#include #include "pycore_ast.h" // _PyAST_Validate(), #include "pycore_pystate.h" // _PyThreadState_GET() #include #include "tokenizer.h" #include "pegen.h" // Internal parser functions asdl_stmt_seq* _PyPegen_interactive_exit(Parser *p) { if (p->errcode) { *(p->errcode) = E_EOF; } return NULL; } Py_ssize_t _PyPegen_byte_offset_to_character_offset(PyObject *line, Py_ssize_t col_offset) { const char *str = PyUnicode_AsUTF8(line); if (!str) { return -1; } Py_ssize_t len = strlen(str); if (col_offset > len + 1) { col_offset = len + 1; } assert(col_offset >= 0); PyObject *text = PyUnicode_DecodeUTF8(str, col_offset, "replace"); if (!text) { return -1; } Py_ssize_t size = PyUnicode_GET_LENGTH(text); Py_DECREF(text); return size; } // Calculate the extra amount of width space the given source // code segment might take if it were to be displayed on a fixed // width output device. Supports wide unicode characters and emojis. Py_ssize_t _PyPegen_calculate_display_width(PyObject *line, Py_ssize_t character_offset) { PyObject *segment = PyUnicode_Substring(line, 0, character_offset); if (!segment) { return -1; } // Fast track for ascii strings if (PyUnicode_IS_ASCII(segment)) { Py_DECREF(segment); return character_offset; } PyObject *width_fn = _PyImport_GetModuleAttrString("unicodedata", "east_asian_width"); if (!width_fn) { return -1; } Py_ssize_t width = 0; Py_ssize_t len = PyUnicode_GET_LENGTH(segment); for (Py_ssize_t i = 0; i < len; i++) { PyObject *chr = PyUnicode_Substring(segment, i, i + 1); if (!chr) { Py_DECREF(segment); Py_DECREF(width_fn); return -1; } PyObject *width_specifier = PyObject_CallOneArg(width_fn, chr); Py_DECREF(chr); if (!width_specifier) { Py_DECREF(segment); Py_DECREF(width_fn); return -1; } if (_PyUnicode_EqualToASCIIString(width_specifier, "W") || _PyUnicode_EqualToASCIIString(width_specifier, "F")) { width += 2; } else { width += 1; } Py_DECREF(width_specifier); } Py_DECREF(segment); Py_DECREF(width_fn); return width; } // Here, mark is the start of the node, while p->mark is the end. // If node==NULL, they should be the same. int _PyPegen_insert_memo(Parser *p, int mark, int type, void *node) { // Insert in front Memo *m = _PyArena_Malloc(p->arena, sizeof(Memo)); if (m == NULL) { return -1; } m->type = type; m->node = node; m->mark = p->mark; m->next = p->tokens[mark]->memo; p->tokens[mark]->memo = m; return 0; } // Like _PyPegen_insert_memo(), but updates an existing node if found. int _PyPegen_update_memo(Parser *p, int mark, int type, void *node) { for (Memo *m = p->tokens[mark]->memo; m != NULL; m = m->next) { if (m->type == type) { // Update existing node. m->node = node; m->mark = p->mark; return 0; } } // Insert new node. return _PyPegen_insert_memo(p, mark, type, node); } static int init_normalization(Parser *p) { if (p->normalize) { return 1; } p->normalize = _PyImport_GetModuleAttrString("unicodedata", "normalize"); if (!p->normalize) { return 0; } return 1; } static int growable_comment_array_init(growable_comment_array *arr, size_t initial_size) { assert(initial_size > 0); arr->items = PyMem_Malloc(initial_size * sizeof(*arr->items)); arr->size = initial_size; arr->num_items = 0; return arr->items != NULL; } static int growable_comment_array_add(growable_comment_array *arr, int lineno, char *comment) { if (arr->num_items >= arr->size) { size_t new_size = arr->size * 2; void *new_items_array = PyMem_Realloc(arr->items, new_size * sizeof(*arr->items)); if (!new_items_array) { return 0; } arr->items = new_items_array; arr->size = new_size; } arr->items[arr->num_items].lineno = lineno; arr->items[arr->num_items].comment = comment; // Take ownership arr->num_items++; return 1; } static void growable_comment_array_deallocate(growable_comment_array *arr) { for (unsigned i = 0; i < arr->num_items; i++) { PyMem_Free(arr->items[i].comment); } PyMem_Free(arr->items); } static int _get_keyword_or_name_type(Parser *p, struct token *new_token) { int name_len = new_token->end_col_offset - new_token->col_offset; assert(name_len > 0); if (name_len >= p->n_keyword_lists || p->keywords[name_len] == NULL || p->keywords[name_len]->type == -1) { return NAME; } for (KeywordToken *k = p->keywords[name_len]; k != NULL && k->type != -1; k++) { if (strncmp(k->str, new_token->start, name_len) == 0) { return k->type; } } return NAME; } static int initialize_token(Parser *p, Token *parser_token, struct token *new_token, int token_type) { assert(parser_token != NULL); parser_token->type = (token_type == NAME) ? _get_keyword_or_name_type(p, new_token) : token_type; parser_token->bytes = PyBytes_FromStringAndSize(new_token->start, new_token->end - new_token->start); if (parser_token->bytes == NULL) { return -1; } if (_PyArena_AddPyObject(p->arena, parser_token->bytes) < 0) { Py_DECREF(parser_token->bytes); return -1; } parser_token->metadata = NULL; if (new_token->metadata != NULL) { if (_PyArena_AddPyObject(p->arena, new_token->metadata) < 0) { Py_DECREF(parser_token->metadata); return -1; } parser_token->metadata = new_token->metadata; new_token->metadata = NULL; } parser_token->level = new_token->level; parser_token->lineno = new_token->lineno; parser_token->col_offset = p->tok->lineno == p->starting_lineno ? p->starting_col_offset + new_token->col_offset : new_token->col_offset; parser_token->end_lineno = new_token->end_lineno; parser_token->end_col_offset = p->tok->lineno == p->starting_lineno ? p->starting_col_offset + new_token->end_col_offset : new_token->end_col_offset; p->fill += 1; if (token_type == ERRORTOKEN && p->tok->done == E_DECODE) { return _Pypegen_raise_decode_error(p); } return (token_type == ERRORTOKEN ? _Pypegen_tokenizer_error(p) : 0); } static int _resize_tokens_array(Parser *p) { int newsize = p->size * 2; Token **new_tokens = PyMem_Realloc(p->tokens, newsize * sizeof(Token *)); if (new_tokens == NULL) { PyErr_NoMemory(); return -1; } p->tokens = new_tokens; for (int i = p->size; i < newsize; i++) { p->tokens[i] = PyMem_Calloc(1, sizeof(Token)); if (p->tokens[i] == NULL) { p->size = i; // Needed, in order to cleanup correctly after parser fails PyErr_NoMemory(); return -1; } } p->size = newsize; return 0; } int _PyPegen_fill_token(Parser *p) { struct token new_token; _PyToken_Init(&new_token); int type = _PyTokenizer_Get(p->tok, &new_token); // Record and skip '# type: ignore' comments while (type == TYPE_IGNORE) { Py_ssize_t len = new_token.end_col_offset - new_token.col_offset; char *tag = PyMem_Malloc(len + 1); if (tag == NULL) { PyErr_NoMemory(); goto error; } strncpy(tag, new_token.start, len); tag[len] = '\0'; // Ownership of tag passes to the growable array if (!growable_comment_array_add(&p->type_ignore_comments, p->tok->lineno, tag)) { PyErr_NoMemory(); goto error; } type = _PyTokenizer_Get(p->tok, &new_token); } // If we have reached the end and we are in single input mode we need to insert a newline and reset the parsing if (p->start_rule == Py_single_input && type == ENDMARKER && p->parsing_started) { type = NEWLINE; /* Add an extra newline */ p->parsing_started = 0; if (p->tok->indent && !(p->flags & PyPARSE_DONT_IMPLY_DEDENT)) { p->tok->pendin = -p->tok->indent; p->tok->indent = 0; } } else { p->parsing_started = 1; } // Check if we are at the limit of the token array capacity and resize if needed if ((p->fill == p->size) && (_resize_tokens_array(p) != 0)) { goto error; } Token *t = p->tokens[p->fill]; return initialize_token(p, t, &new_token, type); error: _PyToken_Free(&new_token); return -1; } #if defined(Py_DEBUG) // Instrumentation to count the effectiveness of memoization. // The array counts the number of tokens skipped by memoization, // indexed by type. #define NSTATISTICS _PYPEGEN_NSTATISTICS #define memo_statistics _PyRuntime.parser.memo_statistics void _PyPegen_clear_memo_statistics(void) { for (int i = 0; i < NSTATISTICS; i++) { memo_statistics[i] = 0; } } PyObject * _PyPegen_get_memo_statistics(void) { PyObject *ret = PyList_New(NSTATISTICS); if (ret == NULL) { return NULL; } for (int i = 0; i < NSTATISTICS; i++) { PyObject *value = PyLong_FromLong(memo_statistics[i]); if (value == NULL) { Py_DECREF(ret); return NULL; } // PyList_SetItem borrows a reference to value. if (PyList_SetItem(ret, i, value) < 0) { Py_DECREF(ret); return NULL; } } return ret; } #endif int // bool _PyPegen_is_memoized(Parser *p, int type, void *pres) { if (p->mark == p->fill) { if (_PyPegen_fill_token(p) < 0) { p->error_indicator = 1; return -1; } } Token *t = p->tokens[p->mark]; for (Memo *m = t->memo; m != NULL; m = m->next) { if (m->type == type) { #if defined(PY_DEBUG) if (0 <= type && type < NSTATISTICS) { long count = m->mark - p->mark; // A memoized negative result counts for one. if (count <= 0) { count = 1; } memo_statistics[type] += count; } #endif p->mark = m->mark; *(void **)(pres) = m->node; return 1; } } return 0; } int _PyPegen_lookahead_with_name(int positive, expr_ty (func)(Parser *), Parser *p) { int mark = p->mark; void *res = func(p); p->mark = mark; return (res != NULL) == positive; } int _PyPegen_lookahead_with_string(int positive, expr_ty (func)(Parser *, const char*), Parser *p, const char* arg) { int mark = p->mark; void *res = func(p, arg); p->mark = mark; return (res != NULL) == positive; } int _PyPegen_lookahead_with_int(int positive, Token *(func)(Parser *, int), Parser *p, int arg) { int mark = p->mark; void *res = func(p, arg); p->mark = mark; return (res != NULL) == positive; } int _PyPegen_lookahead(int positive, void *(func)(Parser *), Parser *p) { int mark = p->mark; void *res = (void*)func(p); p->mark = mark; return (res != NULL) == positive; } Token * _PyPegen_expect_token(Parser *p, int type) { if (p->mark == p->fill) { if (_PyPegen_fill_token(p) < 0) { p->error_indicator = 1; return NULL; } } Token *t = p->tokens[p->mark]; if (t->type != type) { return NULL; } p->mark += 1; return t; } void* _PyPegen_expect_forced_result(Parser *p, void* result, const char* expected) { if (p->error_indicator == 1) { return NULL; } if (result == NULL) { RAISE_SYNTAX_ERROR("expected (%s)", expected); return NULL; } return result; } Token * _PyPegen_expect_forced_token(Parser *p, int type, const char* expected) { if (p->error_indicator == 1) { return NULL; } if (p->mark == p->fill) { if (_PyPegen_fill_token(p) < 0) { p->error_indicator = 1; return NULL; } } Token *t = p->tokens[p->mark]; if (t->type != type) { RAISE_SYNTAX_ERROR_KNOWN_LOCATION(t, "expected '%s'", expected); return NULL; } p->mark += 1; return t; } expr_ty _PyPegen_expect_soft_keyword(Parser *p, const char *keyword) { if (p->mark == p->fill) { if (_PyPegen_fill_token(p) < 0) { p->error_indicator = 1; return NULL; } } Token *t = p->tokens[p->mark]; if (t->type != NAME) { return NULL; } const char *s = PyBytes_AsString(t->bytes); if (!s) { p->error_indicator = 1; return NULL; } if (strcmp(s, keyword) != 0) { return NULL; } return _PyPegen_name_token(p); } Token * _PyPegen_get_last_nonnwhitespace_token(Parser *p) { assert(p->mark >= 0); Token *token = NULL; for (int m = p->mark - 1; m >= 0; m--) { token = p->tokens[m]; if (token->type != ENDMARKER && (token->type < NEWLINE || token->type > DEDENT)) { break; } } return token; } PyObject * _PyPegen_new_identifier(Parser *p, const char *n) { PyObject *id = PyUnicode_DecodeUTF8(n, strlen(n), NULL); if (!id) { goto error; } /* PyUnicode_DecodeUTF8 should always return a ready string. */ assert(PyUnicode_IS_READY(id)); /* Check whether there are non-ASCII characters in the identifier; if so, normalize to NFKC. */ if (!PyUnicode_IS_ASCII(id)) { PyObject *id2; if (!init_normalization(p)) { Py_DECREF(id); goto error; } PyObject *form = PyUnicode_InternFromString("NFKC"); if (form == NULL) { Py_DECREF(id); goto error; } PyObject *args[2] = {form, id}; id2 = _PyObject_FastCall(p->normalize, args, 2); Py_DECREF(id); Py_DECREF(form); if (!id2) { goto error; } if (!PyUnicode_Check(id2)) { PyErr_Format(PyExc_TypeError, "unicodedata.normalize() must return a string, not " "%.200s", _PyType_Name(Py_TYPE(id2))); Py_DECREF(id2); goto error; } id = id2; } PyUnicode_InternInPlace(&id); if (_PyArena_AddPyObject(p->arena, id) < 0) { Py_DECREF(id); goto error; } return id; error: p->error_indicator = 1; return NULL; } static expr_ty _PyPegen_name_from_token(Parser *p, Token* t) { if (t == NULL) { return NULL; } const char *s = PyBytes_AsString(t->bytes); if (!s) { p->error_indicator = 1; return NULL; } PyObject *id = _PyPegen_new_identifier(p, s); if (id == NULL) { p->error_indicator = 1; return NULL; } return _PyAST_Name(id, Load, t->lineno, t->col_offset, t->end_lineno, t->end_col_offset, p->arena); } expr_ty _PyPegen_name_token(Parser *p) { Token *t = _PyPegen_expect_token(p, NAME); return _PyPegen_name_from_token(p, t); } void * _PyPegen_string_token(Parser *p) { return _PyPegen_expect_token(p, STRING); } expr_ty _PyPegen_soft_keyword_token(Parser *p) { Token *t = _PyPegen_expect_token(p, NAME); if (t == NULL) { return NULL; } char *the_token; Py_ssize_t size; PyBytes_AsStringAndSize(t->bytes, &the_token, &size); for (char **keyword = p->soft_keywords; *keyword != NULL; keyword++) { if (strncmp(*keyword, the_token, size) == 0) { return _PyPegen_name_from_token(p, t); } } return NULL; } static PyObject * parsenumber_raw(const char *s) { const char *end; long x; double dx; Py_complex compl; int imflag; assert(s != NULL); errno = 0; end = s + strlen(s) - 1; imflag = *end == 'j' || *end == 'J'; if (s[0] == '0') { x = (long)PyOS_strtoul(s, (char **)&end, 0); if (x < 0 && errno == 0) { return PyLong_FromString(s, (char **)0, 0); } } else { x = PyOS_strtol(s, (char **)&end, 0); } if (*end == '\0') { if (errno != 0) { return PyLong_FromString(s, (char **)0, 0); } return PyLong_FromLong(x); } /* XXX Huge floats may silently fail */ if (imflag) { compl.real = 0.; compl.imag = PyOS_string_to_double(s, (char **)&end, NULL); if (compl.imag == -1.0 && PyErr_Occurred()) { return NULL; } return PyComplex_FromCComplex(compl); } dx = PyOS_string_to_double(s, NULL, NULL); if (dx == -1.0 && PyErr_Occurred()) { return NULL; } return PyFloat_FromDouble(dx); } static PyObject * parsenumber(const char *s) { char *dup; char *end; PyObject *res = NULL; assert(s != NULL); if (strchr(s, '_') == NULL) { return parsenumber_raw(s); } /* Create a duplicate without underscores. */ dup = PyMem_Malloc(strlen(s) + 1); if (dup == NULL) { return PyErr_NoMemory(); } end = dup; for (; *s; s++) { if (*s != '_') { *end++ = *s; } } *end = '\0'; res = parsenumber_raw(dup); PyMem_Free(dup); return res; } expr_ty _PyPegen_number_token(Parser *p) { Token *t = _PyPegen_expect_token(p, NUMBER); if (t == NULL) { return NULL; } const char *num_raw = PyBytes_AsString(t->bytes); if (num_raw == NULL) { p->error_indicator = 1; return NULL; } if (p->feature_version < 6 && strchr(num_raw, '_') != NULL) { p->error_indicator = 1; return RAISE_SYNTAX_ERROR("Underscores in numeric literals are only supported " "in Python 3.6 and greater"); } PyObject *c = parsenumber(num_raw); if (c == NULL) { p->error_indicator = 1; PyThreadState *tstate = _PyThreadState_GET(); // The only way a ValueError should happen in _this_ code is via // PyLong_FromString hitting a length limit. if (tstate->current_exception != NULL && Py_TYPE(tstate->current_exception) == (PyTypeObject *)PyExc_ValueError ) { PyObject *exc = PyErr_GetRaisedException(); /* Intentionally omitting columns to avoid a wall of 1000s of '^'s * on the error message. Nobody is going to overlook their huge * numeric literal once given the line. */ RAISE_ERROR_KNOWN_LOCATION( p, PyExc_SyntaxError, t->lineno, -1 /* col_offset */, t->end_lineno, -1 /* end_col_offset */, "%S - Consider hexadecimal for huge integer literals " "to avoid decimal conversion limits.", exc); Py_DECREF(exc); } return NULL; } if (_PyArena_AddPyObject(p->arena, c) < 0) { Py_DECREF(c); p->error_indicator = 1; return NULL; } return _PyAST_Constant(c, NULL, t->lineno, t->col_offset, t->end_lineno, t->end_col_offset, p->arena); } /* Check that the source for a single input statement really is a single statement by looking at what is left in the buffer after parsing. Trailing whitespace and comments are OK. */ static int // bool bad_single_statement(Parser *p) { char *cur = p->tok->cur; char c = *cur; for (;;) { while (c == ' ' || c == '\t' || c == '\n' || c == '\014') { c = *++cur; } if (!c) { return 0; } if (c != '#') { return 1; } /* Suck up comment. */ while (c && c != '\n') { c = *++cur; } } } static int compute_parser_flags(PyCompilerFlags *flags) { int parser_flags = 0; if (!flags) { return 0; } if (flags->cf_flags & PyCF_DONT_IMPLY_DEDENT) { parser_flags |= PyPARSE_DONT_IMPLY_DEDENT; } if (flags->cf_flags & PyCF_IGNORE_COOKIE) { parser_flags |= PyPARSE_IGNORE_COOKIE; } if (flags->cf_flags & CO_FUTURE_BARRY_AS_BDFL) { parser_flags |= PyPARSE_BARRY_AS_BDFL; } if (flags->cf_flags & PyCF_TYPE_COMMENTS) { parser_flags |= PyPARSE_TYPE_COMMENTS; } if ((flags->cf_flags & PyCF_ONLY_AST) && flags->cf_feature_version < 7) { parser_flags |= PyPARSE_ASYNC_HACKS; } if (flags->cf_flags & PyCF_ALLOW_INCOMPLETE_INPUT) { parser_flags |= PyPARSE_ALLOW_INCOMPLETE_INPUT; } return parser_flags; } // Parser API Parser * _PyPegen_Parser_New(struct tok_state *tok, int start_rule, int flags, int feature_version, int *errcode, PyArena *arena) { Parser *p = PyMem_Malloc(sizeof(Parser)); if (p == NULL) { return (Parser *) PyErr_NoMemory(); } assert(tok != NULL); tok->type_comments = (flags & PyPARSE_TYPE_COMMENTS) > 0; tok->async_hacks = (flags & PyPARSE_ASYNC_HACKS) > 0; p->tok = tok; p->keywords = NULL; p->n_keyword_lists = -1; p->soft_keywords = NULL; p->tokens = PyMem_Malloc(sizeof(Token *)); if (!p->tokens) { PyMem_Free(p); return (Parser *) PyErr_NoMemory(); } p->tokens[0] = PyMem_Calloc(1, sizeof(Token)); if (!p->tokens[0]) { PyMem_Free(p->tokens); PyMem_Free(p); return (Parser *) PyErr_NoMemory(); } if (!growable_comment_array_init(&p->type_ignore_comments, 10)) { PyMem_Free(p->tokens[0]); PyMem_Free(p->tokens); PyMem_Free(p); return (Parser *) PyErr_NoMemory(); } p->mark = 0; p->fill = 0; p->size = 1; p->errcode = errcode; p->arena = arena; p->start_rule = start_rule; p->parsing_started = 0; p->normalize = NULL; p->error_indicator = 0; p->starting_lineno = 0; p->starting_col_offset = 0; p->flags = flags; p->feature_version = feature_version; p->known_err_token = NULL; p->level = 0; p->call_invalid_rules = 0; #ifdef Py_DEBUG p->debug = _Py_GetConfig()->parser_debug; #endif return p; } void _PyPegen_Parser_Free(Parser *p) { Py_XDECREF(p->normalize); for (int i = 0; i < p->size; i++) { PyMem_Free(p->tokens[i]); } PyMem_Free(p->tokens); growable_comment_array_deallocate(&p->type_ignore_comments); PyMem_Free(p); } static void reset_parser_state_for_error_pass(Parser *p) { for (int i = 0; i < p->fill; i++) { p->tokens[i]->memo = NULL; } p->mark = 0; p->call_invalid_rules = 1; // Don't try to get extra tokens in interactive mode when trying to // raise specialized errors in the second pass. p->tok->interactive_underflow = IUNDERFLOW_STOP; } static inline int _is_end_of_source(Parser *p) { int err = p->tok->done; return err == E_EOF || err == E_EOFS || err == E_EOLS; } void * _PyPegen_run_parser(Parser *p) { void *res = _PyPegen_parse(p); assert(p->level == 0); if (res == NULL) { if ((p->flags & PyPARSE_ALLOW_INCOMPLETE_INPUT) && _is_end_of_source(p)) { PyErr_Clear(); return RAISE_SYNTAX_ERROR("incomplete input"); } if (PyErr_Occurred() && !PyErr_ExceptionMatches(PyExc_SyntaxError)) { return NULL; } // Make a second parser pass. In this pass we activate heavier and slower checks // to produce better error messages and more complete diagnostics. Extra "invalid_*" // rules will be active during parsing. Token *last_token = p->tokens[p->fill - 1]; reset_parser_state_for_error_pass(p); _PyPegen_parse(p); // Set SyntaxErrors accordingly depending on the parser/tokenizer status at the failure // point. _Pypegen_set_syntax_error(p, last_token); return NULL; } if (p->start_rule == Py_single_input && bad_single_statement(p)) { p->tok->done = E_BADSINGLE; // This is not necessary for now, but might be in the future return RAISE_SYNTAX_ERROR("multiple statements found while compiling a single statement"); } // test_peg_generator defines _Py_TEST_PEGEN to not call PyAST_Validate() #if defined(Py_DEBUG) && !defined(_Py_TEST_PEGEN) if (p->start_rule == Py_single_input || p->start_rule == Py_file_input || p->start_rule == Py_eval_input) { if (!_PyAST_Validate(res)) { return NULL; } } #endif return res; } mod_ty _PyPegen_run_parser_from_file_pointer(FILE *fp, int start_rule, PyObject *filename_ob, const char *enc, const char *ps1, const char *ps2, PyCompilerFlags *flags, int *errcode, PyArena *arena) { struct tok_state *tok = _PyTokenizer_FromFile(fp, enc, ps1, ps2); if (tok == NULL) { if (PyErr_Occurred()) { _PyPegen_raise_tokenizer_init_error(filename_ob); return NULL; } return NULL; } if (!tok->fp || ps1 != NULL || ps2 != NULL || PyUnicode_CompareWithASCIIString(filename_ob, "") == 0) { tok->fp_interactive = 1; } // This transfers the ownership to the tokenizer tok->filename = Py_NewRef(filename_ob); // From here on we need to clean up even if there's an error mod_ty result = NULL; int parser_flags = compute_parser_flags(flags); Parser *p = _PyPegen_Parser_New(tok, start_rule, parser_flags, PY_MINOR_VERSION, errcode, arena); if (p == NULL) { goto error; } result = _PyPegen_run_parser(p); _PyPegen_Parser_Free(p); error: _PyTokenizer_Free(tok); return result; } mod_ty _PyPegen_run_parser_from_string(const char *str, int start_rule, PyObject *filename_ob, PyCompilerFlags *flags, PyArena *arena) { int exec_input = start_rule == Py_file_input; struct tok_state *tok; if (flags != NULL && flags->cf_flags & PyCF_IGNORE_COOKIE) { tok = _PyTokenizer_FromUTF8(str, exec_input, 0); } else { tok = _PyTokenizer_FromString(str, exec_input, 0); } if (tok == NULL) { if (PyErr_Occurred()) { _PyPegen_raise_tokenizer_init_error(filename_ob); } return NULL; } // This transfers the ownership to the tokenizer tok->filename = Py_NewRef(filename_ob); // We need to clear up from here on mod_ty result = NULL; int parser_flags = compute_parser_flags(flags); int feature_version = flags && (flags->cf_flags & PyCF_ONLY_AST) ? flags->cf_feature_version : PY_MINOR_VERSION; Parser *p = _PyPegen_Parser_New(tok, start_rule, parser_flags, feature_version, NULL, arena); if (p == NULL) { goto error; } result = _PyPegen_run_parser(p); _PyPegen_Parser_Free(p); error: _PyTokenizer_Free(tok); return result; }