/*********************************************************** Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands. All Rights Reserved Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the names of Stichting Mathematisch Centrum or CWI or Corporation for National Research Initiatives or CNRI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. While CWI is the initial source for this software, a modified version is made available by the Corporation for National Research Initiatives (CNRI) at the Internet address ftp://ftp.python.org. STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ******************************************************************/ /* Generic object operations; and implementation of None (NoObject) */ #include "Python.h" #if defined( Py_TRACE_REFS ) || defined( Py_REF_DEBUG ) DL_IMPORT(long) _Py_RefTotal; #endif /* Object allocation routines used by NEWOBJ and NEWVAROBJ macros. These are used by the individual routines for object creation. Do not call them otherwise, they do not initialize the object! */ #ifdef COUNT_ALLOCS static PyTypeObject *type_list; extern int tuple_zero_allocs, fast_tuple_allocs; extern int quick_int_allocs, quick_neg_int_allocs; extern int null_strings, one_strings; void dump_counts() { PyTypeObject *tp; for (tp = type_list; tp; tp = tp->tp_next) fprintf(stderr, "%s alloc'd: %d, freed: %d, max in use: %d\n", tp->tp_name, tp->tp_alloc, tp->tp_free, tp->tp_maxalloc); fprintf(stderr, "fast tuple allocs: %d, empty: %d\n", fast_tuple_allocs, tuple_zero_allocs); fprintf(stderr, "fast int allocs: pos: %d, neg: %d\n", quick_int_allocs, quick_neg_int_allocs); fprintf(stderr, "null strings: %d, 1-strings: %d\n", null_strings, one_strings); } PyObject * get_counts() { PyTypeObject *tp; PyObject *result; PyObject *v; result = PyList_New(0); if (result == NULL) return NULL; for (tp = type_list; tp; tp = tp->tp_next) { v = Py_BuildValue("(siii)", tp->tp_name, tp->tp_alloc, tp->tp_free, tp->tp_maxalloc); if (v == NULL) { Py_DECREF(result); return NULL; } if (PyList_Append(result, v) < 0) { Py_DECREF(v); Py_DECREF(result); return NULL; } Py_DECREF(v); } return result; } void inc_count(tp) PyTypeObject *tp; { if (tp->tp_alloc == 0) { /* first time; insert in linked list */ if (tp->tp_next != NULL) /* sanity check */ Py_FatalError("XXX inc_count sanity check"); tp->tp_next = type_list; type_list = tp; } tp->tp_alloc++; if (tp->tp_alloc - tp->tp_free > tp->tp_maxalloc) tp->tp_maxalloc = tp->tp_alloc - tp->tp_free; } #endif #ifndef MS_COREDLL PyObject * _PyObject_New(tp) PyTypeObject *tp; #else PyObject * _PyObject_New(tp,op) PyTypeObject *tp; PyObject *op; #endif { #ifndef MS_COREDLL PyObject *op = (PyObject *) malloc(tp->tp_basicsize); #endif if (op == NULL) return PyErr_NoMemory(); op->ob_type = tp; _Py_NewReference(op); return op; } #ifndef MS_COREDLL PyVarObject * _PyObject_NewVar(tp, size) PyTypeObject *tp; int size; #else PyVarObject * _PyObject_NewVar(tp, size, op) PyTypeObject *tp; int size; PyVarObject *op; #endif { #ifndef MS_COREDLL PyVarObject *op = (PyVarObject *) malloc(tp->tp_basicsize + size * tp->tp_itemsize); #endif if (op == NULL) return (PyVarObject *)PyErr_NoMemory(); op->ob_type = tp; op->ob_size = size; _Py_NewReference((PyObject *)op); return op; } int PyObject_Print(op, fp, flags) PyObject *op; FILE *fp; int flags; { int ret = 0; if (PyErr_CheckSignals()) return -1; #ifdef USE_STACKCHECK if (PyOS_CheckStack()) { PyErr_SetString(PyExc_MemoryError, "Stack overflow"); return -1; } #endif clearerr(fp); /* Clear any previous error condition */ if (op == NULL) { fprintf(fp, ""); } else { if (op->ob_refcnt <= 0) fprintf(fp, "", op->ob_refcnt, (long)op); else if (op->ob_type->tp_print == NULL) { if (op->ob_type->tp_repr == NULL) { fprintf(fp, "<%s object at %lx>", op->ob_type->tp_name, (long)op); } else { PyObject *s; if (flags & Py_PRINT_RAW) s = PyObject_Str(op); else s = PyObject_Repr(op); if (s == NULL) ret = -1; else { ret = PyObject_Print(s, fp, Py_PRINT_RAW); } Py_XDECREF(s); } } else ret = (*op->ob_type->tp_print)(op, fp, flags); } if (ret == 0) { if (ferror(fp)) { PyErr_SetFromErrno(PyExc_IOError); clearerr(fp); ret = -1; } } return ret; } PyObject * PyObject_Repr(v) PyObject *v; { if (PyErr_CheckSignals()) return NULL; #ifdef USE_STACKCHECK if (PyOS_CheckStack()) { PyErr_SetString(PyExc_MemoryError, "Stack overflow"); return NULL; } #endif if (v == NULL) return PyString_FromString(""); else if (v->ob_type->tp_repr == NULL) { char buf[120]; sprintf(buf, "<%.80s object at %lx>", v->ob_type->tp_name, (long)v); return PyString_FromString(buf); } else { PyObject *res; res = (*v->ob_type->tp_repr)(v); if (res == NULL) return NULL; if (!PyString_Check(res)) { PyErr_Format(PyExc_TypeError, "__repr__ returned non-string (type %.200s)", res->ob_type->tp_name); Py_DECREF(res); return NULL; } return res; } } PyObject * PyObject_Str(v) PyObject *v; { PyObject *res; if (v == NULL) return PyString_FromString(""); else if (PyString_Check(v)) { Py_INCREF(v); return v; } else if (v->ob_type->tp_str != NULL) res = (*v->ob_type->tp_str)(v); else { PyObject *func; if (!PyInstance_Check(v) || (func = PyObject_GetAttrString(v, "__str__")) == NULL) { PyErr_Clear(); return PyObject_Repr(v); } res = PyEval_CallObject(func, (PyObject *)NULL); Py_DECREF(func); } if (res == NULL) return NULL; if (!PyString_Check(res)) { PyErr_Format(PyExc_TypeError, "__str__ returned non-string (type %.200s)", res->ob_type->tp_name); Py_DECREF(res); return NULL; } return res; } static PyObject * do_cmp(v, w) PyObject *v, *w; { long c; /* __rcmp__ actually won't be called unless __cmp__ isn't defined, because the check in cmpobject() reverses the objects first. This is intentional -- it makes no sense to define cmp(x,y) different than -cmp(y,x). */ if (PyInstance_Check(v) || PyInstance_Check(w)) return PyInstance_DoBinOp(v, w, "__cmp__", "__rcmp__", do_cmp); c = PyObject_Compare(v, w); if (c && PyErr_Occurred()) return NULL; return PyInt_FromLong(c); } int PyObject_Compare(v, w) PyObject *v, *w; { PyTypeObject *vtp, *wtp; if (v == NULL || w == NULL) { PyErr_BadInternalCall(); return -1; } if (v == w) return 0; if (PyInstance_Check(v) || PyInstance_Check(w)) { PyObject *res; int c; if (!PyInstance_Check(v)) return -PyObject_Compare(w, v); res = do_cmp(v, w); if (res == NULL) return -1; if (!PyInt_Check(res)) { Py_DECREF(res); PyErr_SetString(PyExc_TypeError, "comparison did not return an int"); return -1; } c = PyInt_AsLong(res); Py_DECREF(res); return (c < 0) ? -1 : (c > 0) ? 1 : 0; } if ((vtp = v->ob_type) != (wtp = w->ob_type)) { char *vname = vtp->tp_name; char *wname = wtp->tp_name; if (vtp->tp_as_number != NULL && wtp->tp_as_number != NULL) { int err; err = PyNumber_CoerceEx(&v, &w); if (err < 0) return -1; else if (err == 0) { int cmp; vtp = v->ob_type; if (vtp->tp_compare == NULL) cmp = (v < w) ? -1 : 1; else cmp = (*vtp->tp_compare)(v, w); Py_DECREF(v); Py_DECREF(w); return cmp; } } else if (PyUnicode_Check(v) || PyUnicode_Check(w)) { int result = PyUnicode_Compare(v, w); if (result == -1 && PyErr_Occurred() && PyErr_ExceptionMatches(PyExc_TypeError)) /* TypeErrors are ignored: if Unicode coercion fails due to one of the arguments not having the right type, we continue as defined by the coercion protocol (see above). Luckily, decoding errors are reported as ValueErrors and are not masked by this technique. */ PyErr_Clear(); else return result; } else if (vtp->tp_as_number != NULL) vname = ""; else if (wtp->tp_as_number != NULL) wname = ""; /* Numerical types compare smaller than all other types */ return strcmp(vname, wname); } if (vtp->tp_compare == NULL) return (v < w) ? -1 : 1; return (*vtp->tp_compare)(v, w); } long PyObject_Hash(v) PyObject *v; { PyTypeObject *tp = v->ob_type; if (tp->tp_hash != NULL) return (*tp->tp_hash)(v); if (tp->tp_compare == NULL) return (long) v; /* Use address as hash value */ /* If there's a cmp but no hash defined, the object can't be hashed */ PyErr_SetString(PyExc_TypeError, "unhashable type"); return -1; } PyObject * PyObject_GetAttrString(v, name) PyObject *v; char *name; { if (v->ob_type->tp_getattro != NULL) { PyObject *w, *res; w = PyString_InternFromString(name); if (w == NULL) return NULL; res = (*v->ob_type->tp_getattro)(v, w); Py_XDECREF(w); return res; } if (v->ob_type->tp_getattr == NULL) { PyErr_Format(PyExc_AttributeError, "'%.50s' object has no attribute '%.400s'", v->ob_type->tp_name, name); return NULL; } else { return (*v->ob_type->tp_getattr)(v, name); } } int PyObject_HasAttrString(v, name) PyObject *v; char *name; { PyObject *res = PyObject_GetAttrString(v, name); if (res != NULL) { Py_DECREF(res); return 1; } PyErr_Clear(); return 0; } int PyObject_SetAttrString(v, name, w) PyObject *v; char *name; PyObject *w; { if (v->ob_type->tp_setattro != NULL) { PyObject *s; int res; s = PyString_InternFromString(name); if (s == NULL) return -1; res = (*v->ob_type->tp_setattro)(v, s, w); Py_XDECREF(s); return res; } if (v->ob_type->tp_setattr == NULL) { if (v->ob_type->tp_getattr == NULL) PyErr_SetString(PyExc_TypeError, "attribute-less object (assign or del)"); else PyErr_SetString(PyExc_TypeError, "object has read-only attributes"); return -1; } else { return (*v->ob_type->tp_setattr)(v, name, w); } } PyObject * PyObject_GetAttr(v, name) PyObject *v; PyObject *name; { if (v->ob_type->tp_getattro != NULL) return (*v->ob_type->tp_getattro)(v, name); else return PyObject_GetAttrString(v, PyString_AsString(name)); } int PyObject_HasAttr(v, name) PyObject *v; PyObject *name; { PyObject *res = PyObject_GetAttr(v, name); if (res != NULL) { Py_DECREF(res); return 1; } PyErr_Clear(); return 0; } int PyObject_SetAttr(v, name, value) PyObject *v; PyObject *name; PyObject *value; { int err; Py_INCREF(name); PyString_InternInPlace(&name); if (v->ob_type->tp_setattro != NULL) err = (*v->ob_type->tp_setattro)(v, name, value); else err = PyObject_SetAttrString( v, PyString_AsString(name), value); Py_DECREF(name); return err; } /* Test a value used as condition, e.g., in a for or if statement. Return -1 if an error occurred */ int PyObject_IsTrue(v) PyObject *v; { int res; if (v == Py_None) res = 0; else if (v->ob_type->tp_as_number != NULL && v->ob_type->tp_as_number->nb_nonzero != NULL) res = (*v->ob_type->tp_as_number->nb_nonzero)(v); else if (v->ob_type->tp_as_mapping != NULL && v->ob_type->tp_as_mapping->mp_length != NULL) res = (*v->ob_type->tp_as_mapping->mp_length)(v); else if (v->ob_type->tp_as_sequence != NULL && v->ob_type->tp_as_sequence->sq_length != NULL) res = (*v->ob_type->tp_as_sequence->sq_length)(v); else res = 1; if (res > 0) res = 1; return res; } /* equivalent of 'not v' Return -1 if an error occurred */ int PyObject_Not(v) PyObject *v; { int res; res = PyObject_IsTrue(v); if (res < 0) return res; return res == 0; } /* Coerce two numeric types to the "larger" one. Increment the reference count on each argument. Return -1 and raise an exception if no coercion is possible (and then no reference count is incremented). */ int PyNumber_CoerceEx(pv, pw) PyObject **pv, **pw; { register PyObject *v = *pv; register PyObject *w = *pw; int res; if (v->ob_type == w->ob_type && !PyInstance_Check(v)) { Py_INCREF(v); Py_INCREF(w); return 0; } if (v->ob_type->tp_as_number && v->ob_type->tp_as_number->nb_coerce) { res = (*v->ob_type->tp_as_number->nb_coerce)(pv, pw); if (res <= 0) return res; } if (w->ob_type->tp_as_number && w->ob_type->tp_as_number->nb_coerce) { res = (*w->ob_type->tp_as_number->nb_coerce)(pw, pv); if (res <= 0) return res; } return 1; } int PyNumber_Coerce(pv, pw) PyObject **pv, **pw; { int err = PyNumber_CoerceEx(pv, pw); if (err <= 0) return err; PyErr_SetString(PyExc_TypeError, "number coercion failed"); return -1; } /* Test whether an object can be called */ int PyCallable_Check(x) PyObject *x; { if (x == NULL) return 0; if (x->ob_type->tp_call != NULL || PyFunction_Check(x) || PyMethod_Check(x) || PyCFunction_Check(x) || PyClass_Check(x)) return 1; if (PyInstance_Check(x)) { PyObject *call = PyObject_GetAttrString(x, "__call__"); if (call == NULL) { PyErr_Clear(); return 0; } /* Could test recursively but don't, for fear of endless recursion if some joker sets self.__call__ = self */ Py_DECREF(call); return 1; } return 0; } /* NoObject is usable as a non-NULL undefined value, used by the macro None. There is (and should be!) no way to create other objects of this type, so there is exactly one (which is indestructible, by the way). */ /* ARGSUSED */ static PyObject * none_repr(op) PyObject *op; { return PyString_FromString("None"); } static PyTypeObject PyNothing_Type = { PyObject_HEAD_INIT(&PyType_Type) 0, "None", 0, 0, 0, /*tp_dealloc*/ /*never called*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ (reprfunc)none_repr, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash */ }; PyObject _Py_NoneStruct = { PyObject_HEAD_INIT(&PyNothing_Type) }; #ifdef Py_TRACE_REFS static PyObject refchain = {&refchain, &refchain}; void _Py_ResetReferences() { refchain._ob_prev = refchain._ob_next = &refchain; _Py_RefTotal = 0; } void _Py_NewReference(op) PyObject *op; { _Py_RefTotal++; op->ob_refcnt = 1; op->_ob_next = refchain._ob_next; op->_ob_prev = &refchain; refchain._ob_next->_ob_prev = op; refchain._ob_next = op; #ifdef COUNT_ALLOCS inc_count(op->ob_type); #endif } void _Py_ForgetReference(op) register PyObject *op; { #ifdef SLOW_UNREF_CHECK register PyObject *p; #endif if (op->ob_refcnt < 0) Py_FatalError("UNREF negative refcnt"); if (op == &refchain || op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op) Py_FatalError("UNREF invalid object"); #ifdef SLOW_UNREF_CHECK for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) { if (p == op) break; } if (p == &refchain) /* Not found */ Py_FatalError("UNREF unknown object"); #endif op->_ob_next->_ob_prev = op->_ob_prev; op->_ob_prev->_ob_next = op->_ob_next; op->_ob_next = op->_ob_prev = NULL; #ifdef COUNT_ALLOCS op->ob_type->tp_free++; #endif } void _Py_Dealloc(op) PyObject *op; { destructor dealloc = op->ob_type->tp_dealloc; _Py_ForgetReference(op); op->ob_type = NULL; (*dealloc)(op); } void _Py_PrintReferences(fp) FILE *fp; { PyObject *op; fprintf(fp, "Remaining objects:\n"); for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) { fprintf(fp, "[%d] ", op->ob_refcnt); if (PyObject_Print(op, fp, 0) != 0) PyErr_Clear(); putc('\n', fp); } } PyObject * _Py_GetObjects(self, args) PyObject *self; PyObject *args; { int i, n; PyObject *t = NULL; PyObject *res, *op; if (!PyArg_ParseTuple(args, "i|O", &n, &t)) return NULL; op = refchain._ob_next; res = PyList_New(0); if (res == NULL) return NULL; for (i = 0; (n == 0 || i < n) && op != &refchain; i++) { while (op == self || op == args || op == res || op == t || t != NULL && op->ob_type != (PyTypeObject *) t) { op = op->_ob_next; if (op == &refchain) return res; } if (PyList_Append(res, op) < 0) { Py_DECREF(res); return NULL; } op = op->_ob_next; } return res; } #endif /* Hack to force loading of cobject.o */ PyTypeObject *_Py_cobject_hack = &PyCObject_Type; /* Hack to force loading of abstract.o */ int (*_Py_abstract_hack) Py_FPROTO((PyObject *)) = &PyObject_Length; /* Malloc wrappers (see mymalloc.h) */ /* The Py_{Malloc,Realloc} wrappers call PyErr_NoMemory() on failure */ ANY * Py_Malloc(nbytes) size_t nbytes; { ANY *p; #if _PyMem_EXTRA > 0 if (nbytes == 0) nbytes = _PyMem_EXTRA; #endif p = malloc(nbytes); if (p != NULL) return p; else { PyErr_NoMemory(); return NULL; } } ANY * Py_Realloc(p, nbytes) ANY *p; size_t nbytes; { #if _PyMem_EXTRA > 0 if (nbytes == 0) nbytes = _PyMem_EXTRA; #endif p = realloc(p, nbytes); if (p != NULL) return p; else { PyErr_NoMemory(); return NULL; } } void Py_Free(p) ANY *p; { free(p); } /* The PyMem_{Malloc,Realloc} wrappers don't call anything on failure */ ANY * PyMem_Malloc(nbytes) size_t nbytes; { #if _PyMem_EXTRA > 0 if (nbytes == 0) nbytes = _PyMem_EXTRA; #endif return malloc(nbytes); } ANY * PyMem_Realloc(p, nbytes) ANY *p; size_t nbytes; { #if _PyMem_EXTRA > 0 if (nbytes == 0) nbytes = _PyMem_EXTRA; #endif return realloc(p, nbytes); } void PyMem_Free(p) ANY *p; { free(p); } /* These methods are used to control infinite recursion in repr, str, print, etc. Container objects that may recursively contain themselves, e.g. builtin dictionaries and lists, should used Py_ReprEnter() and Py_ReprLeave() to avoid infinite recursion. Py_ReprEnter() returns 0 the first time it is called for a particular object and 1 every time thereafter. It returns -1 if an exception occurred. Py_ReprLeave() has no return value. See dictobject.c and listobject.c for examples of use. */ #define KEY "Py_Repr" int Py_ReprEnter(obj) PyObject *obj; { PyObject *dict; PyObject *list; int i; dict = PyThreadState_GetDict(); if (dict == NULL) return -1; list = PyDict_GetItemString(dict, KEY); if (list == NULL) { list = PyList_New(0); if (list == NULL) return -1; if (PyDict_SetItemString(dict, KEY, list) < 0) return -1; Py_DECREF(list); } i = PyList_GET_SIZE(list); while (--i >= 0) { if (PyList_GET_ITEM(list, i) == obj) return 1; } PyList_Append(list, obj); return 0; } void Py_ReprLeave(obj) PyObject *obj; { PyObject *dict; PyObject *list; int i; dict = PyThreadState_GetDict(); if (dict == NULL) return; list = PyDict_GetItemString(dict, KEY); if (list == NULL || !PyList_Check(list)) return; i = PyList_GET_SIZE(list); /* Count backwards because we always expect obj to be list[-1] */ while (--i >= 0) { if (PyList_GET_ITEM(list, i) == obj) { PyList_SetSlice(list, i, i + 1, NULL); break; } } } /* trashcan CT 2k0130 non-recursively destroy nested objects CT 2k0223 everything is now done in a macro. CT 2k0305 modified to use functions, after Tim Peter's suggestion. CT 2k0309 modified to restore a possible error. CT 2k0325 added better safe than sorry check for threadstate */ int _PyTrash_delete_nesting = 0; PyObject * _PyTrash_delete_later = NULL; void _PyTrash_deposit_object(op) PyObject *op; { PyObject *error_type, *error_value, *error_traceback; if (PyThreadState_GET() != NULL) PyErr_Fetch(&error_type, &error_value, &error_traceback); if (!_PyTrash_delete_later) _PyTrash_delete_later = PyList_New(0); if (_PyTrash_delete_later) PyList_Append(_PyTrash_delete_later, (PyObject *)op); if (PyThreadState_GET() != NULL) PyErr_Restore(error_type, error_value, error_traceback); } void _PyTrash_destroy_list() { while (_PyTrash_delete_later) { PyObject *shredder = _PyTrash_delete_later; _PyTrash_delete_later = NULL; ++_PyTrash_delete_nesting; Py_DECREF(shredder); --_PyTrash_delete_nesting; } }