#include "Python.h" #include "pycore_token.h" #include "pycore_unicodeobject.h" #include "errcode.h" #include "state.h" #include "../tokenizer/helpers.h" /* Alternate tab spacing */ #define ALTTABSIZE 1 #define is_potential_identifier_start(c) (\ (c >= 'a' && c <= 'z')\ || (c >= 'A' && c <= 'Z')\ || c == '_'\ || (c >= 128)) #define is_potential_identifier_char(c) (\ (c >= 'a' && c <= 'z')\ || (c >= 'A' && c <= 'Z')\ || (c >= '0' && c <= '9')\ || c == '_'\ || (c >= 128)) #ifdef Py_DEBUG static inline tokenizer_mode* TOK_GET_MODE(struct tok_state* tok) { assert(tok->tok_mode_stack_index >= 0); assert(tok->tok_mode_stack_index < MAXFSTRINGLEVEL); return &(tok->tok_mode_stack[tok->tok_mode_stack_index]); } static inline tokenizer_mode* TOK_NEXT_MODE(struct tok_state* tok) { assert(tok->tok_mode_stack_index >= 0); assert(tok->tok_mode_stack_index + 1 < MAXFSTRINGLEVEL); return &(tok->tok_mode_stack[++tok->tok_mode_stack_index]); } #else #define TOK_GET_MODE(tok) (&(tok->tok_mode_stack[tok->tok_mode_stack_index])) #define TOK_NEXT_MODE(tok) (&(tok->tok_mode_stack[++tok->tok_mode_stack_index])) #endif #define MAKE_TOKEN(token_type) _PyLexer_token_setup(tok, token, token_type, p_start, p_end) #define MAKE_TYPE_COMMENT_TOKEN(token_type, col_offset, end_col_offset) (\ _PyLexer_type_comment_token_setup(tok, token, token_type, col_offset, end_col_offset, p_start, p_end)) /* Spaces in this constant are treated as "zero or more spaces or tabs" when tokenizing. */ static const char* type_comment_prefix = "# type: "; static inline int contains_null_bytes(const char* str, size_t size) { return memchr(str, 0, size) != NULL; } /* Get next char, updating state; error code goes into tok->done */ static int tok_nextc(struct tok_state *tok) { int rc; for (;;) { if (tok->cur != tok->inp) { if ((unsigned int) tok->col_offset >= (unsigned int) INT_MAX) { tok->done = E_COLUMNOVERFLOW; return EOF; } tok->col_offset++; return Py_CHARMASK(*tok->cur++); /* Fast path */ } if (tok->done != E_OK) { return EOF; } rc = tok->underflow(tok); #if defined(Py_DEBUG) if (tok->debug) { fprintf(stderr, "line[%d] = ", tok->lineno); _PyTokenizer_print_escape(stderr, tok->cur, tok->inp - tok->cur); fprintf(stderr, " tok->done = %d\n", tok->done); } #endif if (!rc) { tok->cur = tok->inp; return EOF; } tok->line_start = tok->cur; if (contains_null_bytes(tok->line_start, tok->inp - tok->line_start)) { _PyTokenizer_syntaxerror(tok, "source code cannot contain null bytes"); tok->cur = tok->inp; return EOF; } } Py_UNREACHABLE(); } /* Back-up one character */ static void tok_backup(struct tok_state *tok, int c) { if (c != EOF) { if (--tok->cur < tok->buf) { Py_FatalError("tokenizer beginning of buffer"); } if ((int)(unsigned char)*tok->cur != Py_CHARMASK(c)) { Py_FatalError("tok_backup: wrong character"); } tok->col_offset--; } } static int set_fstring_expr(struct tok_state* tok, struct token *token, char c) { assert(token != NULL); assert(c == '}' || c == ':' || c == '!'); tokenizer_mode *tok_mode = TOK_GET_MODE(tok); if (!tok_mode->f_string_debug || token->metadata) { return 0; } PyObject *res = NULL; // Check if there is a # character in the expression int hash_detected = 0; for (Py_ssize_t i = 0; i < tok_mode->last_expr_size - tok_mode->last_expr_end; i++) { if (tok_mode->last_expr_buffer[i] == '#') { hash_detected = 1; break; } } if (hash_detected) { Py_ssize_t input_length = tok_mode->last_expr_size - tok_mode->last_expr_end; char *result = (char *)PyObject_Malloc((input_length + 1) * sizeof(char)); if (!result) { return -1; } Py_ssize_t i = 0; Py_ssize_t j = 0; for (i = 0, j = 0; i < input_length; i++) { if (tok_mode->last_expr_buffer[i] == '#') { // Skip characters until newline or end of string while (tok_mode->last_expr_buffer[i] != '\0' && i < input_length) { if (tok_mode->last_expr_buffer[i] == '\n') { result[j++] = tok_mode->last_expr_buffer[i]; break; } i++; } } else { result[j++] = tok_mode->last_expr_buffer[i]; } } result[j] = '\0'; // Null-terminate the result string res = PyUnicode_DecodeUTF8(result, j, NULL); PyObject_Free(result); } else { res = PyUnicode_DecodeUTF8( tok_mode->last_expr_buffer, tok_mode->last_expr_size - tok_mode->last_expr_end, NULL ); } if (!res) { return -1; } token->metadata = res; return 0; } int _PyLexer_update_fstring_expr(struct tok_state *tok, char cur) { assert(tok->cur != NULL); Py_ssize_t size = strlen(tok->cur); tokenizer_mode *tok_mode = TOK_GET_MODE(tok); switch (cur) { case 0: if (!tok_mode->last_expr_buffer || tok_mode->last_expr_end >= 0) { return 1; } char *new_buffer = PyMem_Realloc( tok_mode->last_expr_buffer, tok_mode->last_expr_size + size ); if (new_buffer == NULL) { PyMem_Free(tok_mode->last_expr_buffer); goto error; } tok_mode->last_expr_buffer = new_buffer; strncpy(tok_mode->last_expr_buffer + tok_mode->last_expr_size, tok->cur, size); tok_mode->last_expr_size += size; break; case '{': if (tok_mode->last_expr_buffer != NULL) { PyMem_Free(tok_mode->last_expr_buffer); } tok_mode->last_expr_buffer = PyMem_Malloc(size); if (tok_mode->last_expr_buffer == NULL) { goto error; } tok_mode->last_expr_size = size; tok_mode->last_expr_end = -1; strncpy(tok_mode->last_expr_buffer, tok->cur, size); break; case '}': case '!': case ':': if (tok_mode->last_expr_end == -1) { tok_mode->last_expr_end = strlen(tok->start); } break; default: Py_UNREACHABLE(); } return 1; error: tok->done = E_NOMEM; return 0; } static int lookahead(struct tok_state *tok, const char *test) { const char *s = test; int res = 0; while (1) { int c = tok_nextc(tok); if (*s == 0) { res = !is_potential_identifier_char(c); } else if (c == *s) { s++; continue; } tok_backup(tok, c); while (s != test) { tok_backup(tok, *--s); } return res; } } static int verify_end_of_number(struct tok_state *tok, int c, const char *kind) { if (tok->tok_extra_tokens) { // When we are parsing extra tokens, we don't want to emit warnings // about invalid literals, because we want to be a bit more liberal. return 1; } /* Emit a deprecation warning only if the numeric literal is immediately * followed by one of keywords which can occur after a numeric literal * in valid code: "and", "else", "for", "if", "in", "is" and "or". * It allows to gradually deprecate existing valid code without adding * warning before error in most cases of invalid numeric literal (which * would be confusing and break existing tests). * Raise a syntax error with slightly better message than plain * "invalid syntax" if the numeric literal is immediately followed by * other keyword or identifier. */ int r = 0; if (c == 'a') { r = lookahead(tok, "nd"); } else if (c == 'e') { r = lookahead(tok, "lse"); } else if (c == 'f') { r = lookahead(tok, "or"); } else if (c == 'i') { int c2 = tok_nextc(tok); if (c2 == 'f' || c2 == 'n' || c2 == 's') { r = 1; } tok_backup(tok, c2); } else if (c == 'o') { r = lookahead(tok, "r"); } else if (c == 'n') { r = lookahead(tok, "ot"); } if (r) { tok_backup(tok, c); if (_PyTokenizer_parser_warn(tok, PyExc_SyntaxWarning, "invalid %s literal", kind)) { return 0; } tok_nextc(tok); } else /* In future releases, only error will remain. */ if (c < 128 && is_potential_identifier_char(c)) { tok_backup(tok, c); _PyTokenizer_syntaxerror(tok, "invalid %s literal", kind); return 0; } return 1; } /* Verify that the identifier follows PEP 3131. All identifier strings are guaranteed to be "ready" unicode objects. */ static int verify_identifier(struct tok_state *tok) { if (tok->tok_extra_tokens) { return 1; } PyObject *s; if (tok->decoding_erred) return 0; s = PyUnicode_DecodeUTF8(tok->start, tok->cur - tok->start, NULL); if (s == NULL) { if (PyErr_ExceptionMatches(PyExc_UnicodeDecodeError)) { tok->done = E_DECODE; } else { tok->done = E_ERROR; } return 0; } Py_ssize_t invalid = _PyUnicode_ScanIdentifier(s); if (invalid < 0) { Py_DECREF(s); tok->done = E_ERROR; return 0; } assert(PyUnicode_GET_LENGTH(s) > 0); if (invalid < PyUnicode_GET_LENGTH(s)) { Py_UCS4 ch = PyUnicode_READ_CHAR(s, invalid); if (invalid + 1 < PyUnicode_GET_LENGTH(s)) { /* Determine the offset in UTF-8 encoded input */ Py_SETREF(s, PyUnicode_Substring(s, 0, invalid + 1)); if (s != NULL) { Py_SETREF(s, PyUnicode_AsUTF8String(s)); } if (s == NULL) { tok->done = E_ERROR; return 0; } tok->cur = (char *)tok->start + PyBytes_GET_SIZE(s); } Py_DECREF(s); if (Py_UNICODE_ISPRINTABLE(ch)) { _PyTokenizer_syntaxerror(tok, "invalid character '%c' (U+%04X)", ch, ch); } else { _PyTokenizer_syntaxerror(tok, "invalid non-printable character U+%04X", ch); } return 0; } Py_DECREF(s); return 1; } static int tok_decimal_tail(struct tok_state *tok) { int c; while (1) { do { c = tok_nextc(tok); } while (Py_ISDIGIT(c)); if (c != '_') { break; } c = tok_nextc(tok); if (!Py_ISDIGIT(c)) { tok_backup(tok, c); _PyTokenizer_syntaxerror(tok, "invalid decimal literal"); return 0; } } return c; } static inline int tok_continuation_line(struct tok_state *tok) { int c = tok_nextc(tok); if (c == '\r') { c = tok_nextc(tok); } if (c != '\n') { tok->done = E_LINECONT; return -1; } c = tok_nextc(tok); if (c == EOF) { tok->done = E_EOF; tok->cur = tok->inp; return -1; } else { tok_backup(tok, c); } return c; } static int tok_get_normal_mode(struct tok_state *tok, tokenizer_mode* current_tok, struct token *token) { int c; int blankline, nonascii; const char *p_start = NULL; const char *p_end = NULL; nextline: tok->start = NULL; tok->starting_col_offset = -1; blankline = 0; /* Get indentation level */ if (tok->atbol) { int col = 0; int altcol = 0; tok->atbol = 0; int cont_line_col = 0; for (;;) { c = tok_nextc(tok); if (c == ' ') { col++, altcol++; } else if (c == '\t') { col = (col / tok->tabsize + 1) * tok->tabsize; altcol = (altcol / ALTTABSIZE + 1) * ALTTABSIZE; } else if (c == '\014') {/* Control-L (formfeed) */ col = altcol = 0; /* For Emacs users */ } else if (c == '\\') { // Indentation cannot be split over multiple physical lines // using backslashes. This means that if we found a backslash // preceded by whitespace, **the first one we find** determines // the level of indentation of whatever comes next. cont_line_col = cont_line_col ? cont_line_col : col; if ((c = tok_continuation_line(tok)) == -1) { return MAKE_TOKEN(ERRORTOKEN); } } else { break; } } tok_backup(tok, c); if (c == '#' || c == '\n' || c == '\r') { /* Lines with only whitespace and/or comments shouldn't affect the indentation and are not passed to the parser as NEWLINE tokens, except *totally* empty lines in interactive mode, which signal the end of a command group. */ if (col == 0 && c == '\n' && tok->prompt != NULL) { blankline = 0; /* Let it through */ } else if (tok->prompt != NULL && tok->lineno == 1) { /* In interactive mode, if the first line contains only spaces and/or a comment, let it through. */ blankline = 0; col = altcol = 0; } else { blankline = 1; /* Ignore completely */ } /* We can't jump back right here since we still may need to skip to the end of a comment */ } if (!blankline && tok->level == 0) { col = cont_line_col ? cont_line_col : col; altcol = cont_line_col ? cont_line_col : altcol; if (col == tok->indstack[tok->indent]) { /* No change */ if (altcol != tok->altindstack[tok->indent]) { return MAKE_TOKEN(_PyTokenizer_indenterror(tok)); } } else if (col > tok->indstack[tok->indent]) { /* Indent -- always one */ if (tok->indent+1 >= MAXINDENT) { tok->done = E_TOODEEP; tok->cur = tok->inp; return MAKE_TOKEN(ERRORTOKEN); } if (altcol <= tok->altindstack[tok->indent]) { return MAKE_TOKEN(_PyTokenizer_indenterror(tok)); } tok->pendin++; tok->indstack[++tok->indent] = col; tok->altindstack[tok->indent] = altcol; } else /* col < tok->indstack[tok->indent] */ { /* Dedent -- any number, must be consistent */ while (tok->indent > 0 && col < tok->indstack[tok->indent]) { tok->pendin--; tok->indent--; } if (col != tok->indstack[tok->indent]) { tok->done = E_DEDENT; tok->cur = tok->inp; return MAKE_TOKEN(ERRORTOKEN); } if (altcol != tok->altindstack[tok->indent]) { return MAKE_TOKEN(_PyTokenizer_indenterror(tok)); } } } } tok->start = tok->cur; tok->starting_col_offset = tok->col_offset; /* Return pending indents/dedents */ if (tok->pendin != 0) { if (tok->pendin < 0) { if (tok->tok_extra_tokens) { p_start = tok->cur; p_end = tok->cur; } tok->pendin++; return MAKE_TOKEN(DEDENT); } else { if (tok->tok_extra_tokens) { p_start = tok->buf; p_end = tok->cur; } tok->pendin--; return MAKE_TOKEN(INDENT); } } /* Peek ahead at the next character */ c = tok_nextc(tok); tok_backup(tok, c); again: tok->start = NULL; /* Skip spaces */ do { c = tok_nextc(tok); } while (c == ' ' || c == '\t' || c == '\014'); /* Set start of current token */ tok->start = tok->cur == NULL ? NULL : tok->cur - 1; tok->starting_col_offset = tok->col_offset - 1; /* Skip comment, unless it's a type comment */ if (c == '#') { const char* p = NULL; const char *prefix, *type_start; int current_starting_col_offset; while (c != EOF && c != '\n' && c != '\r') { c = tok_nextc(tok); } if (tok->tok_extra_tokens) { p = tok->start; } if (tok->type_comments) { p = tok->start; current_starting_col_offset = tok->starting_col_offset; prefix = type_comment_prefix; while (*prefix && p < tok->cur) { if (*prefix == ' ') { while (*p == ' ' || *p == '\t') { p++; current_starting_col_offset++; } } else if (*prefix == *p) { p++; current_starting_col_offset++; } else { break; } prefix++; } /* This is a type comment if we matched all of type_comment_prefix. */ if (!*prefix) { int is_type_ignore = 1; // +6 in order to skip the word 'ignore' const char *ignore_end = p + 6; const int ignore_end_col_offset = current_starting_col_offset + 6; tok_backup(tok, c); /* don't eat the newline or EOF */ type_start = p; /* A TYPE_IGNORE is "type: ignore" followed by the end of the token * or anything ASCII and non-alphanumeric. */ is_type_ignore = ( tok->cur >= ignore_end && memcmp(p, "ignore", 6) == 0 && !(tok->cur > ignore_end && ((unsigned char)ignore_end[0] >= 128 || Py_ISALNUM(ignore_end[0])))); if (is_type_ignore) { p_start = ignore_end; p_end = tok->cur; /* If this type ignore is the only thing on the line, consume the newline also. */ if (blankline) { tok_nextc(tok); tok->atbol = 1; } return MAKE_TYPE_COMMENT_TOKEN(TYPE_IGNORE, ignore_end_col_offset, tok->col_offset); } else { p_start = type_start; p_end = tok->cur; return MAKE_TYPE_COMMENT_TOKEN(TYPE_COMMENT, current_starting_col_offset, tok->col_offset); } } } if (tok->tok_extra_tokens) { tok_backup(tok, c); /* don't eat the newline or EOF */ p_start = p; p_end = tok->cur; tok->comment_newline = blankline; return MAKE_TOKEN(COMMENT); } } if (tok->done == E_INTERACT_STOP) { return MAKE_TOKEN(ENDMARKER); } /* Check for EOF and errors now */ if (c == EOF) { if (tok->level) { return MAKE_TOKEN(ERRORTOKEN); } return MAKE_TOKEN(tok->done == E_EOF ? ENDMARKER : ERRORTOKEN); } /* Identifier (most frequent token!) */ nonascii = 0; if (is_potential_identifier_start(c)) { /* Process the various legal combinations of b"", r"", u"", and f"". */ int saw_b = 0, saw_r = 0, saw_u = 0, saw_f = 0; while (1) { if (!(saw_b || saw_u || saw_f) && (c == 'b' || c == 'B')) saw_b = 1; /* Since this is a backwards compatibility support literal we don't want to support it in arbitrary order like byte literals. */ else if (!(saw_b || saw_u || saw_r || saw_f) && (c == 'u'|| c == 'U')) { saw_u = 1; } /* ur"" and ru"" are not supported */ else if (!(saw_r || saw_u) && (c == 'r' || c == 'R')) { saw_r = 1; } else if (!(saw_f || saw_b || saw_u) && (c == 'f' || c == 'F')) { saw_f = 1; } else { break; } c = tok_nextc(tok); if (c == '"' || c == '\'') { if (saw_f) { goto f_string_quote; } goto letter_quote; } } while (is_potential_identifier_char(c)) { if (c >= 128) { nonascii = 1; } c = tok_nextc(tok); } tok_backup(tok, c); if (nonascii && !verify_identifier(tok)) { return MAKE_TOKEN(ERRORTOKEN); } p_start = tok->start; p_end = tok->cur; return MAKE_TOKEN(NAME); } if (c == '\r') { c = tok_nextc(tok); } /* Newline */ if (c == '\n') { tok->atbol = 1; if (blankline || tok->level > 0) { if (tok->tok_extra_tokens) { if (tok->comment_newline) { tok->comment_newline = 0; } p_start = tok->start; p_end = tok->cur; return MAKE_TOKEN(NL); } goto nextline; } if (tok->comment_newline && tok->tok_extra_tokens) { tok->comment_newline = 0; p_start = tok->start; p_end = tok->cur; return MAKE_TOKEN(NL); } p_start = tok->start; p_end = tok->cur - 1; /* Leave '\n' out of the string */ tok->cont_line = 0; return MAKE_TOKEN(NEWLINE); } /* Period or number starting with period? */ if (c == '.') { c = tok_nextc(tok); if (Py_ISDIGIT(c)) { goto fraction; } else if (c == '.') { c = tok_nextc(tok); if (c == '.') { p_start = tok->start; p_end = tok->cur; return MAKE_TOKEN(ELLIPSIS); } else { tok_backup(tok, c); } tok_backup(tok, '.'); } else { tok_backup(tok, c); } p_start = tok->start; p_end = tok->cur; return MAKE_TOKEN(DOT); } /* Number */ if (Py_ISDIGIT(c)) { if (c == '0') { /* Hex, octal or binary -- maybe. */ c = tok_nextc(tok); if (c == 'x' || c == 'X') { /* Hex */ c = tok_nextc(tok); do { if (c == '_') { c = tok_nextc(tok); } if (!Py_ISXDIGIT(c)) { tok_backup(tok, c); return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "invalid hexadecimal literal")); } do { c = tok_nextc(tok); } while (Py_ISXDIGIT(c)); } while (c == '_'); if (!verify_end_of_number(tok, c, "hexadecimal")) { return MAKE_TOKEN(ERRORTOKEN); } } else if (c == 'o' || c == 'O') { /* Octal */ c = tok_nextc(tok); do { if (c == '_') { c = tok_nextc(tok); } if (c < '0' || c >= '8') { if (Py_ISDIGIT(c)) { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "invalid digit '%c' in octal literal", c)); } else { tok_backup(tok, c); return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "invalid octal literal")); } } do { c = tok_nextc(tok); } while ('0' <= c && c < '8'); } while (c == '_'); if (Py_ISDIGIT(c)) { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "invalid digit '%c' in octal literal", c)); } if (!verify_end_of_number(tok, c, "octal")) { return MAKE_TOKEN(ERRORTOKEN); } } else if (c == 'b' || c == 'B') { /* Binary */ c = tok_nextc(tok); do { if (c == '_') { c = tok_nextc(tok); } if (c != '0' && c != '1') { if (Py_ISDIGIT(c)) { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "invalid digit '%c' in binary literal", c)); } else { tok_backup(tok, c); return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "invalid binary literal")); } } do { c = tok_nextc(tok); } while (c == '0' || c == '1'); } while (c == '_'); if (Py_ISDIGIT(c)) { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "invalid digit '%c' in binary literal", c)); } if (!verify_end_of_number(tok, c, "binary")) { return MAKE_TOKEN(ERRORTOKEN); } } else { int nonzero = 0; /* maybe old-style octal; c is first char of it */ /* in any case, allow '0' as a literal */ while (1) { if (c == '_') { c = tok_nextc(tok); if (!Py_ISDIGIT(c)) { tok_backup(tok, c); return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "invalid decimal literal")); } } if (c != '0') { break; } c = tok_nextc(tok); } char* zeros_end = tok->cur; if (Py_ISDIGIT(c)) { nonzero = 1; c = tok_decimal_tail(tok); if (c == 0) { return MAKE_TOKEN(ERRORTOKEN); } } if (c == '.') { c = tok_nextc(tok); goto fraction; } else if (c == 'e' || c == 'E') { goto exponent; } else if (c == 'j' || c == 'J') { goto imaginary; } else if (nonzero && !tok->tok_extra_tokens) { /* Old-style octal: now disallowed. */ tok_backup(tok, c); return MAKE_TOKEN(_PyTokenizer_syntaxerror_known_range( tok, (int)(tok->start + 1 - tok->line_start), (int)(zeros_end - tok->line_start), "leading zeros in decimal integer " "literals are not permitted; " "use an 0o prefix for octal integers")); } if (!verify_end_of_number(tok, c, "decimal")) { return MAKE_TOKEN(ERRORTOKEN); } } } else { /* Decimal */ c = tok_decimal_tail(tok); if (c == 0) { return MAKE_TOKEN(ERRORTOKEN); } { /* Accept floating point numbers. */ if (c == '.') { c = tok_nextc(tok); fraction: /* Fraction */ if (Py_ISDIGIT(c)) { c = tok_decimal_tail(tok); if (c == 0) { return MAKE_TOKEN(ERRORTOKEN); } } } if (c == 'e' || c == 'E') { int e; exponent: e = c; /* Exponent part */ c = tok_nextc(tok); if (c == '+' || c == '-') { c = tok_nextc(tok); if (!Py_ISDIGIT(c)) { tok_backup(tok, c); return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "invalid decimal literal")); } } else if (!Py_ISDIGIT(c)) { tok_backup(tok, c); if (!verify_end_of_number(tok, e, "decimal")) { return MAKE_TOKEN(ERRORTOKEN); } tok_backup(tok, e); p_start = tok->start; p_end = tok->cur; return MAKE_TOKEN(NUMBER); } c = tok_decimal_tail(tok); if (c == 0) { return MAKE_TOKEN(ERRORTOKEN); } } if (c == 'j' || c == 'J') { /* Imaginary part */ imaginary: c = tok_nextc(tok); if (!verify_end_of_number(tok, c, "imaginary")) { return MAKE_TOKEN(ERRORTOKEN); } } else if (!verify_end_of_number(tok, c, "decimal")) { return MAKE_TOKEN(ERRORTOKEN); } } } tok_backup(tok, c); p_start = tok->start; p_end = tok->cur; return MAKE_TOKEN(NUMBER); } f_string_quote: if (((Py_TOLOWER(*tok->start) == 'f' || Py_TOLOWER(*tok->start) == 'r') && (c == '\'' || c == '"'))) { int quote = c; int quote_size = 1; /* 1 or 3 */ /* Nodes of type STRING, especially multi line strings must be handled differently in order to get both the starting line number and the column offset right. (cf. issue 16806) */ tok->first_lineno = tok->lineno; tok->multi_line_start = tok->line_start; /* Find the quote size and start of string */ int after_quote = tok_nextc(tok); if (after_quote == quote) { int after_after_quote = tok_nextc(tok); if (after_after_quote == quote) { quote_size = 3; } else { // TODO: Check this tok_backup(tok, after_after_quote); tok_backup(tok, after_quote); } } if (after_quote != quote) { tok_backup(tok, after_quote); } p_start = tok->start; p_end = tok->cur; if (tok->tok_mode_stack_index + 1 >= MAXFSTRINGLEVEL) { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "too many nested f-strings")); } tokenizer_mode *the_current_tok = TOK_NEXT_MODE(tok); the_current_tok->kind = TOK_FSTRING_MODE; the_current_tok->f_string_quote = quote; the_current_tok->f_string_quote_size = quote_size; the_current_tok->f_string_start = tok->start; the_current_tok->f_string_multi_line_start = tok->line_start; the_current_tok->f_string_line_start = tok->lineno; the_current_tok->f_string_start_offset = -1; the_current_tok->f_string_multi_line_start_offset = -1; the_current_tok->last_expr_buffer = NULL; the_current_tok->last_expr_size = 0; the_current_tok->last_expr_end = -1; the_current_tok->f_string_debug = 0; switch (*tok->start) { case 'F': case 'f': the_current_tok->f_string_raw = Py_TOLOWER(*(tok->start + 1)) == 'r'; break; case 'R': case 'r': the_current_tok->f_string_raw = 1; break; default: Py_UNREACHABLE(); } the_current_tok->curly_bracket_depth = 0; the_current_tok->curly_bracket_expr_start_depth = -1; return MAKE_TOKEN(FSTRING_START); } letter_quote: /* String */ if (c == '\'' || c == '"') { int quote = c; int quote_size = 1; /* 1 or 3 */ int end_quote_size = 0; int has_escaped_quote = 0; /* Nodes of type STRING, especially multi line strings must be handled differently in order to get both the starting line number and the column offset right. (cf. issue 16806) */ tok->first_lineno = tok->lineno; tok->multi_line_start = tok->line_start; /* Find the quote size and start of string */ c = tok_nextc(tok); if (c == quote) { c = tok_nextc(tok); if (c == quote) { quote_size = 3; } else { end_quote_size = 1; /* empty string found */ } } if (c != quote) { tok_backup(tok, c); } /* Get rest of string */ while (end_quote_size != quote_size) { c = tok_nextc(tok); if (tok->done == E_ERROR) { return MAKE_TOKEN(ERRORTOKEN); } if (tok->done == E_DECODE) { break; } if (c == EOF || (quote_size == 1 && c == '\n')) { assert(tok->multi_line_start != NULL); // shift the tok_state's location into // the start of string, and report the error // from the initial quote character tok->cur = (char *)tok->start; tok->cur++; tok->line_start = tok->multi_line_start; int start = tok->lineno; tok->lineno = tok->first_lineno; if (INSIDE_FSTRING(tok)) { /* When we are in an f-string, before raising the * unterminated string literal error, check whether * does the initial quote matches with f-strings quotes * and if it is, then this must be a missing '}' token * so raise the proper error */ tokenizer_mode *the_current_tok = TOK_GET_MODE(tok); if (the_current_tok->f_string_quote == quote && the_current_tok->f_string_quote_size == quote_size) { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "f-string: expecting '}'", start)); } } if (quote_size == 3) { _PyTokenizer_syntaxerror(tok, "unterminated triple-quoted string literal" " (detected at line %d)", start); if (c != '\n') { tok->done = E_EOFS; } return MAKE_TOKEN(ERRORTOKEN); } else { if (has_escaped_quote) { _PyTokenizer_syntaxerror( tok, "unterminated string literal (detected at line %d); " "perhaps you escaped the end quote?", start ); } else { _PyTokenizer_syntaxerror( tok, "unterminated string literal (detected at line %d)", start ); } if (c != '\n') { tok->done = E_EOLS; } return MAKE_TOKEN(ERRORTOKEN); } } if (c == quote) { end_quote_size += 1; } else { end_quote_size = 0; if (c == '\\') { c = tok_nextc(tok); /* skip escaped char */ if (c == quote) { /* but record whether the escaped char was a quote */ has_escaped_quote = 1; } if (c == '\r') { c = tok_nextc(tok); } } } } p_start = tok->start; p_end = tok->cur; return MAKE_TOKEN(STRING); } /* Line continuation */ if (c == '\\') { if ((c = tok_continuation_line(tok)) == -1) { return MAKE_TOKEN(ERRORTOKEN); } tok->cont_line = 1; goto again; /* Read next line */ } /* Punctuation character */ int is_punctuation = (c == ':' || c == '}' || c == '!' || c == '{'); if (is_punctuation && INSIDE_FSTRING(tok) && INSIDE_FSTRING_EXPR(current_tok)) { /* This code block gets executed before the curly_bracket_depth is incremented * by the `{` case, so for ensuring that we are on the 0th level, we need * to adjust it manually */ int cursor = current_tok->curly_bracket_depth - (c != '{'); if (cursor == 0 && !_PyLexer_update_fstring_expr(tok, c)) { return MAKE_TOKEN(ENDMARKER); } if (cursor == 0 && c != '{' && set_fstring_expr(tok, token, c)) { return MAKE_TOKEN(ERRORTOKEN); } if (c == ':' && cursor == current_tok->curly_bracket_expr_start_depth) { current_tok->kind = TOK_FSTRING_MODE; p_start = tok->start; p_end = tok->cur; return MAKE_TOKEN(_PyToken_OneChar(c)); } } /* Check for two-character token */ { int c2 = tok_nextc(tok); int current_token = _PyToken_TwoChars(c, c2); if (current_token != OP) { int c3 = tok_nextc(tok); int current_token3 = _PyToken_ThreeChars(c, c2, c3); if (current_token3 != OP) { current_token = current_token3; } else { tok_backup(tok, c3); } p_start = tok->start; p_end = tok->cur; return MAKE_TOKEN(current_token); } tok_backup(tok, c2); } /* Keep track of parentheses nesting level */ switch (c) { case '(': case '[': case '{': if (tok->level >= MAXLEVEL) { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "too many nested parentheses")); } tok->parenstack[tok->level] = c; tok->parenlinenostack[tok->level] = tok->lineno; tok->parencolstack[tok->level] = (int)(tok->start - tok->line_start); tok->level++; if (INSIDE_FSTRING(tok)) { current_tok->curly_bracket_depth++; } break; case ')': case ']': case '}': if (INSIDE_FSTRING(tok) && !current_tok->curly_bracket_depth && c == '}') { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "f-string: single '}' is not allowed")); } if (!tok->tok_extra_tokens && !tok->level) { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "unmatched '%c'", c)); } if (tok->level > 0) { tok->level--; int opening = tok->parenstack[tok->level]; if (!tok->tok_extra_tokens && !((opening == '(' && c == ')') || (opening == '[' && c == ']') || (opening == '{' && c == '}'))) { /* If the opening bracket belongs to an f-string's expression part (e.g. f"{)}") and the closing bracket is an arbitrary nested expression, then instead of matching a different syntactical construct with it; we'll throw an unmatched parentheses error. */ if (INSIDE_FSTRING(tok) && opening == '{') { assert(current_tok->curly_bracket_depth >= 0); int previous_bracket = current_tok->curly_bracket_depth - 1; if (previous_bracket == current_tok->curly_bracket_expr_start_depth) { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "f-string: unmatched '%c'", c)); } } if (tok->parenlinenostack[tok->level] != tok->lineno) { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "closing parenthesis '%c' does not match " "opening parenthesis '%c' on line %d", c, opening, tok->parenlinenostack[tok->level])); } else { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "closing parenthesis '%c' does not match " "opening parenthesis '%c'", c, opening)); } } } if (INSIDE_FSTRING(tok)) { current_tok->curly_bracket_depth--; if (c == '}' && current_tok->curly_bracket_depth == current_tok->curly_bracket_expr_start_depth) { current_tok->curly_bracket_expr_start_depth--; current_tok->kind = TOK_FSTRING_MODE; current_tok->f_string_debug = 0; } } break; default: break; } if (!Py_UNICODE_ISPRINTABLE(c)) { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "invalid non-printable character U+%04X", c)); } if( c == '=' && INSIDE_FSTRING_EXPR(current_tok)) { current_tok->f_string_debug = 1; } /* Punctuation character */ p_start = tok->start; p_end = tok->cur; return MAKE_TOKEN(_PyToken_OneChar(c)); } static int tok_get_fstring_mode(struct tok_state *tok, tokenizer_mode* current_tok, struct token *token) { const char *p_start = NULL; const char *p_end = NULL; int end_quote_size = 0; int unicode_escape = 0; tok->start = tok->cur; tok->first_lineno = tok->lineno; tok->starting_col_offset = tok->col_offset; // If we start with a bracket, we defer to the normal mode as there is nothing for us to tokenize // before it. int start_char = tok_nextc(tok); if (start_char == '{') { int peek1 = tok_nextc(tok); tok_backup(tok, peek1); tok_backup(tok, start_char); if (peek1 != '{') { current_tok->curly_bracket_expr_start_depth++; if (current_tok->curly_bracket_expr_start_depth >= MAX_EXPR_NESTING) { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "f-string: expressions nested too deeply")); } TOK_GET_MODE(tok)->kind = TOK_REGULAR_MODE; return tok_get_normal_mode(tok, current_tok, token); } } else { tok_backup(tok, start_char); } // Check if we are at the end of the string for (int i = 0; i < current_tok->f_string_quote_size; i++) { int quote = tok_nextc(tok); if (quote != current_tok->f_string_quote) { tok_backup(tok, quote); goto f_string_middle; } } if (current_tok->last_expr_buffer != NULL) { PyMem_Free(current_tok->last_expr_buffer); current_tok->last_expr_buffer = NULL; current_tok->last_expr_size = 0; current_tok->last_expr_end = -1; } p_start = tok->start; p_end = tok->cur; tok->tok_mode_stack_index--; return MAKE_TOKEN(FSTRING_END); f_string_middle: // TODO: This is a bit of a hack, but it works for now. We need to find a better way to handle // this. tok->multi_line_start = tok->line_start; while (end_quote_size != current_tok->f_string_quote_size) { int c = tok_nextc(tok); if (tok->done == E_ERROR) { return MAKE_TOKEN(ERRORTOKEN); } int in_format_spec = ( current_tok->last_expr_end != -1 && INSIDE_FSTRING_EXPR(current_tok) ); if (c == EOF || (current_tok->f_string_quote_size == 1 && c == '\n')) { if (tok->decoding_erred) { return MAKE_TOKEN(ERRORTOKEN); } // If we are in a format spec and we found a newline, // it means that the format spec ends here and we should // return to the regular mode. if (in_format_spec && c == '\n') { tok_backup(tok, c); TOK_GET_MODE(tok)->kind = TOK_REGULAR_MODE; p_start = tok->start; p_end = tok->cur; return MAKE_TOKEN(FSTRING_MIDDLE); } assert(tok->multi_line_start != NULL); // shift the tok_state's location into // the start of string, and report the error // from the initial quote character tok->cur = (char *)current_tok->f_string_start; tok->cur++; tok->line_start = current_tok->f_string_multi_line_start; int start = tok->lineno; tokenizer_mode *the_current_tok = TOK_GET_MODE(tok); tok->lineno = the_current_tok->f_string_line_start; if (current_tok->f_string_quote_size == 3) { _PyTokenizer_syntaxerror(tok, "unterminated triple-quoted f-string literal" " (detected at line %d)", start); if (c != '\n') { tok->done = E_EOFS; } return MAKE_TOKEN(ERRORTOKEN); } else { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "unterminated f-string literal (detected at" " line %d)", start)); } } if (c == current_tok->f_string_quote) { end_quote_size += 1; continue; } else { end_quote_size = 0; } if (c == '{') { int peek = tok_nextc(tok); if (peek != '{' || in_format_spec) { tok_backup(tok, peek); tok_backup(tok, c); current_tok->curly_bracket_expr_start_depth++; if (current_tok->curly_bracket_expr_start_depth >= MAX_EXPR_NESTING) { return MAKE_TOKEN(_PyTokenizer_syntaxerror(tok, "f-string: expressions nested too deeply")); } TOK_GET_MODE(tok)->kind = TOK_REGULAR_MODE; p_start = tok->start; p_end = tok->cur; } else { p_start = tok->start; p_end = tok->cur - 1; } return MAKE_TOKEN(FSTRING_MIDDLE); } else if (c == '}') { if (unicode_escape) { p_start = tok->start; p_end = tok->cur; return MAKE_TOKEN(FSTRING_MIDDLE); } int peek = tok_nextc(tok); // The tokenizer can only be in the format spec if we have already completed the expression // scanning (indicated by the end of the expression being set) and we are not at the top level // of the bracket stack (-1 is the top level). Since format specifiers can't legally use double // brackets, we can bypass it here. if (peek == '}' && !in_format_spec) { p_start = tok->start; p_end = tok->cur - 1; } else { tok_backup(tok, peek); tok_backup(tok, c); TOK_GET_MODE(tok)->kind = TOK_REGULAR_MODE; p_start = tok->start; p_end = tok->cur; } return MAKE_TOKEN(FSTRING_MIDDLE); } else if (c == '\\') { int peek = tok_nextc(tok); if (peek == '\r') { peek = tok_nextc(tok); } // Special case when the backslash is right before a curly // brace. We have to restore and return the control back // to the loop for the next iteration. if (peek == '{' || peek == '}') { if (!current_tok->f_string_raw) { if (_PyTokenizer_warn_invalid_escape_sequence(tok, peek)) { return MAKE_TOKEN(ERRORTOKEN); } } tok_backup(tok, peek); continue; } if (!current_tok->f_string_raw) { if (peek == 'N') { /* Handle named unicode escapes (\N{BULLET}) */ peek = tok_nextc(tok); if (peek == '{') { unicode_escape = 1; } else { tok_backup(tok, peek); } } } /* else { skip the escaped character }*/ } } // Backup the f-string quotes to emit a final FSTRING_MIDDLE and // add the quotes to the FSTRING_END in the next tokenizer iteration. for (int i = 0; i < current_tok->f_string_quote_size; i++) { tok_backup(tok, current_tok->f_string_quote); } p_start = tok->start; p_end = tok->cur; return MAKE_TOKEN(FSTRING_MIDDLE); } static int tok_get(struct tok_state *tok, struct token *token) { tokenizer_mode *current_tok = TOK_GET_MODE(tok); if (current_tok->kind == TOK_REGULAR_MODE) { return tok_get_normal_mode(tok, current_tok, token); } else { return tok_get_fstring_mode(tok, current_tok, token); } } int _PyTokenizer_Get(struct tok_state *tok, struct token *token) { int result = tok_get(tok, token); if (tok->decoding_erred) { result = ERRORTOKEN; tok->done = E_DECODE; } return result; }