/* Socket module */ /* This module provides an interface to Berkeley socket IPC. Limitations: - Only AF_INET, AF_INET6 and AF_UNIX address families are supported in a portable manner, though AF_PACKET, AF_NETLINK and AF_TIPC are supported under Linux. - No read/write operations (use sendall/recv or makefile instead). - Additional restrictions apply on some non-Unix platforms (compensated for by socket.py). Module interface: - socket.error: exception raised for socket specific errors, alias for OSError - socket.gaierror: exception raised for getaddrinfo/getnameinfo errors, a subclass of socket.error - socket.herror: exception raised for gethostby* errors, a subclass of socket.error - socket.gethostbyname(hostname) --> host IP address (string: 'dd.dd.dd.dd') - socket.gethostbyaddr(IP address) --> (hostname, [alias, ...], [IP addr, ...]) - socket.gethostname() --> host name (string: 'spam' or 'spam.domain.com') - socket.getprotobyname(protocolname) --> protocol number - socket.getservbyname(servicename[, protocolname]) --> port number - socket.getservbyport(portnumber[, protocolname]) --> service name - socket.socket([family[, type [, proto, fileno]]]) --> new socket object (fileno specifies a pre-existing socket file descriptor) - socket.socketpair([family[, type [, proto]]]) --> (socket, socket) - socket.ntohs(16 bit value) --> new int object - socket.ntohl(32 bit value) --> new int object - socket.htons(16 bit value) --> new int object - socket.htonl(32 bit value) --> new int object - socket.getaddrinfo(host, port [, family, type, proto, flags]) --> List of (family, type, proto, canonname, sockaddr) - socket.getnameinfo(sockaddr, flags) --> (host, port) - socket.AF_INET, socket.SOCK_STREAM, etc.: constants from - socket.has_ipv6: boolean value indicating if IPv6 is supported - socket.inet_aton(IP address) -> 32-bit packed IP representation - socket.inet_ntoa(packed IP) -> IP address string - socket.getdefaulttimeout() -> None | float - socket.setdefaulttimeout(None | float) - socket.if_nameindex() -> list of tuples (if_index, if_name) - socket.if_nametoindex(name) -> corresponding interface index - socket.if_indextoname(index) -> corresponding interface name - an Internet socket address is a pair (hostname, port) where hostname can be anything recognized by gethostbyname() (including the dd.dd.dd.dd notation) and port is in host byte order - where a hostname is returned, the dd.dd.dd.dd notation is used - a UNIX domain socket address is a string specifying the pathname - an AF_PACKET socket address is a tuple containing a string specifying the ethernet interface and an integer specifying the Ethernet protocol number to be received. For example: ("eth0",0x1234). Optional 3rd,4th,5th elements in the tuple specify packet-type and ha-type/addr. - an AF_TIPC socket address is expressed as (addr_type, v1, v2, v3 [, scope]); where addr_type can be one of: TIPC_ADDR_NAMESEQ, TIPC_ADDR_NAME, and TIPC_ADDR_ID; and scope can be one of: TIPC_ZONE_SCOPE, TIPC_CLUSTER_SCOPE, and TIPC_NODE_SCOPE. The meaning of v1, v2 and v3 depends on the value of addr_type: if addr_type is TIPC_ADDR_NAME: v1 is the server type v2 is the port identifier v3 is ignored if addr_type is TIPC_ADDR_NAMESEQ: v1 is the server type v2 is the lower port number v3 is the upper port number if addr_type is TIPC_ADDR_ID: v1 is the node v2 is the ref v3 is ignored Local naming conventions: - names starting with sock_ are socket object methods - names starting with socket_ are module-level functions - names starting with PySocket are exported through socketmodule.h */ #ifdef __APPLE__ #include /* for getaddrinfo thread safety test on old versions of OS X */ #ifndef MAC_OS_X_VERSION_10_5 #define MAC_OS_X_VERSION_10_5 1050 #endif /* * inet_aton is not available on OSX 10.3, yet we want to use a binary * that was build on 10.4 or later to work on that release, weak linking * comes to the rescue. */ # pragma weak inet_aton #endif #include "Python.h" #include "structmember.h" /* Socket object documentation */ PyDoc_STRVAR(sock_doc, "socket(family=AF_INET, type=SOCK_STREAM, proto=0, fileno=None) -> socket object\n\ \n\ Open a socket of the given type. The family argument specifies the\n\ address family; it defaults to AF_INET. The type argument specifies\n\ whether this is a stream (SOCK_STREAM, this is the default)\n\ or datagram (SOCK_DGRAM) socket. The protocol argument defaults to 0,\n\ specifying the default protocol. Keyword arguments are accepted.\n\ The socket is created as non-inheritable.\n\ \n\ A socket object represents one endpoint of a network connection.\n\ \n\ Methods of socket objects (keyword arguments not allowed):\n\ \n\ _accept() -- accept connection, returning new socket fd and client address\n\ bind(addr) -- bind the socket to a local address\n\ close() -- close the socket\n\ connect(addr) -- connect the socket to a remote address\n\ connect_ex(addr) -- connect, return an error code instead of an exception\n\ dup() -- return a new socket fd duplicated from fileno()\n\ fileno() -- return underlying file descriptor\n\ getpeername() -- return remote address [*]\n\ getsockname() -- return local address\n\ getsockopt(level, optname[, buflen]) -- get socket options\n\ gettimeout() -- return timeout or None\n\ listen([n]) -- start listening for incoming connections\n\ recv(buflen[, flags]) -- receive data\n\ recv_into(buffer[, nbytes[, flags]]) -- receive data (into a buffer)\n\ recvfrom(buflen[, flags]) -- receive data and sender\'s address\n\ recvfrom_into(buffer[, nbytes, [, flags])\n\ -- receive data and sender\'s address (into a buffer)\n\ sendall(data[, flags]) -- send all data\n\ send(data[, flags]) -- send data, may not send all of it\n\ sendto(data[, flags], addr) -- send data to a given address\n\ setblocking(0 | 1) -- set or clear the blocking I/O flag\n\ setsockopt(level, optname, value) -- set socket options\n\ settimeout(None | float) -- set or clear the timeout\n\ shutdown(how) -- shut down traffic in one or both directions\n\ if_nameindex() -- return all network interface indices and names\n\ if_nametoindex(name) -- return the corresponding interface index\n\ if_indextoname(index) -- return the corresponding interface name\n\ \n\ [*] not available on all platforms!"); /* XXX This is a terrible mess of platform-dependent preprocessor hacks. I hope some day someone can clean this up please... */ /* Hacks for gethostbyname_r(). On some non-Linux platforms, the configure script doesn't get this right, so we hardcode some platform checks below. On the other hand, not all Linux versions agree, so there the settings computed by the configure script are needed! */ #ifndef linux # undef HAVE_GETHOSTBYNAME_R_3_ARG # undef HAVE_GETHOSTBYNAME_R_5_ARG # undef HAVE_GETHOSTBYNAME_R_6_ARG #endif #if defined(__OpenBSD__) # include #endif #if !defined(WITH_THREAD) || defined(__ANDROID__) # undef HAVE_GETHOSTBYNAME_R #endif #ifdef HAVE_GETHOSTBYNAME_R # if defined(_AIX) # define HAVE_GETHOSTBYNAME_R_3_ARG # elif defined(__sun) || defined(__sgi) # define HAVE_GETHOSTBYNAME_R_5_ARG # elif defined(linux) /* Rely on the configure script */ # else # undef HAVE_GETHOSTBYNAME_R # endif #endif #if !defined(HAVE_GETHOSTBYNAME_R) && defined(WITH_THREAD) && \ !defined(MS_WINDOWS) # define USE_GETHOSTBYNAME_LOCK #endif /* To use __FreeBSD_version, __OpenBSD__, and __NetBSD_Version__ */ #ifdef HAVE_SYS_PARAM_H #include #endif /* On systems on which getaddrinfo() is believed to not be thread-safe, (this includes the getaddrinfo emulation) protect access with a lock. getaddrinfo is thread-safe on Mac OS X 10.5 and later. Originally it was a mix of code including an unsafe implementation from an old BSD's libresolv. In 10.5 Apple reimplemented it as a safe IPC call to the mDNSResponder process. 10.5 is the first be UNIX '03 certified, which includes the requirement that getaddrinfo be thread-safe. See issue #25924. It's thread-safe in OpenBSD starting with 5.4, released Nov 2013: http://www.openbsd.org/plus54.html It's thread-safe in NetBSD starting with 4.0, released Dec 2007: http://cvsweb.netbsd.org/bsdweb.cgi/src/lib/libc/net/getaddrinfo.c.diff?r1=1.82&r2=1.83 */ #if defined(WITH_THREAD) && ( \ (defined(__APPLE__) && \ MAC_OS_X_VERSION_MIN_REQUIRED < MAC_OS_X_VERSION_10_5) || \ (defined(__FreeBSD__) && __FreeBSD_version+0 < 503000) || \ (defined(__OpenBSD__) && OpenBSD+0 < 201311) || \ (defined(__NetBSD__) && __NetBSD_Version__+0 < 400000000) || \ !defined(HAVE_GETADDRINFO)) #define USE_GETADDRINFO_LOCK #endif #ifdef USE_GETADDRINFO_LOCK #define ACQUIRE_GETADDRINFO_LOCK PyThread_acquire_lock(netdb_lock, 1); #define RELEASE_GETADDRINFO_LOCK PyThread_release_lock(netdb_lock); #else #define ACQUIRE_GETADDRINFO_LOCK #define RELEASE_GETADDRINFO_LOCK #endif #if defined(USE_GETHOSTBYNAME_LOCK) || defined(USE_GETADDRINFO_LOCK) # include "pythread.h" #endif #if defined(PYCC_VACPP) # include # include # include # include # include #endif #ifdef __APPLE__ # include #endif #if defined(__sgi) && _COMPILER_VERSION>700 && !_SGIAPI /* make sure that the reentrant (gethostbyaddr_r etc) functions are declared correctly if compiling with MIPSPro 7.x in ANSI C mode (default) */ /* XXX Using _SGIAPI is the wrong thing, but I don't know what the right thing is. */ #undef _SGIAPI /* to avoid warning */ #define _SGIAPI 1 #undef _XOPEN_SOURCE #include #include #include #ifdef _SS_ALIGNSIZE #define HAVE_GETADDRINFO 1 #define HAVE_GETNAMEINFO 1 #endif #define HAVE_INET_PTON #include #endif /* Irix 6.5 fails to define this variable at all. This is needed for both GCC and SGI's compiler. I'd say that the SGI headers are just busted. Same thing for Solaris. */ #if (defined(__sgi) || defined(sun)) && !defined(INET_ADDRSTRLEN) #define INET_ADDRSTRLEN 16 #endif /* Generic includes */ #ifdef HAVE_SYS_TYPES_H #include #endif #ifdef HAVE_SYS_SOCKET_H #include #endif #ifdef HAVE_NET_IF_H #include #endif /* Generic socket object definitions and includes */ #define PySocket_BUILDING_SOCKET #include "socketmodule.h" /* Addressing includes */ #ifndef MS_WINDOWS /* Non-MS WINDOWS includes */ # include # include /* Headers needed for inet_ntoa() and inet_addr() */ # include # include #else /* MS_WINDOWS includes */ # ifdef HAVE_FCNTL_H # include # endif #if defined(_MSC_VER) && _MSC_VER >= 1800 /* Provides the IsWindows7SP1OrGreater() function */ #include #endif #endif #include #ifndef O_NONBLOCK # define O_NONBLOCK O_NDELAY #endif /* include Python's addrinfo.h unless it causes trouble */ #if defined(__sgi) && _COMPILER_VERSION>700 && defined(_SS_ALIGNSIZE) /* Do not include addinfo.h on some newer IRIX versions. * _SS_ALIGNSIZE is defined in sys/socket.h by 6.5.21, * for example, but not by 6.5.10. */ #elif defined(_MSC_VER) && _MSC_VER>1201 /* Do not include addrinfo.h for MSVC7 or greater. 'addrinfo' and * EAI_* constants are defined in (the already included) ws2tcpip.h. */ #else # include "addrinfo.h" #endif #ifndef HAVE_INET_PTON #if !defined(NTDDI_VERSION) || (NTDDI_VERSION < NTDDI_LONGHORN) int inet_pton(int af, const char *src, void *dst); const char *inet_ntop(int af, const void *src, char *dst, socklen_t size); #endif #endif #ifdef __APPLE__ /* On OS X, getaddrinfo returns no error indication of lookup failure, so we must use the emulation instead of the libinfo implementation. Unfortunately, performing an autoconf test for this bug would require DNS access for the machine performing the configuration, which is not acceptable. Therefore, we determine the bug just by checking for __APPLE__. If this bug gets ever fixed, perhaps checking for sys/version.h would be appropriate, which is 10/0 on the system with the bug. */ #ifndef HAVE_GETNAMEINFO /* This bug seems to be fixed in Jaguar. Ths easiest way I could Find to check for Jaguar is that it has getnameinfo(), which older releases don't have */ #undef HAVE_GETADDRINFO #endif #ifdef HAVE_INET_ATON #define USE_INET_ATON_WEAKLINK #endif #endif /* I know this is a bad practice, but it is the easiest... */ #if !defined(HAVE_GETADDRINFO) /* avoid clashes with the C library definition of the symbol. */ #define getaddrinfo fake_getaddrinfo #define gai_strerror fake_gai_strerror #define freeaddrinfo fake_freeaddrinfo #include "getaddrinfo.c" #endif #if !defined(HAVE_GETNAMEINFO) #define getnameinfo fake_getnameinfo #include "getnameinfo.c" #endif #ifdef MS_WINDOWS #define SOCKETCLOSE closesocket #endif #ifdef MS_WIN32 #undef EAFNOSUPPORT #define EAFNOSUPPORT WSAEAFNOSUPPORT #define snprintf _snprintf #endif #ifndef SOCKETCLOSE #define SOCKETCLOSE close #endif #if (defined(HAVE_BLUETOOTH_H) || defined(HAVE_BLUETOOTH_BLUETOOTH_H)) && !defined(__NetBSD__) && !defined(__DragonFly__) #define USE_BLUETOOTH 1 #if defined(__FreeBSD__) #define BTPROTO_L2CAP BLUETOOTH_PROTO_L2CAP #define BTPROTO_RFCOMM BLUETOOTH_PROTO_RFCOMM #define BTPROTO_HCI BLUETOOTH_PROTO_HCI #define SOL_HCI SOL_HCI_RAW #define HCI_FILTER SO_HCI_RAW_FILTER #define sockaddr_l2 sockaddr_l2cap #define sockaddr_rc sockaddr_rfcomm #define hci_dev hci_node #define _BT_L2_MEMB(sa, memb) ((sa)->l2cap_##memb) #define _BT_RC_MEMB(sa, memb) ((sa)->rfcomm_##memb) #define _BT_HCI_MEMB(sa, memb) ((sa)->hci_##memb) #elif defined(__NetBSD__) || defined(__DragonFly__) #define sockaddr_l2 sockaddr_bt #define sockaddr_rc sockaddr_bt #define sockaddr_hci sockaddr_bt #define sockaddr_sco sockaddr_bt #define SOL_HCI BTPROTO_HCI #define HCI_DATA_DIR SO_HCI_DIRECTION #define _BT_L2_MEMB(sa, memb) ((sa)->bt_##memb) #define _BT_RC_MEMB(sa, memb) ((sa)->bt_##memb) #define _BT_HCI_MEMB(sa, memb) ((sa)->bt_##memb) #define _BT_SCO_MEMB(sa, memb) ((sa)->bt_##memb) #else #define _BT_L2_MEMB(sa, memb) ((sa)->l2_##memb) #define _BT_RC_MEMB(sa, memb) ((sa)->rc_##memb) #define _BT_HCI_MEMB(sa, memb) ((sa)->hci_##memb) #define _BT_SCO_MEMB(sa, memb) ((sa)->sco_##memb) #endif #endif /* Convert "sock_addr_t *" to "struct sockaddr *". */ #define SAS2SA(x) (&((x)->sa)) /* * Constants for getnameinfo() */ #if !defined(NI_MAXHOST) #define NI_MAXHOST 1025 #endif #if !defined(NI_MAXSERV) #define NI_MAXSERV 32 #endif #ifndef INVALID_SOCKET /* MS defines this */ #define INVALID_SOCKET (-1) #endif #ifndef INADDR_NONE #define INADDR_NONE (-1) #endif /* XXX There's a problem here: *static* functions are not supposed to have a Py prefix (or use CapitalizedWords). Later... */ /* Global variable holding the exception type for errors detected by this module (but not argument type or memory errors, etc.). */ static PyObject *socket_herror; static PyObject *socket_gaierror; static PyObject *socket_timeout; /* A forward reference to the socket type object. The sock_type variable contains pointers to various functions, some of which call new_sockobject(), which uses sock_type, so there has to be a circular reference. */ static PyTypeObject sock_type; #if defined(HAVE_POLL_H) #include #elif defined(HAVE_SYS_POLL_H) #include #endif /* Largest value to try to store in a socklen_t (used when handling ancillary data). POSIX requires socklen_t to hold at least (2**31)-1 and recommends against storing larger values, but socklen_t was originally int in the BSD interface, so to be on the safe side we use the smaller of (2**31)-1 and INT_MAX. */ #if INT_MAX > 0x7fffffff #define SOCKLEN_T_LIMIT 0x7fffffff #else #define SOCKLEN_T_LIMIT INT_MAX #endif #ifdef HAVE_POLL /* Instead of select(), we'll use poll() since poll() works on any fd. */ #define IS_SELECTABLE(s) 1 /* Can we call select() with this socket without a buffer overrun? */ #else /* If there's no timeout left, we don't have to call select, so it's a safe, * little white lie. */ #define IS_SELECTABLE(s) (_PyIsSelectable_fd((s)->sock_fd) || (s)->sock_timeout <= 0) #endif static PyObject* select_error(void) { PyErr_SetString(PyExc_OSError, "unable to select on socket"); return NULL; } #ifdef MS_WINDOWS #ifndef WSAEAGAIN #define WSAEAGAIN WSAEWOULDBLOCK #endif #define CHECK_ERRNO(expected) \ (WSAGetLastError() == WSA ## expected) #else #define CHECK_ERRNO(expected) \ (errno == expected) #endif #ifdef MS_WINDOWS # define GET_SOCK_ERROR WSAGetLastError() # define SET_SOCK_ERROR(err) WSASetLastError(err) # define SOCK_TIMEOUT_ERR WSAEWOULDBLOCK # define SOCK_INPROGRESS_ERR WSAEWOULDBLOCK #else # define GET_SOCK_ERROR errno # define SET_SOCK_ERROR(err) do { errno = err; } while (0) # define SOCK_TIMEOUT_ERR EWOULDBLOCK # define SOCK_INPROGRESS_ERR EINPROGRESS #endif #ifdef MS_WINDOWS /* Does WSASocket() support the WSA_FLAG_NO_HANDLE_INHERIT flag? */ static int support_wsa_no_inherit = -1; #endif /* Convenience function to raise an error according to errno and return a NULL pointer from a function. */ static PyObject * set_error(void) { #ifdef MS_WINDOWS int err_no = WSAGetLastError(); /* PyErr_SetExcFromWindowsErr() invokes FormatMessage() which recognizes the error codes used by both GetLastError() and WSAGetLastError */ if (err_no) return PyErr_SetExcFromWindowsErr(PyExc_OSError, err_no); #endif return PyErr_SetFromErrno(PyExc_OSError); } static PyObject * set_herror(int h_error) { PyObject *v; #ifdef HAVE_HSTRERROR v = Py_BuildValue("(is)", h_error, (char *)hstrerror(h_error)); #else v = Py_BuildValue("(is)", h_error, "host not found"); #endif if (v != NULL) { PyErr_SetObject(socket_herror, v); Py_DECREF(v); } return NULL; } static PyObject * set_gaierror(int error) { PyObject *v; #ifdef EAI_SYSTEM /* EAI_SYSTEM is not available on Windows XP. */ if (error == EAI_SYSTEM) return set_error(); #endif #ifdef HAVE_GAI_STRERROR v = Py_BuildValue("(is)", error, gai_strerror(error)); #else v = Py_BuildValue("(is)", error, "getaddrinfo failed"); #endif if (v != NULL) { PyErr_SetObject(socket_gaierror, v); Py_DECREF(v); } return NULL; } /* Function to perform the setting of socket blocking mode internally. block = (1 | 0). */ static int internal_setblocking(PySocketSockObject *s, int block) { #ifdef MS_WINDOWS u_long arg; #endif #if !defined(MS_WINDOWS) \ && !((defined(HAVE_SYS_IOCTL_H) && defined(FIONBIO))) int delay_flag, new_delay_flag; #endif #ifdef SOCK_NONBLOCK if (block) s->sock_type &= (~SOCK_NONBLOCK); else s->sock_type |= SOCK_NONBLOCK; #endif Py_BEGIN_ALLOW_THREADS #ifndef MS_WINDOWS #if (defined(HAVE_SYS_IOCTL_H) && defined(FIONBIO)) block = !block; ioctl(s->sock_fd, FIONBIO, (unsigned int *)&block); #else delay_flag = fcntl(s->sock_fd, F_GETFL, 0); if (block) new_delay_flag = delay_flag & (~O_NONBLOCK); else new_delay_flag = delay_flag | O_NONBLOCK; if (new_delay_flag != delay_flag) fcntl(s->sock_fd, F_SETFL, new_delay_flag); #endif #else /* MS_WINDOWS */ arg = !block; ioctlsocket(s->sock_fd, FIONBIO, &arg); #endif /* MS_WINDOWS */ Py_END_ALLOW_THREADS /* Since these don't return anything */ return 1; } static int internal_select(PySocketSockObject *s, int writing, _PyTime_t interval, int connect) { int n; #ifdef HAVE_POLL struct pollfd pollfd; _PyTime_t ms; #else fd_set fds, efds; struct timeval tv, *tvp; #endif #ifdef WITH_THREAD /* must be called with the GIL held */ assert(PyGILState_Check()); #endif /* Error condition is for output only */ assert(!(connect && !writing)); /* Guard against closed socket */ if (s->sock_fd < 0) return 0; /* Prefer poll, if available, since you can poll() any fd * which can't be done with select(). */ #ifdef HAVE_POLL pollfd.fd = s->sock_fd; pollfd.events = writing ? POLLOUT : POLLIN; if (connect) { /* On Windows, the socket becomes writable on connection success, but a connection failure is notified as an error. On POSIX, the socket becomes writable on connection success or on connection failure. */ pollfd.events |= POLLERR; } /* s->sock_timeout is in seconds, timeout in ms */ ms = _PyTime_AsMilliseconds(interval, _PyTime_ROUND_CEILING); assert(ms <= INT_MAX); Py_BEGIN_ALLOW_THREADS; n = poll(&pollfd, 1, (int)ms); Py_END_ALLOW_THREADS; #else if (interval >= 0) { _PyTime_AsTimeval_noraise(interval, &tv, _PyTime_ROUND_CEILING); tvp = &tv; } else tvp = NULL; FD_ZERO(&fds); FD_SET(s->sock_fd, &fds); FD_ZERO(&efds); if (connect) { /* On Windows, the socket becomes writable on connection success, but a connection failure is notified as an error. On POSIX, the socket becomes writable on connection success or on connection failure. */ FD_SET(s->sock_fd, &efds); } /* See if the socket is ready */ Py_BEGIN_ALLOW_THREADS; if (writing) n = select(Py_SAFE_DOWNCAST(s->sock_fd+1, SOCKET_T, int), NULL, &fds, &efds, tvp); else n = select(Py_SAFE_DOWNCAST(s->sock_fd+1, SOCKET_T, int), &fds, NULL, &efds, tvp); Py_END_ALLOW_THREADS; #endif if (n < 0) return -1; if (n == 0) return 1; return 0; } /* Call a socket function. On error, raise an exception and return -1 if err is set, or fill err and return -1 otherwise. If a signal was received and the signal handler raised an exception, return -1, and set err to -1 if err is set. On success, return 0, and set err to 0 if err is set. If the socket has a timeout, wait until the socket is ready before calling the function: wait until the socket is writable if writing is nonzero, wait until the socket received data otherwise. If the socket function is interrupted by a signal (failed with EINTR): retry the function, except if the signal handler raised an exception (PEP 475). When the function is retried, recompute the timeout using a monotonic clock. sock_call_ex() must be called with the GIL held. The socket function is called with the GIL released. */ static int sock_call_ex(PySocketSockObject *s, int writing, int (*sock_func) (PySocketSockObject *s, void *data), void *data, int connect, int *err, _PyTime_t timeout) { int has_timeout = (timeout > 0); _PyTime_t deadline = 0; int deadline_initialized = 0; int res; #ifdef WITH_THREAD /* sock_call() must be called with the GIL held. */ assert(PyGILState_Check()); #endif /* outer loop to retry select() when select() is interrupted by a signal or to retry select()+sock_func() on false positive (see above) */ while (1) { /* For connect(), poll even for blocking socket. The connection runs asynchronously. */ if (has_timeout || connect) { if (has_timeout) { _PyTime_t interval; if (deadline_initialized) { /* recompute the timeout */ interval = deadline - _PyTime_GetMonotonicClock(); } else { deadline_initialized = 1; deadline = _PyTime_GetMonotonicClock() + timeout; interval = timeout; } if (interval >= 0) res = internal_select(s, writing, interval, connect); else res = 1; } else { res = internal_select(s, writing, timeout, connect); } if (res == -1) { if (err) *err = GET_SOCK_ERROR; if (CHECK_ERRNO(EINTR)) { /* select() was interrupted by a signal */ if (PyErr_CheckSignals()) { if (err) *err = -1; return -1; } /* retry select() */ continue; } /* select() failed */ s->errorhandler(); return -1; } if (res == 1) { if (err) *err = SOCK_TIMEOUT_ERR; else PyErr_SetString(socket_timeout, "timed out"); return -1; } /* the socket is ready */ } /* inner loop to retry sock_func() when sock_func() is interrupted by a signal */ while (1) { Py_BEGIN_ALLOW_THREADS res = sock_func(s, data); Py_END_ALLOW_THREADS if (res) { /* sock_func() succeeded */ if (err) *err = 0; return 0; } if (err) *err = GET_SOCK_ERROR; if (!CHECK_ERRNO(EINTR)) break; /* sock_func() was interrupted by a signal */ if (PyErr_CheckSignals()) { if (err) *err = -1; return -1; } /* retry sock_func() */ } if (s->sock_timeout > 0 && (CHECK_ERRNO(EWOULDBLOCK) || CHECK_ERRNO(EAGAIN))) { /* False positive: sock_func() failed with EWOULDBLOCK or EAGAIN. For example, select() could indicate a socket is ready for reading, but the data then discarded by the OS because of a wrong checksum. Loop on select() to recheck for socket readyness. */ continue; } /* sock_func() failed */ if (!err) s->errorhandler(); /* else: err was already set before */ return -1; } } static int sock_call(PySocketSockObject *s, int writing, int (*func) (PySocketSockObject *s, void *data), void *data) { return sock_call_ex(s, writing, func, data, 0, NULL, s->sock_timeout); } /* Initialize a new socket object. */ /* Default timeout for new sockets */ static _PyTime_t defaulttimeout = _PYTIME_FROMSECONDS(-1); static void init_sockobject(PySocketSockObject *s, SOCKET_T fd, int family, int type, int proto) { s->sock_fd = fd; s->sock_family = family; s->sock_type = type; s->sock_proto = proto; s->errorhandler = &set_error; #ifdef SOCK_NONBLOCK if (type & SOCK_NONBLOCK) s->sock_timeout = 0; else #endif { s->sock_timeout = defaulttimeout; if (defaulttimeout >= 0) internal_setblocking(s, 0); } } /* Create a new socket object. This just creates the object and initializes it. If the creation fails, return NULL and set an exception (implicit in NEWOBJ()). */ static PySocketSockObject * new_sockobject(SOCKET_T fd, int family, int type, int proto) { PySocketSockObject *s; s = (PySocketSockObject *) PyType_GenericNew(&sock_type, NULL, NULL); if (s != NULL) init_sockobject(s, fd, family, type, proto); return s; } /* Lock to allow python interpreter to continue, but only allow one thread to be in gethostbyname or getaddrinfo */ #if defined(USE_GETHOSTBYNAME_LOCK) || defined(USE_GETADDRINFO_LOCK) static PyThread_type_lock netdb_lock; #endif /* Convert a string specifying a host name or one of a few symbolic names to a numeric IP address. This usually calls gethostbyname() to do the work; the names "" and "" are special. Return the length (IPv4 should be 4 bytes), or negative if an error occurred; then an exception is raised. */ static int setipaddr(const char *name, struct sockaddr *addr_ret, size_t addr_ret_size, int af) { struct addrinfo hints, *res; int error; memset((void *) addr_ret, '\0', sizeof(*addr_ret)); if (name[0] == '\0') { int siz; memset(&hints, 0, sizeof(hints)); hints.ai_family = af; hints.ai_socktype = SOCK_DGRAM; /*dummy*/ hints.ai_flags = AI_PASSIVE; Py_BEGIN_ALLOW_THREADS ACQUIRE_GETADDRINFO_LOCK error = getaddrinfo(NULL, "0", &hints, &res); Py_END_ALLOW_THREADS /* We assume that those thread-unsafe getaddrinfo() versions *are* safe regarding their return value, ie. that a subsequent call to getaddrinfo() does not destroy the outcome of the first call. */ RELEASE_GETADDRINFO_LOCK if (error) { set_gaierror(error); return -1; } switch (res->ai_family) { case AF_INET: siz = 4; break; #ifdef ENABLE_IPV6 case AF_INET6: siz = 16; break; #endif default: freeaddrinfo(res); PyErr_SetString(PyExc_OSError, "unsupported address family"); return -1; } if (res->ai_next) { freeaddrinfo(res); PyErr_SetString(PyExc_OSError, "wildcard resolved to multiple address"); return -1; } if (res->ai_addrlen < addr_ret_size) addr_ret_size = res->ai_addrlen; memcpy(addr_ret, res->ai_addr, addr_ret_size); freeaddrinfo(res); return siz; } /* special-case broadcast - inet_addr() below can return INADDR_NONE for * this */ if (strcmp(name, "255.255.255.255") == 0 || strcmp(name, "") == 0) { struct sockaddr_in *sin; if (af != AF_INET && af != AF_UNSPEC) { PyErr_SetString(PyExc_OSError, "address family mismatched"); return -1; } sin = (struct sockaddr_in *)addr_ret; memset((void *) sin, '\0', sizeof(*sin)); sin->sin_family = AF_INET; #ifdef HAVE_SOCKADDR_SA_LEN sin->sin_len = sizeof(*sin); #endif sin->sin_addr.s_addr = INADDR_BROADCAST; return sizeof(sin->sin_addr); } /* avoid a name resolution in case of numeric address */ #ifdef HAVE_INET_PTON /* check for an IPv4 address */ if (af == AF_UNSPEC || af == AF_INET) { struct sockaddr_in *sin = (struct sockaddr_in *)addr_ret; memset(sin, 0, sizeof(*sin)); if (inet_pton(AF_INET, name, &sin->sin_addr) > 0) { sin->sin_family = AF_INET; #ifdef HAVE_SOCKADDR_SA_LEN sin->sin_len = sizeof(*sin); #endif return 4; } } #ifdef ENABLE_IPV6 /* check for an IPv6 address - if the address contains a scope ID, we * fallback to getaddrinfo(), which can handle translation from interface * name to interface index */ if ((af == AF_UNSPEC || af == AF_INET6) && !strchr(name, '%')) { struct sockaddr_in6 *sin = (struct sockaddr_in6 *)addr_ret; memset(sin, 0, sizeof(*sin)); if (inet_pton(AF_INET6, name, &sin->sin6_addr) > 0) { sin->sin6_family = AF_INET6; #ifdef HAVE_SOCKADDR_SA_LEN sin->sin6_len = sizeof(*sin); #endif return 16; } } #endif /* ENABLE_IPV6 */ #else /* HAVE_INET_PTON */ /* check for an IPv4 address */ if (af == AF_INET || af == AF_UNSPEC) { struct sockaddr_in *sin = (struct sockaddr_in *)addr_ret; memset(sin, 0, sizeof(*sin)); if ((sin->sin_addr.s_addr = inet_addr(name)) != INADDR_NONE) { sin->sin_family = AF_INET; #ifdef HAVE_SOCKADDR_SA_LEN sin->sin_len = sizeof(*sin); #endif return 4; } } #endif /* HAVE_INET_PTON */ /* perform a name resolution */ memset(&hints, 0, sizeof(hints)); hints.ai_family = af; Py_BEGIN_ALLOW_THREADS ACQUIRE_GETADDRINFO_LOCK error = getaddrinfo(name, NULL, &hints, &res); #if defined(__digital__) && defined(__unix__) if (error == EAI_NONAME && af == AF_UNSPEC) { /* On Tru64 V5.1, numeric-to-addr conversion fails if no address family is given. Assume IPv4 for now.*/ hints.ai_family = AF_INET; error = getaddrinfo(name, NULL, &hints, &res); } #endif Py_END_ALLOW_THREADS RELEASE_GETADDRINFO_LOCK /* see comment in setipaddr() */ if (error) { set_gaierror(error); return -1; } if (res->ai_addrlen < addr_ret_size) addr_ret_size = res->ai_addrlen; memcpy((char *) addr_ret, res->ai_addr, addr_ret_size); freeaddrinfo(res); switch (addr_ret->sa_family) { case AF_INET: return 4; #ifdef ENABLE_IPV6 case AF_INET6: return 16; #endif default: PyErr_SetString(PyExc_OSError, "unknown address family"); return -1; } } /* Create a string object representing an IP address. This is always a string of the form 'dd.dd.dd.dd' (with variable size numbers). */ static PyObject * makeipaddr(struct sockaddr *addr, int addrlen) { char buf[NI_MAXHOST]; int error; error = getnameinfo(addr, addrlen, buf, sizeof(buf), NULL, 0, NI_NUMERICHOST); if (error) { set_gaierror(error); return NULL; } return PyUnicode_FromString(buf); } #ifdef USE_BLUETOOTH /* Convert a string representation of a Bluetooth address into a numeric address. Returns the length (6), or raises an exception and returns -1 if an error occurred. */ static int setbdaddr(const char *name, bdaddr_t *bdaddr) { unsigned int b0, b1, b2, b3, b4, b5; char ch; int n; n = sscanf(name, "%X:%X:%X:%X:%X:%X%c", &b5, &b4, &b3, &b2, &b1, &b0, &ch); if (n == 6 && (b0 | b1 | b2 | b3 | b4 | b5) < 256) { bdaddr->b[0] = b0; bdaddr->b[1] = b1; bdaddr->b[2] = b2; bdaddr->b[3] = b3; bdaddr->b[4] = b4; bdaddr->b[5] = b5; return 6; } else { PyErr_SetString(PyExc_OSError, "bad bluetooth address"); return -1; } } /* Create a string representation of the Bluetooth address. This is always a string of the form 'XX:XX:XX:XX:XX:XX' where XX is a two digit hexadecimal value (zero padded if necessary). */ static PyObject * makebdaddr(bdaddr_t *bdaddr) { char buf[(6 * 2) + 5 + 1]; sprintf(buf, "%02X:%02X:%02X:%02X:%02X:%02X", bdaddr->b[5], bdaddr->b[4], bdaddr->b[3], bdaddr->b[2], bdaddr->b[1], bdaddr->b[0]); return PyUnicode_FromString(buf); } #endif /* Create an object representing the given socket address, suitable for passing it back to bind(), connect() etc. The family field of the sockaddr structure is inspected to determine what kind of address it really is. */ /*ARGSUSED*/ static PyObject * makesockaddr(SOCKET_T sockfd, struct sockaddr *addr, size_t addrlen, int proto) { if (addrlen == 0) { /* No address -- may be recvfrom() from known socket */ Py_INCREF(Py_None); return Py_None; } switch (addr->sa_family) { case AF_INET: { struct sockaddr_in *a; PyObject *addrobj = makeipaddr(addr, sizeof(*a)); PyObject *ret = NULL; if (addrobj) { a = (struct sockaddr_in *)addr; ret = Py_BuildValue("Oi", addrobj, ntohs(a->sin_port)); Py_DECREF(addrobj); } return ret; } #if defined(AF_UNIX) case AF_UNIX: { struct sockaddr_un *a = (struct sockaddr_un *) addr; #ifdef linux if (a->sun_path[0] == 0) { /* Linux abstract namespace */ addrlen -= offsetof(struct sockaddr_un, sun_path); return PyBytes_FromStringAndSize(a->sun_path, addrlen); } else #endif /* linux */ { /* regular NULL-terminated string */ return PyUnicode_DecodeFSDefault(a->sun_path); } } #endif /* AF_UNIX */ #if defined(AF_NETLINK) case AF_NETLINK: { struct sockaddr_nl *a = (struct sockaddr_nl *) addr; return Py_BuildValue("II", a->nl_pid, a->nl_groups); } #endif /* AF_NETLINK */ #ifdef ENABLE_IPV6 case AF_INET6: { struct sockaddr_in6 *a; PyObject *addrobj = makeipaddr(addr, sizeof(*a)); PyObject *ret = NULL; if (addrobj) { a = (struct sockaddr_in6 *)addr; ret = Py_BuildValue("OiII", addrobj, ntohs(a->sin6_port), ntohl(a->sin6_flowinfo), a->sin6_scope_id); Py_DECREF(addrobj); } return ret; } #endif #ifdef USE_BLUETOOTH case AF_BLUETOOTH: switch (proto) { case BTPROTO_L2CAP: { struct sockaddr_l2 *a = (struct sockaddr_l2 *) addr; PyObject *addrobj = makebdaddr(&_BT_L2_MEMB(a, bdaddr)); PyObject *ret = NULL; if (addrobj) { ret = Py_BuildValue("Oi", addrobj, _BT_L2_MEMB(a, psm)); Py_DECREF(addrobj); } return ret; } case BTPROTO_RFCOMM: { struct sockaddr_rc *a = (struct sockaddr_rc *) addr; PyObject *addrobj = makebdaddr(&_BT_RC_MEMB(a, bdaddr)); PyObject *ret = NULL; if (addrobj) { ret = Py_BuildValue("Oi", addrobj, _BT_RC_MEMB(a, channel)); Py_DECREF(addrobj); } return ret; } case BTPROTO_HCI: { struct sockaddr_hci *a = (struct sockaddr_hci *) addr; #if defined(__NetBSD__) || defined(__DragonFly__) return makebdaddr(&_BT_HCI_MEMB(a, bdaddr)); #else PyObject *ret = NULL; ret = Py_BuildValue("i", _BT_HCI_MEMB(a, dev)); return ret; #endif } #if !defined(__FreeBSD__) case BTPROTO_SCO: { struct sockaddr_sco *a = (struct sockaddr_sco *) addr; return makebdaddr(&_BT_SCO_MEMB(a, bdaddr)); } #endif default: PyErr_SetString(PyExc_ValueError, "Unknown Bluetooth protocol"); return NULL; } #endif #if defined(HAVE_NETPACKET_PACKET_H) && defined(SIOCGIFNAME) case AF_PACKET: { struct sockaddr_ll *a = (struct sockaddr_ll *)addr; char *ifname = ""; struct ifreq ifr; /* need to look up interface name give index */ if (a->sll_ifindex) { ifr.ifr_ifindex = a->sll_ifindex; if (ioctl(sockfd, SIOCGIFNAME, &ifr) == 0) ifname = ifr.ifr_name; } return Py_BuildValue("shbhy#", ifname, ntohs(a->sll_protocol), a->sll_pkttype, a->sll_hatype, a->sll_addr, a->sll_halen); } #endif #ifdef HAVE_LINUX_TIPC_H case AF_TIPC: { struct sockaddr_tipc *a = (struct sockaddr_tipc *) addr; if (a->addrtype == TIPC_ADDR_NAMESEQ) { return Py_BuildValue("IIIII", a->addrtype, a->addr.nameseq.type, a->addr.nameseq.lower, a->addr.nameseq.upper, a->scope); } else if (a->addrtype == TIPC_ADDR_NAME) { return Py_BuildValue("IIIII", a->addrtype, a->addr.name.name.type, a->addr.name.name.instance, a->addr.name.name.instance, a->scope); } else if (a->addrtype == TIPC_ADDR_ID) { return Py_BuildValue("IIIII", a->addrtype, a->addr.id.node, a->addr.id.ref, 0, a->scope); } else { PyErr_SetString(PyExc_ValueError, "Invalid address type"); return NULL; } } #endif #ifdef AF_CAN case AF_CAN: { struct sockaddr_can *a = (struct sockaddr_can *)addr; char *ifname = ""; struct ifreq ifr; /* need to look up interface name given index */ if (a->can_ifindex) { ifr.ifr_ifindex = a->can_ifindex; if (ioctl(sockfd, SIOCGIFNAME, &ifr) == 0) ifname = ifr.ifr_name; } return Py_BuildValue("O&h", PyUnicode_DecodeFSDefault, ifname, a->can_family); } #endif #ifdef PF_SYSTEM case PF_SYSTEM: switch(proto) { #ifdef SYSPROTO_CONTROL case SYSPROTO_CONTROL: { struct sockaddr_ctl *a = (struct sockaddr_ctl *)addr; return Py_BuildValue("(II)", a->sc_id, a->sc_unit); } #endif default: PyErr_SetString(PyExc_ValueError, "Invalid address type"); return 0; } #endif /* More cases here... */ default: /* If we don't know the address family, don't raise an exception -- return it as an (int, bytes) tuple. */ return Py_BuildValue("iy#", addr->sa_family, addr->sa_data, sizeof(addr->sa_data)); } } /* Helper for getsockaddrarg: bypass IDNA for ASCII-only host names (in particular, numeric IP addresses). */ struct maybe_idna { PyObject *obj; char *buf; }; static void idna_cleanup(struct maybe_idna *data) { Py_CLEAR(data->obj); } static int idna_converter(PyObject *obj, struct maybe_idna *data) { size_t len; PyObject *obj2; if (obj == NULL) { idna_cleanup(data); return 1; } data->obj = NULL; len = -1; if (PyBytes_Check(obj)) { data->buf = PyBytes_AsString(obj); len = PyBytes_Size(obj); } else if (PyByteArray_Check(obj)) { data->buf = PyByteArray_AsString(obj); len = PyByteArray_Size(obj); } else if (PyUnicode_Check(obj)) { if (PyUnicode_READY(obj) == 0 && PyUnicode_IS_COMPACT_ASCII(obj)) { data->buf = PyUnicode_DATA(obj); len = PyUnicode_GET_LENGTH(obj); } else { obj2 = PyUnicode_AsEncodedString(obj, "idna", NULL); if (!obj2) { PyErr_SetString(PyExc_TypeError, "encoding of hostname failed"); return 0; } assert(PyBytes_Check(obj2)); data->obj = obj2; data->buf = PyBytes_AS_STRING(obj2); len = PyBytes_GET_SIZE(obj2); } } else { PyErr_Format(PyExc_TypeError, "str, bytes or bytearray expected, not %s", obj->ob_type->tp_name); return 0; } if (strlen(data->buf) != len) { Py_CLEAR(data->obj); PyErr_SetString(PyExc_TypeError, "host name must not contain null character"); return 0; } return Py_CLEANUP_SUPPORTED; } /* Parse a socket address argument according to the socket object's address family. Return 1 if the address was in the proper format, 0 of not. The address is returned through addr_ret, its length through len_ret. */ static int getsockaddrarg(PySocketSockObject *s, PyObject *args, struct sockaddr *addr_ret, int *len_ret) { switch (s->sock_family) { #if defined(AF_UNIX) case AF_UNIX: { struct sockaddr_un* addr; Py_buffer path; int retval = 0; /* PEP 383. Not using PyUnicode_FSConverter since we need to allow embedded nulls on Linux. */ if (PyUnicode_Check(args)) { if ((args = PyUnicode_EncodeFSDefault(args)) == NULL) return 0; } else Py_INCREF(args); if (!PyArg_Parse(args, "y*", &path)) { Py_DECREF(args); return retval; } assert(path.len >= 0); addr = (struct sockaddr_un*)addr_ret; #ifdef linux if (path.len > 0 && *(const char *)path.buf == 0) { /* Linux abstract namespace extension */ if ((size_t)path.len > sizeof addr->sun_path) { PyErr_SetString(PyExc_OSError, "AF_UNIX path too long"); goto unix_out; } } else #endif /* linux */ { /* regular NULL-terminated string */ if ((size_t)path.len >= sizeof addr->sun_path) { PyErr_SetString(PyExc_OSError, "AF_UNIX path too long"); goto unix_out; } addr->sun_path[path.len] = 0; } addr->sun_family = s->sock_family; memcpy(addr->sun_path, path.buf, path.len); *len_ret = path.len + offsetof(struct sockaddr_un, sun_path); retval = 1; unix_out: PyBuffer_Release(&path); Py_DECREF(args); return retval; } #endif /* AF_UNIX */ #if defined(AF_NETLINK) case AF_NETLINK: { struct sockaddr_nl* addr; int pid, groups; addr = (struct sockaddr_nl *)addr_ret; if (!PyTuple_Check(args)) { PyErr_Format( PyExc_TypeError, "getsockaddrarg: " "AF_NETLINK address must be tuple, not %.500s", Py_TYPE(args)->tp_name); return 0; } if (!PyArg_ParseTuple(args, "II:getsockaddrarg", &pid, &groups)) return 0; addr->nl_family = AF_NETLINK; addr->nl_pid = pid; addr->nl_groups = groups; *len_ret = sizeof(*addr); return 1; } #endif #ifdef AF_RDS case AF_RDS: /* RDS sockets use sockaddr_in: fall-through */ #endif case AF_INET: { struct sockaddr_in* addr; struct maybe_idna host = {NULL, NULL}; int port, result; if (!PyTuple_Check(args)) { PyErr_Format( PyExc_TypeError, "getsockaddrarg: " "AF_INET address must be tuple, not %.500s", Py_TYPE(args)->tp_name); return 0; } if (!PyArg_ParseTuple(args, "O&i:getsockaddrarg", idna_converter, &host, &port)) return 0; addr=(struct sockaddr_in*)addr_ret; result = setipaddr(host.buf, (struct sockaddr *)addr, sizeof(*addr), AF_INET); idna_cleanup(&host); if (result < 0) return 0; if (port < 0 || port > 0xffff) { PyErr_SetString( PyExc_OverflowError, "getsockaddrarg: port must be 0-65535."); return 0; } addr->sin_family = AF_INET; addr->sin_port = htons((short)port); *len_ret = sizeof *addr; return 1; } #ifdef ENABLE_IPV6 case AF_INET6: { struct sockaddr_in6* addr; struct maybe_idna host = {NULL, NULL}; int port, result; unsigned int flowinfo, scope_id; flowinfo = scope_id = 0; if (!PyTuple_Check(args)) { PyErr_Format( PyExc_TypeError, "getsockaddrarg: " "AF_INET6 address must be tuple, not %.500s", Py_TYPE(args)->tp_name); return 0; } if (!PyArg_ParseTuple(args, "O&i|II", idna_converter, &host, &port, &flowinfo, &scope_id)) { return 0; } addr = (struct sockaddr_in6*)addr_ret; result = setipaddr(host.buf, (struct sockaddr *)addr, sizeof(*addr), AF_INET6); idna_cleanup(&host); if (result < 0) return 0; if (port < 0 || port > 0xffff) { PyErr_SetString( PyExc_OverflowError, "getsockaddrarg: port must be 0-65535."); return 0; } if (flowinfo > 0xfffff) { PyErr_SetString( PyExc_OverflowError, "getsockaddrarg: flowinfo must be 0-1048575."); return 0; } addr->sin6_family = s->sock_family; addr->sin6_port = htons((short)port); addr->sin6_flowinfo = htonl(flowinfo); addr->sin6_scope_id = scope_id; *len_ret = sizeof *addr; return 1; } #endif #ifdef USE_BLUETOOTH case AF_BLUETOOTH: { switch (s->sock_proto) { case BTPROTO_L2CAP: { struct sockaddr_l2 *addr; char *straddr; addr = (struct sockaddr_l2 *)addr_ret; memset(addr, 0, sizeof(struct sockaddr_l2)); _BT_L2_MEMB(addr, family) = AF_BLUETOOTH; if (!PyArg_ParseTuple(args, "si", &straddr, &_BT_L2_MEMB(addr, psm))) { PyErr_SetString(PyExc_OSError, "getsockaddrarg: " "wrong format"); return 0; } if (setbdaddr(straddr, &_BT_L2_MEMB(addr, bdaddr)) < 0) return 0; *len_ret = sizeof *addr; return 1; } case BTPROTO_RFCOMM: { struct sockaddr_rc *addr; char *straddr; addr = (struct sockaddr_rc *)addr_ret; _BT_RC_MEMB(addr, family) = AF_BLUETOOTH; if (!PyArg_ParseTuple(args, "si", &straddr, &_BT_RC_MEMB(addr, channel))) { PyErr_SetString(PyExc_OSError, "getsockaddrarg: " "wrong format"); return 0; } if (setbdaddr(straddr, &_BT_RC_MEMB(addr, bdaddr)) < 0) return 0; *len_ret = sizeof *addr; return 1; } case BTPROTO_HCI: { struct sockaddr_hci *addr = (struct sockaddr_hci *)addr_ret; #if defined(__NetBSD__) || defined(__DragonFly__) char *straddr = PyBytes_AS_STRING(args); _BT_HCI_MEMB(addr, family) = AF_BLUETOOTH; if (straddr == NULL) { PyErr_SetString(PyExc_OSError, "getsockaddrarg: " "wrong format"); return 0; } if (setbdaddr(straddr, &_BT_HCI_MEMB(addr, bdaddr)) < 0) return 0; #else _BT_HCI_MEMB(addr, family) = AF_BLUETOOTH; if (!PyArg_ParseTuple(args, "i", &_BT_HCI_MEMB(addr, dev))) { PyErr_SetString(PyExc_OSError, "getsockaddrarg: " "wrong format"); return 0; } #endif *len_ret = sizeof *addr; return 1; } #if !defined(__FreeBSD__) case BTPROTO_SCO: { struct sockaddr_sco *addr; char *straddr; addr = (struct sockaddr_sco *)addr_ret; _BT_SCO_MEMB(addr, family) = AF_BLUETOOTH; if (!PyBytes_Check(args)) { PyErr_SetString(PyExc_OSError, "getsockaddrarg: " "wrong format"); return 0; } straddr = PyBytes_AS_STRING(args); if (setbdaddr(straddr, &_BT_SCO_MEMB(addr, bdaddr)) < 0) return 0; *len_ret = sizeof *addr; return 1; } #endif default: PyErr_SetString(PyExc_OSError, "getsockaddrarg: unknown Bluetooth protocol"); return 0; } } #endif #if defined(HAVE_NETPACKET_PACKET_H) && defined(SIOCGIFINDEX) case AF_PACKET: { struct sockaddr_ll* addr; struct ifreq ifr; char *interfaceName; int protoNumber; int hatype = 0; int pkttype = 0; Py_buffer haddr = {NULL, NULL}; if (!PyTuple_Check(args)) { PyErr_Format( PyExc_TypeError, "getsockaddrarg: " "AF_PACKET address must be tuple, not %.500s", Py_TYPE(args)->tp_name); return 0; } if (!PyArg_ParseTuple(args, "si|iiy*", &interfaceName, &protoNumber, &pkttype, &hatype, &haddr)) return 0; strncpy(ifr.ifr_name, interfaceName, sizeof(ifr.ifr_name)); ifr.ifr_name[(sizeof(ifr.ifr_name))-1] = '\0'; if (ioctl(s->sock_fd, SIOCGIFINDEX, &ifr) < 0) { s->errorhandler(); PyBuffer_Release(&haddr); return 0; } if (haddr.buf && haddr.len > 8) { PyErr_SetString(PyExc_ValueError, "Hardware address must be 8 bytes or less"); PyBuffer_Release(&haddr); return 0; } if (protoNumber < 0 || protoNumber > 0xffff) { PyErr_SetString( PyExc_OverflowError, "getsockaddrarg: protoNumber must be 0-65535."); PyBuffer_Release(&haddr); return 0; } addr = (struct sockaddr_ll*)addr_ret; addr->sll_family = AF_PACKET; addr->sll_protocol = htons((short)protoNumber); addr->sll_ifindex = ifr.ifr_ifindex; addr->sll_pkttype = pkttype; addr->sll_hatype = hatype; if (haddr.buf) { memcpy(&addr->sll_addr, haddr.buf, haddr.len); addr->sll_halen = haddr.len; } else addr->sll_halen = 0; *len_ret = sizeof *addr; PyBuffer_Release(&haddr); return 1; } #endif #ifdef HAVE_LINUX_TIPC_H case AF_TIPC: { unsigned int atype, v1, v2, v3; unsigned int scope = TIPC_CLUSTER_SCOPE; struct sockaddr_tipc *addr; if (!PyTuple_Check(args)) { PyErr_Format( PyExc_TypeError, "getsockaddrarg: " "AF_TIPC address must be tuple, not %.500s", Py_TYPE(args)->tp_name); return 0; } if (!PyArg_ParseTuple(args, "IIII|I;Invalid TIPC address format", &atype, &v1, &v2, &v3, &scope)) return 0; addr = (struct sockaddr_tipc *) addr_ret; memset(addr, 0, sizeof(struct sockaddr_tipc)); addr->family = AF_TIPC; addr->scope = scope; addr->addrtype = atype; if (atype == TIPC_ADDR_NAMESEQ) { addr->addr.nameseq.type = v1; addr->addr.nameseq.lower = v2; addr->addr.nameseq.upper = v3; } else if (atype == TIPC_ADDR_NAME) { addr->addr.name.name.type = v1; addr->addr.name.name.instance = v2; } else if (atype == TIPC_ADDR_ID) { addr->addr.id.node = v1; addr->addr.id.ref = v2; } else { /* Shouldn't happen */ PyErr_SetString(PyExc_TypeError, "Invalid address type"); return 0; } *len_ret = sizeof(*addr); return 1; } #endif #if defined(AF_CAN) && defined(CAN_RAW) && defined(CAN_BCM) case AF_CAN: switch (s->sock_proto) { case CAN_RAW: /* fall-through */ case CAN_BCM: { struct sockaddr_can *addr; PyObject *interfaceName; struct ifreq ifr; Py_ssize_t len; addr = (struct sockaddr_can *)addr_ret; if (!PyArg_ParseTuple(args, "O&", PyUnicode_FSConverter, &interfaceName)) return 0; len = PyBytes_GET_SIZE(interfaceName); if (len == 0) { ifr.ifr_ifindex = 0; } else if ((size_t)len < sizeof(ifr.ifr_name)) { strncpy(ifr.ifr_name, PyBytes_AS_STRING(interfaceName), sizeof(ifr.ifr_name)); ifr.ifr_name[(sizeof(ifr.ifr_name))-1] = '\0'; if (ioctl(s->sock_fd, SIOCGIFINDEX, &ifr) < 0) { s->errorhandler(); Py_DECREF(interfaceName); return 0; } } else { PyErr_SetString(PyExc_OSError, "AF_CAN interface name too long"); Py_DECREF(interfaceName); return 0; } addr->can_family = AF_CAN; addr->can_ifindex = ifr.ifr_ifindex; *len_ret = sizeof(*addr); Py_DECREF(interfaceName); return 1; } default: PyErr_SetString(PyExc_OSError, "getsockaddrarg: unsupported CAN protocol"); return 0; } #endif #ifdef PF_SYSTEM case PF_SYSTEM: switch (s->sock_proto) { #ifdef SYSPROTO_CONTROL case SYSPROTO_CONTROL: { struct sockaddr_ctl *addr; addr = (struct sockaddr_ctl *)addr_ret; addr->sc_family = AF_SYSTEM; addr->ss_sysaddr = AF_SYS_CONTROL; if (PyUnicode_Check(args)) { struct ctl_info info; PyObject *ctl_name; if (!PyArg_Parse(args, "O&", PyUnicode_FSConverter, &ctl_name)) { return 0; } if (PyBytes_GET_SIZE(ctl_name) > (Py_ssize_t)sizeof(info.ctl_name)) { PyErr_SetString(PyExc_ValueError, "provided string is too long"); Py_DECREF(ctl_name); return 0; } strncpy(info.ctl_name, PyBytes_AS_STRING(ctl_name), sizeof(info.ctl_name)); Py_DECREF(ctl_name); if (ioctl(s->sock_fd, CTLIOCGINFO, &info)) { PyErr_SetString(PyExc_OSError, "cannot find kernel control with provided name"); return 0; } addr->sc_id = info.ctl_id; addr->sc_unit = 0; } else if (!PyArg_ParseTuple(args, "II", &(addr->sc_id), &(addr->sc_unit))) { PyErr_SetString(PyExc_TypeError, "getsockaddrarg: " "expected str or tuple of two ints"); return 0; } *len_ret = sizeof(*addr); return 1; } #endif default: PyErr_SetString(PyExc_OSError, "getsockaddrarg: unsupported PF_SYSTEM protocol"); return 0; } #endif /* More cases here... */ default: PyErr_SetString(PyExc_OSError, "getsockaddrarg: bad family"); return 0; } } /* Get the address length according to the socket object's address family. Return 1 if the family is known, 0 otherwise. The length is returned through len_ret. */ static int getsockaddrlen(PySocketSockObject *s, socklen_t *len_ret) { switch (s->sock_family) { #if defined(AF_UNIX) case AF_UNIX: { *len_ret = sizeof (struct sockaddr_un); return 1; } #endif /* AF_UNIX */ #if defined(AF_NETLINK) case AF_NETLINK: { *len_ret = sizeof (struct sockaddr_nl); return 1; } #endif #ifdef AF_RDS case AF_RDS: /* RDS sockets use sockaddr_in: fall-through */ #endif case AF_INET: { *len_ret = sizeof (struct sockaddr_in); return 1; } #ifdef ENABLE_IPV6 case AF_INET6: { *len_ret = sizeof (struct sockaddr_in6); return 1; } #endif #ifdef USE_BLUETOOTH case AF_BLUETOOTH: { switch(s->sock_proto) { case BTPROTO_L2CAP: *len_ret = sizeof (struct sockaddr_l2); return 1; case BTPROTO_RFCOMM: *len_ret = sizeof (struct sockaddr_rc); return 1; case BTPROTO_HCI: *len_ret = sizeof (struct sockaddr_hci); return 1; #if !defined(__FreeBSD__) case BTPROTO_SCO: *len_ret = sizeof (struct sockaddr_sco); return 1; #endif default: PyErr_SetString(PyExc_OSError, "getsockaddrlen: " "unknown BT protocol"); return 0; } } #endif #ifdef HAVE_NETPACKET_PACKET_H case AF_PACKET: { *len_ret = sizeof (struct sockaddr_ll); return 1; } #endif #ifdef HAVE_LINUX_TIPC_H case AF_TIPC: { *len_ret = sizeof (struct sockaddr_tipc); return 1; } #endif #ifdef AF_CAN case AF_CAN: { *len_ret = sizeof (struct sockaddr_can); return 1; } #endif #ifdef PF_SYSTEM case PF_SYSTEM: switch(s->sock_proto) { #ifdef SYSPROTO_CONTROL case SYSPROTO_CONTROL: *len_ret = sizeof (struct sockaddr_ctl); return 1; #endif default: PyErr_SetString(PyExc_OSError, "getsockaddrlen: " "unknown PF_SYSTEM protocol"); return 0; } #endif /* More cases here... */ default: PyErr_SetString(PyExc_OSError, "getsockaddrlen: bad family"); return 0; } } /* Support functions for the sendmsg() and recvmsg[_into]() methods. Currently, these methods are only compiled if the RFC 2292/3542 CMSG_LEN() macro is available. Older systems seem to have used sizeof(struct cmsghdr) + (length) where CMSG_LEN() is used now, so it may be possible to define CMSG_LEN() that way if it's not provided. Some architectures might need extra padding after the cmsghdr, however, and CMSG_LEN() would have to take account of this. */ #ifdef CMSG_LEN /* If length is in range, set *result to CMSG_LEN(length) and return true; otherwise, return false. */ static int get_CMSG_LEN(size_t length, size_t *result) { size_t tmp; if (length > (SOCKLEN_T_LIMIT - CMSG_LEN(0))) return 0; tmp = CMSG_LEN(length); if (tmp > SOCKLEN_T_LIMIT || tmp < length) return 0; *result = tmp; return 1; } #ifdef CMSG_SPACE /* If length is in range, set *result to CMSG_SPACE(length) and return true; otherwise, return false. */ static int get_CMSG_SPACE(size_t length, size_t *result) { size_t tmp; /* Use CMSG_SPACE(1) here in order to take account of the padding necessary before *and* after the data. */ if (length > (SOCKLEN_T_LIMIT - CMSG_SPACE(1))) return 0; tmp = CMSG_SPACE(length); if (tmp > SOCKLEN_T_LIMIT || tmp < length) return 0; *result = tmp; return 1; } #endif /* Return true iff msg->msg_controllen is valid, cmsgh is a valid pointer in msg->msg_control with at least "space" bytes after it, and its cmsg_len member inside the buffer. */ static int cmsg_min_space(struct msghdr *msg, struct cmsghdr *cmsgh, size_t space) { size_t cmsg_offset; static const size_t cmsg_len_end = (offsetof(struct cmsghdr, cmsg_len) + sizeof(cmsgh->cmsg_len)); /* Note that POSIX allows msg_controllen to be of signed type. */ if (cmsgh == NULL || msg->msg_control == NULL) return 0; /* Note that POSIX allows msg_controllen to be of a signed type. This is annoying under OS X as it's unsigned there and so it triggers a tautological comparison warning under Clang when compared against 0. Since the check is valid on other platforms, silence the warning under Clang. */ #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wtautological-compare" #endif #if defined(__GNUC__) && ((__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 5))) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wtype-limits" #endif if (msg->msg_controllen < 0) return 0; #if defined(__GNUC__) && ((__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 5))) #pragma GCC diagnostic pop #endif #ifdef __clang__ #pragma clang diagnostic pop #endif if (space < cmsg_len_end) space = cmsg_len_end; cmsg_offset = (char *)cmsgh - (char *)msg->msg_control; return (cmsg_offset <= (size_t)-1 - space && cmsg_offset + space <= msg->msg_controllen); } /* If pointer CMSG_DATA(cmsgh) is in buffer msg->msg_control, set *space to number of bytes following it in the buffer and return true; otherwise, return false. Assumes cmsgh, msg->msg_control and msg->msg_controllen are valid. */ static int get_cmsg_data_space(struct msghdr *msg, struct cmsghdr *cmsgh, size_t *space) { size_t data_offset; char *data_ptr; if ((data_ptr = (char *)CMSG_DATA(cmsgh)) == NULL) return 0; data_offset = data_ptr - (char *)msg->msg_control; if (data_offset > msg->msg_controllen) return 0; *space = msg->msg_controllen - data_offset; return 1; } /* If cmsgh is invalid or not contained in the buffer pointed to by msg->msg_control, return -1. If cmsgh is valid and its associated data is entirely contained in the buffer, set *data_len to the length of the associated data and return 0. If only part of the associated data is contained in the buffer but cmsgh is otherwise valid, set *data_len to the length contained in the buffer and return 1. */ static int get_cmsg_data_len(struct msghdr *msg, struct cmsghdr *cmsgh, size_t *data_len) { size_t space, cmsg_data_len; if (!cmsg_min_space(msg, cmsgh, CMSG_LEN(0)) || cmsgh->cmsg_len < CMSG_LEN(0)) return -1; cmsg_data_len = cmsgh->cmsg_len - CMSG_LEN(0); if (!get_cmsg_data_space(msg, cmsgh, &space)) return -1; if (space >= cmsg_data_len) { *data_len = cmsg_data_len; return 0; } *data_len = space; return 1; } #endif /* CMSG_LEN */ struct sock_accept { socklen_t *addrlen; sock_addr_t *addrbuf; SOCKET_T result; }; #if defined(HAVE_ACCEPT4) && defined(SOCK_CLOEXEC) /* accept4() is available on Linux 2.6.28+ and glibc 2.10 */ static int accept4_works = -1; #endif static int sock_accept_impl(PySocketSockObject *s, void *data) { struct sock_accept *ctx = data; #if defined(HAVE_ACCEPT4) && defined(SOCK_CLOEXEC) if (accept4_works != 0) { ctx->result = accept4(s->sock_fd, SAS2SA(ctx->addrbuf), ctx->addrlen, SOCK_CLOEXEC); if (ctx->result == INVALID_SOCKET && accept4_works == -1) { /* On Linux older than 2.6.28, accept4() fails with ENOSYS */ accept4_works = (errno != ENOSYS); } } if (accept4_works == 0) ctx->result = accept(s->sock_fd, SAS2SA(ctx->addrbuf), ctx->addrlen); #else ctx->result = accept(s->sock_fd, SAS2SA(ctx->addrbuf), ctx->addrlen); #endif #ifdef MS_WINDOWS return (ctx->result != INVALID_SOCKET); #else return (ctx->result >= 0); #endif } /* s._accept() -> (fd, address) */ static PyObject * sock_accept(PySocketSockObject *s) { sock_addr_t addrbuf; SOCKET_T newfd; socklen_t addrlen; PyObject *sock = NULL; PyObject *addr = NULL; PyObject *res = NULL; struct sock_accept ctx; if (!getsockaddrlen(s, &addrlen)) return NULL; memset(&addrbuf, 0, addrlen); if (!IS_SELECTABLE(s)) return select_error(); ctx.addrlen = &addrlen; ctx.addrbuf = &addrbuf; if (sock_call(s, 0, sock_accept_impl, &ctx) < 0) return NULL; newfd = ctx.result; #ifdef MS_WINDOWS if (!SetHandleInformation((HANDLE)newfd, HANDLE_FLAG_INHERIT, 0)) { PyErr_SetFromWindowsErr(0); SOCKETCLOSE(newfd); goto finally; } #else #if defined(HAVE_ACCEPT4) && defined(SOCK_CLOEXEC) if (!accept4_works) #endif { if (_Py_set_inheritable(newfd, 0, NULL) < 0) { SOCKETCLOSE(newfd); goto finally; } } #endif sock = PyLong_FromSocket_t(newfd); if (sock == NULL) { SOCKETCLOSE(newfd); goto finally; } addr = makesockaddr(s->sock_fd, SAS2SA(&addrbuf), addrlen, s->sock_proto); if (addr == NULL) goto finally; res = PyTuple_Pack(2, sock, addr); finally: Py_XDECREF(sock); Py_XDECREF(addr); return res; } PyDoc_STRVAR(accept_doc, "_accept() -> (integer, address info)\n\ \n\ Wait for an incoming connection. Return a new socket file descriptor\n\ representing the connection, and the address of the client.\n\ For IP sockets, the address info is a pair (hostaddr, port)."); /* s.setblocking(flag) method. Argument: False -- non-blocking mode; same as settimeout(0) True -- blocking mode; same as settimeout(None) */ static PyObject * sock_setblocking(PySocketSockObject *s, PyObject *arg) { long block; block = PyLong_AsLong(arg); if (block == -1 && PyErr_Occurred()) return NULL; s->sock_timeout = _PyTime_FromSeconds(block ? -1 : 0); internal_setblocking(s, block); Py_INCREF(Py_None); return Py_None; } PyDoc_STRVAR(setblocking_doc, "setblocking(flag)\n\ \n\ Set the socket to blocking (flag is true) or non-blocking (false).\n\ setblocking(True) is equivalent to settimeout(None);\n\ setblocking(False) is equivalent to settimeout(0.0)."); static int socket_parse_timeout(_PyTime_t *timeout, PyObject *timeout_obj) { #ifdef MS_WINDOWS struct timeval tv; #endif #ifndef HAVE_POLL _PyTime_t ms; #endif int overflow = 0; if (timeout_obj == Py_None) { *timeout = _PyTime_FromSeconds(-1); return 0; } if (_PyTime_FromSecondsObject(timeout, timeout_obj, _PyTime_ROUND_CEILING) < 0) return -1; if (*timeout < 0) { PyErr_SetString(PyExc_ValueError, "Timeout value out of range"); return -1; } #ifdef MS_WINDOWS overflow |= (_PyTime_AsTimeval(*timeout, &tv, _PyTime_ROUND_CEILING) < 0); #endif #ifndef HAVE_POLL ms = _PyTime_AsMilliseconds(*timeout, _PyTime_ROUND_CEILING); overflow |= (ms > INT_MAX); #endif if (overflow) { PyErr_SetString(PyExc_OverflowError, "timeout doesn't fit into C timeval"); return -1; } return 0; } /* s.settimeout(timeout) method. Argument: None -- no timeout, blocking mode; same as setblocking(True) 0.0 -- non-blocking mode; same as setblocking(False) > 0 -- timeout mode; operations time out after timeout seconds < 0 -- illegal; raises an exception */ static PyObject * sock_settimeout(PySocketSockObject *s, PyObject *arg) { _PyTime_t timeout; if (socket_parse_timeout(&timeout, arg) < 0) return NULL; s->sock_timeout = timeout; internal_setblocking(s, timeout < 0); Py_INCREF(Py_None); return Py_None; } PyDoc_STRVAR(settimeout_doc, "settimeout(timeout)\n\ \n\ Set a timeout on socket operations. 'timeout' can be a float,\n\ giving in seconds, or None. Setting a timeout of None disables\n\ the timeout feature and is equivalent to setblocking(1).\n\ Setting a timeout of zero is the same as setblocking(0)."); /* s.gettimeout() method. Returns the timeout associated with a socket. */ static PyObject * sock_gettimeout(PySocketSockObject *s) { if (s->sock_timeout < 0) { Py_INCREF(Py_None); return Py_None; } else { double seconds = _PyTime_AsSecondsDouble(s->sock_timeout); return PyFloat_FromDouble(seconds); } } PyDoc_STRVAR(gettimeout_doc, "gettimeout() -> timeout\n\ \n\ Returns the timeout in seconds (float) associated with socket \n\ operations. A timeout of None indicates that timeouts on socket \n\ operations are disabled."); /* s.setsockopt() method. With an integer third argument, sets an integer option. With a string third argument, sets an option from a buffer; use optional built-in module 'struct' to encode the string. */ static PyObject * sock_setsockopt(PySocketSockObject *s, PyObject *args) { int level; int optname; int res; Py_buffer optval; int flag; if (PyArg_ParseTuple(args, "iii:setsockopt", &level, &optname, &flag)) { res = setsockopt(s->sock_fd, level, optname, (char*)&flag, sizeof flag); } else { PyErr_Clear(); if (!PyArg_ParseTuple(args, "iiy*:setsockopt", &level, &optname, &optval)) return NULL; #ifdef MS_WINDOWS if (optval.len > INT_MAX) { PyBuffer_Release(&optval); PyErr_Format(PyExc_OverflowError, "socket option is larger than %i bytes", INT_MAX); return NULL; } res = setsockopt(s->sock_fd, level, optname, optval.buf, (int)optval.len); #else res = setsockopt(s->sock_fd, level, optname, optval.buf, optval.len); #endif PyBuffer_Release(&optval); } if (res < 0) { return s->errorhandler(); } Py_RETURN_NONE; } PyDoc_STRVAR(setsockopt_doc, "setsockopt(level, option, value)\n\ \n\ Set a socket option. See the Unix manual for level and option.\n\ The value argument can either be an integer or a string."); /* s.getsockopt() method. With two arguments, retrieves an integer option. With a third integer argument, retrieves a string buffer of that size; use optional built-in module 'struct' to decode the string. */ static PyObject * sock_getsockopt(PySocketSockObject *s, PyObject *args) { int level; int optname; int res; PyObject *buf; socklen_t buflen = 0; if (!PyArg_ParseTuple(args, "ii|i:getsockopt", &level, &optname, &buflen)) return NULL; if (buflen == 0) { int flag = 0; socklen_t flagsize = sizeof flag; res = getsockopt(s->sock_fd, level, optname, (void *)&flag, &flagsize); if (res < 0) return s->errorhandler(); return PyLong_FromLong(flag); } if (buflen <= 0 || buflen > 1024) { PyErr_SetString(PyExc_OSError, "getsockopt buflen out of range"); return NULL; } buf = PyBytes_FromStringAndSize((char *)NULL, buflen); if (buf == NULL) return NULL; res = getsockopt(s->sock_fd, level, optname, (void *)PyBytes_AS_STRING(buf), &buflen); if (res < 0) { Py_DECREF(buf); return s->errorhandler(); } _PyBytes_Resize(&buf, buflen); return buf; } PyDoc_STRVAR(getsockopt_doc, "getsockopt(level, option[, buffersize]) -> value\n\ \n\ Get a socket option. See the Unix manual for level and option.\n\ If a nonzero buffersize argument is given, the return value is a\n\ string of that length; otherwise it is an integer."); /* s.bind(sockaddr) method */ static PyObject * sock_bind(PySocketSockObject *s, PyObject *addro) { sock_addr_t addrbuf; int addrlen; int res; if (!getsockaddrarg(s, addro, SAS2SA(&addrbuf), &addrlen)) return NULL; Py_BEGIN_ALLOW_THREADS res = bind(s->sock_fd, SAS2SA(&addrbuf), addrlen); Py_END_ALLOW_THREADS if (res < 0) return s->errorhandler(); Py_INCREF(Py_None); return Py_None; } PyDoc_STRVAR(bind_doc, "bind(address)\n\ \n\ Bind the socket to a local address. For IP sockets, the address is a\n\ pair (host, port); the host must refer to the local host. For raw packet\n\ sockets the address is a tuple (ifname, proto [,pkttype [,hatype]])"); /* s.close() method. Set the file descriptor to -1 so operations tried subsequently will surely fail. */ static PyObject * sock_close(PySocketSockObject *s) { SOCKET_T fd; int res; fd = s->sock_fd; if (fd != -1) { s->sock_fd = -1; /* We do not want to retry upon EINTR: see http://lwn.net/Articles/576478/ and http://linux.derkeiler.com/Mailing-Lists/Kernel/2005-09/3000.html for more details. */ Py_BEGIN_ALLOW_THREADS res = SOCKETCLOSE(fd); Py_END_ALLOW_THREADS if (res < 0) { return s->errorhandler(); } } Py_INCREF(Py_None); return Py_None; } PyDoc_STRVAR(close_doc, "close()\n\ \n\ Close the socket. It cannot be used after this call."); static PyObject * sock_detach(PySocketSockObject *s) { SOCKET_T fd = s->sock_fd; s->sock_fd = -1; return PyLong_FromSocket_t(fd); } PyDoc_STRVAR(detach_doc, "detach()\n\ \n\ Close the socket object without closing the underlying file descriptor.\n\ The object cannot be used after this call, but the file descriptor\n\ can be reused for other purposes. The file descriptor is returned."); static int sock_connect_impl(PySocketSockObject *s, void* Py_UNUSED(data)) { int err; socklen_t size = sizeof err; if (getsockopt(s->sock_fd, SOL_SOCKET, SO_ERROR, (void *)&err, &size)) { /* getsockopt() failed */ return 0; } if (err == EISCONN) return 1; if (err != 0) { /* sock_call_ex() uses GET_SOCK_ERROR() to get the error code */ SET_SOCK_ERROR(err); return 0; } return 1; } static int internal_connect(PySocketSockObject *s, struct sockaddr *addr, int addrlen, int raise) { int res, err, wait_connect; Py_BEGIN_ALLOW_THREADS res = connect(s->sock_fd, addr, addrlen); Py_END_ALLOW_THREADS if (!res) { /* connect() succeeded, the socket is connected */ return 0; } /* connect() failed */ /* save error, PyErr_CheckSignals() can replace it */ err = GET_SOCK_ERROR; if (CHECK_ERRNO(EINTR)) { if (PyErr_CheckSignals()) return -1; /* Issue #23618: when connect() fails with EINTR, the connection is running asynchronously. If the socket is blocking or has a timeout, wait until the connection completes, fails or timed out using select(), and then get the connection status using getsockopt(SO_ERROR). If the socket is non-blocking, raise InterruptedError. The caller is responsible to wait until the connection completes, fails or timed out (it's the case in asyncio for example). */ wait_connect = (s->sock_timeout != 0 && IS_SELECTABLE(s)); } else { wait_connect = (s->sock_timeout > 0 && err == SOCK_INPROGRESS_ERR && IS_SELECTABLE(s)); } if (!wait_connect) { if (raise) { /* restore error, maybe replaced by PyErr_CheckSignals() */ SET_SOCK_ERROR(err); s->errorhandler(); return -1; } else return err; } if (raise) { /* socket.connect() raises an exception on error */ if (sock_call_ex(s, 1, sock_connect_impl, NULL, 1, NULL, s->sock_timeout) < 0) return -1; } else { /* socket.connect_ex() returns the error code on error */ if (sock_call_ex(s, 1, sock_connect_impl, NULL, 1, &err, s->sock_timeout) < 0) return err; } return 0; } /* s.connect(sockaddr) method */ static PyObject * sock_connect(PySocketSockObject *s, PyObject *addro) { sock_addr_t addrbuf; int addrlen; int res; if (!getsockaddrarg(s, addro, SAS2SA(&addrbuf), &addrlen)) return NULL; res = internal_connect(s, SAS2SA(&addrbuf), addrlen, 1); if (res < 0) return NULL; Py_RETURN_NONE; } PyDoc_STRVAR(connect_doc, "connect(address)\n\ \n\ Connect the socket to a remote address. For IP sockets, the address\n\ is a pair (host, port)."); /* s.connect_ex(sockaddr) method */ static PyObject * sock_connect_ex(PySocketSockObject *s, PyObject *addro) { sock_addr_t addrbuf; int addrlen; int res; if (!getsockaddrarg(s, addro, SAS2SA(&addrbuf), &addrlen)) return NULL; res = internal_connect(s, SAS2SA(&addrbuf), addrlen, 0); if (res < 0) return NULL; return PyLong_FromLong((long) res); } PyDoc_STRVAR(connect_ex_doc, "connect_ex(address) -> errno\n\ \n\ This is like connect(address), but returns an error code (the errno value)\n\ instead of raising an exception when an error occurs."); /* s.fileno() method */ static PyObject * sock_fileno(PySocketSockObject *s) { return PyLong_FromSocket_t(s->sock_fd); } PyDoc_STRVAR(fileno_doc, "fileno() -> integer\n\ \n\ Return the integer file descriptor of the socket."); /* s.getsockname() method */ static PyObject * sock_getsockname(PySocketSockObject *s) { sock_addr_t addrbuf; int res; socklen_t addrlen; if (!getsockaddrlen(s, &addrlen)) return NULL; memset(&addrbuf, 0, addrlen); Py_BEGIN_ALLOW_THREADS res = getsockname(s->sock_fd, SAS2SA(&addrbuf), &addrlen); Py_END_ALLOW_THREADS if (res < 0) return s->errorhandler(); return makesockaddr(s->sock_fd, SAS2SA(&addrbuf), addrlen, s->sock_proto); } PyDoc_STRVAR(getsockname_doc, "getsockname() -> address info\n\ \n\ Return the address of the local endpoint. For IP sockets, the address\n\ info is a pair (hostaddr, port)."); #ifdef HAVE_GETPEERNAME /* Cray APP doesn't have this :-( */ /* s.getpeername() method */ static PyObject * sock_getpeername(PySocketSockObject *s) { sock_addr_t addrbuf; int res; socklen_t addrlen; if (!getsockaddrlen(s, &addrlen)) return NULL; memset(&addrbuf, 0, addrlen); Py_BEGIN_ALLOW_THREADS res = getpeername(s->sock_fd, SAS2SA(&addrbuf), &addrlen); Py_END_ALLOW_THREADS if (res < 0) return s->errorhandler(); return makesockaddr(s->sock_fd, SAS2SA(&addrbuf), addrlen, s->sock_proto); } PyDoc_STRVAR(getpeername_doc, "getpeername() -> address info\n\ \n\ Return the address of the remote endpoint. For IP sockets, the address\n\ info is a pair (hostaddr, port)."); #endif /* HAVE_GETPEERNAME */ /* s.listen(n) method */ static PyObject * sock_listen(PySocketSockObject *s, PyObject *args) { /* We try to choose a default backlog high enough to avoid connection drops * for common workloads, yet not too high to limit resource usage. */ int backlog = Py_MIN(SOMAXCONN, 128); int res; if (!PyArg_ParseTuple(args, "|i:listen", &backlog)) return NULL; Py_BEGIN_ALLOW_THREADS /* To avoid problems on systems that don't allow a negative backlog * (which doesn't make sense anyway) we force a minimum value of 0. */ if (backlog < 0) backlog = 0; res = listen(s->sock_fd, backlog); Py_END_ALLOW_THREADS if (res < 0) return s->errorhandler(); Py_INCREF(Py_None); return Py_None; } PyDoc_STRVAR(listen_doc, "listen([backlog])\n\ \n\ Enable a server to accept connections. If backlog is specified, it must be\n\ at least 0 (if it is lower, it is set to 0); it specifies the number of\n\ unaccepted connections that the system will allow before refusing new\n\ connections. If not specified, a default reasonable value is chosen."); struct sock_recv { char *cbuf; Py_ssize_t len; int flags; Py_ssize_t result; }; static int sock_recv_impl(PySocketSockObject *s, void *data) { struct sock_recv *ctx = data; #ifdef MS_WINDOWS if (ctx->len > INT_MAX) ctx->len = INT_MAX; ctx->result = recv(s->sock_fd, ctx->cbuf, (int)ctx->len, ctx->flags); #else ctx->result = recv(s->sock_fd, ctx->cbuf, ctx->len, ctx->flags); #endif return (ctx->result >= 0); } /* * This is the guts of the recv() and recv_into() methods, which reads into a * char buffer. If you have any inc/dec ref to do to the objects that contain * the buffer, do it in the caller. This function returns the number of bytes * successfully read. If there was an error, it returns -1. Note that it is * also possible that we return a number of bytes smaller than the request * bytes. */ static Py_ssize_t sock_recv_guts(PySocketSockObject *s, char* cbuf, Py_ssize_t len, int flags) { struct sock_recv ctx; if (!IS_SELECTABLE(s)) { select_error(); return -1; } if (len == 0) { /* If 0 bytes were requested, do nothing. */ return 0; } ctx.cbuf = cbuf; ctx.len = len; ctx.flags = flags; if (sock_call(s, 0, sock_recv_impl, &ctx) < 0) return -1; return ctx.result; } /* s.recv(nbytes [,flags]) method */ static PyObject * sock_recv(PySocketSockObject *s, PyObject *args) { Py_ssize_t recvlen, outlen; int flags = 0; PyObject *buf; if (!PyArg_ParseTuple(args, "n|i:recv", &recvlen, &flags)) return NULL; if (recvlen < 0) { PyErr_SetString(PyExc_ValueError, "negative buffersize in recv"); return NULL; } /* Allocate a new string. */ buf = PyBytes_FromStringAndSize((char *) 0, recvlen); if (buf == NULL) return NULL; /* Call the guts */ outlen = sock_recv_guts(s, PyBytes_AS_STRING(buf), recvlen, flags); if (outlen < 0) { /* An error occurred, release the string and return an error. */ Py_DECREF(buf); return NULL; } if (outlen != recvlen) { /* We did not read as many bytes as we anticipated, resize the string if possible and be successful. */ _PyBytes_Resize(&buf, outlen); } return buf; } PyDoc_STRVAR(recv_doc, "recv(buffersize[, flags]) -> data\n\ \n\ Receive up to buffersize bytes from the socket. For the optional flags\n\ argument, see the Unix manual. When no data is available, block until\n\ at least one byte is available or until the remote end is closed. When\n\ the remote end is closed and all data is read, return the empty string."); /* s.recv_into(buffer, [nbytes [,flags]]) method */ static PyObject* sock_recv_into(PySocketSockObject *s, PyObject *args, PyObject *kwds) { static char *kwlist[] = {"buffer", "nbytes", "flags", 0}; int flags = 0; Py_buffer pbuf; char *buf; Py_ssize_t buflen, readlen, recvlen = 0; /* Get the buffer's memory */ if (!PyArg_ParseTupleAndKeywords(args, kwds, "w*|ni:recv_into", kwlist, &pbuf, &recvlen, &flags)) return NULL; buf = pbuf.buf; buflen = pbuf.len; if (recvlen < 0) { PyBuffer_Release(&pbuf); PyErr_SetString(PyExc_ValueError, "negative buffersize in recv_into"); return NULL; } if (recvlen == 0) { /* If nbytes was not specified, use the buffer's length */ recvlen = buflen; } /* Check if the buffer is large enough */ if (buflen < recvlen) { PyBuffer_Release(&pbuf); PyErr_SetString(PyExc_ValueError, "buffer too small for requested bytes"); return NULL; } /* Call the guts */ readlen = sock_recv_guts(s, buf, recvlen, flags); if (readlen < 0) { /* Return an error. */ PyBuffer_Release(&pbuf); return NULL; } PyBuffer_Release(&pbuf); /* Return the number of bytes read. Note that we do not do anything special here in the case that readlen < recvlen. */ return PyLong_FromSsize_t(readlen); } PyDoc_STRVAR(recv_into_doc, "recv_into(buffer, [nbytes[, flags]]) -> nbytes_read\n\ \n\ A version of recv() that stores its data into a buffer rather than creating \n\ a new string. Receive up to buffersize bytes from the socket. If buffersize \n\ is not specified (or 0), receive up to the size available in the given buffer.\n\ \n\ See recv() for documentation about the flags."); struct sock_recvfrom { char* cbuf; Py_ssize_t len; int flags; socklen_t *addrlen; sock_addr_t *addrbuf; Py_ssize_t result; }; static int sock_recvfrom_impl(PySocketSockObject *s, void *data) { struct sock_recvfrom *ctx = data; memset(ctx->addrbuf, 0, *ctx->addrlen); #ifdef MS_WINDOWS if (ctx->len > INT_MAX) ctx->len = INT_MAX; ctx->result = recvfrom(s->sock_fd, ctx->cbuf, (int)ctx->len, ctx->flags, SAS2SA(ctx->addrbuf), ctx->addrlen); #else ctx->result = recvfrom(s->sock_fd, ctx->cbuf, ctx->len, ctx->flags, SAS2SA(ctx->addrbuf), ctx->addrlen); #endif return (ctx->result >= 0); } /* * This is the guts of the recvfrom() and recvfrom_into() methods, which reads * into a char buffer. If you have any inc/def ref to do to the objects that * contain the buffer, do it in the caller. This function returns the number * of bytes successfully read. If there was an error, it returns -1. Note * that it is also possible that we return a number of bytes smaller than the * request bytes. * * 'addr' is a return value for the address object. Note that you must decref * it yourself. */ static Py_ssize_t sock_recvfrom_guts(PySocketSockObject *s, char* cbuf, Py_ssize_t len, int flags, PyObject** addr) { sock_addr_t addrbuf; socklen_t addrlen; struct sock_recvfrom ctx; *addr = NULL; if (!getsockaddrlen(s, &addrlen)) return -1; if (!IS_SELECTABLE(s)) { select_error(); return -1; } ctx.cbuf = cbuf; ctx.len = len; ctx.flags = flags; ctx.addrbuf = &addrbuf; ctx.addrlen = &addrlen; if (sock_call(s, 0, sock_recvfrom_impl, &ctx) < 0) return -1; *addr = makesockaddr(s->sock_fd, SAS2SA(&addrbuf), addrlen, s->sock_proto); if (*addr == NULL) return -1; return ctx.result; } /* s.recvfrom(nbytes [,flags]) method */ static PyObject * sock_recvfrom(PySocketSockObject *s, PyObject *args) { PyObject *buf = NULL; PyObject *addr = NULL; PyObject *ret = NULL; int flags = 0; Py_ssize_t recvlen, outlen; if (!PyArg_ParseTuple(args, "n|i:recvfrom", &recvlen, &flags)) return NULL; if (recvlen < 0) { PyErr_SetString(PyExc_ValueError, "negative buffersize in recvfrom"); return NULL; } buf = PyBytes_FromStringAndSize((char *) 0, recvlen); if (buf == NULL) return NULL; outlen = sock_recvfrom_guts(s, PyBytes_AS_STRING(buf), recvlen, flags, &addr); if (outlen < 0) { goto finally; } if (outlen != recvlen) { /* We did not read as many bytes as we anticipated, resize the string if possible and be successful. */ if (_PyBytes_Resize(&buf, outlen) < 0) /* Oopsy, not so successful after all. */ goto finally; } ret = PyTuple_Pack(2, buf, addr); finally: Py_XDECREF(buf); Py_XDECREF(addr); return ret; } PyDoc_STRVAR(recvfrom_doc, "recvfrom(buffersize[, flags]) -> (data, address info)\n\ \n\ Like recv(buffersize, flags) but also return the sender's address info."); /* s.recvfrom_into(buffer[, nbytes [,flags]]) method */ static PyObject * sock_recvfrom_into(PySocketSockObject *s, PyObject *args, PyObject* kwds) { static char *kwlist[] = {"buffer", "nbytes", "flags", 0}; int flags = 0; Py_buffer pbuf; char *buf; Py_ssize_t readlen, buflen, recvlen = 0; PyObject *addr = NULL; if (!PyArg_ParseTupleAndKeywords(args, kwds, "w*|ni:recvfrom_into", kwlist, &pbuf, &recvlen, &flags)) return NULL; buf = pbuf.buf; buflen = pbuf.len; if (recvlen < 0) { PyBuffer_Release(&pbuf); PyErr_SetString(PyExc_ValueError, "negative buffersize in recvfrom_into"); return NULL; } if (recvlen == 0) { /* If nbytes was not specified, use the buffer's length */ recvlen = buflen; } else if (recvlen > buflen) { PyBuffer_Release(&pbuf); PyErr_SetString(PyExc_ValueError, "nbytes is greater than the length of the buffer"); return NULL; } readlen = sock_recvfrom_guts(s, buf, recvlen, flags, &addr); if (readlen < 0) { PyBuffer_Release(&pbuf); /* Return an error */ Py_XDECREF(addr); return NULL; } PyBuffer_Release(&pbuf); /* Return the number of bytes read and the address. Note that we do not do anything special here in the case that readlen < recvlen. */ return Py_BuildValue("nN", readlen, addr); } PyDoc_STRVAR(recvfrom_into_doc, "recvfrom_into(buffer[, nbytes[, flags]]) -> (nbytes, address info)\n\ \n\ Like recv_into(buffer[, nbytes[, flags]]) but also return the sender's address info."); /* The sendmsg() and recvmsg[_into]() methods require a working CMSG_LEN(). See the comment near get_CMSG_LEN(). */ #ifdef CMSG_LEN struct sock_recvmsg { struct msghdr *msg; int flags; ssize_t result; }; static int sock_recvmsg_impl(PySocketSockObject *s, void *data) { struct sock_recvmsg *ctx = data; ctx->result = recvmsg(s->sock_fd, ctx->msg, ctx->flags); return (ctx->result >= 0); } /* * Call recvmsg() with the supplied iovec structures, flags, and * ancillary data buffer size (controllen). Returns the tuple return * value for recvmsg() or recvmsg_into(), with the first item provided * by the supplied makeval() function. makeval() will be called with * the length read and makeval_data as arguments, and must return a * new reference (which will be decrefed if there is a subsequent * error). On error, closes any file descriptors received via * SCM_RIGHTS. */ static PyObject * sock_recvmsg_guts(PySocketSockObject *s, struct iovec *iov, int iovlen, int flags, Py_ssize_t controllen, PyObject *(*makeval)(ssize_t, void *), void *makeval_data) { sock_addr_t addrbuf; socklen_t addrbuflen; struct msghdr msg = {0}; PyObject *cmsg_list = NULL, *retval = NULL; void *controlbuf = NULL; struct cmsghdr *cmsgh; size_t cmsgdatalen = 0; int cmsg_status; struct sock_recvmsg ctx; /* XXX: POSIX says that msg_name and msg_namelen "shall be ignored" when the socket is connected (Linux fills them in anyway for AF_UNIX sockets at least). Normally msg_namelen seems to be set to 0 if there's no address, but try to initialize msg_name to something that won't be mistaken for a real address if that doesn't happen. */ if (!getsockaddrlen(s, &addrbuflen)) return NULL; memset(&addrbuf, 0, addrbuflen); SAS2SA(&addrbuf)->sa_family = AF_UNSPEC; if (controllen < 0 || controllen > SOCKLEN_T_LIMIT) { PyErr_SetString(PyExc_ValueError, "invalid ancillary data buffer length"); return NULL; } if (controllen > 0 && (controlbuf = PyMem_Malloc(controllen)) == NULL) return PyErr_NoMemory(); /* Make the system call. */ if (!IS_SELECTABLE(s)) { select_error(); goto finally; } msg.msg_name = SAS2SA(&addrbuf); msg.msg_namelen = addrbuflen; msg.msg_iov = iov; msg.msg_iovlen = iovlen; msg.msg_control = controlbuf; msg.msg_controllen = controllen; ctx.msg = &msg; ctx.flags = flags; if (sock_call(s, 0, sock_recvmsg_impl, &ctx) < 0) goto finally; /* Make list of (level, type, data) tuples from control messages. */ if ((cmsg_list = PyList_New(0)) == NULL) goto err_closefds; /* Check for empty ancillary data as old CMSG_FIRSTHDR() implementations didn't do so. */ for (cmsgh = ((msg.msg_controllen > 0) ? CMSG_FIRSTHDR(&msg) : NULL); cmsgh != NULL; cmsgh = CMSG_NXTHDR(&msg, cmsgh)) { PyObject *bytes, *tuple; int tmp; cmsg_status = get_cmsg_data_len(&msg, cmsgh, &cmsgdatalen); if (cmsg_status != 0) { if (PyErr_WarnEx(PyExc_RuntimeWarning, "received malformed or improperly-truncated " "ancillary data", 1) == -1) goto err_closefds; } if (cmsg_status < 0) break; if (cmsgdatalen > PY_SSIZE_T_MAX) { PyErr_SetString(PyExc_OSError, "control message too long"); goto err_closefds; } bytes = PyBytes_FromStringAndSize((char *)CMSG_DATA(cmsgh), cmsgdatalen); tuple = Py_BuildValue("iiN", (int)cmsgh->cmsg_level, (int)cmsgh->cmsg_type, bytes); if (tuple == NULL) goto err_closefds; tmp = PyList_Append(cmsg_list, tuple); Py_DECREF(tuple); if (tmp != 0) goto err_closefds; if (cmsg_status != 0) break; } retval = Py_BuildValue("NOiN", (*makeval)(ctx.result, makeval_data), cmsg_list, (int)msg.msg_flags, makesockaddr(s->sock_fd, SAS2SA(&addrbuf), ((msg.msg_namelen > addrbuflen) ? addrbuflen : msg.msg_namelen), s->sock_proto)); if (retval == NULL) goto err_closefds; finally: Py_XDECREF(cmsg_list); PyMem_Free(controlbuf); return retval; err_closefds: #ifdef SCM_RIGHTS /* Close all descriptors coming from SCM_RIGHTS, so they don't leak. */ for (cmsgh = ((msg.msg_controllen > 0) ? CMSG_FIRSTHDR(&msg) : NULL); cmsgh != NULL; cmsgh = CMSG_NXTHDR(&msg, cmsgh)) { cmsg_status = get_cmsg_data_len(&msg, cmsgh, &cmsgdatalen); if (cmsg_status < 0) break; if (cmsgh->cmsg_level == SOL_SOCKET && cmsgh->cmsg_type == SCM_RIGHTS) { size_t numfds; int *fdp; numfds = cmsgdatalen / sizeof(int); fdp = (int *)CMSG_DATA(cmsgh); while (numfds-- > 0) close(*fdp++); } if (cmsg_status != 0) break; } #endif /* SCM_RIGHTS */ goto finally; } static PyObject * makeval_recvmsg(ssize_t received, void *data) { PyObject **buf = data; if (received < PyBytes_GET_SIZE(*buf)) _PyBytes_Resize(buf, received); Py_XINCREF(*buf); return *buf; } /* s.recvmsg(bufsize[, ancbufsize[, flags]]) method */ static PyObject * sock_recvmsg(PySocketSockObject *s, PyObject *args) { Py_ssize_t bufsize, ancbufsize = 0; int flags = 0; struct iovec iov; PyObject *buf = NULL, *retval = NULL; if (!PyArg_ParseTuple(args, "n|ni:recvmsg", &bufsize, &ancbufsize, &flags)) return NULL; if (bufsize < 0) { PyErr_SetString(PyExc_ValueError, "negative buffer size in recvmsg()"); return NULL; } if ((buf = PyBytes_FromStringAndSize(NULL, bufsize)) == NULL) return NULL; iov.iov_base = PyBytes_AS_STRING(buf); iov.iov_len = bufsize; /* Note that we're passing a pointer to *our pointer* to the bytes object here (&buf); makeval_recvmsg() may incref the object, or deallocate it and set our pointer to NULL. */ retval = sock_recvmsg_guts(s, &iov, 1, flags, ancbufsize, &makeval_recvmsg, &buf); Py_XDECREF(buf); return retval; } PyDoc_STRVAR(recvmsg_doc, "recvmsg(bufsize[, ancbufsize[, flags]]) -> (data, ancdata, msg_flags, address)\n\ \n\ Receive normal data (up to bufsize bytes) and ancillary data from the\n\ socket. The ancbufsize argument sets the size in bytes of the\n\ internal buffer used to receive the ancillary data; it defaults to 0,\n\ meaning that no ancillary data will be received. Appropriate buffer\n\ sizes for ancillary data can be calculated using CMSG_SPACE() or\n\ CMSG_LEN(), and items which do not fit into the buffer might be\n\ truncated or discarded. The flags argument defaults to 0 and has the\n\ same meaning as for recv().\n\ \n\ The return value is a 4-tuple: (data, ancdata, msg_flags, address).\n\ The data item is a bytes object holding the non-ancillary data\n\ received. The ancdata item is a list of zero or more tuples\n\ (cmsg_level, cmsg_type, cmsg_data) representing the ancillary data\n\ (control messages) received: cmsg_level and cmsg_type are integers\n\ specifying the protocol level and protocol-specific type respectively,\n\ and cmsg_data is a bytes object holding the associated data. The\n\ msg_flags item is the bitwise OR of various flags indicating\n\ conditions on the received message; see your system documentation for\n\ details. If the receiving socket is unconnected, address is the\n\ address of the sending socket, if available; otherwise, its value is\n\ unspecified.\n\ \n\ If recvmsg() raises an exception after the system call returns, it\n\ will first attempt to close any file descriptors received via the\n\ SCM_RIGHTS mechanism."); static PyObject * makeval_recvmsg_into(ssize_t received, void *data) { return PyLong_FromSsize_t(received); } /* s.recvmsg_into(buffers[, ancbufsize[, flags]]) method */ static PyObject * sock_recvmsg_into(PySocketSockObject *s, PyObject *args) { Py_ssize_t ancbufsize = 0; int flags = 0; struct iovec *iovs = NULL; Py_ssize_t i, nitems, nbufs = 0; Py_buffer *bufs = NULL; PyObject *buffers_arg, *fast, *retval = NULL; if (!PyArg_ParseTuple(args, "O|ni:recvmsg_into", &buffers_arg, &ancbufsize, &flags)) return NULL; if ((fast = PySequence_Fast(buffers_arg, "recvmsg_into() argument 1 must be an " "iterable")) == NULL) return NULL; nitems = PySequence_Fast_GET_SIZE(fast); if (nitems > INT_MAX) { PyErr_SetString(PyExc_OSError, "recvmsg_into() argument 1 is too long"); goto finally; } /* Fill in an iovec for each item, and save the Py_buffer structs to release afterwards. */ if (nitems > 0 && ((iovs = PyMem_New(struct iovec, nitems)) == NULL || (bufs = PyMem_New(Py_buffer, nitems)) == NULL)) { PyErr_NoMemory(); goto finally; } for (; nbufs < nitems; nbufs++) { if (!PyArg_Parse(PySequence_Fast_GET_ITEM(fast, nbufs), "w*;recvmsg_into() argument 1 must be an iterable " "of single-segment read-write buffers", &bufs[nbufs])) goto finally; iovs[nbufs].iov_base = bufs[nbufs].buf; iovs[nbufs].iov_len = bufs[nbufs].len; } retval = sock_recvmsg_guts(s, iovs, nitems, flags, ancbufsize, &makeval_recvmsg_into, NULL); finally: for (i = 0; i < nbufs; i++) PyBuffer_Release(&bufs[i]); PyMem_Free(bufs); PyMem_Free(iovs); Py_DECREF(fast); return retval; } PyDoc_STRVAR(recvmsg_into_doc, "recvmsg_into(buffers[, ancbufsize[, flags]]) -> (nbytes, ancdata, msg_flags, address)\n\ \n\ Receive normal data and ancillary data from the socket, scattering the\n\ non-ancillary data into a series of buffers. The buffers argument\n\ must be an iterable of objects that export writable buffers\n\ (e.g. bytearray objects); these will be filled with successive chunks\n\ of the non-ancillary data until it has all been written or there are\n\ no more buffers. The ancbufsize argument sets the size in bytes of\n\ the internal buffer used to receive the ancillary data; it defaults to\n\ 0, meaning that no ancillary data will be received. Appropriate\n\ buffer sizes for ancillary data can be calculated using CMSG_SPACE()\n\ or CMSG_LEN(), and items which do not fit into the buffer might be\n\ truncated or discarded. The flags argument defaults to 0 and has the\n\ same meaning as for recv().\n\ \n\ The return value is a 4-tuple: (nbytes, ancdata, msg_flags, address).\n\ The nbytes item is the total number of bytes of non-ancillary data\n\ written into the buffers. The ancdata item is a list of zero or more\n\ tuples (cmsg_level, cmsg_type, cmsg_data) representing the ancillary\n\ data (control messages) received: cmsg_level and cmsg_type are\n\ integers specifying the protocol level and protocol-specific type\n\ respectively, and cmsg_data is a bytes object holding the associated\n\ data. The msg_flags item is the bitwise OR of various flags\n\ indicating conditions on the received message; see your system\n\ documentation for details. If the receiving socket is unconnected,\n\ address is the address of the sending socket, if available; otherwise,\n\ its value is unspecified.\n\ \n\ If recvmsg_into() raises an exception after the system call returns,\n\ it will first attempt to close any file descriptors received via the\n\ SCM_RIGHTS mechanism."); #endif /* CMSG_LEN */ struct sock_send { char *buf; Py_ssize_t len; int flags; Py_ssize_t result; }; static int sock_send_impl(PySocketSockObject *s, void *data) { struct sock_send *ctx = data; #ifdef MS_WINDOWS if (ctx->len > INT_MAX) ctx->len = INT_MAX; ctx->result = send(s->sock_fd, ctx->buf, (int)ctx->len, ctx->flags); #else ctx->result = send(s->sock_fd, ctx->buf, ctx->len, ctx->flags); #endif return (ctx->result >= 0); } /* s.send(data [,flags]) method */ static PyObject * sock_send(PySocketSockObject *s, PyObject *args) { int flags = 0; Py_buffer pbuf; struct sock_send ctx; if (!PyArg_ParseTuple(args, "y*|i:send", &pbuf, &flags)) return NULL; if (!IS_SELECTABLE(s)) { PyBuffer_Release(&pbuf); return select_error(); } ctx.buf = pbuf.buf; ctx.len = pbuf.len; ctx.flags = flags; if (sock_call(s, 1, sock_send_impl, &ctx) < 0) { PyBuffer_Release(&pbuf); return NULL; } PyBuffer_Release(&pbuf); return PyLong_FromSsize_t(ctx.result); } PyDoc_STRVAR(send_doc, "send(data[, flags]) -> count\n\ \n\ Send a data string to the socket. For the optional flags\n\ argument, see the Unix manual. Return the number of bytes\n\ sent; this may be less than len(data) if the network is busy."); /* s.sendall(data [,flags]) method */ static PyObject * sock_sendall(PySocketSockObject *s, PyObject *args) { char *buf; Py_ssize_t len, n; int flags = 0; Py_buffer pbuf; struct sock_send ctx; int has_timeout = (s->sock_timeout > 0); _PyTime_t interval = s->sock_timeout; _PyTime_t deadline = 0; int deadline_initialized = 0; PyObject *res = NULL; if (!PyArg_ParseTuple(args, "y*|i:sendall", &pbuf, &flags)) return NULL; buf = pbuf.buf; len = pbuf.len; if (!IS_SELECTABLE(s)) { PyBuffer_Release(&pbuf); return select_error(); } do { if (has_timeout) { if (deadline_initialized) { /* recompute the timeout */ interval = deadline - _PyTime_GetMonotonicClock(); } else { deadline_initialized = 1; deadline = _PyTime_GetMonotonicClock() + s->sock_timeout; } if (interval <= 0) { PyErr_SetString(socket_timeout, "timed out"); goto done; } } ctx.buf = buf; ctx.len = len; ctx.flags = flags; if (sock_call_ex(s, 1, sock_send_impl, &ctx, 0, NULL, interval) < 0) goto done; n = ctx.result; assert(n >= 0); buf += n; len -= n; /* We must run our signal handlers before looping again. send() can return a successful partial write when it is interrupted, so we can't restrict ourselves to EINTR. */ if (PyErr_CheckSignals()) goto done; } while (len > 0); PyBuffer_Release(&pbuf); Py_INCREF(Py_None); res = Py_None; done: PyBuffer_Release(&pbuf); return res; } PyDoc_STRVAR(sendall_doc, "sendall(data[, flags])\n\ \n\ Send a data string to the socket. For the optional flags\n\ argument, see the Unix manual. This calls send() repeatedly\n\ until all data is sent. If an error occurs, it's impossible\n\ to tell how much data has been sent."); struct sock_sendto { char *buf; Py_ssize_t len; int flags; int addrlen; sock_addr_t *addrbuf; Py_ssize_t result; }; static int sock_sendto_impl(PySocketSockObject *s, void *data) { struct sock_sendto *ctx = data; #ifdef MS_WINDOWS if (ctx->len > INT_MAX) ctx->len = INT_MAX; ctx->result = sendto(s->sock_fd, ctx->buf, (int)ctx->len, ctx->flags, SAS2SA(ctx->addrbuf), ctx->addrlen); #else ctx->result = sendto(s->sock_fd, ctx->buf, ctx->len, ctx->flags, SAS2SA(ctx->addrbuf), ctx->addrlen); #endif return (ctx->result >= 0); } /* s.sendto(data, [flags,] sockaddr) method */ static PyObject * sock_sendto(PySocketSockObject *s, PyObject *args) { Py_buffer pbuf; PyObject *addro; Py_ssize_t arglen; sock_addr_t addrbuf; int addrlen, flags; struct sock_sendto ctx; flags = 0; arglen = PyTuple_Size(args); switch (arglen) { case 2: PyArg_ParseTuple(args, "y*O:sendto", &pbuf, &addro); break; case 3: PyArg_ParseTuple(args, "y*iO:sendto", &pbuf, &flags, &addro); break; default: PyErr_Format(PyExc_TypeError, "sendto() takes 2 or 3 arguments (%d given)", arglen); return NULL; } if (PyErr_Occurred()) return NULL; if (!IS_SELECTABLE(s)) { PyBuffer_Release(&pbuf); return select_error(); } if (!getsockaddrarg(s, addro, SAS2SA(&addrbuf), &addrlen)) { PyBuffer_Release(&pbuf); return NULL; } ctx.buf = pbuf.buf; ctx.len = pbuf.len; ctx.flags = flags; ctx.addrlen = addrlen; ctx.addrbuf = &addrbuf; if (sock_call(s, 1, sock_sendto_impl, &ctx) < 0) { PyBuffer_Release(&pbuf); return NULL; } PyBuffer_Release(&pbuf); return PyLong_FromSsize_t(ctx.result); } PyDoc_STRVAR(sendto_doc, "sendto(data[, flags], address) -> count\n\ \n\ Like send(data, flags) but allows specifying the destination address.\n\ For IP sockets, the address is a pair (hostaddr, port)."); /* The sendmsg() and recvmsg[_into]() methods require a working CMSG_LEN(). See the comment near get_CMSG_LEN(). */ #ifdef CMSG_LEN struct sock_sendmsg { struct msghdr *msg; int flags; ssize_t result; }; static int sock_sendmsg_impl(PySocketSockObject *s, void *data) { struct sock_sendmsg *ctx = data; ctx->result = sendmsg(s->sock_fd, ctx->msg, ctx->flags); return (ctx->result >= 0); } /* s.sendmsg(buffers[, ancdata[, flags[, address]]]) method */ static PyObject * sock_sendmsg(PySocketSockObject *s, PyObject *args) { Py_ssize_t i, ndataparts, ndatabufs = 0, ncmsgs, ncmsgbufs = 0; Py_buffer *databufs = NULL; struct iovec *iovs = NULL; sock_addr_t addrbuf; struct msghdr msg = {0}; struct cmsginfo { int level; int type; Py_buffer data; } *cmsgs = NULL; void *controlbuf = NULL; size_t controllen, controllen_last; int addrlen, flags = 0; PyObject *data_arg, *cmsg_arg = NULL, *addr_arg = NULL, *data_fast = NULL, *cmsg_fast = NULL, *retval = NULL; struct sock_sendmsg ctx; if (!PyArg_ParseTuple(args, "O|OiO:sendmsg", &data_arg, &cmsg_arg, &flags, &addr_arg)) return NULL; /* Parse destination address. */ if (addr_arg != NULL && addr_arg != Py_None) { if (!getsockaddrarg(s, addr_arg, SAS2SA(&addrbuf), &addrlen)) goto finally; msg.msg_name = &addrbuf; msg.msg_namelen = addrlen; } /* Fill in an iovec for each message part, and save the Py_buffer structs to release afterwards. */ if ((data_fast = PySequence_Fast(data_arg, "sendmsg() argument 1 must be an " "iterable")) == NULL) goto finally; ndataparts = PySequence_Fast_GET_SIZE(data_fast); if (ndataparts > INT_MAX) { PyErr_SetString(PyExc_OSError, "sendmsg() argument 1 is too long"); goto finally; } msg.msg_iovlen = ndataparts; if (ndataparts > 0 && ((msg.msg_iov = iovs = PyMem_New(struct iovec, ndataparts)) == NULL || (databufs = PyMem_New(Py_buffer, ndataparts)) == NULL)) { PyErr_NoMemory(); goto finally; } for (; ndatabufs < ndataparts; ndatabufs++) { if (!PyArg_Parse(PySequence_Fast_GET_ITEM(data_fast, ndatabufs), "y*;sendmsg() argument 1 must be an iterable of " "bytes-like objects", &databufs[ndatabufs])) goto finally; iovs[ndatabufs].iov_base = databufs[ndatabufs].buf; iovs[ndatabufs].iov_len = databufs[ndatabufs].len; } if (cmsg_arg == NULL) ncmsgs = 0; else { if ((cmsg_fast = PySequence_Fast(cmsg_arg, "sendmsg() argument 2 must be an " "iterable")) == NULL) goto finally; ncmsgs = PySequence_Fast_GET_SIZE(cmsg_fast); } #ifndef CMSG_SPACE if (ncmsgs > 1) { PyErr_SetString(PyExc_OSError, "sending multiple control messages is not supported " "on this system"); goto finally; } #endif /* Save level, type and Py_buffer for each control message, and calculate total size. */ if (ncmsgs > 0 && (cmsgs = PyMem_New(struct cmsginfo, ncmsgs)) == NULL) { PyErr_NoMemory(); goto finally; } controllen = controllen_last = 0; while (ncmsgbufs < ncmsgs) { size_t bufsize, space; if (!PyArg_Parse(PySequence_Fast_GET_ITEM(cmsg_fast, ncmsgbufs), "(iiy*):[sendmsg() ancillary data items]", &cmsgs[ncmsgbufs].level, &cmsgs[ncmsgbufs].type, &cmsgs[ncmsgbufs].data)) goto finally; bufsize = cmsgs[ncmsgbufs++].data.len; #ifdef CMSG_SPACE if (!get_CMSG_SPACE(bufsize, &space)) { #else if (!get_CMSG_LEN(bufsize, &space)) { #endif PyErr_SetString(PyExc_OSError, "ancillary data item too large"); goto finally; } controllen += space; if (controllen > SOCKLEN_T_LIMIT || controllen < controllen_last) { PyErr_SetString(PyExc_OSError, "too much ancillary data"); goto finally; } controllen_last = controllen; } /* Construct ancillary data block from control message info. */ if (ncmsgbufs > 0) { struct cmsghdr *cmsgh = NULL; if ((msg.msg_control = controlbuf = PyMem_Malloc(controllen)) == NULL) { PyErr_NoMemory(); goto finally; } msg.msg_controllen = controllen; /* Need to zero out the buffer as a workaround for glibc's CMSG_NXTHDR() implementation. After getting the pointer to the next header, it checks its (uninitialized) cmsg_len member to see if the "message" fits in the buffer, and returns NULL if it doesn't. Zero-filling the buffer ensures that this doesn't happen. */ memset(controlbuf, 0, controllen); for (i = 0; i < ncmsgbufs; i++) { size_t msg_len, data_len = cmsgs[i].data.len; int enough_space = 0; cmsgh = (i == 0) ? CMSG_FIRSTHDR(&msg) : CMSG_NXTHDR(&msg, cmsgh); if (cmsgh == NULL) { PyErr_Format(PyExc_RuntimeError, "unexpected NULL result from %s()", (i == 0) ? "CMSG_FIRSTHDR" : "CMSG_NXTHDR"); goto finally; } if (!get_CMSG_LEN(data_len, &msg_len)) { PyErr_SetString(PyExc_RuntimeError, "item size out of range for CMSG_LEN()"); goto finally; } if (cmsg_min_space(&msg, cmsgh, msg_len)) { size_t space; cmsgh->cmsg_len = msg_len; if (get_cmsg_data_space(&msg, cmsgh, &space)) enough_space = (space >= data_len); } if (!enough_space) { PyErr_SetString(PyExc_RuntimeError, "ancillary data does not fit in calculated " "space"); goto finally; } cmsgh->cmsg_level = cmsgs[i].level; cmsgh->cmsg_type = cmsgs[i].type; memcpy(CMSG_DATA(cmsgh), cmsgs[i].data.buf, data_len); } } /* Make the system call. */ if (!IS_SELECTABLE(s)) { select_error(); goto finally; } ctx.msg = &msg; ctx.flags = flags; if (sock_call(s, 1, sock_sendmsg_impl, &ctx) < 0) goto finally; retval = PyLong_FromSsize_t(ctx.result); finally: PyMem_Free(controlbuf); for (i = 0; i < ncmsgbufs; i++) PyBuffer_Release(&cmsgs[i].data); PyMem_Free(cmsgs); Py_XDECREF(cmsg_fast); for (i = 0; i < ndatabufs; i++) PyBuffer_Release(&databufs[i]); PyMem_Free(databufs); PyMem_Free(iovs); Py_XDECREF(data_fast); return retval; } PyDoc_STRVAR(sendmsg_doc, "sendmsg(buffers[, ancdata[, flags[, address]]]) -> count\n\ \n\ Send normal and ancillary data to the socket, gathering the\n\ non-ancillary data from a series of buffers and concatenating it into\n\ a single message. The buffers argument specifies the non-ancillary\n\ data as an iterable of bytes-like objects (e.g. bytes objects).\n\ The ancdata argument specifies the ancillary data (control messages)\n\ as an iterable of zero or more tuples (cmsg_level, cmsg_type,\n\ cmsg_data), where cmsg_level and cmsg_type are integers specifying the\n\ protocol level and protocol-specific type respectively, and cmsg_data\n\ is a bytes-like object holding the associated data. The flags\n\ argument defaults to 0 and has the same meaning as for send(). If\n\ address is supplied and not None, it sets a destination address for\n\ the message. The return value is the number of bytes of non-ancillary\n\ data sent."); #endif /* CMSG_LEN */ /* s.shutdown(how) method */ static PyObject * sock_shutdown(PySocketSockObject *s, PyObject *arg) { int how; int res; how = _PyLong_AsInt(arg); if (how == -1 && PyErr_Occurred()) return NULL; Py_BEGIN_ALLOW_THREADS res = shutdown(s->sock_fd, how); Py_END_ALLOW_THREADS if (res < 0) return s->errorhandler(); Py_INCREF(Py_None); return Py_None; } PyDoc_STRVAR(shutdown_doc, "shutdown(flag)\n\ \n\ Shut down the reading side of the socket (flag == SHUT_RD), the writing side\n\ of the socket (flag == SHUT_WR), or both ends (flag == SHUT_RDWR)."); #if defined(MS_WINDOWS) && defined(SIO_RCVALL) static PyObject* sock_ioctl(PySocketSockObject *s, PyObject *arg) { unsigned long cmd = SIO_RCVALL; PyObject *argO; DWORD recv; if (!PyArg_ParseTuple(arg, "kO:ioctl", &cmd, &argO)) return NULL; switch (cmd) { case SIO_RCVALL: { unsigned int option = RCVALL_ON; if (!PyArg_ParseTuple(arg, "kI:ioctl", &cmd, &option)) return NULL; if (WSAIoctl(s->sock_fd, cmd, &option, sizeof(option), NULL, 0, &recv, NULL, NULL) == SOCKET_ERROR) { return set_error(); } return PyLong_FromUnsignedLong(recv); } case SIO_KEEPALIVE_VALS: { struct tcp_keepalive ka; if (!PyArg_ParseTuple(arg, "k(kkk):ioctl", &cmd, &ka.onoff, &ka.keepalivetime, &ka.keepaliveinterval)) return NULL; if (WSAIoctl(s->sock_fd, cmd, &ka, sizeof(ka), NULL, 0, &recv, NULL, NULL) == SOCKET_ERROR) { return set_error(); } return PyLong_FromUnsignedLong(recv); } default: PyErr_Format(PyExc_ValueError, "invalid ioctl command %d", cmd); return NULL; } } PyDoc_STRVAR(sock_ioctl_doc, "ioctl(cmd, option) -> long\n\ \n\ Control the socket with WSAIoctl syscall. Currently supported 'cmd' values are\n\ SIO_RCVALL: 'option' must be one of the socket.RCVALL_* constants.\n\ SIO_KEEPALIVE_VALS: 'option' is a tuple of (onoff, timeout, interval)."); #endif #if defined(MS_WINDOWS) static PyObject* sock_share(PySocketSockObject *s, PyObject *arg) { WSAPROTOCOL_INFO info; DWORD processId; int result; if (!PyArg_ParseTuple(arg, "I", &processId)) return NULL; Py_BEGIN_ALLOW_THREADS result = WSADuplicateSocket(s->sock_fd, processId, &info); Py_END_ALLOW_THREADS if (result == SOCKET_ERROR) return set_error(); return PyBytes_FromStringAndSize((const char*)&info, sizeof(info)); } PyDoc_STRVAR(sock_share_doc, "share(process_id) -> bytes\n\ \n\ Share the socket with another process. The target process id\n\ must be provided and the resulting bytes object passed to the target\n\ process. There the shared socket can be instantiated by calling\n\ socket.fromshare()."); #endif /* List of methods for socket objects */ static PyMethodDef sock_methods[] = { {"_accept", (PyCFunction)sock_accept, METH_NOARGS, accept_doc}, {"bind", (PyCFunction)sock_bind, METH_O, bind_doc}, {"close", (PyCFunction)sock_close, METH_NOARGS, close_doc}, {"connect", (PyCFunction)sock_connect, METH_O, connect_doc}, {"connect_ex", (PyCFunction)sock_connect_ex, METH_O, connect_ex_doc}, {"detach", (PyCFunction)sock_detach, METH_NOARGS, detach_doc}, {"fileno", (PyCFunction)sock_fileno, METH_NOARGS, fileno_doc}, #ifdef HAVE_GETPEERNAME {"getpeername", (PyCFunction)sock_getpeername, METH_NOARGS, getpeername_doc}, #endif {"getsockname", (PyCFunction)sock_getsockname, METH_NOARGS, getsockname_doc}, {"getsockopt", (PyCFunction)sock_getsockopt, METH_VARARGS, getsockopt_doc}, #if defined(MS_WINDOWS) && defined(SIO_RCVALL) {"ioctl", (PyCFunction)sock_ioctl, METH_VARARGS, sock_ioctl_doc}, #endif #if defined(MS_WINDOWS) {"share", (PyCFunction)sock_share, METH_VARARGS, sock_share_doc}, #endif {"listen", (PyCFunction)sock_listen, METH_VARARGS, listen_doc}, {"recv", (PyCFunction)sock_recv, METH_VARARGS, recv_doc}, {"recv_into", (PyCFunction)sock_recv_into, METH_VARARGS | METH_KEYWORDS, recv_into_doc}, {"recvfrom", (PyCFunction)sock_recvfrom, METH_VARARGS, recvfrom_doc}, {"recvfrom_into", (PyCFunction)sock_recvfrom_into, METH_VARARGS | METH_KEYWORDS, recvfrom_into_doc}, {"send", (PyCFunction)sock_send, METH_VARARGS, send_doc}, {"sendall", (PyCFunction)sock_sendall, METH_VARARGS, sendall_doc}, {"sendto", (PyCFunction)sock_sendto, METH_VARARGS, sendto_doc}, {"setblocking", (PyCFunction)sock_setblocking, METH_O, setblocking_doc}, {"settimeout", (PyCFunction)sock_settimeout, METH_O, settimeout_doc}, {"gettimeout", (PyCFunction)sock_gettimeout, METH_NOARGS, gettimeout_doc}, {"setsockopt", (PyCFunction)sock_setsockopt, METH_VARARGS, setsockopt_doc}, {"shutdown", (PyCFunction)sock_shutdown, METH_O, shutdown_doc}, #ifdef CMSG_LEN {"recvmsg", (PyCFunction)sock_recvmsg, METH_VARARGS, recvmsg_doc}, {"recvmsg_into", (PyCFunction)sock_recvmsg_into, METH_VARARGS, recvmsg_into_doc,}, {"sendmsg", (PyCFunction)sock_sendmsg, METH_VARARGS, sendmsg_doc}, #endif {NULL, NULL} /* sentinel */ }; /* SockObject members */ static PyMemberDef sock_memberlist[] = { {"family", T_INT, offsetof(PySocketSockObject, sock_family), READONLY, "the socket family"}, {"type", T_INT, offsetof(PySocketSockObject, sock_type), READONLY, "the socket type"}, {"proto", T_INT, offsetof(PySocketSockObject, sock_proto), READONLY, "the socket protocol"}, {0}, }; static PyGetSetDef sock_getsetlist[] = { {"timeout", (getter)sock_gettimeout, NULL, PyDoc_STR("the socket timeout")}, {NULL} /* sentinel */ }; /* Deallocate a socket object in response to the last Py_DECREF(). First close the file description. */ static void sock_finalize(PySocketSockObject *s) { SOCKET_T fd; PyObject *error_type, *error_value, *error_traceback; /* Save the current exception, if any. */ PyErr_Fetch(&error_type, &error_value, &error_traceback); if (s->sock_fd != -1) { if (PyErr_ResourceWarning((PyObject *)s, 1, "unclosed %R", s)) { /* Spurious errors can appear at shutdown */ if (PyErr_ExceptionMatches(PyExc_Warning)) { PyErr_WriteUnraisable((PyObject *)s); } } /* Only close the socket *after* logging the ResourceWarning warning to allow the logger to call socket methods like socket.getsockname(). If the socket is closed before, socket methods fails with the EBADF error. */ fd = s->sock_fd; s->sock_fd = -1; /* We do not want to retry upon EINTR: see sock_close() */ Py_BEGIN_ALLOW_THREADS (void) SOCKETCLOSE(fd); Py_END_ALLOW_THREADS } /* Restore the saved exception. */ PyErr_Restore(error_type, error_value, error_traceback); } static void sock_dealloc(PySocketSockObject *s) { if (PyObject_CallFinalizerFromDealloc((PyObject *)s) < 0) return; Py_TYPE(s)->tp_free((PyObject *)s); } static PyObject * sock_repr(PySocketSockObject *s) { long sock_fd; /* On Windows, this test is needed because SOCKET_T is unsigned */ if (s->sock_fd == INVALID_SOCKET) { sock_fd = -1; } #if SIZEOF_SOCKET_T > SIZEOF_LONG else if (s->sock_fd > LONG_MAX) { /* this can occur on Win64, and actually there is a special ugly printf formatter for decimal pointer length integer printing, only bother if necessary*/ PyErr_SetString(PyExc_OverflowError, "no printf formatter to display " "the socket descriptor in decimal"); return NULL; } #endif else sock_fd = (long)s->sock_fd; return PyUnicode_FromFormat( "", sock_fd, s->sock_family, s->sock_type, s->sock_proto); } /* Create a new, uninitialized socket object. */ static PyObject * sock_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyObject *new; new = type->tp_alloc(type, 0); if (new != NULL) { ((PySocketSockObject *)new)->sock_fd = -1; ((PySocketSockObject *)new)->sock_timeout = _PyTime_FromSeconds(-1); ((PySocketSockObject *)new)->errorhandler = &set_error; } return new; } /* Initialize a new socket object. */ #ifdef SOCK_CLOEXEC /* socket() and socketpair() fail with EINVAL on Linux kernel older * than 2.6.27 if SOCK_CLOEXEC flag is set in the socket type. */ static int sock_cloexec_works = -1; #endif /*ARGSUSED*/ static int sock_initobj(PyObject *self, PyObject *args, PyObject *kwds) { PySocketSockObject *s = (PySocketSockObject *)self; PyObject *fdobj = NULL; SOCKET_T fd = INVALID_SOCKET; int family = AF_INET, type = SOCK_STREAM, proto = 0; static char *keywords[] = {"family", "type", "proto", "fileno", 0}; #ifndef MS_WINDOWS #ifdef SOCK_CLOEXEC int *atomic_flag_works = &sock_cloexec_works; #else int *atomic_flag_works = NULL; #endif #endif if (!PyArg_ParseTupleAndKeywords(args, kwds, "|iiiO:socket", keywords, &family, &type, &proto, &fdobj)) return -1; if (fdobj != NULL && fdobj != Py_None) { #ifdef MS_WINDOWS /* recreate a socket that was duplicated */ if (PyBytes_Check(fdobj)) { WSAPROTOCOL_INFO info; if (PyBytes_GET_SIZE(fdobj) != sizeof(info)) { PyErr_Format(PyExc_ValueError, "socket descriptor string has wrong size, " "should be %zu bytes.", sizeof(info)); return -1; } memcpy(&info, PyBytes_AS_STRING(fdobj), sizeof(info)); Py_BEGIN_ALLOW_THREADS fd = WSASocket(FROM_PROTOCOL_INFO, FROM_PROTOCOL_INFO, FROM_PROTOCOL_INFO, &info, 0, WSA_FLAG_OVERLAPPED); Py_END_ALLOW_THREADS if (fd == INVALID_SOCKET) { set_error(); return -1; } family = info.iAddressFamily; type = info.iSocketType; proto = info.iProtocol; } else #endif { fd = PyLong_AsSocket_t(fdobj); if (fd == (SOCKET_T)(-1) && PyErr_Occurred()) return -1; if (fd == INVALID_SOCKET) { PyErr_SetString(PyExc_ValueError, "can't use invalid socket value"); return -1; } } } else { #ifdef MS_WINDOWS /* Windows implementation */ #ifndef WSA_FLAG_NO_HANDLE_INHERIT #define WSA_FLAG_NO_HANDLE_INHERIT 0x80 #endif Py_BEGIN_ALLOW_THREADS if (support_wsa_no_inherit) { fd = WSASocket(family, type, proto, NULL, 0, WSA_FLAG_OVERLAPPED | WSA_FLAG_NO_HANDLE_INHERIT); if (fd == INVALID_SOCKET) { /* Windows 7 or Windows 2008 R2 without SP1 or the hotfix */ support_wsa_no_inherit = 0; fd = socket(family, type, proto); } } else { fd = socket(family, type, proto); } Py_END_ALLOW_THREADS if (fd == INVALID_SOCKET) { set_error(); return -1; } if (!support_wsa_no_inherit) { if (!SetHandleInformation((HANDLE)fd, HANDLE_FLAG_INHERIT, 0)) { closesocket(fd); PyErr_SetFromWindowsErr(0); return -1; } } #else /* UNIX */ Py_BEGIN_ALLOW_THREADS #ifdef SOCK_CLOEXEC if (sock_cloexec_works != 0) { fd = socket(family, type | SOCK_CLOEXEC, proto); if (sock_cloexec_works == -1) { if (fd >= 0) { sock_cloexec_works = 1; } else if (errno == EINVAL) { /* Linux older than 2.6.27 does not support SOCK_CLOEXEC */ sock_cloexec_works = 0; fd = socket(family, type, proto); } } } else #endif { fd = socket(family, type, proto); } Py_END_ALLOW_THREADS if (fd == INVALID_SOCKET) { set_error(); return -1; } if (_Py_set_inheritable(fd, 0, atomic_flag_works) < 0) { SOCKETCLOSE(fd); return -1; } #endif } init_sockobject(s, fd, family, type, proto); return 0; } /* Type object for socket objects. */ static PyTypeObject sock_type = { PyVarObject_HEAD_INIT(0, 0) /* Must fill in type value later */ "_socket.socket", /* tp_name */ sizeof(PySocketSockObject), /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)sock_dealloc, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_reserved */ (reprfunc)sock_repr, /* tp_repr */ 0, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ PyObject_GenericGetAttr, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_FINALIZE, /* tp_flags */ sock_doc, /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ sock_methods, /* tp_methods */ sock_memberlist, /* tp_members */ sock_getsetlist, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ sock_initobj, /* tp_init */ PyType_GenericAlloc, /* tp_alloc */ sock_new, /* tp_new */ PyObject_Del, /* tp_free */ 0, /* tp_is_gc */ 0, /* tp_bases */ 0, /* tp_mro */ 0, /* tp_cache */ 0, /* tp_subclasses */ 0, /* tp_weaklist */ 0, /* tp_del */ 0, /* tp_version_tag */ (destructor)sock_finalize, /* tp_finalize */ }; /* Python interface to gethostname(). */ /*ARGSUSED*/ static PyObject * socket_gethostname(PyObject *self, PyObject *unused) { #ifdef MS_WINDOWS /* Don't use winsock's gethostname, as this returns the ANSI version of the hostname, whereas we need a Unicode string. Otherwise, gethostname apparently also returns the DNS name. */ wchar_t buf[MAX_COMPUTERNAME_LENGTH + 1]; DWORD size = Py_ARRAY_LENGTH(buf); wchar_t *name; PyObject *result; if (GetComputerNameExW(ComputerNamePhysicalDnsHostname, buf, &size)) return PyUnicode_FromWideChar(buf, size); if (GetLastError() != ERROR_MORE_DATA) return PyErr_SetFromWindowsErr(0); if (size == 0) return PyUnicode_New(0, 0); /* MSDN says ERROR_MORE_DATA may occur because DNS allows longer names */ name = PyMem_New(wchar_t, size); if (!name) { PyErr_NoMemory(); return NULL; } if (!GetComputerNameExW(ComputerNamePhysicalDnsHostname, name, &size)) { PyMem_Free(name); return PyErr_SetFromWindowsErr(0); } result = PyUnicode_FromWideChar(name, size); PyMem_Free(name); return result; #else char buf[1024]; int res; Py_BEGIN_ALLOW_THREADS res = gethostname(buf, (int) sizeof buf - 1); Py_END_ALLOW_THREADS if (res < 0) return set_error(); buf[sizeof buf - 1] = '\0'; return PyUnicode_DecodeFSDefault(buf); #endif } PyDoc_STRVAR(gethostname_doc, "gethostname() -> string\n\ \n\ Return the current host name."); #ifdef HAVE_SETHOSTNAME PyDoc_STRVAR(sethostname_doc, "sethostname(name)\n\n\ Sets the hostname to name."); static PyObject * socket_sethostname(PyObject *self, PyObject *args) { PyObject *hnobj; Py_buffer buf; int res, flag = 0; #ifdef _AIX /* issue #18259, not declared in any useful header file */ extern int sethostname(const char *, size_t); #endif if (!PyArg_ParseTuple(args, "S:sethostname", &hnobj)) { PyErr_Clear(); if (!PyArg_ParseTuple(args, "O&:sethostname", PyUnicode_FSConverter, &hnobj)) return NULL; flag = 1; } res = PyObject_GetBuffer(hnobj, &buf, PyBUF_SIMPLE); if (!res) { res = sethostname(buf.buf, buf.len); PyBuffer_Release(&buf); } if (flag) Py_DECREF(hnobj); if (res) return set_error(); Py_RETURN_NONE; } #endif /* Python interface to gethostbyname(name). */ /*ARGSUSED*/ static PyObject * socket_gethostbyname(PyObject *self, PyObject *args) { char *name; sock_addr_t addrbuf; PyObject *ret = NULL; if (!PyArg_ParseTuple(args, "et:gethostbyname", "idna", &name)) return NULL; if (setipaddr(name, SAS2SA(&addrbuf), sizeof(addrbuf), AF_INET) < 0) goto finally; ret = makeipaddr(SAS2SA(&addrbuf), sizeof(struct sockaddr_in)); finally: PyMem_Free(name); return ret; } PyDoc_STRVAR(gethostbyname_doc, "gethostbyname(host) -> address\n\ \n\ Return the IP address (a string of the form '255.255.255.255') for a host."); static PyObject* sock_decode_hostname(const char *name) { #ifdef MS_WINDOWS /* Issue #26227: gethostbyaddr() returns a string encoded * to the ANSI code page */ return PyUnicode_DecodeFSDefault(name); #else /* Decode from UTF-8 */ return PyUnicode_FromString(name); #endif } /* Convenience function common to gethostbyname_ex and gethostbyaddr */ static PyObject * gethost_common(struct hostent *h, struct sockaddr *addr, size_t alen, int af) { char **pch; PyObject *rtn_tuple = (PyObject *)NULL; PyObject *name_list = (PyObject *)NULL; PyObject *addr_list = (PyObject *)NULL; PyObject *tmp; PyObject *name; if (h == NULL) { /* Let's get real error message to return */ set_herror(h_errno); return NULL; } if (h->h_addrtype != af) { /* Let's get real error message to return */ errno = EAFNOSUPPORT; PyErr_SetFromErrno(PyExc_OSError); return NULL; } switch (af) { case AF_INET: if (alen < sizeof(struct sockaddr_in)) return NULL; break; #ifdef ENABLE_IPV6 case AF_INET6: if (alen < sizeof(struct sockaddr_in6)) return NULL; break; #endif } if ((name_list = PyList_New(0)) == NULL) goto err; if ((addr_list = PyList_New(0)) == NULL) goto err; /* SF #1511317: h_aliases can be NULL */ if (h->h_aliases) { for (pch = h->h_aliases; *pch != NULL; pch++) { int status; tmp = PyUnicode_FromString(*pch); if (tmp == NULL) goto err; status = PyList_Append(name_list, tmp); Py_DECREF(tmp); if (status) goto err; } } for (pch = h->h_addr_list; *pch != NULL; pch++) { int status; switch (af) { case AF_INET: { struct sockaddr_in sin; memset(&sin, 0, sizeof(sin)); sin.sin_family = af; #ifdef HAVE_SOCKADDR_SA_LEN sin.sin_len = sizeof(sin); #endif memcpy(&sin.sin_addr, *pch, sizeof(sin.sin_addr)); tmp = makeipaddr((struct sockaddr *)&sin, sizeof(sin)); if (pch == h->h_addr_list && alen >= sizeof(sin)) memcpy((char *) addr, &sin, sizeof(sin)); break; } #ifdef ENABLE_IPV6 case AF_INET6: { struct sockaddr_in6 sin6; memset(&sin6, 0, sizeof(sin6)); sin6.sin6_family = af; #ifdef HAVE_SOCKADDR_SA_LEN sin6.sin6_len = sizeof(sin6); #endif memcpy(&sin6.sin6_addr, *pch, sizeof(sin6.sin6_addr)); tmp = makeipaddr((struct sockaddr *)&sin6, sizeof(sin6)); if (pch == h->h_addr_list && alen >= sizeof(sin6)) memcpy((char *) addr, &sin6, sizeof(sin6)); break; } #endif default: /* can't happen */ PyErr_SetString(PyExc_OSError, "unsupported address family"); return NULL; } if (tmp == NULL) goto err; status = PyList_Append(addr_list, tmp); Py_DECREF(tmp); if (status) goto err; } name = sock_decode_hostname(h->h_name); if (name == NULL) goto err; rtn_tuple = Py_BuildValue("NOO", name, name_list, addr_list); err: Py_XDECREF(name_list); Py_XDECREF(addr_list); return rtn_tuple; } /* Python interface to gethostbyname_ex(name). */ /*ARGSUSED*/ static PyObject * socket_gethostbyname_ex(PyObject *self, PyObject *args) { char *name; struct hostent *h; sock_addr_t addr; struct sockaddr *sa; PyObject *ret = NULL; #ifdef HAVE_GETHOSTBYNAME_R struct hostent hp_allocated; #ifdef HAVE_GETHOSTBYNAME_R_3_ARG struct hostent_data data; #else char buf[16384]; int buf_len = (sizeof buf) - 1; int errnop; #endif #ifdef HAVE_GETHOSTBYNAME_R_3_ARG int result; #endif #endif /* HAVE_GETHOSTBYNAME_R */ if (!PyArg_ParseTuple(args, "et:gethostbyname_ex", "idna", &name)) return NULL; if (setipaddr(name, SAS2SA(&addr), sizeof(addr), AF_INET) < 0) goto finally; Py_BEGIN_ALLOW_THREADS #ifdef HAVE_GETHOSTBYNAME_R #if defined(HAVE_GETHOSTBYNAME_R_6_ARG) gethostbyname_r(name, &hp_allocated, buf, buf_len, &h, &errnop); #elif defined(HAVE_GETHOSTBYNAME_R_5_ARG) h = gethostbyname_r(name, &hp_allocated, buf, buf_len, &errnop); #else /* HAVE_GETHOSTBYNAME_R_3_ARG */ memset((void *) &data, '\0', sizeof(data)); result = gethostbyname_r(name, &hp_allocated, &data); h = (result != 0) ? NULL : &hp_allocated; #endif #else /* not HAVE_GETHOSTBYNAME_R */ #ifdef USE_GETHOSTBYNAME_LOCK PyThread_acquire_lock(netdb_lock, 1); #endif h = gethostbyname(name); #endif /* HAVE_GETHOSTBYNAME_R */ Py_END_ALLOW_THREADS /* Some C libraries would require addr.__ss_family instead of addr.ss_family. Therefore, we cast the sockaddr_storage into sockaddr to access sa_family. */ sa = SAS2SA(&addr); ret = gethost_common(h, SAS2SA(&addr), sizeof(addr), sa->sa_family); #ifdef USE_GETHOSTBYNAME_LOCK PyThread_release_lock(netdb_lock); #endif finally: PyMem_Free(name); return ret; } PyDoc_STRVAR(ghbn_ex_doc, "gethostbyname_ex(host) -> (name, aliaslist, addresslist)\n\ \n\ Return the true host name, a list of aliases, and a list of IP addresses,\n\ for a host. The host argument is a string giving a host name or IP number."); /* Python interface to gethostbyaddr(IP). */ /*ARGSUSED*/ static PyObject * socket_gethostbyaddr(PyObject *self, PyObject *args) { sock_addr_t addr; struct sockaddr *sa = SAS2SA(&addr); char *ip_num; struct hostent *h; PyObject *ret = NULL; #ifdef HAVE_GETHOSTBYNAME_R struct hostent hp_allocated; #ifdef HAVE_GETHOSTBYNAME_R_3_ARG struct hostent_data data; #else /* glibcs up to 2.10 assume that the buf argument to gethostbyaddr_r is 8-byte aligned, which at least llvm-gcc does not ensure. The attribute below instructs the compiler to maintain this alignment. */ char buf[16384] Py_ALIGNED(8); int buf_len = (sizeof buf) - 1; int errnop; #endif #ifdef HAVE_GETHOSTBYNAME_R_3_ARG int result; #endif #endif /* HAVE_GETHOSTBYNAME_R */ char *ap; int al; int af; if (!PyArg_ParseTuple(args, "et:gethostbyaddr", "idna", &ip_num)) return NULL; af = AF_UNSPEC; if (setipaddr(ip_num, sa, sizeof(addr), af) < 0) goto finally; af = sa->sa_family; ap = NULL; /* al = 0; */ switch (af) { case AF_INET: ap = (char *)&((struct sockaddr_in *)sa)->sin_addr; al = sizeof(((struct sockaddr_in *)sa)->sin_addr); break; #ifdef ENABLE_IPV6 case AF_INET6: ap = (char *)&((struct sockaddr_in6 *)sa)->sin6_addr; al = sizeof(((struct sockaddr_in6 *)sa)->sin6_addr); break; #endif default: PyErr_SetString(PyExc_OSError, "unsupported address family"); goto finally; } Py_BEGIN_ALLOW_THREADS #ifdef HAVE_GETHOSTBYNAME_R #if defined(HAVE_GETHOSTBYNAME_R_6_ARG) gethostbyaddr_r(ap, al, af, &hp_allocated, buf, buf_len, &h, &errnop); #elif defined(HAVE_GETHOSTBYNAME_R_5_ARG) h = gethostbyaddr_r(ap, al, af, &hp_allocated, buf, buf_len, &errnop); #else /* HAVE_GETHOSTBYNAME_R_3_ARG */ memset((void *) &data, '\0', sizeof(data)); result = gethostbyaddr_r(ap, al, af, &hp_allocated, &data); h = (result != 0) ? NULL : &hp_allocated; #endif #else /* not HAVE_GETHOSTBYNAME_R */ #ifdef USE_GETHOSTBYNAME_LOCK PyThread_acquire_lock(netdb_lock, 1); #endif h = gethostbyaddr(ap, al, af); #endif /* HAVE_GETHOSTBYNAME_R */ Py_END_ALLOW_THREADS ret = gethost_common(h, SAS2SA(&addr), sizeof(addr), af); #ifdef USE_GETHOSTBYNAME_LOCK PyThread_release_lock(netdb_lock); #endif finally: PyMem_Free(ip_num); return ret; } PyDoc_STRVAR(gethostbyaddr_doc, "gethostbyaddr(host) -> (name, aliaslist, addresslist)\n\ \n\ Return the true host name, a list of aliases, and a list of IP addresses,\n\ for a host. The host argument is a string giving a host name or IP number."); /* Python interface to getservbyname(name). This only returns the port number, since the other info is already known or not useful (like the list of aliases). */ /*ARGSUSED*/ static PyObject * socket_getservbyname(PyObject *self, PyObject *args) { char *name, *proto=NULL; struct servent *sp; if (!PyArg_ParseTuple(args, "s|s:getservbyname", &name, &proto)) return NULL; Py_BEGIN_ALLOW_THREADS sp = getservbyname(name, proto); Py_END_ALLOW_THREADS if (sp == NULL) { PyErr_SetString(PyExc_OSError, "service/proto not found"); return NULL; } return PyLong_FromLong((long) ntohs(sp->s_port)); } PyDoc_STRVAR(getservbyname_doc, "getservbyname(servicename[, protocolname]) -> integer\n\ \n\ Return a port number from a service name and protocol name.\n\ The optional protocol name, if given, should be 'tcp' or 'udp',\n\ otherwise any protocol will match."); /* Python interface to getservbyport(port). This only returns the service name, since the other info is already known or not useful (like the list of aliases). */ /*ARGSUSED*/ static PyObject * socket_getservbyport(PyObject *self, PyObject *args) { int port; char *proto=NULL; struct servent *sp; if (!PyArg_ParseTuple(args, "i|s:getservbyport", &port, &proto)) return NULL; if (port < 0 || port > 0xffff) { PyErr_SetString( PyExc_OverflowError, "getservbyport: port must be 0-65535."); return NULL; } Py_BEGIN_ALLOW_THREADS sp = getservbyport(htons((short)port), proto); Py_END_ALLOW_THREADS if (sp == NULL) { PyErr_SetString(PyExc_OSError, "port/proto not found"); return NULL; } return PyUnicode_FromString(sp->s_name); } PyDoc_STRVAR(getservbyport_doc, "getservbyport(port[, protocolname]) -> string\n\ \n\ Return the service name from a port number and protocol name.\n\ The optional protocol name, if given, should be 'tcp' or 'udp',\n\ otherwise any protocol will match."); /* Python interface to getprotobyname(name). This only returns the protocol number, since the other info is already known or not useful (like the list of aliases). */ /*ARGSUSED*/ static PyObject * socket_getprotobyname(PyObject *self, PyObject *args) { char *name; struct protoent *sp; if (!PyArg_ParseTuple(args, "s:getprotobyname", &name)) return NULL; Py_BEGIN_ALLOW_THREADS sp = getprotobyname(name); Py_END_ALLOW_THREADS if (sp == NULL) { PyErr_SetString(PyExc_OSError, "protocol not found"); return NULL; } return PyLong_FromLong((long) sp->p_proto); } PyDoc_STRVAR(getprotobyname_doc, "getprotobyname(name) -> integer\n\ \n\ Return the protocol number for the named protocol. (Rarely used.)"); #ifndef NO_DUP /* dup() function for socket fds */ static PyObject * socket_dup(PyObject *self, PyObject *fdobj) { SOCKET_T fd, newfd; PyObject *newfdobj; #ifdef MS_WINDOWS WSAPROTOCOL_INFO info; #endif fd = PyLong_AsSocket_t(fdobj); if (fd == (SOCKET_T)(-1) && PyErr_Occurred()) return NULL; #ifdef MS_WINDOWS if (WSADuplicateSocket(fd, GetCurrentProcessId(), &info)) return set_error(); newfd = WSASocket(FROM_PROTOCOL_INFO, FROM_PROTOCOL_INFO, FROM_PROTOCOL_INFO, &info, 0, WSA_FLAG_OVERLAPPED); if (newfd == INVALID_SOCKET) return set_error(); if (!SetHandleInformation((HANDLE)newfd, HANDLE_FLAG_INHERIT, 0)) { closesocket(newfd); PyErr_SetFromWindowsErr(0); return NULL; } #else /* On UNIX, dup can be used to duplicate the file descriptor of a socket */ newfd = _Py_dup(fd); if (newfd == INVALID_SOCKET) return NULL; #endif newfdobj = PyLong_FromSocket_t(newfd); if (newfdobj == NULL) SOCKETCLOSE(newfd); return newfdobj; } PyDoc_STRVAR(dup_doc, "dup(integer) -> integer\n\ \n\ Duplicate an integer socket file descriptor. This is like os.dup(), but for\n\ sockets; on some platforms os.dup() won't work for socket file descriptors."); #endif #ifdef HAVE_SOCKETPAIR /* Create a pair of sockets using the socketpair() function. Arguments as for socket() except the default family is AF_UNIX if defined on the platform; otherwise, the default is AF_INET. */ /*ARGSUSED*/ static PyObject * socket_socketpair(PyObject *self, PyObject *args) { PySocketSockObject *s0 = NULL, *s1 = NULL; SOCKET_T sv[2]; int family, type = SOCK_STREAM, proto = 0; PyObject *res = NULL; #ifdef SOCK_CLOEXEC int *atomic_flag_works = &sock_cloexec_works; #else int *atomic_flag_works = NULL; #endif int ret; #if defined(AF_UNIX) family = AF_UNIX; #else family = AF_INET; #endif if (!PyArg_ParseTuple(args, "|iii:socketpair", &family, &type, &proto)) return NULL; /* Create a pair of socket fds */ Py_BEGIN_ALLOW_THREADS #ifdef SOCK_CLOEXEC if (sock_cloexec_works != 0) { ret = socketpair(family, type | SOCK_CLOEXEC, proto, sv); if (sock_cloexec_works == -1) { if (ret >= 0) { sock_cloexec_works = 1; } else if (errno == EINVAL) { /* Linux older than 2.6.27 does not support SOCK_CLOEXEC */ sock_cloexec_works = 0; ret = socketpair(family, type, proto, sv); } } } else #endif { ret = socketpair(family, type, proto, sv); } Py_END_ALLOW_THREADS if (ret < 0) return set_error(); if (_Py_set_inheritable(sv[0], 0, atomic_flag_works) < 0) goto finally; if (_Py_set_inheritable(sv[1], 0, atomic_flag_works) < 0) goto finally; s0 = new_sockobject(sv[0], family, type, proto); if (s0 == NULL) goto finally; s1 = new_sockobject(sv[1], family, type, proto); if (s1 == NULL) goto finally; res = PyTuple_Pack(2, s0, s1); finally: if (res == NULL) { if (s0 == NULL) SOCKETCLOSE(sv[0]); if (s1 == NULL) SOCKETCLOSE(sv[1]); } Py_XDECREF(s0); Py_XDECREF(s1); return res; } PyDoc_STRVAR(socketpair_doc, "socketpair([family[, type [, proto]]]) -> (socket object, socket object)\n\ \n\ Create a pair of socket objects from the sockets returned by the platform\n\ socketpair() function.\n\ The arguments are the same as for socket() except the default family is\n\ AF_UNIX if defined on the platform; otherwise, the default is AF_INET."); #endif /* HAVE_SOCKETPAIR */ static PyObject * socket_ntohs(PyObject *self, PyObject *args) { int x1, x2; if (!PyArg_ParseTuple(args, "i:ntohs", &x1)) { return NULL; } if (x1 < 0) { PyErr_SetString(PyExc_OverflowError, "can't convert negative number to unsigned long"); return NULL; } x2 = (unsigned int)ntohs((unsigned short)x1); return PyLong_FromLong(x2); } PyDoc_STRVAR(ntohs_doc, "ntohs(integer) -> integer\n\ \n\ Convert a 16-bit integer from network to host byte order."); static PyObject * socket_ntohl(PyObject *self, PyObject *arg) { unsigned long x; if (PyLong_Check(arg)) { x = PyLong_AsUnsignedLong(arg); if (x == (unsigned long) -1 && PyErr_Occurred()) return NULL; #if SIZEOF_LONG > 4 { unsigned long y; /* only want the trailing 32 bits */ y = x & 0xFFFFFFFFUL; if (y ^ x) return PyErr_Format(PyExc_OverflowError, "int larger than 32 bits"); x = y; } #endif } else return PyErr_Format(PyExc_TypeError, "expected int, %s found", Py_TYPE(arg)->tp_name); return PyLong_FromUnsignedLong(ntohl(x)); } PyDoc_STRVAR(ntohl_doc, "ntohl(integer) -> integer\n\ \n\ Convert a 32-bit integer from network to host byte order."); static PyObject * socket_htons(PyObject *self, PyObject *args) { int x1, x2; if (!PyArg_ParseTuple(args, "i:htons", &x1)) { return NULL; } if (x1 < 0) { PyErr_SetString(PyExc_OverflowError, "can't convert negative number to unsigned long"); return NULL; } x2 = (unsigned int)htons((unsigned short)x1); return PyLong_FromLong(x2); } PyDoc_STRVAR(htons_doc, "htons(integer) -> integer\n\ \n\ Convert a 16-bit integer from host to network byte order."); static PyObject * socket_htonl(PyObject *self, PyObject *arg) { unsigned long x; if (PyLong_Check(arg)) { x = PyLong_AsUnsignedLong(arg); if (x == (unsigned long) -1 && PyErr_Occurred()) return NULL; #if SIZEOF_LONG > 4 { unsigned long y; /* only want the trailing 32 bits */ y = x & 0xFFFFFFFFUL; if (y ^ x) return PyErr_Format(PyExc_OverflowError, "int larger than 32 bits"); x = y; } #endif } else return PyErr_Format(PyExc_TypeError, "expected int, %s found", Py_TYPE(arg)->tp_name); return PyLong_FromUnsignedLong(htonl((unsigned long)x)); } PyDoc_STRVAR(htonl_doc, "htonl(integer) -> integer\n\ \n\ Convert a 32-bit integer from host to network byte order."); /* socket.inet_aton() and socket.inet_ntoa() functions. */ PyDoc_STRVAR(inet_aton_doc, "inet_aton(string) -> bytes giving packed 32-bit IP representation\n\ \n\ Convert an IP address in string format (123.45.67.89) to the 32-bit packed\n\ binary format used in low-level network functions."); static PyObject* socket_inet_aton(PyObject *self, PyObject *args) { #ifdef HAVE_INET_ATON struct in_addr buf; #endif #if !defined(HAVE_INET_ATON) || defined(USE_INET_ATON_WEAKLINK) #if (SIZEOF_INT != 4) #error "Not sure if in_addr_t exists and int is not 32-bits." #endif /* Have to use inet_addr() instead */ unsigned int packed_addr; #endif char *ip_addr; if (!PyArg_ParseTuple(args, "s:inet_aton", &ip_addr)) return NULL; #ifdef HAVE_INET_ATON #ifdef USE_INET_ATON_WEAKLINK if (inet_aton != NULL) { #endif if (inet_aton(ip_addr, &buf)) return PyBytes_FromStringAndSize((char *)(&buf), sizeof(buf)); PyErr_SetString(PyExc_OSError, "illegal IP address string passed to inet_aton"); return NULL; #ifdef USE_INET_ATON_WEAKLINK } else { #endif #endif #if !defined(HAVE_INET_ATON) || defined(USE_INET_ATON_WEAKLINK) /* special-case this address as inet_addr might return INADDR_NONE * for this */ if (strcmp(ip_addr, "255.255.255.255") == 0) { packed_addr = INADDR_BROADCAST; } else { packed_addr = inet_addr(ip_addr); if (packed_addr == INADDR_NONE) { /* invalid address */ PyErr_SetString(PyExc_OSError, "illegal IP address string passed to inet_aton"); return NULL; } } return PyBytes_FromStringAndSize((char *) &packed_addr, sizeof(packed_addr)); #ifdef USE_INET_ATON_WEAKLINK } #endif #endif } PyDoc_STRVAR(inet_ntoa_doc, "inet_ntoa(packed_ip) -> ip_address_string\n\ \n\ Convert an IP address from 32-bit packed binary format to string format"); static PyObject* socket_inet_ntoa(PyObject *self, PyObject *args) { Py_buffer packed_ip; struct in_addr packed_addr; if (!PyArg_ParseTuple(args, "y*:inet_ntoa", &packed_ip)) { return NULL; } if (packed_ip.len != sizeof(packed_addr)) { PyErr_SetString(PyExc_OSError, "packed IP wrong length for inet_ntoa"); PyBuffer_Release(&packed_ip); return NULL; } memcpy(&packed_addr, packed_ip.buf, packed_ip.len); PyBuffer_Release(&packed_ip); return PyUnicode_FromString(inet_ntoa(packed_addr)); } #if defined(HAVE_INET_PTON) || defined(MS_WINDOWS) PyDoc_STRVAR(inet_pton_doc, "inet_pton(af, ip) -> packed IP address string\n\ \n\ Convert an IP address from string format to a packed string suitable\n\ for use with low-level network functions."); #endif #ifdef HAVE_INET_PTON static PyObject * socket_inet_pton(PyObject *self, PyObject *args) { int af; char* ip; int retval; #ifdef ENABLE_IPV6 char packed[Py_MAX(sizeof(struct in_addr), sizeof(struct in6_addr))]; #else char packed[sizeof(struct in_addr)]; #endif if (!PyArg_ParseTuple(args, "is:inet_pton", &af, &ip)) { return NULL; } #if !defined(ENABLE_IPV6) && defined(AF_INET6) if(af == AF_INET6) { PyErr_SetString(PyExc_OSError, "can't use AF_INET6, IPv6 is disabled"); return NULL; } #endif retval = inet_pton(af, ip, packed); if (retval < 0) { PyErr_SetFromErrno(PyExc_OSError); return NULL; } else if (retval == 0) { PyErr_SetString(PyExc_OSError, "illegal IP address string passed to inet_pton"); return NULL; } else if (af == AF_INET) { return PyBytes_FromStringAndSize(packed, sizeof(struct in_addr)); #ifdef ENABLE_IPV6 } else if (af == AF_INET6) { return PyBytes_FromStringAndSize(packed, sizeof(struct in6_addr)); #endif } else { PyErr_SetString(PyExc_OSError, "unknown address family"); return NULL; } } #elif defined(MS_WINDOWS) static PyObject * socket_inet_pton(PyObject *self, PyObject *args) { int af; char* ip; struct sockaddr_in6 addr; INT ret, size; if (!PyArg_ParseTuple(args, "is:inet_pton", &af, &ip)) { return NULL; } size = sizeof(addr); ret = WSAStringToAddressA(ip, af, NULL, (LPSOCKADDR)&addr, &size); if (ret) { PyErr_SetExcFromWindowsErr(PyExc_OSError, WSAGetLastError()); return NULL; } else if(af == AF_INET) { struct sockaddr_in *addr4 = (struct sockaddr_in*)&addr; return PyBytes_FromStringAndSize((const char *)&(addr4->sin_addr), sizeof(addr4->sin_addr)); } else if (af == AF_INET6) { return PyBytes_FromStringAndSize((const char *)&(addr.sin6_addr), sizeof(addr.sin6_addr)); } else { PyErr_SetString(PyExc_OSError, "unknown address family"); return NULL; } } #endif #if defined(HAVE_INET_PTON) || defined(MS_WINDOWS) PyDoc_STRVAR(inet_ntop_doc, "inet_ntop(af, packed_ip) -> string formatted IP address\n\ \n\ Convert a packed IP address of the given family to string format."); #endif #ifdef HAVE_INET_PTON static PyObject * socket_inet_ntop(PyObject *self, PyObject *args) { int af; Py_buffer packed_ip; const char* retval; #ifdef ENABLE_IPV6 char ip[Py_MAX(INET_ADDRSTRLEN, INET6_ADDRSTRLEN) + 1]; #else char ip[INET_ADDRSTRLEN + 1]; #endif /* Guarantee NUL-termination for PyUnicode_FromString() below */ memset((void *) &ip[0], '\0', sizeof(ip)); if (!PyArg_ParseTuple(args, "iy*:inet_ntop", &af, &packed_ip)) { return NULL; } if (af == AF_INET) { if (packed_ip.len != sizeof(struct in_addr)) { PyErr_SetString(PyExc_ValueError, "invalid length of packed IP address string"); PyBuffer_Release(&packed_ip); return NULL; } #ifdef ENABLE_IPV6 } else if (af == AF_INET6) { if (packed_ip.len != sizeof(struct in6_addr)) { PyErr_SetString(PyExc_ValueError, "invalid length of packed IP address string"); PyBuffer_Release(&packed_ip); return NULL; } #endif } else { PyErr_Format(PyExc_ValueError, "unknown address family %d", af); PyBuffer_Release(&packed_ip); return NULL; } retval = inet_ntop(af, packed_ip.buf, ip, sizeof(ip)); PyBuffer_Release(&packed_ip); if (!retval) { PyErr_SetFromErrno(PyExc_OSError); return NULL; } else { return PyUnicode_FromString(retval); } } #elif defined(MS_WINDOWS) static PyObject * socket_inet_ntop(PyObject *self, PyObject *args) { int af; Py_buffer packed_ip; struct sockaddr_in6 addr; DWORD addrlen, ret, retlen; #ifdef ENABLE_IPV6 char ip[Py_MAX(INET_ADDRSTRLEN, INET6_ADDRSTRLEN) + 1]; #else char ip[INET_ADDRSTRLEN + 1]; #endif /* Guarantee NUL-termination for PyUnicode_FromString() below */ memset((void *) &ip[0], '\0', sizeof(ip)); if (!PyArg_ParseTuple(args, "iy*:inet_ntop", &af, &packed_ip)) { return NULL; } if (af == AF_INET) { struct sockaddr_in * addr4 = (struct sockaddr_in *)&addr; if (packed_ip.len != sizeof(struct in_addr)) { PyErr_SetString(PyExc_ValueError, "invalid length of packed IP address string"); PyBuffer_Release(&packed_ip); return NULL; } memset(addr4, 0, sizeof(struct sockaddr_in)); addr4->sin_family = AF_INET; memcpy(&(addr4->sin_addr), packed_ip.buf, sizeof(addr4->sin_addr)); addrlen = sizeof(struct sockaddr_in); } else if (af == AF_INET6) { if (packed_ip.len != sizeof(struct in6_addr)) { PyErr_SetString(PyExc_ValueError, "invalid length of packed IP address string"); PyBuffer_Release(&packed_ip); return NULL; } memset(&addr, 0, sizeof(addr)); addr.sin6_family = AF_INET6; memcpy(&(addr.sin6_addr), packed_ip.buf, sizeof(addr.sin6_addr)); addrlen = sizeof(addr); } else { PyErr_Format(PyExc_ValueError, "unknown address family %d", af); PyBuffer_Release(&packed_ip); return NULL; } PyBuffer_Release(&packed_ip); retlen = sizeof(ip); ret = WSAAddressToStringA((struct sockaddr*)&addr, addrlen, NULL, ip, &retlen); if (ret) { PyErr_SetExcFromWindowsErr(PyExc_OSError, WSAGetLastError()); return NULL; } else { return PyUnicode_FromString(ip); } } #endif /* HAVE_INET_PTON */ /* Python interface to getaddrinfo(host, port). */ /*ARGSUSED*/ static PyObject * socket_getaddrinfo(PyObject *self, PyObject *args, PyObject* kwargs) { static char* kwnames[] = {"host", "port", "family", "type", "proto", "flags", 0}; struct addrinfo hints, *res; struct addrinfo *res0 = NULL; PyObject *hobj = NULL; PyObject *pobj = (PyObject *)NULL; char pbuf[30]; char *hptr, *pptr; int family, socktype, protocol, flags; int error; PyObject *all = (PyObject *)NULL; PyObject *idna = NULL; socktype = protocol = flags = 0; family = AF_UNSPEC; if (!PyArg_ParseTupleAndKeywords(args, kwargs, "OO|iiii:getaddrinfo", kwnames, &hobj, &pobj, &family, &socktype, &protocol, &flags)) { return NULL; } if (hobj == Py_None) { hptr = NULL; } else if (PyUnicode_Check(hobj)) { idna = PyUnicode_AsEncodedString(hobj, "idna", NULL); if (!idna) return NULL; assert(PyBytes_Check(idna)); hptr = PyBytes_AS_STRING(idna); } else if (PyBytes_Check(hobj)) { hptr = PyBytes_AsString(hobj); } else { PyErr_SetString(PyExc_TypeError, "getaddrinfo() argument 1 must be string or None"); return NULL; } if (PyLong_CheckExact(pobj)) { long value = PyLong_AsLong(pobj); if (value == -1 && PyErr_Occurred()) goto err; PyOS_snprintf(pbuf, sizeof(pbuf), "%ld", value); pptr = pbuf; } else if (PyUnicode_Check(pobj)) { pptr = _PyUnicode_AsString(pobj); if (pptr == NULL) goto err; } else if (PyBytes_Check(pobj)) { pptr = PyBytes_AS_STRING(pobj); } else if (pobj == Py_None) { pptr = (char *)NULL; } else { PyErr_SetString(PyExc_OSError, "Int or String expected"); goto err; } #if defined(__APPLE__) && defined(AI_NUMERICSERV) if ((flags & AI_NUMERICSERV) && (pptr == NULL || (pptr[0] == '0' && pptr[1] == 0))) { /* On OSX upto at least OSX 10.8 getaddrinfo crashes * if AI_NUMERICSERV is set and the servname is NULL or "0". * This workaround avoids a segfault in libsystem. */ pptr = "00"; } #endif memset(&hints, 0, sizeof(hints)); hints.ai_family = family; hints.ai_socktype = socktype; hints.ai_protocol = protocol; hints.ai_flags = flags; Py_BEGIN_ALLOW_THREADS ACQUIRE_GETADDRINFO_LOCK error = getaddrinfo(hptr, pptr, &hints, &res0); Py_END_ALLOW_THREADS RELEASE_GETADDRINFO_LOCK /* see comment in setipaddr() */ if (error) { set_gaierror(error); goto err; } all = PyList_New(0); if (all == NULL) goto err; for (res = res0; res; res = res->ai_next) { PyObject *single; PyObject *addr = makesockaddr(-1, res->ai_addr, res->ai_addrlen, protocol); if (addr == NULL) goto err; single = Py_BuildValue("iiisO", res->ai_family, res->ai_socktype, res->ai_protocol, res->ai_canonname ? res->ai_canonname : "", addr); Py_DECREF(addr); if (single == NULL) goto err; if (PyList_Append(all, single)) goto err; Py_XDECREF(single); } Py_XDECREF(idna); if (res0) freeaddrinfo(res0); return all; err: Py_XDECREF(all); Py_XDECREF(idna); if (res0) freeaddrinfo(res0); return (PyObject *)NULL; } PyDoc_STRVAR(getaddrinfo_doc, "getaddrinfo(host, port [, family, type, proto, flags])\n\ -> list of (family, type, proto, canonname, sockaddr)\n\ \n\ Resolve host and port into addrinfo struct."); /* Python interface to getnameinfo(sa, flags). */ /*ARGSUSED*/ static PyObject * socket_getnameinfo(PyObject *self, PyObject *args) { PyObject *sa = (PyObject *)NULL; int flags; char *hostp; int port; unsigned int flowinfo, scope_id; char hbuf[NI_MAXHOST], pbuf[NI_MAXSERV]; struct addrinfo hints, *res = NULL; int error; PyObject *ret = (PyObject *)NULL; PyObject *name; flags = flowinfo = scope_id = 0; if (!PyArg_ParseTuple(args, "Oi:getnameinfo", &sa, &flags)) return NULL; if (!PyTuple_Check(sa)) { PyErr_SetString(PyExc_TypeError, "getnameinfo() argument 1 must be a tuple"); return NULL; } if (!PyArg_ParseTuple(sa, "si|II", &hostp, &port, &flowinfo, &scope_id)) return NULL; if (flowinfo > 0xfffff) { PyErr_SetString(PyExc_OverflowError, "getsockaddrarg: flowinfo must be 0-1048575."); return NULL; } PyOS_snprintf(pbuf, sizeof(pbuf), "%d", port); memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_DGRAM; /* make numeric port happy */ hints.ai_flags = AI_NUMERICHOST; /* don't do any name resolution */ Py_BEGIN_ALLOW_THREADS ACQUIRE_GETADDRINFO_LOCK error = getaddrinfo(hostp, pbuf, &hints, &res); Py_END_ALLOW_THREADS RELEASE_GETADDRINFO_LOCK /* see comment in setipaddr() */ if (error) { set_gaierror(error); goto fail; } if (res->ai_next) { PyErr_SetString(PyExc_OSError, "sockaddr resolved to multiple addresses"); goto fail; } switch (res->ai_family) { case AF_INET: { if (PyTuple_GET_SIZE(sa) != 2) { PyErr_SetString(PyExc_OSError, "IPv4 sockaddr must be 2 tuple"); goto fail; } break; } #ifdef ENABLE_IPV6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)res->ai_addr; sin6->sin6_flowinfo = htonl(flowinfo); sin6->sin6_scope_id = scope_id; break; } #endif } error = getnameinfo(res->ai_addr, (socklen_t) res->ai_addrlen, hbuf, sizeof(hbuf), pbuf, sizeof(pbuf), flags); if (error) { set_gaierror(error); goto fail; } name = sock_decode_hostname(hbuf); if (name == NULL) goto fail; ret = Py_BuildValue("Ns", name, pbuf); fail: if (res) freeaddrinfo(res); return ret; } PyDoc_STRVAR(getnameinfo_doc, "getnameinfo(sockaddr, flags) --> (host, port)\n\ \n\ Get host and port for a sockaddr."); /* Python API to getting and setting the default timeout value. */ static PyObject * socket_getdefaulttimeout(PyObject *self) { if (defaulttimeout < 0) { Py_INCREF(Py_None); return Py_None; } else { double seconds = _PyTime_AsSecondsDouble(defaulttimeout); return PyFloat_FromDouble(seconds); } } PyDoc_STRVAR(getdefaulttimeout_doc, "getdefaulttimeout() -> timeout\n\ \n\ Returns the default timeout in seconds (float) for new socket objects.\n\ A value of None indicates that new socket objects have no timeout.\n\ When the socket module is first imported, the default is None."); static PyObject * socket_setdefaulttimeout(PyObject *self, PyObject *arg) { _PyTime_t timeout; if (socket_parse_timeout(&timeout, arg) < 0) return NULL; defaulttimeout = timeout; Py_INCREF(Py_None); return Py_None; } PyDoc_STRVAR(setdefaulttimeout_doc, "setdefaulttimeout(timeout)\n\ \n\ Set the default timeout in seconds (float) for new socket objects.\n\ A value of None indicates that new socket objects have no timeout.\n\ When the socket module is first imported, the default is None."); #ifdef HAVE_IF_NAMEINDEX /* Python API for getting interface indices and names */ static PyObject * socket_if_nameindex(PyObject *self, PyObject *arg) { PyObject *list; int i; struct if_nameindex *ni; ni = if_nameindex(); if (ni == NULL) { PyErr_SetFromErrno(PyExc_OSError); return NULL; } list = PyList_New(0); if (list == NULL) { if_freenameindex(ni); return NULL; } for (i = 0; ni[i].if_index != 0 && i < INT_MAX; i++) { PyObject *ni_tuple = Py_BuildValue("IO&", ni[i].if_index, PyUnicode_DecodeFSDefault, ni[i].if_name); if (ni_tuple == NULL || PyList_Append(list, ni_tuple) == -1) { Py_XDECREF(ni_tuple); Py_DECREF(list); if_freenameindex(ni); return NULL; } Py_DECREF(ni_tuple); } if_freenameindex(ni); return list; } PyDoc_STRVAR(if_nameindex_doc, "if_nameindex()\n\ \n\ Returns a list of network interface information (index, name) tuples."); static PyObject * socket_if_nametoindex(PyObject *self, PyObject *args) { PyObject *oname; unsigned long index; if (!PyArg_ParseTuple(args, "O&:if_nametoindex", PyUnicode_FSConverter, &oname)) return NULL; index = if_nametoindex(PyBytes_AS_STRING(oname)); Py_DECREF(oname); if (index == 0) { /* if_nametoindex() doesn't set errno */ PyErr_SetString(PyExc_OSError, "no interface with this name"); return NULL; } return PyLong_FromUnsignedLong(index); } PyDoc_STRVAR(if_nametoindex_doc, "if_nametoindex(if_name)\n\ \n\ Returns the interface index corresponding to the interface name if_name."); static PyObject * socket_if_indextoname(PyObject *self, PyObject *arg) { unsigned long index; char name[IF_NAMESIZE + 1]; index = PyLong_AsUnsignedLong(arg); if (index == (unsigned long) -1) return NULL; if (if_indextoname(index, name) == NULL) { PyErr_SetFromErrno(PyExc_OSError); return NULL; } return PyUnicode_DecodeFSDefault(name); } PyDoc_STRVAR(if_indextoname_doc, "if_indextoname(if_index)\n\ \n\ Returns the interface name corresponding to the interface index if_index."); #endif /* HAVE_IF_NAMEINDEX */ #ifdef CMSG_LEN /* Python interface to CMSG_LEN(length). */ static PyObject * socket_CMSG_LEN(PyObject *self, PyObject *args) { Py_ssize_t length; size_t result; if (!PyArg_ParseTuple(args, "n:CMSG_LEN", &length)) return NULL; if (length < 0 || !get_CMSG_LEN(length, &result)) { PyErr_Format(PyExc_OverflowError, "CMSG_LEN() argument out of range"); return NULL; } return PyLong_FromSize_t(result); } PyDoc_STRVAR(CMSG_LEN_doc, "CMSG_LEN(length) -> control message length\n\ \n\ Return the total length, without trailing padding, of an ancillary\n\ data item with associated data of the given length. This value can\n\ often be used as the buffer size for recvmsg() to receive a single\n\ item of ancillary data, but RFC 3542 requires portable applications to\n\ use CMSG_SPACE() and thus include space for padding, even when the\n\ item will be the last in the buffer. Raises OverflowError if length\n\ is outside the permissible range of values."); #ifdef CMSG_SPACE /* Python interface to CMSG_SPACE(length). */ static PyObject * socket_CMSG_SPACE(PyObject *self, PyObject *args) { Py_ssize_t length; size_t result; if (!PyArg_ParseTuple(args, "n:CMSG_SPACE", &length)) return NULL; if (length < 0 || !get_CMSG_SPACE(length, &result)) { PyErr_SetString(PyExc_OverflowError, "CMSG_SPACE() argument out of range"); return NULL; } return PyLong_FromSize_t(result); } PyDoc_STRVAR(CMSG_SPACE_doc, "CMSG_SPACE(length) -> buffer size\n\ \n\ Return the buffer size needed for recvmsg() to receive an ancillary\n\ data item with associated data of the given length, along with any\n\ trailing padding. The buffer space needed to receive multiple items\n\ is the sum of the CMSG_SPACE() values for their associated data\n\ lengths. Raises OverflowError if length is outside the permissible\n\ range of values."); #endif /* CMSG_SPACE */ #endif /* CMSG_LEN */ /* List of functions exported by this module. */ static PyMethodDef socket_methods[] = { {"gethostbyname", socket_gethostbyname, METH_VARARGS, gethostbyname_doc}, {"gethostbyname_ex", socket_gethostbyname_ex, METH_VARARGS, ghbn_ex_doc}, {"gethostbyaddr", socket_gethostbyaddr, METH_VARARGS, gethostbyaddr_doc}, {"gethostname", socket_gethostname, METH_NOARGS, gethostname_doc}, #ifdef HAVE_SETHOSTNAME {"sethostname", socket_sethostname, METH_VARARGS, sethostname_doc}, #endif {"getservbyname", socket_getservbyname, METH_VARARGS, getservbyname_doc}, {"getservbyport", socket_getservbyport, METH_VARARGS, getservbyport_doc}, {"getprotobyname", socket_getprotobyname, METH_VARARGS, getprotobyname_doc}, #ifndef NO_DUP {"dup", socket_dup, METH_O, dup_doc}, #endif #ifdef HAVE_SOCKETPAIR {"socketpair", socket_socketpair, METH_VARARGS, socketpair_doc}, #endif {"ntohs", socket_ntohs, METH_VARARGS, ntohs_doc}, {"ntohl", socket_ntohl, METH_O, ntohl_doc}, {"htons", socket_htons, METH_VARARGS, htons_doc}, {"htonl", socket_htonl, METH_O, htonl_doc}, {"inet_aton", socket_inet_aton, METH_VARARGS, inet_aton_doc}, {"inet_ntoa", socket_inet_ntoa, METH_VARARGS, inet_ntoa_doc}, #if defined(HAVE_INET_PTON) || defined(MS_WINDOWS) {"inet_pton", socket_inet_pton, METH_VARARGS, inet_pton_doc}, {"inet_ntop", socket_inet_ntop, METH_VARARGS, inet_ntop_doc}, #endif {"getaddrinfo", (PyCFunction)socket_getaddrinfo, METH_VARARGS | METH_KEYWORDS, getaddrinfo_doc}, {"getnameinfo", socket_getnameinfo, METH_VARARGS, getnameinfo_doc}, {"getdefaulttimeout", (PyCFunction)socket_getdefaulttimeout, METH_NOARGS, getdefaulttimeout_doc}, {"setdefaulttimeout", socket_setdefaulttimeout, METH_O, setdefaulttimeout_doc}, #ifdef HAVE_IF_NAMEINDEX {"if_nameindex", socket_if_nameindex, METH_NOARGS, if_nameindex_doc}, {"if_nametoindex", socket_if_nametoindex, METH_VARARGS, if_nametoindex_doc}, {"if_indextoname", socket_if_indextoname, METH_O, if_indextoname_doc}, #endif #ifdef CMSG_LEN {"CMSG_LEN", socket_CMSG_LEN, METH_VARARGS, CMSG_LEN_doc}, #ifdef CMSG_SPACE {"CMSG_SPACE", socket_CMSG_SPACE, METH_VARARGS, CMSG_SPACE_doc}, #endif #endif {NULL, NULL} /* Sentinel */ }; #ifdef MS_WINDOWS #define OS_INIT_DEFINED /* Additional initialization and cleanup for Windows */ static void os_cleanup(void) { WSACleanup(); } static int os_init(void) { WSADATA WSAData; int ret; ret = WSAStartup(0x0101, &WSAData); switch (ret) { case 0: /* No error */ Py_AtExit(os_cleanup); return 1; /* Success */ case WSASYSNOTREADY: PyErr_SetString(PyExc_ImportError, "WSAStartup failed: network not ready"); break; case WSAVERNOTSUPPORTED: case WSAEINVAL: PyErr_SetString( PyExc_ImportError, "WSAStartup failed: requested version not supported"); break; default: PyErr_Format(PyExc_ImportError, "WSAStartup failed: error code %d", ret); break; } return 0; /* Failure */ } #endif /* MS_WINDOWS */ #ifndef OS_INIT_DEFINED static int os_init(void) { return 1; /* Success */ } #endif /* C API table - always add new things to the end for binary compatibility. */ static PySocketModule_APIObject PySocketModuleAPI = { &sock_type, NULL, NULL }; /* Initialize the _socket module. This module is actually called "_socket", and there's a wrapper "socket.py" which implements some additional functionality. The import of "_socket" may fail with an ImportError exception if os-specific initialization fails. On Windows, this does WINSOCK initialization. When WINSOCK is initialized successfully, a call to WSACleanup() is scheduled to be made at exit time. */ PyDoc_STRVAR(socket_doc, "Implementation module for socket operations.\n\ \n\ See the socket module for documentation."); static struct PyModuleDef socketmodule = { PyModuleDef_HEAD_INIT, PySocket_MODULE_NAME, socket_doc, -1, socket_methods, NULL, NULL, NULL, NULL }; PyMODINIT_FUNC PyInit__socket(void) { PyObject *m, *has_ipv6; if (!os_init()) return NULL; #ifdef MS_WINDOWS if (support_wsa_no_inherit == -1) { #if defined(_MSC_VER) && _MSC_VER >= 1800 support_wsa_no_inherit = IsWindows7SP1OrGreater(); #else DWORD version = GetVersion(); DWORD major = (DWORD)LOBYTE(LOWORD(version)); DWORD minor = (DWORD)HIBYTE(LOWORD(version)); /* need Windows 7 SP1, 2008 R2 SP1 or later */ support_wsa_no_inherit = major > 6 || (major == 6 && minor >= 1); #endif } #endif Py_TYPE(&sock_type) = &PyType_Type; m = PyModule_Create(&socketmodule); if (m == NULL) return NULL; Py_INCREF(PyExc_OSError); PySocketModuleAPI.error = PyExc_OSError; Py_INCREF(PyExc_OSError); PyModule_AddObject(m, "error", PyExc_OSError); socket_herror = PyErr_NewException("socket.herror", PyExc_OSError, NULL); if (socket_herror == NULL) return NULL; Py_INCREF(socket_herror); PyModule_AddObject(m, "herror", socket_herror); socket_gaierror = PyErr_NewException("socket.gaierror", PyExc_OSError, NULL); if (socket_gaierror == NULL) return NULL; Py_INCREF(socket_gaierror); PyModule_AddObject(m, "gaierror", socket_gaierror); socket_timeout = PyErr_NewException("socket.timeout", PyExc_OSError, NULL); if (socket_timeout == NULL) return NULL; PySocketModuleAPI.timeout_error = socket_timeout; Py_INCREF(socket_timeout); PyModule_AddObject(m, "timeout", socket_timeout); Py_INCREF((PyObject *)&sock_type); if (PyModule_AddObject(m, "SocketType", (PyObject *)&sock_type) != 0) return NULL; Py_INCREF((PyObject *)&sock_type); if (PyModule_AddObject(m, "socket", (PyObject *)&sock_type) != 0) return NULL; #ifdef ENABLE_IPV6 has_ipv6 = Py_True; #else has_ipv6 = Py_False; #endif Py_INCREF(has_ipv6); PyModule_AddObject(m, "has_ipv6", has_ipv6); /* Export C API */ if (PyModule_AddObject(m, PySocket_CAPI_NAME, PyCapsule_New(&PySocketModuleAPI, PySocket_CAPSULE_NAME, NULL) ) != 0) return NULL; /* Address families (we only support AF_INET and AF_UNIX) */ #ifdef AF_UNSPEC PyModule_AddIntMacro(m, AF_UNSPEC); #endif PyModule_AddIntMacro(m, AF_INET); #ifdef AF_INET6 PyModule_AddIntMacro(m, AF_INET6); #endif /* AF_INET6 */ #if defined(AF_UNIX) PyModule_AddIntMacro(m, AF_UNIX); #endif /* AF_UNIX */ #ifdef AF_AX25 /* Amateur Radio AX.25 */ PyModule_AddIntMacro(m, AF_AX25); #endif #ifdef AF_IPX PyModule_AddIntMacro(m, AF_IPX); /* Novell IPX */ #endif #ifdef AF_APPLETALK /* Appletalk DDP */ PyModule_AddIntMacro(m, AF_APPLETALK); #endif #ifdef AF_NETROM /* Amateur radio NetROM */ PyModule_AddIntMacro(m, AF_NETROM); #endif #ifdef AF_BRIDGE /* Multiprotocol bridge */ PyModule_AddIntMacro(m, AF_BRIDGE); #endif #ifdef AF_ATMPVC /* ATM PVCs */ PyModule_AddIntMacro(m, AF_ATMPVC); #endif #ifdef AF_AAL5 /* Reserved for Werner's ATM */ PyModule_AddIntMacro(m, AF_AAL5); #endif #ifdef AF_X25 /* Reserved for X.25 project */ PyModule_AddIntMacro(m, AF_X25); #endif #ifdef AF_INET6 PyModule_AddIntMacro(m, AF_INET6); /* IP version 6 */ #endif #ifdef AF_ROSE /* Amateur Radio X.25 PLP */ PyModule_AddIntMacro(m, AF_ROSE); #endif #ifdef AF_DECnet /* Reserved for DECnet project */ PyModule_AddIntMacro(m, AF_DECnet); #endif #ifdef AF_NETBEUI /* Reserved for 802.2LLC project */ PyModule_AddIntMacro(m, AF_NETBEUI); #endif #ifdef AF_SECURITY /* Security callback pseudo AF */ PyModule_AddIntMacro(m, AF_SECURITY); #endif #ifdef AF_KEY /* PF_KEY key management API */ PyModule_AddIntMacro(m, AF_KEY); #endif #ifdef AF_NETLINK /* */ PyModule_AddIntMacro(m, AF_NETLINK); PyModule_AddIntMacro(m, NETLINK_ROUTE); #ifdef NETLINK_SKIP PyModule_AddIntMacro(m, NETLINK_SKIP); #endif #ifdef NETLINK_W1 PyModule_AddIntMacro(m, NETLINK_W1); #endif PyModule_AddIntMacro(m, NETLINK_USERSOCK); PyModule_AddIntMacro(m, NETLINK_FIREWALL); #ifdef NETLINK_TCPDIAG PyModule_AddIntMacro(m, NETLINK_TCPDIAG); #endif #ifdef NETLINK_NFLOG PyModule_AddIntMacro(m, NETLINK_NFLOG); #endif #ifdef NETLINK_XFRM PyModule_AddIntMacro(m, NETLINK_XFRM); #endif #ifdef NETLINK_ARPD PyModule_AddIntMacro(m, NETLINK_ARPD); #endif #ifdef NETLINK_ROUTE6 PyModule_AddIntMacro(m, NETLINK_ROUTE6); #endif PyModule_AddIntMacro(m, NETLINK_IP6_FW); #ifdef NETLINK_DNRTMSG PyModule_AddIntMacro(m, NETLINK_DNRTMSG); #endif #ifdef NETLINK_TAPBASE PyModule_AddIntMacro(m, NETLINK_TAPBASE); #endif #endif /* AF_NETLINK */ #ifdef AF_ROUTE /* Alias to emulate 4.4BSD */ PyModule_AddIntMacro(m, AF_ROUTE); #endif #ifdef AF_LINK PyModule_AddIntMacro(m, AF_LINK); #endif #ifdef AF_ASH /* Ash */ PyModule_AddIntMacro(m, AF_ASH); #endif #ifdef AF_ECONET /* Acorn Econet */ PyModule_AddIntMacro(m, AF_ECONET); #endif #ifdef AF_ATMSVC /* ATM SVCs */ PyModule_AddIntMacro(m, AF_ATMSVC); #endif #ifdef AF_SNA /* Linux SNA Project (nutters!) */ PyModule_AddIntMacro(m, AF_SNA); #endif #ifdef AF_IRDA /* IRDA sockets */ PyModule_AddIntMacro(m, AF_IRDA); #endif #ifdef AF_PPPOX /* PPPoX sockets */ PyModule_AddIntMacro(m, AF_PPPOX); #endif #ifdef AF_WANPIPE /* Wanpipe API Sockets */ PyModule_AddIntMacro(m, AF_WANPIPE); #endif #ifdef AF_LLC /* Linux LLC */ PyModule_AddIntMacro(m, AF_LLC); #endif #ifdef USE_BLUETOOTH PyModule_AddIntMacro(m, AF_BLUETOOTH); PyModule_AddIntMacro(m, BTPROTO_L2CAP); PyModule_AddIntMacro(m, BTPROTO_HCI); PyModule_AddIntMacro(m, SOL_HCI); #if !defined(__NetBSD__) && !defined(__DragonFly__) PyModule_AddIntMacro(m, HCI_FILTER); #endif #if !defined(__FreeBSD__) #if !defined(__NetBSD__) && !defined(__DragonFly__) PyModule_AddIntMacro(m, HCI_TIME_STAMP); #endif PyModule_AddIntMacro(m, HCI_DATA_DIR); PyModule_AddIntMacro(m, BTPROTO_SCO); #endif PyModule_AddIntMacro(m, BTPROTO_RFCOMM); PyModule_AddStringConstant(m, "BDADDR_ANY", "00:00:00:00:00:00"); PyModule_AddStringConstant(m, "BDADDR_LOCAL", "00:00:00:FF:FF:FF"); #endif #ifdef AF_CAN /* Controller Area Network */ PyModule_AddIntMacro(m, AF_CAN); #endif #ifdef PF_CAN /* Controller Area Network */ PyModule_AddIntMacro(m, PF_CAN); #endif /* Reliable Datagram Sockets */ #ifdef AF_RDS PyModule_AddIntMacro(m, AF_RDS); #endif #ifdef PF_RDS PyModule_AddIntMacro(m, PF_RDS); #endif /* Kernel event messages */ #ifdef PF_SYSTEM PyModule_AddIntMacro(m, PF_SYSTEM); #endif #ifdef AF_SYSTEM PyModule_AddIntMacro(m, AF_SYSTEM); #endif #ifdef AF_PACKET PyModule_AddIntMacro(m, AF_PACKET); #endif #ifdef PF_PACKET PyModule_AddIntMacro(m, PF_PACKET); #endif #ifdef PACKET_HOST PyModule_AddIntMacro(m, PACKET_HOST); #endif #ifdef PACKET_BROADCAST PyModule_AddIntMacro(m, PACKET_BROADCAST); #endif #ifdef PACKET_MULTICAST PyModule_AddIntMacro(m, PACKET_MULTICAST); #endif #ifdef PACKET_OTHERHOST PyModule_AddIntMacro(m, PACKET_OTHERHOST); #endif #ifdef PACKET_OUTGOING PyModule_AddIntMacro(m, PACKET_OUTGOING); #endif #ifdef PACKET_LOOPBACK PyModule_AddIntMacro(m, PACKET_LOOPBACK); #endif #ifdef PACKET_FASTROUTE PyModule_AddIntMacro(m, PACKET_FASTROUTE); #endif #ifdef HAVE_LINUX_TIPC_H PyModule_AddIntMacro(m, AF_TIPC); /* for addresses */ PyModule_AddIntMacro(m, TIPC_ADDR_NAMESEQ); PyModule_AddIntMacro(m, TIPC_ADDR_NAME); PyModule_AddIntMacro(m, TIPC_ADDR_ID); PyModule_AddIntMacro(m, TIPC_ZONE_SCOPE); PyModule_AddIntMacro(m, TIPC_CLUSTER_SCOPE); PyModule_AddIntMacro(m, TIPC_NODE_SCOPE); /* for setsockopt() */ PyModule_AddIntMacro(m, SOL_TIPC); PyModule_AddIntMacro(m, TIPC_IMPORTANCE); PyModule_AddIntMacro(m, TIPC_SRC_DROPPABLE); PyModule_AddIntMacro(m, TIPC_DEST_DROPPABLE); PyModule_AddIntMacro(m, TIPC_CONN_TIMEOUT); PyModule_AddIntMacro(m, TIPC_LOW_IMPORTANCE); PyModule_AddIntMacro(m, TIPC_MEDIUM_IMPORTANCE); PyModule_AddIntMacro(m, TIPC_HIGH_IMPORTANCE); PyModule_AddIntMacro(m, TIPC_CRITICAL_IMPORTANCE); /* for subscriptions */ PyModule_AddIntMacro(m, TIPC_SUB_PORTS); PyModule_AddIntMacro(m, TIPC_SUB_SERVICE); #ifdef TIPC_SUB_CANCEL /* doesn't seem to be available everywhere */ PyModule_AddIntMacro(m, TIPC_SUB_CANCEL); #endif PyModule_AddIntMacro(m, TIPC_WAIT_FOREVER); PyModule_AddIntMacro(m, TIPC_PUBLISHED); PyModule_AddIntMacro(m, TIPC_WITHDRAWN); PyModule_AddIntMacro(m, TIPC_SUBSCR_TIMEOUT); PyModule_AddIntMacro(m, TIPC_CFG_SRV); PyModule_AddIntMacro(m, TIPC_TOP_SRV); #endif /* Socket types */ PyModule_AddIntMacro(m, SOCK_STREAM); PyModule_AddIntMacro(m, SOCK_DGRAM); /* We have incomplete socket support. */ PyModule_AddIntMacro(m, SOCK_RAW); PyModule_AddIntMacro(m, SOCK_SEQPACKET); #if defined(SOCK_RDM) PyModule_AddIntMacro(m, SOCK_RDM); #endif #ifdef SOCK_CLOEXEC PyModule_AddIntMacro(m, SOCK_CLOEXEC); #endif #ifdef SOCK_NONBLOCK PyModule_AddIntMacro(m, SOCK_NONBLOCK); #endif #ifdef SO_DEBUG PyModule_AddIntMacro(m, SO_DEBUG); #endif #ifdef SO_ACCEPTCONN PyModule_AddIntMacro(m, SO_ACCEPTCONN); #endif #ifdef SO_REUSEADDR PyModule_AddIntMacro(m, SO_REUSEADDR); #endif #ifdef SO_EXCLUSIVEADDRUSE PyModule_AddIntMacro(m, SO_EXCLUSIVEADDRUSE); #endif #ifdef SO_KEEPALIVE PyModule_AddIntMacro(m, SO_KEEPALIVE); #endif #ifdef SO_DONTROUTE PyModule_AddIntMacro(m, SO_DONTROUTE); #endif #ifdef SO_BROADCAST PyModule_AddIntMacro(m, SO_BROADCAST); #endif #ifdef SO_USELOOPBACK PyModule_AddIntMacro(m, SO_USELOOPBACK); #endif #ifdef SO_LINGER PyModule_AddIntMacro(m, SO_LINGER); #endif #ifdef SO_OOBINLINE PyModule_AddIntMacro(m, SO_OOBINLINE); #endif #ifdef SO_REUSEPORT PyModule_AddIntMacro(m, SO_REUSEPORT); #endif #ifdef SO_SNDBUF PyModule_AddIntMacro(m, SO_SNDBUF); #endif #ifdef SO_RCVBUF PyModule_AddIntMacro(m, SO_RCVBUF); #endif #ifdef SO_SNDLOWAT PyModule_AddIntMacro(m, SO_SNDLOWAT); #endif #ifdef SO_RCVLOWAT PyModule_AddIntMacro(m, SO_RCVLOWAT); #endif #ifdef SO_SNDTIMEO PyModule_AddIntMacro(m, SO_SNDTIMEO); #endif #ifdef SO_RCVTIMEO PyModule_AddIntMacro(m, SO_RCVTIMEO); #endif #ifdef SO_ERROR PyModule_AddIntMacro(m, SO_ERROR); #endif #ifdef SO_TYPE PyModule_AddIntMacro(m, SO_TYPE); #endif #ifdef SO_SETFIB PyModule_AddIntMacro(m, SO_SETFIB); #endif #ifdef SO_PASSCRED PyModule_AddIntMacro(m, SO_PASSCRED); #endif #ifdef SO_PEERCRED PyModule_AddIntMacro(m, SO_PEERCRED); #endif #ifdef LOCAL_PEERCRED PyModule_AddIntMacro(m, LOCAL_PEERCRED); #endif #ifdef SO_BINDTODEVICE PyModule_AddIntMacro(m, SO_BINDTODEVICE); #endif #ifdef SO_PRIORITY PyModule_AddIntMacro(m, SO_PRIORITY); #endif #ifdef SO_MARK PyModule_AddIntMacro(m, SO_MARK); #endif /* Maximum number of connections for "listen" */ #ifdef SOMAXCONN PyModule_AddIntMacro(m, SOMAXCONN); #else PyModule_AddIntConstant(m, "SOMAXCONN", 5); /* Common value */ #endif /* Ancilliary message types */ #ifdef SCM_RIGHTS PyModule_AddIntMacro(m, SCM_RIGHTS); #endif #ifdef SCM_CREDENTIALS PyModule_AddIntMacro(m, SCM_CREDENTIALS); #endif #ifdef SCM_CREDS PyModule_AddIntMacro(m, SCM_CREDS); #endif /* Flags for send, recv */ #ifdef MSG_OOB PyModule_AddIntMacro(m, MSG_OOB); #endif #ifdef MSG_PEEK PyModule_AddIntMacro(m, MSG_PEEK); #endif #ifdef MSG_DONTROUTE PyModule_AddIntMacro(m, MSG_DONTROUTE); #endif #ifdef MSG_DONTWAIT PyModule_AddIntMacro(m, MSG_DONTWAIT); #endif #ifdef MSG_EOR PyModule_AddIntMacro(m, MSG_EOR); #endif #ifdef MSG_TRUNC PyModule_AddIntMacro(m, MSG_TRUNC); #endif #ifdef MSG_CTRUNC PyModule_AddIntMacro(m, MSG_CTRUNC); #endif #ifdef MSG_WAITALL PyModule_AddIntMacro(m, MSG_WAITALL); #endif #ifdef MSG_BTAG PyModule_AddIntMacro(m, MSG_BTAG); #endif #ifdef MSG_ETAG PyModule_AddIntMacro(m, MSG_ETAG); #endif #ifdef MSG_NOSIGNAL PyModule_AddIntMacro(m, MSG_NOSIGNAL); #endif #ifdef MSG_NOTIFICATION PyModule_AddIntMacro(m, MSG_NOTIFICATION); #endif #ifdef MSG_CMSG_CLOEXEC PyModule_AddIntMacro(m, MSG_CMSG_CLOEXEC); #endif #ifdef MSG_ERRQUEUE PyModule_AddIntMacro(m, MSG_ERRQUEUE); #endif #ifdef MSG_CONFIRM PyModule_AddIntMacro(m, MSG_CONFIRM); #endif #ifdef MSG_MORE PyModule_AddIntMacro(m, MSG_MORE); #endif #ifdef MSG_EOF PyModule_AddIntMacro(m, MSG_EOF); #endif #ifdef MSG_BCAST PyModule_AddIntMacro(m, MSG_BCAST); #endif #ifdef MSG_MCAST PyModule_AddIntMacro(m, MSG_MCAST); #endif #ifdef MSG_FASTOPEN PyModule_AddIntMacro(m, MSG_FASTOPEN); #endif /* Protocol level and numbers, usable for [gs]etsockopt */ #ifdef SOL_SOCKET PyModule_AddIntMacro(m, SOL_SOCKET); #endif #ifdef SOL_IP PyModule_AddIntMacro(m, SOL_IP); #else PyModule_AddIntConstant(m, "SOL_IP", 0); #endif #ifdef SOL_IPX PyModule_AddIntMacro(m, SOL_IPX); #endif #ifdef SOL_AX25 PyModule_AddIntMacro(m, SOL_AX25); #endif #ifdef SOL_ATALK PyModule_AddIntMacro(m, SOL_ATALK); #endif #ifdef SOL_NETROM PyModule_AddIntMacro(m, SOL_NETROM); #endif #ifdef SOL_ROSE PyModule_AddIntMacro(m, SOL_ROSE); #endif #ifdef SOL_TCP PyModule_AddIntMacro(m, SOL_TCP); #else PyModule_AddIntConstant(m, "SOL_TCP", 6); #endif #ifdef SOL_UDP PyModule_AddIntMacro(m, SOL_UDP); #else PyModule_AddIntConstant(m, "SOL_UDP", 17); #endif #ifdef SOL_CAN_BASE PyModule_AddIntMacro(m, SOL_CAN_BASE); #endif #ifdef SOL_CAN_RAW PyModule_AddIntMacro(m, SOL_CAN_RAW); PyModule_AddIntMacro(m, CAN_RAW); #endif #ifdef HAVE_LINUX_CAN_H PyModule_AddIntMacro(m, CAN_EFF_FLAG); PyModule_AddIntMacro(m, CAN_RTR_FLAG); PyModule_AddIntMacro(m, CAN_ERR_FLAG); PyModule_AddIntMacro(m, CAN_SFF_MASK); PyModule_AddIntMacro(m, CAN_EFF_MASK); PyModule_AddIntMacro(m, CAN_ERR_MASK); #endif #ifdef HAVE_LINUX_CAN_RAW_H PyModule_AddIntMacro(m, CAN_RAW_FILTER); PyModule_AddIntMacro(m, CAN_RAW_ERR_FILTER); PyModule_AddIntMacro(m, CAN_RAW_LOOPBACK); PyModule_AddIntMacro(m, CAN_RAW_RECV_OWN_MSGS); #endif #ifdef HAVE_LINUX_CAN_RAW_FD_FRAMES PyModule_AddIntMacro(m, CAN_RAW_FD_FRAMES); #endif #ifdef HAVE_LINUX_CAN_BCM_H PyModule_AddIntMacro(m, CAN_BCM); PyModule_AddIntConstant(m, "CAN_BCM_TX_SETUP", TX_SETUP); PyModule_AddIntConstant(m, "CAN_BCM_TX_DELETE", TX_DELETE); PyModule_AddIntConstant(m, "CAN_BCM_TX_READ", TX_READ); PyModule_AddIntConstant(m, "CAN_BCM_TX_SEND", TX_SEND); PyModule_AddIntConstant(m, "CAN_BCM_RX_SETUP", RX_SETUP); PyModule_AddIntConstant(m, "CAN_BCM_RX_DELETE", RX_DELETE); PyModule_AddIntConstant(m, "CAN_BCM_RX_READ", RX_READ); PyModule_AddIntConstant(m, "CAN_BCM_TX_STATUS", TX_STATUS); PyModule_AddIntConstant(m, "CAN_BCM_TX_EXPIRED", TX_EXPIRED); PyModule_AddIntConstant(m, "CAN_BCM_RX_STATUS", RX_STATUS); PyModule_AddIntConstant(m, "CAN_BCM_RX_TIMEOUT", RX_TIMEOUT); PyModule_AddIntConstant(m, "CAN_BCM_RX_CHANGED", RX_CHANGED); #endif #ifdef SOL_RDS PyModule_AddIntMacro(m, SOL_RDS); #endif #ifdef RDS_CANCEL_SENT_TO PyModule_AddIntMacro(m, RDS_CANCEL_SENT_TO); #endif #ifdef RDS_GET_MR PyModule_AddIntMacro(m, RDS_GET_MR); #endif #ifdef RDS_FREE_MR PyModule_AddIntMacro(m, RDS_FREE_MR); #endif #ifdef RDS_RECVERR PyModule_AddIntMacro(m, RDS_RECVERR); #endif #ifdef RDS_CONG_MONITOR PyModule_AddIntMacro(m, RDS_CONG_MONITOR); #endif #ifdef RDS_GET_MR_FOR_DEST PyModule_AddIntMacro(m, RDS_GET_MR_FOR_DEST); #endif #ifdef IPPROTO_IP PyModule_AddIntMacro(m, IPPROTO_IP); #else PyModule_AddIntConstant(m, "IPPROTO_IP", 0); #endif #ifdef IPPROTO_HOPOPTS PyModule_AddIntMacro(m, IPPROTO_HOPOPTS); #endif #ifdef IPPROTO_ICMP PyModule_AddIntMacro(m, IPPROTO_ICMP); #else PyModule_AddIntConstant(m, "IPPROTO_ICMP", 1); #endif #ifdef IPPROTO_IGMP PyModule_AddIntMacro(m, IPPROTO_IGMP); #endif #ifdef IPPROTO_GGP PyModule_AddIntMacro(m, IPPROTO_GGP); #endif #ifdef IPPROTO_IPV4 PyModule_AddIntMacro(m, IPPROTO_IPV4); #endif #ifdef IPPROTO_IPV6 PyModule_AddIntMacro(m, IPPROTO_IPV6); #endif #ifdef IPPROTO_IPIP PyModule_AddIntMacro(m, IPPROTO_IPIP); #endif #ifdef IPPROTO_TCP PyModule_AddIntMacro(m, IPPROTO_TCP); #else PyModule_AddIntConstant(m, "IPPROTO_TCP", 6); #endif #ifdef IPPROTO_EGP PyModule_AddIntMacro(m, IPPROTO_EGP); #endif #ifdef IPPROTO_PUP PyModule_AddIntMacro(m, IPPROTO_PUP); #endif #ifdef IPPROTO_UDP PyModule_AddIntMacro(m, IPPROTO_UDP); #else PyModule_AddIntConstant(m, "IPPROTO_UDP", 17); #endif #ifdef IPPROTO_IDP PyModule_AddIntMacro(m, IPPROTO_IDP); #endif #ifdef IPPROTO_HELLO PyModule_AddIntMacro(m, IPPROTO_HELLO); #endif #ifdef IPPROTO_ND PyModule_AddIntMacro(m, IPPROTO_ND); #endif #ifdef IPPROTO_TP PyModule_AddIntMacro(m, IPPROTO_TP); #endif #ifdef IPPROTO_IPV6 PyModule_AddIntMacro(m, IPPROTO_IPV6); #endif #ifdef IPPROTO_ROUTING PyModule_AddIntMacro(m, IPPROTO_ROUTING); #endif #ifdef IPPROTO_FRAGMENT PyModule_AddIntMacro(m, IPPROTO_FRAGMENT); #endif #ifdef IPPROTO_RSVP PyModule_AddIntMacro(m, IPPROTO_RSVP); #endif #ifdef IPPROTO_GRE PyModule_AddIntMacro(m, IPPROTO_GRE); #endif #ifdef IPPROTO_ESP PyModule_AddIntMacro(m, IPPROTO_ESP); #endif #ifdef IPPROTO_AH PyModule_AddIntMacro(m, IPPROTO_AH); #endif #ifdef IPPROTO_MOBILE PyModule_AddIntMacro(m, IPPROTO_MOBILE); #endif #ifdef IPPROTO_ICMPV6 PyModule_AddIntMacro(m, IPPROTO_ICMPV6); #endif #ifdef IPPROTO_NONE PyModule_AddIntMacro(m, IPPROTO_NONE); #endif #ifdef IPPROTO_DSTOPTS PyModule_AddIntMacro(m, IPPROTO_DSTOPTS); #endif #ifdef IPPROTO_XTP PyModule_AddIntMacro(m, IPPROTO_XTP); #endif #ifdef IPPROTO_EON PyModule_AddIntMacro(m, IPPROTO_EON); #endif #ifdef IPPROTO_PIM PyModule_AddIntMacro(m, IPPROTO_PIM); #endif #ifdef IPPROTO_IPCOMP PyModule_AddIntMacro(m, IPPROTO_IPCOMP); #endif #ifdef IPPROTO_VRRP PyModule_AddIntMacro(m, IPPROTO_VRRP); #endif #ifdef IPPROTO_SCTP PyModule_AddIntMacro(m, IPPROTO_SCTP); #endif #ifdef IPPROTO_BIP PyModule_AddIntMacro(m, IPPROTO_BIP); #endif /**/ #ifdef IPPROTO_RAW PyModule_AddIntMacro(m, IPPROTO_RAW); #else PyModule_AddIntConstant(m, "IPPROTO_RAW", 255); #endif #ifdef IPPROTO_MAX PyModule_AddIntMacro(m, IPPROTO_MAX); #endif #ifdef SYSPROTO_CONTROL PyModule_AddIntMacro(m, SYSPROTO_CONTROL); #endif /* Some port configuration */ #ifdef IPPORT_RESERVED PyModule_AddIntMacro(m, IPPORT_RESERVED); #else PyModule_AddIntConstant(m, "IPPORT_RESERVED", 1024); #endif #ifdef IPPORT_USERRESERVED PyModule_AddIntMacro(m, IPPORT_USERRESERVED); #else PyModule_AddIntConstant(m, "IPPORT_USERRESERVED", 5000); #endif /* Some reserved IP v.4 addresses */ #ifdef INADDR_ANY PyModule_AddIntMacro(m, INADDR_ANY); #else PyModule_AddIntConstant(m, "INADDR_ANY", 0x00000000); #endif #ifdef INADDR_BROADCAST PyModule_AddIntMacro(m, INADDR_BROADCAST); #else PyModule_AddIntConstant(m, "INADDR_BROADCAST", 0xffffffff); #endif #ifdef INADDR_LOOPBACK PyModule_AddIntMacro(m, INADDR_LOOPBACK); #else PyModule_AddIntConstant(m, "INADDR_LOOPBACK", 0x7F000001); #endif #ifdef INADDR_UNSPEC_GROUP PyModule_AddIntMacro(m, INADDR_UNSPEC_GROUP); #else PyModule_AddIntConstant(m, "INADDR_UNSPEC_GROUP", 0xe0000000); #endif #ifdef INADDR_ALLHOSTS_GROUP PyModule_AddIntConstant(m, "INADDR_ALLHOSTS_GROUP", INADDR_ALLHOSTS_GROUP); #else PyModule_AddIntConstant(m, "INADDR_ALLHOSTS_GROUP", 0xe0000001); #endif #ifdef INADDR_MAX_LOCAL_GROUP PyModule_AddIntMacro(m, INADDR_MAX_LOCAL_GROUP); #else PyModule_AddIntConstant(m, "INADDR_MAX_LOCAL_GROUP", 0xe00000ff); #endif #ifdef INADDR_NONE PyModule_AddIntMacro(m, INADDR_NONE); #else PyModule_AddIntConstant(m, "INADDR_NONE", 0xffffffff); #endif /* IPv4 [gs]etsockopt options */ #ifdef IP_OPTIONS PyModule_AddIntMacro(m, IP_OPTIONS); #endif #ifdef IP_HDRINCL PyModule_AddIntMacro(m, IP_HDRINCL); #endif #ifdef IP_TOS PyModule_AddIntMacro(m, IP_TOS); #endif #ifdef IP_TTL PyModule_AddIntMacro(m, IP_TTL); #endif #ifdef IP_RECVOPTS PyModule_AddIntMacro(m, IP_RECVOPTS); #endif #ifdef IP_RECVRETOPTS PyModule_AddIntMacro(m, IP_RECVRETOPTS); #endif #ifdef IP_RECVDSTADDR PyModule_AddIntMacro(m, IP_RECVDSTADDR); #endif #ifdef IP_RETOPTS PyModule_AddIntMacro(m, IP_RETOPTS); #endif #ifdef IP_MULTICAST_IF PyModule_AddIntMacro(m, IP_MULTICAST_IF); #endif #ifdef IP_MULTICAST_TTL PyModule_AddIntMacro(m, IP_MULTICAST_TTL); #endif #ifdef IP_MULTICAST_LOOP PyModule_AddIntMacro(m, IP_MULTICAST_LOOP); #endif #ifdef IP_ADD_MEMBERSHIP PyModule_AddIntMacro(m, IP_ADD_MEMBERSHIP); #endif #ifdef IP_DROP_MEMBERSHIP PyModule_AddIntMacro(m, IP_DROP_MEMBERSHIP); #endif #ifdef IP_DEFAULT_MULTICAST_TTL PyModule_AddIntMacro(m, IP_DEFAULT_MULTICAST_TTL); #endif #ifdef IP_DEFAULT_MULTICAST_LOOP PyModule_AddIntMacro(m, IP_DEFAULT_MULTICAST_LOOP); #endif #ifdef IP_MAX_MEMBERSHIPS PyModule_AddIntMacro(m, IP_MAX_MEMBERSHIPS); #endif #ifdef IP_TRANSPARENT PyModule_AddIntMacro(m, IP_TRANSPARENT); #endif /* IPv6 [gs]etsockopt options, defined in RFC2553 */ #ifdef IPV6_JOIN_GROUP PyModule_AddIntMacro(m, IPV6_JOIN_GROUP); #endif #ifdef IPV6_LEAVE_GROUP PyModule_AddIntMacro(m, IPV6_LEAVE_GROUP); #endif #ifdef IPV6_MULTICAST_HOPS PyModule_AddIntMacro(m, IPV6_MULTICAST_HOPS); #endif #ifdef IPV6_MULTICAST_IF PyModule_AddIntMacro(m, IPV6_MULTICAST_IF); #endif #ifdef IPV6_MULTICAST_LOOP PyModule_AddIntMacro(m, IPV6_MULTICAST_LOOP); #endif #ifdef IPV6_UNICAST_HOPS PyModule_AddIntMacro(m, IPV6_UNICAST_HOPS); #endif /* Additional IPV6 socket options, defined in RFC 3493 */ #ifdef IPV6_V6ONLY PyModule_AddIntMacro(m, IPV6_V6ONLY); #endif /* Advanced IPV6 socket options, from RFC 3542 */ #ifdef IPV6_CHECKSUM PyModule_AddIntMacro(m, IPV6_CHECKSUM); #endif #ifdef IPV6_DONTFRAG PyModule_AddIntMacro(m, IPV6_DONTFRAG); #endif #ifdef IPV6_DSTOPTS PyModule_AddIntMacro(m, IPV6_DSTOPTS); #endif #ifdef IPV6_HOPLIMIT PyModule_AddIntMacro(m, IPV6_HOPLIMIT); #endif #ifdef IPV6_HOPOPTS PyModule_AddIntMacro(m, IPV6_HOPOPTS); #endif #ifdef IPV6_NEXTHOP PyModule_AddIntMacro(m, IPV6_NEXTHOP); #endif #ifdef IPV6_PATHMTU PyModule_AddIntMacro(m, IPV6_PATHMTU); #endif #ifdef IPV6_PKTINFO PyModule_AddIntMacro(m, IPV6_PKTINFO); #endif #ifdef IPV6_RECVDSTOPTS PyModule_AddIntMacro(m, IPV6_RECVDSTOPTS); #endif #ifdef IPV6_RECVHOPLIMIT PyModule_AddIntMacro(m, IPV6_RECVHOPLIMIT); #endif #ifdef IPV6_RECVHOPOPTS PyModule_AddIntMacro(m, IPV6_RECVHOPOPTS); #endif #ifdef IPV6_RECVPKTINFO PyModule_AddIntMacro(m, IPV6_RECVPKTINFO); #endif #ifdef IPV6_RECVRTHDR PyModule_AddIntMacro(m, IPV6_RECVRTHDR); #endif #ifdef IPV6_RECVTCLASS PyModule_AddIntMacro(m, IPV6_RECVTCLASS); #endif #ifdef IPV6_RTHDR PyModule_AddIntMacro(m, IPV6_RTHDR); #endif #ifdef IPV6_RTHDRDSTOPTS PyModule_AddIntMacro(m, IPV6_RTHDRDSTOPTS); #endif #ifdef IPV6_RTHDR_TYPE_0 PyModule_AddIntMacro(m, IPV6_RTHDR_TYPE_0); #endif #ifdef IPV6_RECVPATHMTU PyModule_AddIntMacro(m, IPV6_RECVPATHMTU); #endif #ifdef IPV6_TCLASS PyModule_AddIntMacro(m, IPV6_TCLASS); #endif #ifdef IPV6_USE_MIN_MTU PyModule_AddIntMacro(m, IPV6_USE_MIN_MTU); #endif /* TCP options */ #ifdef TCP_NODELAY PyModule_AddIntMacro(m, TCP_NODELAY); #endif #ifdef TCP_MAXSEG PyModule_AddIntMacro(m, TCP_MAXSEG); #endif #ifdef TCP_CORK PyModule_AddIntMacro(m, TCP_CORK); #endif #ifdef TCP_KEEPIDLE PyModule_AddIntMacro(m, TCP_KEEPIDLE); #endif #ifdef TCP_KEEPINTVL PyModule_AddIntMacro(m, TCP_KEEPINTVL); #endif #ifdef TCP_KEEPCNT PyModule_AddIntMacro(m, TCP_KEEPCNT); #endif #ifdef TCP_SYNCNT PyModule_AddIntMacro(m, TCP_SYNCNT); #endif #ifdef TCP_LINGER2 PyModule_AddIntMacro(m, TCP_LINGER2); #endif #ifdef TCP_DEFER_ACCEPT PyModule_AddIntMacro(m, TCP_DEFER_ACCEPT); #endif #ifdef TCP_WINDOW_CLAMP PyModule_AddIntMacro(m, TCP_WINDOW_CLAMP); #endif #ifdef TCP_INFO PyModule_AddIntMacro(m, TCP_INFO); #endif #ifdef TCP_QUICKACK PyModule_AddIntMacro(m, TCP_QUICKACK); #endif #ifdef TCP_FASTOPEN PyModule_AddIntMacro(m, TCP_FASTOPEN); #endif /* IPX options */ #ifdef IPX_TYPE PyModule_AddIntMacro(m, IPX_TYPE); #endif /* Reliable Datagram Sockets */ #ifdef RDS_CMSG_RDMA_ARGS PyModule_AddIntMacro(m, RDS_CMSG_RDMA_ARGS); #endif #ifdef RDS_CMSG_RDMA_DEST PyModule_AddIntMacro(m, RDS_CMSG_RDMA_DEST); #endif #ifdef RDS_CMSG_RDMA_MAP PyModule_AddIntMacro(m, RDS_CMSG_RDMA_MAP); #endif #ifdef RDS_CMSG_RDMA_STATUS PyModule_AddIntMacro(m, RDS_CMSG_RDMA_STATUS); #endif #ifdef RDS_CMSG_RDMA_UPDATE PyModule_AddIntMacro(m, RDS_CMSG_RDMA_UPDATE); #endif #ifdef RDS_RDMA_READWRITE PyModule_AddIntMacro(m, RDS_RDMA_READWRITE); #endif #ifdef RDS_RDMA_FENCE PyModule_AddIntMacro(m, RDS_RDMA_FENCE); #endif #ifdef RDS_RDMA_INVALIDATE PyModule_AddIntMacro(m, RDS_RDMA_INVALIDATE); #endif #ifdef RDS_RDMA_USE_ONCE PyModule_AddIntMacro(m, RDS_RDMA_USE_ONCE); #endif #ifdef RDS_RDMA_DONTWAIT PyModule_AddIntMacro(m, RDS_RDMA_DONTWAIT); #endif #ifdef RDS_RDMA_NOTIFY_ME PyModule_AddIntMacro(m, RDS_RDMA_NOTIFY_ME); #endif #ifdef RDS_RDMA_SILENT PyModule_AddIntMacro(m, RDS_RDMA_SILENT); #endif /* get{addr,name}info parameters */ #ifdef EAI_ADDRFAMILY PyModule_AddIntMacro(m, EAI_ADDRFAMILY); #endif #ifdef EAI_AGAIN PyModule_AddIntMacro(m, EAI_AGAIN); #endif #ifdef EAI_BADFLAGS PyModule_AddIntMacro(m, EAI_BADFLAGS); #endif #ifdef EAI_FAIL PyModule_AddIntMacro(m, EAI_FAIL); #endif #ifdef EAI_FAMILY PyModule_AddIntMacro(m, EAI_FAMILY); #endif #ifdef EAI_MEMORY PyModule_AddIntMacro(m, EAI_MEMORY); #endif #ifdef EAI_NODATA PyModule_AddIntMacro(m, EAI_NODATA); #endif #ifdef EAI_NONAME PyModule_AddIntMacro(m, EAI_NONAME); #endif #ifdef EAI_OVERFLOW PyModule_AddIntMacro(m, EAI_OVERFLOW); #endif #ifdef EAI_SERVICE PyModule_AddIntMacro(m, EAI_SERVICE); #endif #ifdef EAI_SOCKTYPE PyModule_AddIntMacro(m, EAI_SOCKTYPE); #endif #ifdef EAI_SYSTEM PyModule_AddIntMacro(m, EAI_SYSTEM); #endif #ifdef EAI_BADHINTS PyModule_AddIntMacro(m, EAI_BADHINTS); #endif #ifdef EAI_PROTOCOL PyModule_AddIntMacro(m, EAI_PROTOCOL); #endif #ifdef EAI_MAX PyModule_AddIntMacro(m, EAI_MAX); #endif #ifdef AI_PASSIVE PyModule_AddIntMacro(m, AI_PASSIVE); #endif #ifdef AI_CANONNAME PyModule_AddIntMacro(m, AI_CANONNAME); #endif #ifdef AI_NUMERICHOST PyModule_AddIntMacro(m, AI_NUMERICHOST); #endif #ifdef AI_NUMERICSERV PyModule_AddIntMacro(m, AI_NUMERICSERV); #endif #ifdef AI_MASK PyModule_AddIntMacro(m, AI_MASK); #endif #ifdef AI_ALL PyModule_AddIntMacro(m, AI_ALL); #endif #ifdef AI_V4MAPPED_CFG PyModule_AddIntMacro(m, AI_V4MAPPED_CFG); #endif #ifdef AI_ADDRCONFIG PyModule_AddIntMacro(m, AI_ADDRCONFIG); #endif #ifdef AI_V4MAPPED PyModule_AddIntMacro(m, AI_V4MAPPED); #endif #ifdef AI_DEFAULT PyModule_AddIntMacro(m, AI_DEFAULT); #endif #ifdef NI_MAXHOST PyModule_AddIntMacro(m, NI_MAXHOST); #endif #ifdef NI_MAXSERV PyModule_AddIntMacro(m, NI_MAXSERV); #endif #ifdef NI_NOFQDN PyModule_AddIntMacro(m, NI_NOFQDN); #endif #ifdef NI_NUMERICHOST PyModule_AddIntMacro(m, NI_NUMERICHOST); #endif #ifdef NI_NAMEREQD PyModule_AddIntMacro(m, NI_NAMEREQD); #endif #ifdef NI_NUMERICSERV PyModule_AddIntMacro(m, NI_NUMERICSERV); #endif #ifdef NI_DGRAM PyModule_AddIntMacro(m, NI_DGRAM); #endif /* shutdown() parameters */ #ifdef SHUT_RD PyModule_AddIntMacro(m, SHUT_RD); #elif defined(SD_RECEIVE) PyModule_AddIntConstant(m, "SHUT_RD", SD_RECEIVE); #else PyModule_AddIntConstant(m, "SHUT_RD", 0); #endif #ifdef SHUT_WR PyModule_AddIntMacro(m, SHUT_WR); #elif defined(SD_SEND) PyModule_AddIntConstant(m, "SHUT_WR", SD_SEND); #else PyModule_AddIntConstant(m, "SHUT_WR", 1); #endif #ifdef SHUT_RDWR PyModule_AddIntMacro(m, SHUT_RDWR); #elif defined(SD_BOTH) PyModule_AddIntConstant(m, "SHUT_RDWR", SD_BOTH); #else PyModule_AddIntConstant(m, "SHUT_RDWR", 2); #endif #ifdef SIO_RCVALL { DWORD codes[] = {SIO_RCVALL, SIO_KEEPALIVE_VALS}; const char *names[] = {"SIO_RCVALL", "SIO_KEEPALIVE_VALS"}; int i; for(i = 0; i