/*[clinic input] preserve [clinic start generated code]*/ #if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE) # include "pycore_gc.h" // PyGC_Head # include "pycore_runtime.h" // _Py_ID() #endif static PyObject * long_new_impl(PyTypeObject *type, PyObject *x, PyObject *obase); static PyObject * long_new(PyTypeObject *type, PyObject *args, PyObject *kwargs) { PyObject *return_value = NULL; #if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE) #define NUM_KEYWORDS 1 static struct { PyGC_Head _this_is_not_used; PyObject_VAR_HEAD PyObject *ob_item[NUM_KEYWORDS]; } _kwtuple = { .ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS) .ob_item = { &_Py_ID(base), }, }; #undef NUM_KEYWORDS #define KWTUPLE (&_kwtuple.ob_base.ob_base) #else // !Py_BUILD_CORE # define KWTUPLE NULL #endif // !Py_BUILD_CORE static const char * const _keywords[] = {"", "base", NULL}; static _PyArg_Parser _parser = { .keywords = _keywords, .fname = "int", .kwtuple = KWTUPLE, }; #undef KWTUPLE PyObject *argsbuf[2]; PyObject * const *fastargs; Py_ssize_t nargs = PyTuple_GET_SIZE(args); Py_ssize_t noptargs = nargs + (kwargs ? PyDict_GET_SIZE(kwargs) : 0) - 0; PyObject *x = NULL; PyObject *obase = NULL; fastargs = _PyArg_UnpackKeywords(_PyTuple_CAST(args)->ob_item, nargs, kwargs, NULL, &_parser, 0, 2, 0, argsbuf); if (!fastargs) { goto exit; } if (nargs < 1) { goto skip_optional_posonly; } noptargs--; x = fastargs[0]; skip_optional_posonly: if (!noptargs) { goto skip_optional_pos; } obase = fastargs[1]; skip_optional_pos: return_value = long_new_impl(type, x, obase); exit: return return_value; } PyDoc_STRVAR(int___getnewargs____doc__, "__getnewargs__($self, /)\n" "--\n" "\n"); #define INT___GETNEWARGS___METHODDEF \ {"__getnewargs__", (PyCFunction)int___getnewargs__, METH_NOARGS, int___getnewargs____doc__}, static PyObject * int___getnewargs___impl(PyObject *self); static PyObject * int___getnewargs__(PyObject *self, PyObject *Py_UNUSED(ignored)) { return int___getnewargs___impl(self); } PyDoc_STRVAR(int___format____doc__, "__format__($self, format_spec, /)\n" "--\n" "\n" "Convert to a string according to format_spec."); #define INT___FORMAT___METHODDEF \ {"__format__", (PyCFunction)int___format__, METH_O, int___format____doc__}, static PyObject * int___format___impl(PyObject *self, PyObject *format_spec); static PyObject * int___format__(PyObject *self, PyObject *arg) { PyObject *return_value = NULL; PyObject *format_spec; if (!PyUnicode_Check(arg)) { _PyArg_BadArgument("__format__", "argument", "str", arg); goto exit; } format_spec = arg; return_value = int___format___impl(self, format_spec); exit: return return_value; } PyDoc_STRVAR(int___round____doc__, "__round__($self, ndigits=, /)\n" "--\n" "\n" "Rounding an Integral returns itself.\n" "\n" "Rounding with an ndigits argument also returns an integer."); #define INT___ROUND___METHODDEF \ {"__round__", _PyCFunction_CAST(int___round__), METH_FASTCALL, int___round____doc__}, static PyObject * int___round___impl(PyObject *self, PyObject *o_ndigits); static PyObject * int___round__(PyObject *self, PyObject *const *args, Py_ssize_t nargs) { PyObject *return_value = NULL; PyObject *o_ndigits = NULL; if (!_PyArg_CheckPositional("__round__", nargs, 0, 1)) { goto exit; } if (nargs < 1) { goto skip_optional; } o_ndigits = args[0]; skip_optional: return_value = int___round___impl(self, o_ndigits); exit: return return_value; } PyDoc_STRVAR(int___sizeof____doc__, "__sizeof__($self, /)\n" "--\n" "\n" "Returns size in memory, in bytes."); #define INT___SIZEOF___METHODDEF \ {"__sizeof__", (PyCFunction)int___sizeof__, METH_NOARGS, int___sizeof____doc__}, static Py_ssize_t int___sizeof___impl(PyObject *self); static PyObject * int___sizeof__(PyObject *self, PyObject *Py_UNUSED(ignored)) { PyObject *return_value = NULL; Py_ssize_t _return_value; _return_value = int___sizeof___impl(self); if ((_return_value == -1) && PyErr_Occurred()) { goto exit; } return_value = PyLong_FromSsize_t(_return_value); exit: return return_value; } PyDoc_STRVAR(int_bit_length__doc__, "bit_length($self, /)\n" "--\n" "\n" "Number of bits necessary to represent self in binary.\n" "\n" ">>> bin(37)\n" "\'0b100101\'\n" ">>> (37).bit_length()\n" "6"); #define INT_BIT_LENGTH_METHODDEF \ {"bit_length", (PyCFunction)int_bit_length, METH_NOARGS, int_bit_length__doc__}, static PyObject * int_bit_length_impl(PyObject *self); static PyObject * int_bit_length(PyObject *self, PyObject *Py_UNUSED(ignored)) { return int_bit_length_impl(self); } PyDoc_STRVAR(int_bit_count__doc__, "bit_count($self, /)\n" "--\n" "\n" "Number of ones in the binary representation of the absolute value of self.\n" "\n" "Also known as the population count.\n" "\n" ">>> bin(13)\n" "\'0b1101\'\n" ">>> (13).bit_count()\n" "3"); #define INT_BIT_COUNT_METHODDEF \ {"bit_count", (PyCFunction)int_bit_count, METH_NOARGS, int_bit_count__doc__}, static PyObject * int_bit_count_impl(PyObject *self); static PyObject * int_bit_count(PyObject *self, PyObject *Py_UNUSED(ignored)) { return int_bit_count_impl(self); } PyDoc_STRVAR(int_as_integer_ratio__doc__, "as_integer_ratio($self, /)\n" "--\n" "\n" "Return a pair of integers, whose ratio is equal to the original int.\n" "\n" "The ratio is in lowest terms and has a positive denominator.\n" "\n" ">>> (10).as_integer_ratio()\n" "(10, 1)\n" ">>> (-10).as_integer_ratio()\n" "(-10, 1)\n" ">>> (0).as_integer_ratio()\n" "(0, 1)"); #define INT_AS_INTEGER_RATIO_METHODDEF \ {"as_integer_ratio", (PyCFunction)int_as_integer_ratio, METH_NOARGS, int_as_integer_ratio__doc__}, static PyObject * int_as_integer_ratio_impl(PyObject *self); static PyObject * int_as_integer_ratio(PyObject *self, PyObject *Py_UNUSED(ignored)) { return int_as_integer_ratio_impl(self); } PyDoc_STRVAR(int_to_bytes__doc__, "to_bytes($self, /, length=1, byteorder=\'big\', *, signed=False)\n" "--\n" "\n" "Return an array of bytes representing an integer.\n" "\n" " length\n" " Length of bytes object to use. An OverflowError is raised if the\n" " integer is not representable with the given number of bytes. Default\n" " is length 1.\n" " byteorder\n" " The byte order used to represent the integer. If byteorder is \'big\',\n" " the most significant byte is at the beginning of the byte array. If\n" " byteorder is \'little\', the most significant byte is at the end of the\n" " byte array. To request the native byte order of the host system, use\n" " `sys.byteorder\' as the byte order value. Default is to use \'big\'.\n" " signed\n" " Determines whether two\'s complement is used to represent the integer.\n" " If signed is False and a negative integer is given, an OverflowError\n" " is raised."); #define INT_TO_BYTES_METHODDEF \ {"to_bytes", _PyCFunction_CAST(int_to_bytes), METH_FASTCALL|METH_KEYWORDS, int_to_bytes__doc__}, static PyObject * int_to_bytes_impl(PyObject *self, Py_ssize_t length, PyObject *byteorder, int is_signed); static PyObject * int_to_bytes(PyObject *self, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames) { PyObject *return_value = NULL; #if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE) #define NUM_KEYWORDS 3 static struct { PyGC_Head _this_is_not_used; PyObject_VAR_HEAD PyObject *ob_item[NUM_KEYWORDS]; } _kwtuple = { .ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS) .ob_item = { &_Py_ID(length), &_Py_ID(byteorder), &_Py_ID(signed), }, }; #undef NUM_KEYWORDS #define KWTUPLE (&_kwtuple.ob_base.ob_base) #else // !Py_BUILD_CORE # define KWTUPLE NULL #endif // !Py_BUILD_CORE static const char * const _keywords[] = {"length", "byteorder", "signed", NULL}; static _PyArg_Parser _parser = { .keywords = _keywords, .fname = "to_bytes", .kwtuple = KWTUPLE, }; #undef KWTUPLE PyObject *argsbuf[3]; Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 0; Py_ssize_t length = 1; PyObject *byteorder = NULL; int is_signed = 0; args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 0, 2, 0, argsbuf); if (!args) { goto exit; } if (!noptargs) { goto skip_optional_pos; } if (args[0]) { { Py_ssize_t ival = -1; PyObject *iobj = _PyNumber_Index(args[0]); if (iobj != NULL) { ival = PyLong_AsSsize_t(iobj); Py_DECREF(iobj); } if (ival == -1 && PyErr_Occurred()) { goto exit; } length = ival; } if (!--noptargs) { goto skip_optional_pos; } } if (args[1]) { if (!PyUnicode_Check(args[1])) { _PyArg_BadArgument("to_bytes", "argument 'byteorder'", "str", args[1]); goto exit; } byteorder = args[1]; if (!--noptargs) { goto skip_optional_pos; } } skip_optional_pos: if (!noptargs) { goto skip_optional_kwonly; } is_signed = PyObject_IsTrue(args[2]); if (is_signed < 0) { goto exit; } skip_optional_kwonly: return_value = int_to_bytes_impl(self, length, byteorder, is_signed); exit: return return_value; } PyDoc_STRVAR(int_from_bytes__doc__, "from_bytes($type, /, bytes, byteorder=\'big\', *, signed=False)\n" "--\n" "\n" "Return the integer represented by the given array of bytes.\n" "\n" " bytes\n" " Holds the array of bytes to convert. The argument must either\n" " support the buffer protocol or be an iterable object producing bytes.\n" " Bytes and bytearray are examples of built-in objects that support the\n" " buffer protocol.\n" " byteorder\n" " The byte order used to represent the integer. If byteorder is \'big\',\n" " the most significant byte is at the beginning of the byte array. If\n" " byteorder is \'little\', the most significant byte is at the end of the\n" " byte array. To request the native byte order of the host system, use\n" " `sys.byteorder\' as the byte order value. Default is to use \'big\'.\n" " signed\n" " Indicates whether two\'s complement is used to represent the integer."); #define INT_FROM_BYTES_METHODDEF \ {"from_bytes", _PyCFunction_CAST(int_from_bytes), METH_FASTCALL|METH_KEYWORDS|METH_CLASS, int_from_bytes__doc__}, static PyObject * int_from_bytes_impl(PyTypeObject *type, PyObject *bytes_obj, PyObject *byteorder, int is_signed); static PyObject * int_from_bytes(PyTypeObject *type, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames) { PyObject *return_value = NULL; #if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE) #define NUM_KEYWORDS 3 static struct { PyGC_Head _this_is_not_used; PyObject_VAR_HEAD PyObject *ob_item[NUM_KEYWORDS]; } _kwtuple = { .ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS) .ob_item = { &_Py_ID(bytes), &_Py_ID(byteorder), &_Py_ID(signed), }, }; #undef NUM_KEYWORDS #define KWTUPLE (&_kwtuple.ob_base.ob_base) #else // !Py_BUILD_CORE # define KWTUPLE NULL #endif // !Py_BUILD_CORE static const char * const _keywords[] = {"bytes", "byteorder", "signed", NULL}; static _PyArg_Parser _parser = { .keywords = _keywords, .fname = "from_bytes", .kwtuple = KWTUPLE, }; #undef KWTUPLE PyObject *argsbuf[3]; Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 1; PyObject *bytes_obj; PyObject *byteorder = NULL; int is_signed = 0; args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 2, 0, argsbuf); if (!args) { goto exit; } bytes_obj = args[0]; if (!noptargs) { goto skip_optional_pos; } if (args[1]) { if (!PyUnicode_Check(args[1])) { _PyArg_BadArgument("from_bytes", "argument 'byteorder'", "str", args[1]); goto exit; } byteorder = args[1]; if (!--noptargs) { goto skip_optional_pos; } } skip_optional_pos: if (!noptargs) { goto skip_optional_kwonly; } is_signed = PyObject_IsTrue(args[2]); if (is_signed < 0) { goto exit; } skip_optional_kwonly: return_value = int_from_bytes_impl(type, bytes_obj, byteorder, is_signed); exit: return return_value; } PyDoc_STRVAR(int_is_integer__doc__, "is_integer($self, /)\n" "--\n" "\n" "Returns True. Exists for duck type compatibility with float.is_integer."); #define INT_IS_INTEGER_METHODDEF \ {"is_integer", (PyCFunction)int_is_integer, METH_NOARGS, int_is_integer__doc__}, static PyObject * int_is_integer_impl(PyObject *self); static PyObject * int_is_integer(PyObject *self, PyObject *Py_UNUSED(ignored)) { return int_is_integer_impl(self); } /*[clinic end generated code: output=75ed306fff493ba1 input=a9049054013a1b77]*/