merge/add overlapped part with/to a_not_b list */
                            if(H5S_hyper_append_span(&last_a_not_b,a_not_b,span_a->low,span_b->high,down_a_not_b,NULL)==FAIL)
                                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                            /* Release the down span tree generated */
                            H5S_hyper_free_span_info(down_a_not_b);
                        } /* end if */

                        /* Check for additions to the a_and_b list */
                        if(down_a_and_b!=NULL) {
                            /* Merge/add overlapped part with/to a_and_b list */
                            if(H5S_hyper_append_span(&last_a_and_b,a_and_b,span_a->low,span_b->high,down_a_and_b,NULL)==FAIL)
                                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                            /* Release the down span tree generated */
                            H5S_hyper_free_span_info(down_a_and_b);
                        } /* end if */

                        /* Check for additions to the b_not_a list */
                        if(down_b_not_a!=NULL) {
                            /* Merge/add overlapped part with/to b_not_a list */
                            if(H5S_hyper_append_span(&last_b_not_a,b_not_a,span_a->low,span_b->high,down_b_not_a,NULL)==FAIL)
                                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                            /* Release the down span tree generated */
                            H5S_hyper_free_span_info(down_b_not_a);
                        } /* end if */
                    } /* end else */

                    /* Split off upper part of span 'a' at upper span of span 'b' */

                    /* Allocate new span node for upper part of span 'a' */
                    if((tmp_span = H5S_hyper_new_span(span_b->high+1,span_a->high,span_a->down,span_a->next))==NULL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                    /* Make upper part of span 'a' into new span 'a' */
                    H5S_hyper_recover_span(&recover_a,&span_a,tmp_span);
                    recover_a=1;

                    /* Advance span 'b' */
                    H5S_hyper_recover_span(&recover_b,&span_b,span_b->next);
                } /* end if */
                /* span 'a' must be entirely above span 'b' */
                /*                         AAAAA         */
                /* <-----------------------------------> */
                /*             BBBBBBBBBB                */
                else {
                    /* Copy span 'b' and add to b_not_a list */

                    /* Merge/add span 'b' with/to b_not_a list */
                    if(H5S_hyper_append_span(&last_b_not_a,b_not_a,span_b->low,span_b->high,span_b->down,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                    /* Advance span 'b', leave span 'a' */
                    H5S_hyper_recover_span(&recover_b,&span_b,span_b->next);
                } /* end else */
            } /* end while */

            /* Clean up 'a' spans which haven't been covered yet */
            if(span_a!=NULL && span_b==NULL) {
                while(span_a!=NULL) {
                    /* Copy span 'a' and add to a_not_b list */

                    /* Merge/add span 'a' with/to a_not_b list */
                    if(H5S_hyper_append_span(&last_a_not_b,a_not_b,span_a->low,span_a->high,span_a->down,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                    /* Advance to the next 'a' span */
                    H5S_hyper_recover_span(&recover_a,&span_a,span_a->next);
                } /* end while */
            } /* end if */
            /* Clean up 'b' spans which haven't been covered yet */
            else if(span_a==NULL && span_b!=NULL) {
                while(span_b!=NULL) {
                    /* Copy span 'b' and add to b_not_a list */

                    /* Merge/add span 'b' with/to b_not_a list */
                    if(H5S_hyper_append_span(&last_b_not_a,b_not_a,span_b->low,span_b->high,span_b->down,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

                    /* Advance to the next 'b' span */
                    H5S_hyper_recover_span(&recover_b,&span_b,span_b->next);
                } /* end while */
            } /* end if */
        } /* end else */
    } /* end else */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_clip_spans() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_merge_spans_helper
 PURPOSE
    Merge two hyperslab span tree together
 USAGE
    H5S_hyper_span_info_t *H5S_hyper_merge_spans_helper(a_spans, b_spans)
        H5S_hyper_span_info_t *a_spans; IN: First hyperslab spans to merge
                                                together
        H5S_hyper_span_info_t *b_spans; IN: Second hyperslab spans to merge
                                                together
 RETURNS
    Pointer to span tree containing the merged spans on success, NULL on failure
 DESCRIPTION
    Merge two sets of hyperslab spans together and return the span tree from
    the merged set.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static H5S_hyper_span_info_t *
H5S_hyper_merge_spans_helper (H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_spans)
{
    H5S_hyper_span_info_t *merged_spans=NULL; /* Pointer to the merged span tree */
    H5S_hyper_span_info_t *tmp_spans;   /* Pointer to temporary new span tree */
    H5S_hyper_span_t *tmp_span;         /* Pointer to temporary new span */
    H5S_hyper_span_t *span_a;           /* Pointer to current span 'a' working on */
    H5S_hyper_span_t *span_b;           /* Pointer to current span 'b' working on */
    H5S_hyper_span_t *prev_span_merge;  /* Pointer to previous merged span */
    unsigned recover_a, recover_b;         /* Flags to indicate when to recover temporary spans */
    H5S_hyper_span_info_t *ret_value;

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_merge_spans_helper)

    /* Make certain both 'a' & 'b' spans have down span trees or neither does */
    HDassert((a_spans != NULL && b_spans != NULL) || (a_spans == NULL && b_spans == NULL));

    /* Check if the span trees for the 'a' span and the 'b' span are the same */
    if(H5S_hyper_cmp_spans(a_spans,b_spans)==TRUE) {
        if(a_spans==NULL)
            merged_spans=NULL;
        else {
            /* Copy one of the span trees to return */
            if((merged_spans=H5S_hyper_copy_span(a_spans))==NULL)
                HGOTO_ERROR(H5E_INTERNAL, H5E_CANTCOPY, NULL, "can't copy hyperslab span tree")
        } /* end else */
    } /* end if */
    else {
        /* Get the pointers to the 'a' and 'b' span lists */
        span_a=a_spans->head;
        span_b=b_spans->head;

        /* Set the pointer to the previous spans */
        prev_span_merge=NULL;

        /* No spans to recover yet */
        recover_a=recover_b=0;

        /* Work through the list of spans in the new list */
        while(span_a!=NULL && span_b!=NULL) {
            /* Check if the 'a' span is completely before 'b' span */
            /*    AAAAAAA                            */
            /* <-----------------------------------> */
            /*             BBBBBBBBBB                */
            if(span_a->high<span_b->low) {
                /* Merge/add span 'a' with/to the merged spans */
                if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_a->high,span_a->down,NULL)==FAIL)
                    HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

                /* Advance span 'a' */
                H5S_hyper_recover_span(&recover_a,&span_a,span_a->next);
            } /* end if */
            /* Check if span 'a' overlaps only the lower bound */
            /*  of span 'b', up to the upper bound of span 'b' */
            /*    AAAAAAAAAAAA                       */
            /* <-----------------------------------> */
            /*             BBBBBBBBBB                */
            else if(span_a->low<span_b->low && (span_a->high>=span_b->low && span_a->high<=span_b->high)) {
                /* Check if span 'a' and span 'b' down spans are equal */
                if(H5S_hyper_cmp_spans(span_a->down,span_b->down)==TRUE) {
                    /* Merge/add copy of span 'a' with/to merged spans */
                    if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_a->high,span_a->down,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")
                } /* end if */
                else {
                    /* Merge/add lower part of span 'a' with/to merged spans */
                    if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_b->low-1,span_a->down,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

                    /* Get merged span tree for overlapped section */
                    tmp_spans=H5S_hyper_merge_spans_helper(span_a->down,span_b->down);

                    /* Merge/add overlapped section to merged spans */
                    if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_a->high,tmp_spans,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

                    /* Release merged span tree for overlapped section */
                    H5S_hyper_free_span_info(tmp_spans);
                } /* end else */

                /* Check if there is an upper part of span 'b' */
                if(span_a->high<span_b->high) {
                    /* Copy upper part of span 'b' as new span 'b' */

                    /* Allocate new span node to append to list */
                    if((tmp_span = H5S_hyper_new_span(span_a->high+1,span_b->high,span_b->down,span_b->next))==NULL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

                    /* Advance span 'a' */
                    H5S_hyper_recover_span(&recover_a,&span_a,span_a->next);

                    /* Set new span 'b' to tmp_span */
                    H5S_hyper_recover_span(&recover_b,&span_b,tmp_span);
                    recover_b=1;
                } /* end if */
                else {
                    /* Advance both span 'a' & 'b' */
                    H5S_hyper_recover_span(&recover_a,&span_a,span_a->next);
                    H5S_hyper_recover_span(&recover_b,&span_b,span_b->next);
                } /* end else */
            } /* end if */
            /* Check if span 'a' overlaps the lower & upper bound */
            /*  of span 'b' */
            /*    AAAAAAAAAAAAAAAAAAAAA              */
            /* <-----------------------------------> */
            /*             BBBBBBBBBB                */
            else if(span_a->low<span_b->low && span_a->high>span_b->high) {
                /* Check if span 'a' and span 'b' down spans are equal */
                if(H5S_hyper_cmp_spans(span_a->down,span_b->down)==TRUE) {
                    /* Merge/add copy of lower & middle parts of span 'a' to merged spans */
                    if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_b->high,span_a->down,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")
                } /* end if */
                else {
                    /* Merge/add lower part of span 'a' to merged spans */
                    if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_b->low-1,span_a->down,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

                    /* Get merged span tree for overlapped section */
                    tmp_spans=H5S_hyper_merge_spans_helper(span_a->down,span_b->down);

                    /* Merge/add overlapped section to merged spans */
                    if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_b->high,tmp_spans,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

                    /* Release merged span tree for overlapped section */
                    H5S_hyper_free_span_info(tmp_spans);
                } /* end else */

                /* Copy upper part of span 'a' as new span 'a' (remember to free) */

                /* Allocate new span node to append to list */
                if((tmp_span = H5S_hyper_new_span(span_b->high+1,span_a->high,span_a->down,span_a->next))==NULL)
                    HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

                /* Set new span 'a' to tmp_span */
                H5S_hyper_recover_span(&recover_a,&span_a,tmp_span);
                recover_a=1;

                /* Advance span 'b' */
                H5S_hyper_recover_span(&recover_b,&span_b,span_b->next);
            } /* end if */
            /* Check if span 'a' is entirely within span 'b' */
            /*                AAAAA                  */
            /* <-----------------------------------> */
            /*             BBBBBBBBBB                */
            else if(span_a->low>=span_b->low && span_a->high<=span_b->high) {
                /* Check if span 'a' and span 'b' down spans are equal */
                if(H5S_hyper_cmp_spans(span_a->down,span_b->down)==TRUE) {
                    /* Merge/add copy of lower & middle parts of span 'b' to merged spans */
                    if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_a->high,span_a->down,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")
                } /* end if */
                else {
                    /* Check if there is a lower part of span 'b' */
                    if(span_a->low>span_b->low) {
                        /* Merge/add lower part of span 'b' to merged spans */
                        if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_a->low-1,span_b->down,NULL)==FAIL)
                            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")
                    } /* end if */
                    else {
                        /* No lower part of span 'b' , keep going... */
                    } /* end else */

                    /* Get merged span tree for overlapped section */
                    tmp_spans=H5S_hyper_merge_spans_helper(span_a->down,span_b->down);

                    /* Merge/add overlapped section to merged spans */
                    if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_a->high,tmp_spans,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

                    /* Release merged span tree for overlapped section */
                    H5S_hyper_free_span_info(tmp_spans);
                } /* end else */

                /* Check if there is an upper part of span 'b' */
                if(span_a->high<span_b->high) {
                    /* Copy upper part of span 'b' as new span 'b' (remember to free) */

                    /* Allocate new span node to append to list */
                    if((tmp_span = H5S_hyper_new_span(span_a->high+1,span_b->high,span_b->down,span_b->next))==NULL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

                    /* Advance span 'a' */
                    H5S_hyper_recover_span(&recover_a,&span_a,span_a->next);

                    /* Set new span 'b' to tmp_span */
                    H5S_hyper_recover_span(&recover_b,&span_b,tmp_span);
                    recover_b=1;
                } /* end if */
                else {
                    /* Advance both spans */
                    H5S_hyper_recover_span(&recover_a,&span_a,span_a->next);
                    H5S_hyper_recover_span(&recover_b,&span_b,span_b->next);
                } /* end else */
            } /* end if */
            /* Check if span 'a' overlaps only the upper bound */
            /*  of span 'b' */
            /*                AAAAAAAAAA             */
            /* <-----------------------------------> */
            /*             BBBBBBBBBB                */
            else if((span_a->low>=span_b->low && span_a->low<=span_b->high) && span_a->high>span_b->high) {
                /* Check if span 'a' and span 'b' down spans are equal */
                if(H5S_hyper_cmp_spans(span_a->down,span_b->down)==TRUE) {
                    /* Merge/add copy of span 'b' to merged spans if so */
                    if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_b->high,span_b->down,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")
                } /* end if */
                else {
                    /* Check if there is a lower part of span 'b' */
                    if(span_a->low>span_b->low) {
                        /* Merge/add lower part of span 'b' to merged spans */
                        if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_a->low-1,span_b->down,NULL)==FAIL)
                            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")
                    } /* end if */
                    else {
                        /* No lower part of span 'b' , keep going... */
                    } /* end else */

                    /* Get merged span tree for overlapped section */
                    tmp_spans=H5S_hyper_merge_spans_helper(span_a->down,span_b->down);

                    /* Merge/add overlapped section to merged spans */
                    if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_b->high,tmp_spans,NULL)==FAIL)
                        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

                    /* Release merged span tree for overlapped section */
                    H5S_hyper_free_span_info(tmp_spans);
                } /* end else */

                /* Copy upper part of span 'a' as new span 'a' */

                /* Allocate new span node to append to list */
                if((tmp_span = H5S_hyper_new_span(span_b->high+1,span_a->high,span_a->down,span_a->next))==NULL)
                    HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

                /* Set new span 'a' to tmp_span */
                H5S_hyper_recover_span(&recover_a,&span_a,tmp_span);
                recover_a=1;

                /* Advance span 'b' */
                H5S_hyper_recover_span(&recover_b,&span_b,span_b->next);
            } /* end if */
            /* Span 'a' must be entirely above span 'b' */
            /*                         AAAAA         */
            /* <-----------------------------------> */
            /*             BBBBBBBBBB                */
            else {
                /* Merge/add span 'b' with the merged spans */
                if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_b->high,span_b->down,NULL)==FAIL)
                    HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

                /* Advance span 'b' */
                H5S_hyper_recover_span(&recover_b,&span_b,span_b->next);
            } /* end else */
        } /* end while */

        /* Clean up 'a' spans which haven't been added to the list of merged spans */
        if(span_a!=NULL && span_b==NULL) {
            while(span_a!=NULL) {
                /* Merge/add all 'a' spans into the merged spans */
                if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_a->high,span_a->down,NULL)==FAIL)
                    HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

                /* Advance to next 'a' span, until all processed */
                H5S_hyper_recover_span(&recover_a,&span_a,span_a->next);
            } /* end while */
        } /* end if */

        /* Clean up 'b' spans which haven't been added to the list of merged spans */
        if(span_a==NULL && span_b!=NULL) {
            while(span_b!=NULL) {
                /* Merge/add all 'b' spans into the merged spans */
                if(H5S_hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_b->high,span_b->down,NULL)==FAIL)
                    HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

                /* Advance to next 'b' span, until all processed */
                H5S_hyper_recover_span(&recover_b,&span_b,span_b->next);
            } /* end while */
        } /* end if */
    } /* end else */

    /* Set return value */
    ret_value = merged_spans;

done:
    if(ret_value == NULL) {
        if(merged_spans)
            if(H5S_hyper_free_span_info(merged_spans) < 0)
                HDONE_ERROR(H5E_INTERNAL, H5E_CANTFREE, NULL, "failed to release merged hyperslab spans")
    } /* end if */

    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_merge_spans_helper() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_merge_spans
 PURPOSE
    Merge new hyperslab spans to existing hyperslab selection
 USAGE
    herr_t H5S_hyper_merge_spans(space, new_spans, can_own)
        H5S_t *space;             IN: Dataspace to add new spans to hyperslab
                                        selection.
        H5S_hyper_span_t *new_spans;    IN: Span tree of new spans to add to
                                            hyperslab selection
        hbool_t can_own;        IN: Flag to indicate that it is OK to point
                                    directly to the new spans, instead of
                                    copying them.
 RETURNS
    non-negative on success, negative on failure
 DESCRIPTION
    Add a set of hyperslab spans to an existing hyperslab selection.  The
    new spans are required to be non-overlapping with the existing spans in
    the dataspace's current hyperslab selection.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_merge_spans (H5S_t *space, H5S_hyper_span_info_t *new_spans, hbool_t can_own)
{
    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_merge_spans)

    /* Check args */
    HDassert(space);
    HDassert(new_spans);

    /* If this is the first span tree in the hyperslab selection, just use it */
    if(space->select.sel_info.hslab->span_lst==NULL) {
        if(can_own)
            space->select.sel_info.hslab->span_lst=new_spans;
        else
            space->select.sel_info.hslab->span_lst=H5S_hyper_copy_span(new_spans);
    } /* end if */
    else {
        H5S_hyper_span_info_t *merged_spans;

        /* Get the merged spans */
        merged_spans=H5S_hyper_merge_spans_helper(space->select.sel_info.hslab->span_lst, new_spans);

        /* Sanity checking since we started with some spans, we should still have some after the merge */
        HDassert(merged_spans);

        /* Free the previous spans */
        H5S_hyper_free_span_info(space->select.sel_info.hslab->span_lst);

        /* Point to the new merged spans */
        space->select.sel_info.hslab->span_lst=merged_spans;
    } /* end else */

    FUNC_LEAVE_NOAPI(SUCCEED)
}   /* H5S_hyper_merge_spans() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_spans_nelem
 PURPOSE
    Count the number of elements in a span tree
 USAGE
    hsize_t H5S_hyper_spans_nelem(spans)
        const H5S_hyper_span_info_t *spans; IN: Hyperslan span tree to count elements of
 RETURNS
    Number of elements in span tree on success; negative on failure
 DESCRIPTION
    Counts the number of elements described by the spans in a span tree.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static hsize_t
H5S_hyper_spans_nelem (H5S_hyper_span_info_t *spans)
{
    H5S_hyper_span_t *span;     /* Hyperslab span */
    hsize_t ret_value;

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_spans_nelem)

    /* Count the number of elements in the span tree */
    if(spans==NULL)
        ret_value=0;
    else {
        span=spans->head;
        ret_value=0;
        while(span!=NULL) {
            /* If there are down spans, multiply the size of this span by the total down span elements */
            if(span->down!=NULL)
                ret_value+=span->nelem*H5S_hyper_spans_nelem(span->down);
            /* If there are no down spans, just count the elements in this span */
            else
                ret_value+=span->nelem;

            /* Advance to next span */
            span=span->next;
        } /* end while */
    } /* end else */

    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_spans_nelem() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_make_spans
 PURPOSE
    Create a span tree
 USAGE
    H5S_hyper_span_t *H5S_hyper_make_spans(rank, start, stride, count, block)
        unsigned rank;               IN: # of dimensions of the space
        const hsize_t *start;    IN: Starting location of the hyperslabs
        const hsize_t *stride;    IN: Stride from the beginning of one block to
                                        the next
        const hsize_t *count;     IN: Number of blocks
        const hsize_t *block;     IN: Size of hyperslab block
 RETURNS
    Pointer to new span tree on success, NULL on failure
 DESCRIPTION
    Generates a new span tree for the hyperslab parameters specified.
    Each span tree has a list of the elements spanned in each dimension, with
    each span node containing a pointer to the list of spans in the next
    dimension down.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static H5S_hyper_span_info_t *
H5S_hyper_make_spans(unsigned rank, const hsize_t *start, const hsize_t *stride,
    const hsize_t *count, const hsize_t *block)
{
    H5S_hyper_span_info_t *down = NULL;     /* Pointer to spans in next dimension down */
    H5S_hyper_span_t      *last_span;       /* Current position in hyperslab span list */
    H5S_hyper_span_t      *head = NULL;     /* Head of new hyperslab span list */
    hsize_t                stride_iter;     /* Iterator over the stride values */
    int                    i;               /* Counters */
    unsigned               u;               /* Counters */
    H5S_hyper_span_info_t *ret_value;       /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_make_spans)

    /* Check args */
    HDassert(rank > 0);
    HDassert(start);
    HDassert(stride);
    HDassert(count);
    HDassert(block);

    /* Start creating spans in fastest changing dimension */
    for(i = (int)(rank - 1); i >= 0; i--) {

        /* Sanity check */
        if(0 == count[i])
            HGOTO_ERROR(H5E_DATASPACE, H5E_BADVALUE, NULL, "count == 0 is invalid")

        /* Start a new list in this dimension */
        head = NULL;
        last_span = NULL;

        /* Generate all the span segments for this dimension */
        for(u = 0, stride_iter = 0; u < count[i]; u++, stride_iter += stride[i]) {
            H5S_hyper_span_t      *span;            /* New hyperslab span */

            /* Allocate a span node */
            if(NULL == (span = H5FL_MALLOC(H5S_hyper_span_t)))
                HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")

            /* Set the span's basic information */
            span->low = start[i] + stride_iter;
            span->high = span->low + (block[i] - 1);
            span->nelem = block[i];
            span->pstride = stride[i];
            span->next = NULL;

            /* Append to the list of spans in this dimension */
            if(head == NULL)
                head = span;
            else
                last_span->next = span;

            /* Move current pointer */
            last_span = span;

            /* Set the information for the next dimension down's spans, if appropriate */
            if(down != NULL) {
                span->down = down;
                down->count++;  /* Increment reference count for shared span */
            } /* end if */
            else {
                span->down = NULL;
            } /* end else */
        } /* end for */

        /* Allocate a span info node */
        if(NULL == (down = H5FL_MALLOC(H5S_hyper_span_info_t)))
            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")

        /* Set the reference count */
        down->count = 0;

        /* Reset the scratch pad space */
        down->scratch = 0;

        /* Keep the pointer to the next dimension down's completed list */
        down->head = head;
    } /* end for */

    /* Indicate that there is a pointer to this tree */
    down->count = 1;

    /* Success!  Return the head of the list in the slowest changing dimension */
    ret_value = down;

done:
    /* cleanup if error (ret_value will be NULL) */
    if(!ret_value) {
        if(head || down) {
            if(head && down)
                if(down->head != head)
                    down = NULL;

            do {
                if(down) {
                    head = down->head;
                    down = H5FL_FREE(H5S_hyper_span_info_t, down);
                } /* end if */
                down = head->down;

                while(head) {
                    last_span = head->next;
                    head = H5FL_FREE(H5S_hyper_span_t, head);
                    head = last_span;
                } /* end while */
            } while(down);
        } /* end if */
    } /* end if */

    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_make_spans() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_rebuild_helper
 PURPOSE
    Helper routine to rebuild optimized hyperslab information if possible.
    (It can be recovered with regular selection)
 USAGE
    herr_t H5S_hyper_rebuild_helper(space)
        const H5S_hyper_span_t *span;   IN: Portion of span tree to check
        H5S_hyper_dim_t span_slab[];    OUT: Rebuilt section of hyperslab description
        unsigned rank;                  IN: Current dimension to work on
 RETURNS
    >=0 on success, <0 on failure
 DESCRIPTION
    Examine the span tree for a hyperslab selection and rebuild
    the start/stride/count/block information for the selection, if possible.

 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
    To be able to recover the optimized information, the span tree must conform
    to span tree able to be generated from a single H5S_SELECT_SET operation.

 EXAMPLES
 REVISION LOG
    KY, 2005/9/22
--------------------------------------------------------------------------*/
static hbool_t
H5S_hyper_rebuild_helper(const H5S_hyper_span_t *span, H5S_hyper_dim_t span_slab_info[],
    unsigned rank)
{
    hsize_t curr_stride, next_stride;
    hsize_t curr_block, next_block;
    hsize_t curr_start;
    hsize_t curr_low;
    size_t outcount;
    unsigned u;
    H5S_hyper_dim_t      canon_down_span_slab_info[H5S_MAX_RANK];
    hbool_t ret_value = TRUE;

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_rebuild_helper)

    if(span) {
        /* Initialization */
        curr_stride     = 1;
        curr_block      = 0;
        outcount        = 0;
        curr_low        = 0;

        /* Get "canonical" down span information */
        if(span->down) {
            HDassert(span->down->head);

            /* Go to the next down span and check whether the selection can be rebuilt.*/
            if(!H5S_hyper_rebuild_helper(span->down->head, span_slab_info, rank - 1))
                HGOTO_DONE(FALSE)

            HDmemcpy(canon_down_span_slab_info, span_slab_info, sizeof(H5S_hyper_dim_t) * rank);
        } /* end if */

        /* Assign the initial starting point & block size */
        curr_start = span->low;
        curr_block = (span->high - span->low) + 1;

        /* Loop the span */
        while(span) {
            if(outcount > 0) {
                if(span->down) {
                    H5S_hyper_dim_t      *curr_down_span_slab_info;

                    HDassert(span->down->head);

                    /* Go to the next down span and check whether the selection can be rebuilt.*/
                    if(!H5S_hyper_rebuild_helper(span->down->head, span_slab_info, rank - 1))
                        HGOTO_DONE(FALSE)

                    /* Compare the slab information of the adjacent spans in the down span tree.
                       We have to compare all the sub-tree slab information with the canon_down_span_slab_info.*/

                    for( u = 0; u < rank - 1; u++) {
                       curr_down_span_slab_info = &span_slab_info[u];

                       if(curr_down_span_slab_info->count > 0 && canon_down_span_slab_info[u].count > 0) {
                          if(curr_down_span_slab_info->start != canon_down_span_slab_info[u].start
                              || curr_down_span_slab_info->stride != canon_down_span_slab_info[u].stride
                              || curr_down_span_slab_info->block != canon_down_span_slab_info[u].block
                              || curr_down_span_slab_info->count != canon_down_span_slab_info[u].count)
                          HGOTO_DONE(FALSE)
                       } /* end if */
                       else if (!((curr_down_span_slab_info->count == 0) && (canon_down_span_slab_info[u].count == 0)))
                          HGOTO_DONE(FALSE)
                    }
                } /* end if */
            } /* end if */

            /* Obtain values for stride and block */
            next_stride  = span->low  - curr_low;
            next_block   = (span->high - span->low) + 1;

            /* Compare stride and block in this span, to compare stride,
             * three spans are needed. Ignore the first two spans.
             */
            if(outcount  > 1  && curr_stride != next_stride)
                HGOTO_DONE(FALSE)
            if(outcount != 0  && next_block  != curr_block)
                HGOTO_DONE(FALSE)

            /* Keep the isolated stride to be 1 */
            if(outcount != 0)
                curr_stride = next_stride;

            /* Keep current starting point */
            curr_low    = span->low;

            /* Advance to next span */
            span = span->next;
            outcount++;
        } /* end while */

        /* Save the span information. */
        span_slab_info[rank - 1].start  = curr_start;
        span_slab_info[rank - 1].count  = outcount;
        span_slab_info[rank - 1].block  = curr_block;
        span_slab_info[rank - 1].stride = curr_stride;
    } /* end if */

done:
    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_hyper_rebuild_helper() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_rebuild
 PURPOSE
    Rebuild optimized hyperslab information if possible.
    (It can be recovered with regular selection)
 USAGE
    herr_t H5S_hyper_rebuild(space)
        const H5S_t *space;     IN: Dataspace to check
 RETURNS
    >=0 on success, <0 on failure
 DESCRIPTION
    Examine the span tree for a hyperslab selection and rebuild
    the start/stride/count/block information for the selection, if possible.

 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
    To be able to recover the optimized information, the span tree must conform
    to span tree able to be generated from a single H5S_SELECT_SET operation.

 EXAMPLES
 REVISION LOG

    This routine is the optimization of the old version. The previous version
    can only detect a singluar selection. This version is general enough to
    detect any regular selection.
    KY, 2005/9/22
--------------------------------------------------------------------------*/
static htri_t
H5S_hyper_rebuild(H5S_t *space)
{
    H5S_hyper_dim_t top_span_slab_info[H5O_LAYOUT_NDIMS];
    H5S_hyper_dim_t *diminfo;
    H5S_hyper_dim_t *app_diminfo;
    unsigned rank, curr_dim;
    htri_t ret_value = TRUE;      /* Return value */

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_rebuild)

    /* Check args */
    HDassert(space);
    HDassert(space->select.sel_info.hslab->span_lst);

    /* Check the rank of space */
    rank = space->extent.rank;

    /* Check whether the slab can be rebuilt. Only regular selection can be rebuilt. If yes, fill in correct values.*/
    if(!H5S_hyper_rebuild_helper(space->select.sel_info.hslab->span_lst->head, top_span_slab_info, rank)) {
        HGOTO_DONE(FALSE)
    } /* end if */
    else {
        diminfo=space->select.sel_info.hslab->opt_diminfo;
        app_diminfo=space->select.sel_info.hslab->app_diminfo;

        for(curr_dim = 0; curr_dim < rank; curr_dim++) {

            app_diminfo[(rank - curr_dim) - 1].start  = diminfo[(rank - curr_dim) - 1].start = top_span_slab_info[curr_dim].start;
            app_diminfo[(rank - curr_dim) - 1].stride = diminfo[(rank - curr_dim) - 1].stride = top_span_slab_info[curr_dim].stride;
            app_diminfo[(rank - curr_dim) - 1].count  = diminfo[(rank - curr_dim) - 1].count = top_span_slab_info[curr_dim].count;
            app_diminfo[(rank - curr_dim) - 1].block  = diminfo[(rank - curr_dim) - 1].block = top_span_slab_info[curr_dim].block;

        } /* end for */

        space->select.sel_info.hslab->diminfo_valid = TRUE;
    } /* end else */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_rebuild() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_generate_spans
 PURPOSE
    Create span tree for a regular hyperslab selection
 USAGE
    herr_t H5S_hyper_generate_spans(space)
        H5S_t *space;           IN/OUT: Pointer to dataspace
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Create a span tree representation of a regular hyperslab selection and
    add it to the information for the hyperslab selection.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_generate_spans(H5S_t *space)
{
    hsize_t tmp_start[H5O_LAYOUT_NDIMS];   /* Temporary start information */
    hsize_t tmp_stride[H5O_LAYOUT_NDIMS];   /* Temporary stride information */
    hsize_t tmp_count[H5O_LAYOUT_NDIMS];    /* Temporary count information */
    hsize_t tmp_block[H5O_LAYOUT_NDIMS];    /* Temporary block information */
    unsigned u;                             /* Counter */
    herr_t      ret_value=SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_generate_spans)

    HDassert(space);
    HDassert(H5S_GET_SELECT_TYPE(space) == H5S_SEL_HYPERSLABS);

    /* Get the diminfo */
    for(u=0; u<space->extent.rank; u++) {
        tmp_start[u]=space->select.sel_info.hslab->opt_diminfo[u].start;
        tmp_stride[u]=space->select.sel_info.hslab->opt_diminfo[u].stride;
        tmp_count[u]=space->select.sel_info.hslab->opt_diminfo[u].count;
        tmp_block[u]=space->select.sel_info.hslab->opt_diminfo[u].block;
    } /* end for */

    /* Build the hyperslab information also */
    if(H5S_generate_hyperslab (space, H5S_SELECT_SET, tmp_start, tmp_stride, tmp_count, tmp_block)<0)
        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't generate hyperslabs")

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* H5S_hyper_generate_spans() */

#ifndef NEW_HYPERSLAB_API

/*-------------------------------------------------------------------------
 * Function:	H5S_generate_hyperlab
 *
 * Purpose:	Generate hyperslab information from H5S_select_hyperslab()
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol (split from HS_select_hyperslab()).
 *              Tuesday, September 12, 2000
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_generate_hyperslab (H5S_t *space, H5S_seloper_t op,
		      const hsize_t start[],
		      const hsize_t stride[],
		      const hsize_t count[],
		      const hsize_t block[])
{
    H5S_hyper_span_info_t *new_spans=NULL;  /* Span tree for new hyperslab */
    H5S_hyper_span_info_t *a_not_b=NULL;    /* Span tree for hyperslab spans in old span tree and not in new span tree */
    H5S_hyper_span_info_t *a_and_b=NULL;    /* Span tree for hyperslab spans in both old and new span trees */
    H5S_hyper_span_info_t *b_not_a=NULL;    /* Span tree for hyperslab spans in new span tree and not in old span tree */
    herr_t      ret_value=SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_generate_hyperslab)

    /* Check args */
    HDassert(space);
    HDassert(op > H5S_SELECT_NOOP && op < H5S_SELECT_INVALID);
    HDassert(start);
    HDassert(stride);
    HDassert(count);
    HDassert(block);

    /* Generate span tree for new hyperslab information */
    if((new_spans=H5S_hyper_make_spans(space->extent.rank,start,stride,count,block))==NULL)
        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't create hyperslab information")

    /* Generate list of blocks to add/remove based on selection operation */
    if(op==H5S_SELECT_SET) {
        /* Add new spans to current selection */
        if(H5S_hyper_merge_spans(space,new_spans,TRUE)<0)
            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")

        /* Set the number of elements in current selection */
        space->select.num_elem=H5S_hyper_spans_nelem(new_spans);

        /* Indicate that the new_spans are owned */
        new_spans=NULL;
    } /* end if */
    else {
        hbool_t updated_spans = FALSE;  /* Whether the spans in the selection were modified */

        /* Generate lists of spans which overlap and don't overlap */
        if(H5S_hyper_clip_spans(space->select.sel_info.hslab->span_lst,new_spans,&a_not_b,&a_and_b,&b_not_a)<0)
            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information")

        switch(op) {
            case H5S_SELECT_OR:
                /* Add any new spans from b_not_a to current selection */
                if(b_not_a!=NULL) {
                    if(H5S_hyper_merge_spans(space,b_not_a,FALSE)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")

                    /* Update the number of elements in current selection */
                    space->select.num_elem+=H5S_hyper_spans_nelem(b_not_a);

                    /* Indicate that the spans were updated */
                    updated_spans = TRUE;
                } /* end if */
                break;

            case H5S_SELECT_AND:
                /* Free the current selection */
                if(H5S_hyper_free_span_info(space->select.sel_info.hslab->span_lst)<0)
                    HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab spans")
                space->select.sel_info.hslab->span_lst=NULL;

                /* Reset the number of items in selection */
                space->select.num_elem=0;

                /* Check if there are any overlapped selections */
                if(a_and_b!=NULL) {
                    if(H5S_hyper_merge_spans(space,a_and_b,TRUE)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")

                    /* Update the number of elements in current selection */
                    space->select.num_elem=H5S_hyper_spans_nelem(a_and_b);

                    /* Indicate that the a_and_b spans are owned */
                    a_and_b=NULL;

                    /* Indicate that the spans were updated */
                    updated_spans = TRUE;
                } /* end if */
                break;

            case H5S_SELECT_XOR:
                /* Free the current selection */
                if(H5S_hyper_free_span_info(space->select.sel_info.hslab->span_lst)<0)
                    HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab spans")
                space->select.sel_info.hslab->span_lst=NULL;

                /* Reset the number of items in selection */
                space->select.num_elem=0;

                /* Check if there are any non-overlapped selections */
                if(a_not_b!=NULL) {
                    if(H5S_hyper_merge_spans(space,a_not_b,FALSE)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")

                    /* Update the number of elements in current selection */
                    space->select.num_elem=H5S_hyper_spans_nelem(a_not_b);

                    /* Indicate that the spans were updated */
                    updated_spans = TRUE;
                } /* end if */
                if(b_not_a!=NULL) {
                    if(H5S_hyper_merge_spans(space,b_not_a,FALSE)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")

                    /* Update the number of elements in current selection */
                    space->select.num_elem+=H5S_hyper_spans_nelem(b_not_a);

                    /* Indicate that the spans were updated */
                    updated_spans = TRUE;
                } /* end if */
                break;

            case H5S_SELECT_NOTB:
                /* Free the current selection */
                if(H5S_hyper_free_span_info(space->select.sel_info.hslab->span_lst)<0)
                    HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab spans")
                space->select.sel_info.hslab->span_lst=NULL;

                /* Reset the number of items in selection */
                space->select.num_elem=0;

                /* Check if there are any non-overlapped selections */
                if(a_not_b!=NULL) {
                    if(H5S_hyper_merge_spans(space,a_not_b,TRUE)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")

                    /* Update the number of elements in current selection */
                    space->select.num_elem=H5S_hyper_spans_nelem(a_not_b);

                    /* Indicate that the a_not_b are owned */
                    a_not_b=NULL;

                    /* Indicate that the spans were updated */
                    updated_spans = TRUE;
                } /* end if */
                break;

            case H5S_SELECT_NOTA:
                /* Free the current selection */
                if(H5S_hyper_free_span_info(space->select.sel_info.hslab->span_lst)<0)
                    HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab spans")
                space->select.sel_info.hslab->span_lst=NULL;

                /* Reset the number of items in selection */
                space->select.num_elem=0;

                /* Check if there are any non-overlapped selections */
                if(b_not_a!=NULL) {
                    if(H5S_hyper_merge_spans(space,b_not_a,TRUE)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")

                    /* Update the number of elements in current selection */
                    space->select.num_elem=H5S_hyper_spans_nelem(b_not_a);

                    /* Indicate that the b_not_a are owned */
                    b_not_a=NULL;

                    /* Indicate that the spans were updated */
                    updated_spans = TRUE;
                } /* end if */
                break;

            case H5S_SELECT_NOOP:
            case H5S_SELECT_SET:
            case H5S_SELECT_APPEND:
            case H5S_SELECT_PREPEND:
            case H5S_SELECT_INVALID:
            default:
                HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
        } /* end switch */

        /* Check if the resulting hyperslab span tree is empty */
        if(space->select.sel_info.hslab->span_lst==NULL) {
            H5S_hyper_span_info_t *spans;     /* Empty hyperslab span tree */

            /* Sanity check */
            HDassert(space->select.num_elem == 0);

            /* Allocate a span info node */
            if((spans = H5FL_MALLOC(H5S_hyper_span_info_t))==NULL)
                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")

            /* Set the reference count */
            spans->count=1;

            /* Reset the scratch pad space */
            spans->scratch=0;

            /* Set to empty tree */
            spans->head=NULL;

            /* Set pointer to empty span tree */
            space->select.sel_info.hslab->span_lst=spans;
        } /* end if */
        else {
            /* Check if we updated the spans */
            if(updated_spans) {
                /* Attempt to rebuild "optimized" start/stride/count/block information.
                 * from resulting hyperslab span tree
                 */
                if(H5S_hyper_rebuild(space) < 0)
                    HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOUNT, FAIL, "can't rebuild hyperslab info")
            } /* end if */
        } /* end else */
    } /* end else */

done:
    /* Free resources */
    if(a_not_b)
        if(H5S_hyper_free_span_info(a_not_b) < 0)
            HDONE_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release temporary hyperslab spans")
    if(a_and_b)
        if(H5S_hyper_free_span_info(a_and_b) < 0)
            HDONE_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release temporary hyperslab spans")
    if(b_not_a)
        if(H5S_hyper_free_span_info(b_not_a) < 0)
            HDONE_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release temporary hyperslab spans")
    if(new_spans)
        if(H5S_hyper_free_span_info(new_spans) < 0)
            HDONE_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release temporary hyperslab spans")

    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_generate_hyperslab() */


/*-------------------------------------------------------------------------
 * Function:	H5S_select_hyperslab
 *
 * Purpose:	Internal version of H5Sselect_hyperslab().
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *              Wednesday, January 10, 2001
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5S_select_hyperslab (H5S_t *space, H5S_seloper_t op,
		      const hsize_t start[],
		      const hsize_t *stride,
		      const hsize_t count[],
		      const hsize_t *block)
{
    hsize_t int_stride[H5O_LAYOUT_NDIMS];   /* Internal storage for stride information */
    hsize_t int_count[H5O_LAYOUT_NDIMS];    /* Internal storage for count information */
    hsize_t int_block[H5O_LAYOUT_NDIMS];    /* Internal storage for block information */
    const hsize_t *opt_stride;      /* Optimized stride information */
    const hsize_t *opt_count;       /* Optimized count information */
    const hsize_t *opt_block;       /* Optimized block information */
    unsigned u;                     /* Counters */
    herr_t      ret_value=SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI(H5S_select_hyperslab, FAIL)

    /* Check args */
    HDassert(space);
    HDassert(start);
    HDassert(count);
    HDassert(op > H5S_SELECT_NOOP && op < H5S_SELECT_INVALID);

    /* Point to the correct stride values */
    if(stride==NULL)
        stride = _ones;

    /* Point to the correct block values */
    if(block==NULL)
        block = _ones;

    /*
     * Check new selection.
     */
    for(u=0; u<space->extent.rank; u++) {
        /* Check for overlapping hyperslab blocks in new selection. */
        if(count[u]>1 && stride[u]<block[u])
            HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "hyperslab blocks overlap")

        /* Detect zero-sized hyperslabs in new selection */
        if(count[u] == 0 || block[u] == 0) {
            switch(op) {
                case H5S_SELECT_SET:   /* Select "set" operation */
                case H5S_SELECT_AND:   /* Binary "and" operation for hyperslabs */
                case H5S_SELECT_NOTA:  /* Binary "B not A" operation for hyperslabs */
                    /* Convert to "none" selection */
                    if(H5S_select_none(space)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't convert selection")
                    HGOTO_DONE(SUCCEED);

                case H5S_SELECT_OR:    /* Binary "or" operation for hyperslabs */
                case H5S_SELECT_XOR:   /* Binary "xor" operation for hyperslabs */
                case H5S_SELECT_NOTB:  /* Binary "A not B" operation for hyperslabs */
                    HGOTO_DONE(SUCCEED);        /* Selection stays same */

                case H5S_SELECT_NOOP:
                case H5S_SELECT_APPEND:
                case H5S_SELECT_PREPEND:
                case H5S_SELECT_INVALID:
                default:
                    HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
            } /* end switch */
        } /* end if */
    } /* end for */

    /* Optimize hyperslab parameters to merge contiguous blocks, etc. */
    if(stride == _ones && block == _ones) {
        /* Point to existing arrays */
        opt_stride = _ones;
        opt_count = _ones;
        opt_block = count;
    } /* end if */
    else {
        /* Point to local arrays */
        opt_stride = int_stride;
        opt_count = int_count;
        opt_block = int_block;
        for(u=0; u<space->extent.rank; u++) {
            /* contiguous hyperslabs have the block size equal to the stride */
            if(stride[u]==block[u]) {
                int_count[u]=1;
                int_stride[u]=1;
                if(block[u]==1)
                    int_block[u]=count[u];
                else
                    int_block[u]=block[u]*count[u];
            } /* end if */
            else {
                if(count[u]==1)
                    int_stride[u]=1;
                else {
                    HDassert(stride[u] > block[u]);
                    int_stride[u]=stride[u];
                } /* end else */
                int_count[u]=count[u];
                int_block[u]=block[u];
            } /* end else */
        } /* end for */
    } /* end else */

    /* Fixup operation for non-hyperslab selections */
    switch(H5S_GET_SELECT_TYPE(space)) {
        case H5S_SEL_NONE:   /* No elements selected in dataspace */
            switch(op) {
                case H5S_SELECT_SET:   /* Select "set" operation */
                    /* Change "none" selection to hyperslab selection */
                    break;

                case H5S_SELECT_OR:    /* Binary "or" operation for hyperslabs */
                case H5S_SELECT_XOR:   /* Binary "xor" operation for hyperslabs */
                case H5S_SELECT_NOTA:  /* Binary "B not A" operation for hyperslabs */
                    op=H5S_SELECT_SET; /* Maps to "set" operation when applied to "none" selection */
                    break;

                case H5S_SELECT_AND:   /* Binary "and" operation for hyperslabs */
                case H5S_SELECT_NOTB:  /* Binary "A not B" operation for hyperslabs */
                    HGOTO_DONE(SUCCEED);        /* Selection stays "none" */

                case H5S_SELECT_NOOP:
                case H5S_SELECT_APPEND:
                case H5S_SELECT_PREPEND:
                case H5S_SELECT_INVALID:
                default:
                    HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
            } /* end switch */
            break;

        case H5S_SEL_ALL:    /* All elements selected in dataspace */
            switch(op) {
                case H5S_SELECT_SET:   /* Select "set" operation */
                    /* Change "all" selection to hyperslab selection */
                    break;

                case H5S_SELECT_OR:    /* Binary "or" operation for hyperslabs */
                    HGOTO_DONE(SUCCEED);        /* Selection stays "all" */

                case H5S_SELECT_AND:   /* Binary "and" operation for hyperslabs */
                    op=H5S_SELECT_SET; /* Maps to "set" operation when applied to "none" selection */
                    break;

                case H5S_SELECT_XOR:   /* Binary "xor" operation for hyperslabs */
                case H5S_SELECT_NOTB:  /* Binary "A not B" operation for hyperslabs */
                    /* Convert current "all" selection to "real" hyperslab selection */
                    /* Then allow operation to proceed */
                    {
                        hsize_t tmp_start[H5O_LAYOUT_NDIMS];   /* Temporary start information */
                        hsize_t tmp_stride[H5O_LAYOUT_NDIMS];   /* Temporary stride information */
                        hsize_t tmp_count[H5O_LAYOUT_NDIMS];    /* Temporary count information */
                        hsize_t tmp_block[H5O_LAYOUT_NDIMS];    /* Temporary block information */

                        /* Fill in temporary information for the dimensions */
                        for(u=0; u<space->extent.rank; u++) {
                            tmp_start[u]=0;
                            tmp_stride[u]=1;
                            tmp_count[u]=1;
                            tmp_block[u]=space->extent.size[u];
                        } /* end for */

                        /* Convert to hyperslab selection */
                        if(H5S_select_hyperslab(space,H5S_SELECT_SET,tmp_start,tmp_stride,tmp_count,tmp_block)<0)
                            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't convert selection")
                    } /* end case */
                    break;

                case H5S_SELECT_NOTA:  /* Binary "B not A" operation for hyperslabs */
                    /* Convert to "none" selection */
                    if(H5S_select_none(space)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't convert selection")
                    HGOTO_DONE(SUCCEED);

                case H5S_SELECT_NOOP:
                case H5S_SELECT_APPEND:
                case H5S_SELECT_PREPEND:
                case H5S_SELECT_INVALID:
                default:
                    HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
            } /* end switch */
            break;

        case H5S_SEL_HYPERSLABS:
            /* Hyperslab operation on hyperslab selection, OK */
            break;

        case H5S_SEL_POINTS: /* Can't combine hyperslab operations and point selections currently */
            if(op==H5S_SELECT_SET)      /* Allow only "set" operation to proceed */
                break;
            /* Else fall through to error */

        case H5S_SEL_ERROR:
        case H5S_SEL_N:
        default:
            HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
    } /* end switch */

    if(op == H5S_SELECT_SET) {
        /* If we are setting a new selection, remove current selection first */
        if(H5S_SELECT_RELEASE(space) < 0)
            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection")

        /* Allocate space for the hyperslab selection information */
        if(NULL == (space->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t)))
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info")

        /* Save the diminfo */
        space->select.num_elem = 1;
        for(u = 0; u < space->extent.rank; u++) {
            space->select.sel_info.hslab->app_diminfo[u].start = start[u];
            space->select.sel_info.hslab->app_diminfo[u].stride = stride[u];
            space->select.sel_info.hslab->app_diminfo[u].count = count[u];
            space->select.sel_info.hslab->app_diminfo[u].block = block[u];

            space->select.sel_info.hslab->opt_diminfo[u].start = start[u];
            space->select.sel_info.hslab->opt_diminfo[u].stride = opt_stride[u];
            space->select.sel_info.hslab->opt_diminfo[u].count = opt_count[u];
            space->select.sel_info.hslab->opt_diminfo[u].block = opt_block[u];

            space->select.num_elem *= (opt_count[u] * opt_block[u]);
        } /* end for */

        /* Indicate that the dimension information is valid */
        space->select.sel_info.hslab->diminfo_valid = TRUE;

        /* Indicate that there's no slab information */
        space->select.sel_info.hslab->span_lst = NULL;
    } /* end if */
    else if(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA) {
        /* Sanity check */
        HDassert(H5S_GET_SELECT_TYPE(space) == H5S_SEL_HYPERSLABS);

        /* Check if there's no hyperslab span information currently */
        if(NULL == space->select.sel_info.hslab->span_lst)
            if(H5S_hyper_generate_spans(space) < 0)
                HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree")

        /* Indicate that the regular dimensions are no longer valid */
        space->select.sel_info.hslab->diminfo_valid = FALSE;

        /* Add in the new hyperslab information */
        if(H5S_generate_hyperslab(space, op, start, opt_stride, opt_count, opt_block) < 0)
            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't generate hyperslabs")
    } /* end if */
    else
        HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")

    /* Set selection type */
    space->select.type = H5S_sel_hyper;

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* end H5S_select_hyperslab() */


/*--------------------------------------------------------------------------
 NAME
    H5Sselect_hyperslab
 PURPOSE
    Specify a hyperslab to combine with the current hyperslab selection
 USAGE
    herr_t H5Sselect_hyperslab(dsid, op, start, stride, count, block)
        hid_t dsid;             IN: Dataspace ID of selection to modify
        H5S_seloper_t op;       IN: Operation to perform on current selection
        const hsize_t *start;        IN: Offset of start of hyperslab
        const hsize_t *stride;       IN: Hyperslab stride
        const hsize_t *count;        IN: Number of blocks included in hyperslab
        const hsize_t *block;        IN: Size of block in hyperslab
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Combines a hyperslab selection with the current selection for a dataspace.
    If the current selection is not a hyperslab, it is freed and the hyperslab
    parameters passed in are combined with the H5S_SEL_ALL hyperslab (ie. a
    selection composing the entire current extent).  If STRIDE or BLOCK is
    NULL, they are assumed to be set to all '1'.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5Sselect_hyperslab(hid_t space_id, H5S_seloper_t op, const hsize_t start[],
         const hsize_t stride[], const hsize_t count[], const hsize_t block[])
{
    H5S_t *space;               /* Dataspace to modify selection of */
    unsigned u;                 /* Local index variable */
    herr_t ret_value = SUCCEED; /* Return value */

    FUNC_ENTER_API(H5Sselect_hyperslab, FAIL)
    H5TRACE6("e", "iSs*h*h*h*h", space_id, op, start, stride, count, block);

    /* Check args */
    if(NULL == (space = (H5S_t *)H5I_object_verify(space_id, H5I_DATASPACE)))
        HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a data space")
    if(H5S_SCALAR == H5S_GET_EXTENT_TYPE(space))
        HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "hyperslab doesn't support H5S_SCALAR space")
    if(H5S_NULL == H5S_GET_EXTENT_TYPE(space))
        HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "hyperslab doesn't support H5S_NULL space")
    if(start == NULL || count == NULL)
        HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "hyperslab not specified")
    if(!(op > H5S_SELECT_NOOP && op < H5S_SELECT_INVALID))
        HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
    if(stride!=NULL) {
        /* Check for 0-sized strides */
        for(u=0; u<space->extent.rank; u++) {
            if(stride[u]==0)
                HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "invalid stride==0 value")
        } /* end for */
    } /* end if */

    if (H5S_select_hyperslab(space, op, start, stride, count, block)<0)
        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to set hyperslab selection")

done:
    FUNC_LEAVE_API(ret_value)
} /* end H5Sselect_hyperslab() */
#else /* NEW_HYPERSLAB_API */ /* Works */

/*-------------------------------------------------------------------------
 * Function:	H5S_operate_hyperslab
 *
 * Purpose:	Combines two hyperslabs with an operation, putting the
 *              result into a third hyperslab selection
 *
 * Return:	non-negative on success/NULL on failure
 *
 * Programmer:	Quincey Koziol
 *              Tuesday, October 30, 2001
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_operate_hyperslab (H5S_t *result, H5S_hyper_span_info_t *spans1, H5S_seloper_t op, H5S_hyper_span_info_t *spans2,
    hbool_t can_own_span2, hbool_t *span2_owned)
{
    H5S_hyper_span_info_t *a_not_b=NULL;    /* Span tree for hyperslab spans in old span tree and not in new span tree */
    H5S_hyper_span_info_t *a_and_b=NULL;    /* Span tree for hyperslab spans in both old and new span trees */
    H5S_hyper_span_info_t *b_not_a=NULL;    /* Span tree for hyperslab spans in new span tree and not in old span tree */
    herr_t      ret_value=SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_operate_hyperslab)

    /* Check args */
    HDassert(result);
    HDassert(spans2);
    HDassert(op > H5S_SELECT_NOOP && op < H5S_SELECT_INVALID);

    /* Just copy the selection from spans2 if we are setting the selection */
    /* ('space1' to 'result' aliasing happens at the next layer up) */
    if(op==H5S_SELECT_SET) {
        if(H5S_hyper_merge_spans(result,spans2,can_own_span2)<0)
            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")

        /* Update the number of elements in current selection */
        result->select.num_elem=H5S_hyper_spans_nelem(spans2);

        /* Indicate that we took ownership of span2, if allowed */
        if(can_own_span2)
            *span2_owned=TRUE;
    } /* end if */
    else {
        hbool_t updated_spans = FALSE;  /* Whether the spans in the selection were modified */

        HDassert(spans1);

        /* Generate lists of spans which overlap and don't overlap */
        if(H5S_hyper_clip_spans(spans1,spans2,&a_not_b,&a_and_b,&b_not_a)<0)
            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information")

        /* Switch on the operation */
        switch(op) {
            case H5S_SELECT_OR:
                /* Copy spans from spans1 to current selection */
                if(spans1!=NULL) {
                    if(H5S_hyper_merge_spans(result,spans1,FALSE)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")

                    /* Update the number of elements in current selection */
                    result->select.num_elem=H5S_hyper_spans_nelem(spans1);
                } /* end if */

                /* Add any new spans from spans2 to current selection */
                if(b_not_a!=NULL) {
                    if(H5S_hyper_merge_spans(result,b_not_a,FALSE)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")

                    /* Update the number of elements in current selection */
                    result->select.num_elem+=H5S_hyper_spans_nelem(b_not_a);

                    /* Indicate that the spans were updated */
                    updated_spans = TRUE;
                } /* end if */
                break;

            case H5S_SELECT_AND:
                /* Check if there are any overlapped selections */
                if(a_and_b!=NULL) {
                    if(H5S_hyper_merge_spans(result,a_and_b,TRUE)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")

                    /* Update the number of elements in current selection */
                    result->select.num_elem=H5S_hyper_spans_nelem(a_and_b);

                    /* Indicate that the result owns the a_and_b spans */
                    a_and_b=NULL;

                    /* Indicate that the spans were updated */
                    updated_spans = TRUE;
                } /* end if */
                break;

            case H5S_SELECT_XOR:
                /* Check if there are any non-overlapped selections */
                if(a_not_b!=NULL) {
                    if(H5S_hyper_merge_spans(result,a_not_b,FALSE)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")

                    /* Update the number of elements in current selection */
                    result->select.num_elem=H5S_hyper_spans_nelem(a_not_b);

                    /* Indicate that the spans were updated */
                    updated_spans = TRUE;
                } /* end if */
                if(b_not_a!=NULL) {
                    if(H5S_hyper_merge_spans(result,b_not_a,FALSE)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")

                    /* Update the number of elements in current selection */
                    result->select.num_elem+=H5S_hyper_spans_nelem(b_not_a);

                    /* Indicate that the spans were updated */
                    updated_spans = TRUE;
                } /* end if */
                break;

            case H5S_SELECT_NOTB:
                /* Check if there are any non-overlapped selections */
                if(a_not_b!=NULL) {
                    if(H5S_hyper_merge_spans(result,a_not_b,TRUE)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")

                    /* Update the number of elements in current selection */
                    result->select.num_elem=H5S_hyper_spans_nelem(a_not_b);

                    /* Indicate that the result owns the a_not_b spans */
                    a_not_b=NULL;

                    /* Indicate that the spans were updated */
                    updated_spans = TRUE;
                } /* end if */
                break;

            case H5S_SELECT_NOTA:
                /* Check if there are any non-overlapped selections */
                if(b_not_a!=NULL) {
                    if(H5S_hyper_merge_spans(result,b_not_a,TRUE)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")

                    /* Update the number of elements in current selection */
                    result->select.num_elem=H5S_hyper_spans_nelem(b_not_a);

                    /* Indicate that the result owns the b_not_a spans */
                    b_not_a=NULL;

                    /* Indicate that the spans were updated */
                    updated_spans = TRUE;
                } /* end if */
                break;

            default:
                HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
        } /* end switch */

        /* Free the hyperslab trees generated from the clipping algorithm */
        if(a_not_b)
            H5S_hyper_free_span_info(a_not_b);
        if(a_and_b)
            H5S_hyper_free_span_info(a_and_b);
        if(b_not_a)
            H5S_hyper_free_span_info(b_not_a);

        /* Check if the resulting hyperslab span tree is empty */
        if(result->select.sel_info.hslab->span_lst==NULL) {
            H5S_hyper_span_info_t *spans;     /* Empty hyperslab span tree */

            /* Sanity check */
            HDassert(result->select.num_elem == 0);

            /* Allocate a span info node */
            if((spans = H5FL_MALLOC(H5S_hyper_span_info_t))==NULL)
                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span")

            /* Set the reference count */
            spans->count=1;

            /* Reset the scratch pad space */
            spans->scratch=0;

            /* Set to empty tree */
            spans->head=NULL;

            /* Set pointer to empty span tree */
            result->select.sel_info.hslab->span_lst=spans;
        } /* end if */
        else {
            /* Check if we updated the spans */
            if(updated_spans) {
                /* Attempt to rebuild "optimized" start/stride/count/block information.
                 * from resulting hyperslab span tree
                 */
                if(H5S_hyper_rebuild(result) < 0)
                    HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOUNT, FAIL, "can't rebuild hyperslab info")
            } /* end if */
        } /* end else */
    } /* end else */

done:
    FUNC_LEAVE_NOAPI(ret_value)
}   /* end H5S_operate_hyperslab() */


/*-------------------------------------------------------------------------
 * Function:	H5S_generate_hyperlab
 *
 * Purpose:	Generate hyperslab information from H5S_select_hyperslab()
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol (split from HS_select_hyperslab()).
 *              Tuesday, September 12, 2000
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_generate_hyperslab (H5S_t *space, H5S_seloper_t op,
		      const hsize_t start[],
		      const hsize_t stride[],
		      const hsize_t count[],
		      const hsize_t block[])
{
    H5S_hyper_span_info_t *new_spans=NULL;   /* Span tree for new hyperslab */
    H5S_hyper_span_info_t *tmp_spans=NULL;   /* Temporary copy of selection */
    hbool_t span2_owned=FALSE;          /* Flag to indicate that span2 was used in H5S_operate_hyperslab() */
    herr_t      ret_value=SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI_NOINIT(H5S_generate_hyperslab)

    /* Check args */
    HDassert(space);
    HDassert(op > H5S_SELECT_NOOP && op < H5S_SELECT_INVALID);
    HDassert(start);
    HDassert(stride);
    HDassert(count);
    HDassert(block);

    /* Generate span tree for new hyperslab information */
    if((new_spans=H5S_hyper_make_spans(space->extent.rank,start,stride,count,block))==NULL)
        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't create hyperslab information")

    /* Copy the original dataspace */
    if(space->select.sel_info.hslab->span_lst!=NULL) {
        /* Take ownership of the dataspace's hyperslab spans */
        /* (These are freed later) */
        tmp_spans=space->select.sel_info.hslab->span_lst;
        space->select.sel_info.hslab->span_lst=NULL;

        /* Reset the other dataspace selection information */
        if(H5S_SELECT_RELEASE(space)<0)
            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection")

        /* Allocate space for the hyperslab selection information */
        if((space->select.sel_info.hslab=H5FL_MALLOC(H5S_hyper_sel_t))==NULL)
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info")
    } /* end if */

    /* Combine tmp_space (really space) & new_space, with the result in space */
    if(H5S_operate_hyperslab(space,tmp_spans,op,new_spans,TRUE,&span2_owned)<0)
        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information")

done:
    /* Free temporary data structures */
    if(tmp_spans!=NULL)
        if(H5S_hyper_free_span_info(tmp_spans)<0)
            HDONE_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release temporary hyperslab spans")
    if(new_spans!=NULL && span2_owned==FALSE)
        if(H5S_hyper_free_span_info(new_spans)<0)
            HDONE_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release temporary hyperslab spans")

    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_generate_hyperslab() */


/*-------------------------------------------------------------------------
 * Function:	H5S_select_hyperslab
 *
 * Purpose:	Internal version of H5Sselect_hyperslab().
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *              Wednesday, January 10, 2001
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5S_select_hyperslab (H5S_t *space, H5S_seloper_t op,
		      const hsize_t start[],
		      const hsize_t *stride,
		      const hsize_t count[],
		      const hsize_t *block)
{
    hsize_t int_stride[H5O_LAYOUT_NDIMS];   /* Internal storage for stride information */
    hsize_t int_count[H5O_LAYOUT_NDIMS];    /* Internal storage for count information */
    hsize_t int_block[H5O_LAYOUT_NDIMS];    /* Internal storage for block information */
    const hsize_t *opt_stride;      /* Optimized stride information */
    const hsize_t *opt_count;       /* Optimized count information */
    const hsize_t *opt_block;       /* Optimized block information */
    unsigned u;                    /* Counters */
    herr_t      ret_value=SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI(H5S_select_hyperslab, FAIL)

    /* Check args */
    HDassert(space);
    HDassert(start);
    HDassert(count);
    HDassert(op > H5S_SELECT_NOOP && op < H5S_SELECT_INVALID);

    /* Point to the correct stride values */
    if(stride==NULL)
        stride = _ones;

    /* Point to the correct block values */
    if(block==NULL)
        block = _ones;

    /*
     * Check new selection.
     */
    for(u=0; u<space->extent.rank; u++) {
        /* Check for overlapping hyperslab blocks in new selection. */
        if(count[u]>1 && stride[u]<block[u])
            HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "hyperslab blocks overlap")

        /* Detect zero-sized hyperslabs in new selection */
        if(count[u] == 0 || block[u] == 0) {
            switch(op) {
                case H5S_SELECT_SET:   /* Select "set" operation */
                case H5S_SELECT_AND:   /* Binary "and" operation for hyperslabs */
                case H5S_SELECT_NOTA:  /* Binary "B not A" operation for hyperslabs */
                    /* Convert to "none" selection */
                    if(H5S_select_none(space)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't convert selection")
                    HGOTO_DONE(SUCCEED);

                case H5S_SELECT_OR:    /* Binary "or" operation for hyperslabs */
                case H5S_SELECT_XOR:   /* Binary "xor" operation for hyperslabs */
                case H5S_SELECT_NOTB:  /* Binary "A not B" operation for hyperslabs */
                    HGOTO_DONE(SUCCEED);        /* Selection stays same */

                default:
                    HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
            } /* end switch */
        } /* end if */
    } /* end for */

    /* Optimize hyperslab parameters to merge contiguous blocks, etc. */
    if(stride == _ones && block == _ones) {
        /* Point to existing arrays */
        opt_stride = _ones;
        opt_count = _ones;
        opt_block = count;
    } /* end if */
    else {
        /* Point to local arrays */
        opt_stride = int_stride;
        opt_count = int_count;
        opt_block = int_block;
        for(u=0; u<space->extent.rank; u++) {
            /* contiguous hyperslabs have the block size equal to the stride */
            if(stride[u]==block[u]) {
                int_count[u]=1;
                int_stride[u]=1;
                if(block[u]==1)
                    int_block[u]=count[u];
                else
                    int_block[u]=block[u]*count[u];
            } /* end if */
            else {
                if(count[u]==1)
                    int_stride[u]=1;
                else {
                    HDassert(stride[u] > block[u]);
                    int_stride[u]=stride[u];
                } /* end else */
                int_count[u]=count[u];
                int_block[u]=block[u];
            } /* end else */
        } /* end for */
    } /* end else */

    /* Fixup operation for non-hyperslab selections */
    switch(H5S_GET_SELECT_TYPE(space)) {
        case H5S_SEL_NONE:   /* No elements selected in dataspace */
            switch(op) {
                case H5S_SELECT_SET:   /* Select "set" operation */
                    /* Change "none" selection to hyperslab selection */
                    break;

                case H5S_SELECT_OR:    /* Binary "or" operation for hyperslabs */
                case H5S_SELECT_XOR:   /* Binary "xor" operation for hyperslabs */
                case H5S_SELECT_NOTA:  /* Binary "B not A" operation for hyperslabs */
                    op=H5S_SELECT_SET; /* Maps to "set" operation when applied to "none" selection */
                    break;

                case H5S_SELECT_AND:   /* Binary "and" operation for hyperslabs */
                case H5S_SELECT_NOTB:  /* Binary "A not B" operation for hyperslabs */
                    HGOTO_DONE(SUCCEED);        /* Selection stays "none" */

                default:
                    HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
            } /* end switch */
            break;

        case H5S_SEL_ALL:    /* All elements selected in dataspace */
            switch(op) {
                case H5S_SELECT_SET:   /* Select "set" operation */
                    /* Change "all" selection to hyperslab selection */
                    break;

                case H5S_SELECT_OR:    /* Binary "or" operation for hyperslabs */
                    HGOTO_DONE(SUCCEED);        /* Selection stays "all" */

                case H5S_SELECT_AND:   /* Binary "and" operation for hyperslabs */
                    op=H5S_SELECT_SET; /* Maps to "set" operation when applied to "none" selection */
                    break;

                case H5S_SELECT_XOR:   /* Binary "xor" operation for hyperslabs */
                case H5S_SELECT_NOTB:  /* Binary "A not B" operation for hyperslabs */
                    /* Convert current "all" selection to "real" hyperslab selection */
                    /* Then allow operation to proceed */
                    {
                        hsize_t tmp_start[H5O_LAYOUT_NDIMS];   /* Temporary start information */
                        hsize_t tmp_stride[H5O_LAYOUT_NDIMS];   /* Temporary stride information */
                        hsize_t tmp_count[H5O_LAYOUT_NDIMS];    /* Temporary count information */
                        hsize_t tmp_block[H5O_LAYOUT_NDIMS];    /* Temporary block information */

                        /* Fill in temporary information for the dimensions */
                        for(u=0; u<space->extent.rank; u++) {
                            tmp_start[u]=0;
                            tmp_stride[u]=1;
                            tmp_count[u]=1;
                            tmp_block[u]=space->extent.size[u];
                        } /* end for */

                        /* Convert to hyperslab selection */
                        if(H5S_select_hyperslab(space,H5S_SELECT_SET,tmp_start,tmp_stride,tmp_count,tmp_block)<0)
                            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't convert selection")
                    } /* end case */
                    break;

                case H5S_SELECT_NOTA:  /* Binary "B not A" operation for hyperslabs */
                    /* Convert to "none" selection */
                    if(H5S_select_none(space)<0)
                        HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't convert selection")
                    HGOTO_DONE(SUCCEED);

                default:
                    HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
            } /* end switch */
            break;

        case H5S_SEL_HYPERSLABS:
            /* Hyperslab operation on hyperslab selection, OK */
            break;

        case H5S_SEL_POINTS: /* Can't combine hyperslab operations and point selections currently */
            if(op==H5S_SELECT_SET)      /* Allow only "set" operation to proceed */
                break;
            /* Else fall through to error */

        default:
            HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
    } /* end switch */


    if(op==H5S_SELECT_SET) {
        /* If we are setting a new selection, remove current selection first */
        if(H5S_SELECT_RELEASE(space)<0)
            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release hyperslab")

        /* Allocate space for the hyperslab selection information */
        if((space->select.sel_info.hslab=H5FL_MALLOC(H5S_hyper_sel_t))==NULL)
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab info")

        /* Save the diminfo */
        space->select.num_elem=1;
        for(u=0; u<space->extent.rank; u++) {
            space->select.sel_info.hslab->app_diminfo[u].start = start[u];
            space->select.sel_info.hslab->app_diminfo[u].stride = stride[u];
            space->select.sel_info.hslab->app_diminfo[u].count = count[u];
            space->select.sel_info.hslab->app_diminfo[u].block = block[u];

            space->select.sel_info.hslab->opt_diminfo[u].start = start[u];
            space->select.sel_info.hslab->opt_diminfo[u].stride = opt_stride[u];
            space->select.sel_info.hslab->opt_diminfo[u].count = opt_count[u];
            space->select.sel_info.hslab->opt_diminfo[u].block = opt_block[u];

            space->select.num_elem*=(opt_count[u]*opt_block[u]);
        } /* end for */

        /* Indicate that the dimension information is valid */
        space->select.sel_info.hslab->diminfo_valid=TRUE;

        /* Indicate that there's no slab information */
        space->select.sel_info.hslab->span_lst=NULL;
    } /* end if */
    else if(op>=H5S_SELECT_OR && op<=H5S_SELECT_NOTA) {
        /* Sanity check */
        HDassert(H5S_GET_SELECT_TYPE(space) == H5S_SEL_HYPERSLABS);

        /* Check if there's no hyperslab span information currently */
        if(space->select.sel_info.hslab->span_lst==NULL)
            if(H5S_hyper_generate_spans(space)<0)