/* * This file exposes PyAST_Validate interface to check the integrity * of the given abstract syntax tree (potentially constructed manually). */ #include "Python.h" #include "pycore_ast.h" // asdl_stmt_seq #include "pycore_pystate.h" // _PyThreadState_GET() #include #include struct validator { int recursion_depth; /* current recursion depth */ int recursion_limit; /* recursion limit */ }; static int validate_stmts(struct validator *, asdl_stmt_seq *); static int validate_exprs(struct validator *, asdl_expr_seq *, expr_context_ty, int); static int validate_patterns(struct validator *, asdl_pattern_seq *, int); static int validate_type_params(struct validator *, asdl_type_param_seq *); static int _validate_nonempty_seq(asdl_seq *, const char *, const char *); static int validate_stmt(struct validator *, stmt_ty); static int validate_expr(struct validator *, expr_ty, expr_context_ty); static int validate_pattern(struct validator *, pattern_ty, int); static int validate_typeparam(struct validator *, type_param_ty); #define VALIDATE_POSITIONS(node) \ if (node->lineno > node->end_lineno) { \ PyErr_Format(PyExc_ValueError, \ "AST node line range (%d, %d) is not valid", \ node->lineno, node->end_lineno); \ return 0; \ } \ if ((node->lineno < 0 && node->end_lineno != node->lineno) || \ (node->col_offset < 0 && node->col_offset != node->end_col_offset)) { \ PyErr_Format(PyExc_ValueError, \ "AST node column range (%d, %d) for line range (%d, %d) is not valid", \ node->col_offset, node->end_col_offset, node->lineno, node->end_lineno); \ return 0; \ } \ if (node->lineno == node->end_lineno && node->col_offset > node->end_col_offset) { \ PyErr_Format(PyExc_ValueError, \ "line %d, column %d-%d is not a valid range", \ node->lineno, node->col_offset, node->end_col_offset); \ return 0; \ } static int validate_name(PyObject *name) { assert(!PyErr_Occurred()); assert(PyUnicode_Check(name)); static const char * const forbidden[] = { "None", "True", "False", NULL }; for (int i = 0; forbidden[i] != NULL; i++) { if (_PyUnicode_EqualToASCIIString(name, forbidden[i])) { PyErr_Format(PyExc_ValueError, "identifier field can't represent '%s' constant", forbidden[i]); return 0; } } return 1; } static int validate_comprehension(struct validator *state, asdl_comprehension_seq *gens) { assert(!PyErr_Occurred()); if (!asdl_seq_LEN(gens)) { PyErr_SetString(PyExc_ValueError, "comprehension with no generators"); return 0; } for (Py_ssize_t i = 0; i < asdl_seq_LEN(gens); i++) { comprehension_ty comp = asdl_seq_GET(gens, i); if (!validate_expr(state, comp->target, Store) || !validate_expr(state, comp->iter, Load) || !validate_exprs(state, comp->ifs, Load, 0)) return 0; } return 1; } static int validate_keywords(struct validator *state, asdl_keyword_seq *keywords) { assert(!PyErr_Occurred()); for (Py_ssize_t i = 0; i < asdl_seq_LEN(keywords); i++) if (!validate_expr(state, (asdl_seq_GET(keywords, i))->value, Load)) return 0; return 1; } static int validate_args(struct validator *state, asdl_arg_seq *args) { assert(!PyErr_Occurred()); for (Py_ssize_t i = 0; i < asdl_seq_LEN(args); i++) { arg_ty arg = asdl_seq_GET(args, i); VALIDATE_POSITIONS(arg); if (arg->annotation && !validate_expr(state, arg->annotation, Load)) return 0; } return 1; } static const char * expr_context_name(expr_context_ty ctx) { switch (ctx) { case Load: return "Load"; case Store: return "Store"; case Del: return "Del"; // No default case so compiler emits warning for unhandled cases } Py_UNREACHABLE(); } static int validate_arguments(struct validator *state, arguments_ty args) { assert(!PyErr_Occurred()); if (!validate_args(state, args->posonlyargs) || !validate_args(state, args->args)) { return 0; } if (args->vararg && args->vararg->annotation && !validate_expr(state, args->vararg->annotation, Load)) { return 0; } if (!validate_args(state, args->kwonlyargs)) return 0; if (args->kwarg && args->kwarg->annotation && !validate_expr(state, args->kwarg->annotation, Load)) { return 0; } if (asdl_seq_LEN(args->defaults) > asdl_seq_LEN(args->posonlyargs) + asdl_seq_LEN(args->args)) { PyErr_SetString(PyExc_ValueError, "more positional defaults than args on arguments"); return 0; } if (asdl_seq_LEN(args->kw_defaults) != asdl_seq_LEN(args->kwonlyargs)) { PyErr_SetString(PyExc_ValueError, "length of kwonlyargs is not the same as " "kw_defaults on arguments"); return 0; } return validate_exprs(state, args->defaults, Load, 0) && validate_exprs(state, args->kw_defaults, Load, 1); } static int validate_constant(struct validator *state, PyObject *value) { assert(!PyErr_Occurred()); if (value == Py_None || value == Py_Ellipsis) return 1; if (PyLong_CheckExact(value) || PyFloat_CheckExact(value) || PyComplex_CheckExact(value) || PyBool_Check(value) || PyUnicode_CheckExact(value) || PyBytes_CheckExact(value)) return 1; if (PyTuple_CheckExact(value) || PyFrozenSet_CheckExact(value)) { if (++state->recursion_depth > state->recursion_limit) { PyErr_SetString(PyExc_RecursionError, "maximum recursion depth exceeded during compilation"); return 0; } PyObject *it = PyObject_GetIter(value); if (it == NULL) return 0; while (1) { PyObject *item = PyIter_Next(it); if (item == NULL) { if (PyErr_Occurred()) { Py_DECREF(it); return 0; } break; } if (!validate_constant(state, item)) { Py_DECREF(it); Py_DECREF(item); return 0; } Py_DECREF(item); } Py_DECREF(it); --state->recursion_depth; return 1; } if (!PyErr_Occurred()) { PyErr_Format(PyExc_TypeError, "got an invalid type in Constant: %s", _PyType_Name(Py_TYPE(value))); } return 0; } static int validate_expr(struct validator *state, expr_ty exp, expr_context_ty ctx) { assert(!PyErr_Occurred()); VALIDATE_POSITIONS(exp); int ret = -1; if (++state->recursion_depth > state->recursion_limit) { PyErr_SetString(PyExc_RecursionError, "maximum recursion depth exceeded during compilation"); return 0; } int check_ctx = 1; expr_context_ty actual_ctx; /* First check expression context. */ switch (exp->kind) { case Attribute_kind: actual_ctx = exp->v.Attribute.ctx; break; case Subscript_kind: actual_ctx = exp->v.Subscript.ctx; break; case Starred_kind: actual_ctx = exp->v.Starred.ctx; break; case Name_kind: if (!validate_name(exp->v.Name.id)) { return 0; } actual_ctx = exp->v.Name.ctx; break; case List_kind: actual_ctx = exp->v.List.ctx; break; case Tuple_kind: actual_ctx = exp->v.Tuple.ctx; break; default: if (ctx != Load) { PyErr_Format(PyExc_ValueError, "expression which can't be " "assigned to in %s context", expr_context_name(ctx)); return 0; } check_ctx = 0; /* set actual_ctx to prevent gcc warning */ actual_ctx = 0; } if (check_ctx && actual_ctx != ctx) { PyErr_Format(PyExc_ValueError, "expression must have %s context but has %s instead", expr_context_name(ctx), expr_context_name(actual_ctx)); return 0; } /* Now validate expression. */ switch (exp->kind) { case BoolOp_kind: if (asdl_seq_LEN(exp->v.BoolOp.values) < 2) { PyErr_SetString(PyExc_ValueError, "BoolOp with less than 2 values"); return 0; } ret = validate_exprs(state, exp->v.BoolOp.values, Load, 0); break; case BinOp_kind: ret = validate_expr(state, exp->v.BinOp.left, Load) && validate_expr(state, exp->v.BinOp.right, Load); break; case UnaryOp_kind: ret = validate_expr(state, exp->v.UnaryOp.operand, Load); break; case Lambda_kind: ret = validate_arguments(state, exp->v.Lambda.args) && validate_expr(state, exp->v.Lambda.body, Load); break; case IfExp_kind: ret = validate_expr(state, exp->v.IfExp.test, Load) && validate_expr(state, exp->v.IfExp.body, Load) && validate_expr(state, exp->v.IfExp.orelse, Load); break; case Dict_kind: if (asdl_seq_LEN(exp->v.Dict.keys) != asdl_seq_LEN(exp->v.Dict.values)) { PyErr_SetString(PyExc_ValueError, "Dict doesn't have the same number of keys as values"); return 0; } /* null_ok=1 for keys expressions to allow dict unpacking to work in dict literals, i.e. ``{**{a:b}}`` */ ret = validate_exprs(state, exp->v.Dict.keys, Load, /*null_ok=*/ 1) && validate_exprs(state, exp->v.Dict.values, Load, /*null_ok=*/ 0); break; case Set_kind: ret = validate_exprs(state, exp->v.Set.elts, Load, 0); break; #define COMP(NAME) \ case NAME ## _kind: \ ret = validate_comprehension(state, exp->v.NAME.generators) && \ validate_expr(state, exp->v.NAME.elt, Load); \ break; COMP(ListComp) COMP(SetComp) COMP(GeneratorExp) #undef COMP case DictComp_kind: ret = validate_comprehension(state, exp->v.DictComp.generators) && validate_expr(state, exp->v.DictComp.key, Load) && validate_expr(state, exp->v.DictComp.value, Load); break; case Yield_kind: ret = !exp->v.Yield.value || validate_expr(state, exp->v.Yield.value, Load); break; case YieldFrom_kind: ret = validate_expr(state, exp->v.YieldFrom.value, Load); break; case Await_kind: ret = validate_expr(state, exp->v.Await.value, Load); break; case Compare_kind: if (!asdl_seq_LEN(exp->v.Compare.comparators)) { PyErr_SetString(PyExc_ValueError, "Compare with no comparators"); return 0; } if (asdl_seq_LEN(exp->v.Compare.comparators) != asdl_seq_LEN(exp->v.Compare.ops)) { PyErr_SetString(PyExc_ValueError, "Compare has a different number " "of comparators and operands"); return 0; } ret = validate_exprs(state, exp->v.Compare.comparators, Load, 0) && validate_expr(state, exp->v.Compare.left, Load); break; case Call_kind: ret = validate_expr(state, exp->v.Call.func, Load) && validate_exprs(state, exp->v.Call.args, Load, 0) && validate_keywords(state, exp->v.Call.keywords); break; case Constant_kind: if (!validate_constant(state, exp->v.Constant.value)) { return 0; } ret = 1; break; case JoinedStr_kind: ret = validate_exprs(state, exp->v.JoinedStr.values, Load, 0); break; case FormattedValue_kind: if (validate_expr(state, exp->v.FormattedValue.value, Load) == 0) return 0; if (exp->v.FormattedValue.format_spec) { ret = validate_expr(state, exp->v.FormattedValue.format_spec, Load); break; } ret = 1; break; case Attribute_kind: ret = validate_expr(state, exp->v.Attribute.value, Load); break; case Subscript_kind: ret = validate_expr(state, exp->v.Subscript.slice, Load) && validate_expr(state, exp->v.Subscript.value, Load); break; case Starred_kind: ret = validate_expr(state, exp->v.Starred.value, ctx); break; case Slice_kind: ret = (!exp->v.Slice.lower || validate_expr(state, exp->v.Slice.lower, Load)) && (!exp->v.Slice.upper || validate_expr(state, exp->v.Slice.upper, Load)) && (!exp->v.Slice.step || validate_expr(state, exp->v.Slice.step, Load)); break; case List_kind: ret = validate_exprs(state, exp->v.List.elts, ctx, 0); break; case Tuple_kind: ret = validate_exprs(state, exp->v.Tuple.elts, ctx, 0); break; case NamedExpr_kind: if (exp->v.NamedExpr.target->kind != Name_kind) { PyErr_SetString(PyExc_TypeError, "NamedExpr target must be a Name"); return 0; } ret = validate_expr(state, exp->v.NamedExpr.value, Load); break; /* This last case doesn't have any checking. */ case Name_kind: ret = 1; break; // No default case so compiler emits warning for unhandled cases } if (ret < 0) { PyErr_SetString(PyExc_SystemError, "unexpected expression"); ret = 0; } state->recursion_depth--; return ret; } // Note: the ensure_literal_* functions are only used to validate a restricted // set of non-recursive literals that have already been checked with // validate_expr, so they don't accept the validator state static int ensure_literal_number(expr_ty exp, bool allow_real, bool allow_imaginary) { assert(exp->kind == Constant_kind); PyObject *value = exp->v.Constant.value; return (allow_real && PyFloat_CheckExact(value)) || (allow_real && PyLong_CheckExact(value)) || (allow_imaginary && PyComplex_CheckExact(value)); } static int ensure_literal_negative(expr_ty exp, bool allow_real, bool allow_imaginary) { assert(exp->kind == UnaryOp_kind); // Must be negation ... if (exp->v.UnaryOp.op != USub) { return 0; } // ... of a constant ... expr_ty operand = exp->v.UnaryOp.operand; if (operand->kind != Constant_kind) { return 0; } // ... number return ensure_literal_number(operand, allow_real, allow_imaginary); } static int ensure_literal_complex(expr_ty exp) { assert(exp->kind == BinOp_kind); expr_ty left = exp->v.BinOp.left; expr_ty right = exp->v.BinOp.right; // Ensure op is addition or subtraction if (exp->v.BinOp.op != Add && exp->v.BinOp.op != Sub) { return 0; } // Check LHS is a real number (potentially signed) switch (left->kind) { case Constant_kind: if (!ensure_literal_number(left, /*real=*/true, /*imaginary=*/false)) { return 0; } break; case UnaryOp_kind: if (!ensure_literal_negative(left, /*real=*/true, /*imaginary=*/false)) { return 0; } break; default: return 0; } // Check RHS is an imaginary number (no separate sign allowed) switch (right->kind) { case Constant_kind: if (!ensure_literal_number(right, /*real=*/false, /*imaginary=*/true)) { return 0; } break; default: return 0; } return 1; } static int validate_pattern_match_value(struct validator *state, expr_ty exp) { assert(!PyErr_Occurred()); if (!validate_expr(state, exp, Load)) { return 0; } switch (exp->kind) { case Constant_kind: /* Ellipsis and immutable sequences are not allowed. For True, False and None, MatchSingleton() should be used */ if (!validate_expr(state, exp, Load)) { return 0; } PyObject *literal = exp->v.Constant.value; if (PyLong_CheckExact(literal) || PyFloat_CheckExact(literal) || PyBytes_CheckExact(literal) || PyComplex_CheckExact(literal) || PyUnicode_CheckExact(literal)) { return 1; } PyErr_SetString(PyExc_ValueError, "unexpected constant inside of a literal pattern"); return 0; case Attribute_kind: // Constants and attribute lookups are always permitted return 1; case UnaryOp_kind: // Negated numbers are permitted (whether real or imaginary) // Compiler will complain if AST folding doesn't create a constant if (ensure_literal_negative(exp, /*real=*/true, /*imaginary=*/true)) { return 1; } break; case BinOp_kind: // Complex literals are permitted // Compiler will complain if AST folding doesn't create a constant if (ensure_literal_complex(exp)) { return 1; } break; case JoinedStr_kind: // Handled in the later stages return 1; default: break; } PyErr_SetString(PyExc_ValueError, "patterns may only match literals and attribute lookups"); return 0; } static int validate_capture(PyObject *name) { assert(!PyErr_Occurred()); if (_PyUnicode_EqualToASCIIString(name, "_")) { PyErr_Format(PyExc_ValueError, "can't capture name '_' in patterns"); return 0; } return validate_name(name); } static int validate_pattern(struct validator *state, pattern_ty p, int star_ok) { assert(!PyErr_Occurred()); VALIDATE_POSITIONS(p); int ret = -1; if (++state->recursion_depth > state->recursion_limit) { PyErr_SetString(PyExc_RecursionError, "maximum recursion depth exceeded during compilation"); return 0; } switch (p->kind) { case MatchValue_kind: ret = validate_pattern_match_value(state, p->v.MatchValue.value); break; case MatchSingleton_kind: ret = p->v.MatchSingleton.value == Py_None || PyBool_Check(p->v.MatchSingleton.value); if (!ret) { PyErr_SetString(PyExc_ValueError, "MatchSingleton can only contain True, False and None"); } break; case MatchSequence_kind: ret = validate_patterns(state, p->v.MatchSequence.patterns, /*star_ok=*/1); break; case MatchMapping_kind: if (asdl_seq_LEN(p->v.MatchMapping.keys) != asdl_seq_LEN(p->v.MatchMapping.patterns)) { PyErr_SetString(PyExc_ValueError, "MatchMapping doesn't have the same number of keys as patterns"); ret = 0; break; } if (p->v.MatchMapping.rest && !validate_capture(p->v.MatchMapping.rest)) { ret = 0; break; } asdl_expr_seq *keys = p->v.MatchMapping.keys; for (Py_ssize_t i = 0; i < asdl_seq_LEN(keys); i++) { expr_ty key = asdl_seq_GET(keys, i); if (key->kind == Constant_kind) { PyObject *literal = key->v.Constant.value; if (literal == Py_None || PyBool_Check(literal)) { /* validate_pattern_match_value will ensure the key doesn't contain True, False and None but it is syntactically valid, so we will pass those on in a special case. */ continue; } } if (!validate_pattern_match_value(state, key)) { ret = 0; break; } } if (ret == 0) { break; } ret = validate_patterns(state, p->v.MatchMapping.patterns, /*star_ok=*/0); break; case MatchClass_kind: if (asdl_seq_LEN(p->v.MatchClass.kwd_attrs) != asdl_seq_LEN(p->v.MatchClass.kwd_patterns)) { PyErr_SetString(PyExc_ValueError, "MatchClass doesn't have the same number of keyword attributes as patterns"); ret = 0; break; } if (!validate_expr(state, p->v.MatchClass.cls, Load)) { ret = 0; break; } expr_ty cls = p->v.MatchClass.cls; while (1) { if (cls->kind == Name_kind) { break; } else if (cls->kind == Attribute_kind) { cls = cls->v.Attribute.value; continue; } else { PyErr_SetString(PyExc_ValueError, "MatchClass cls field can only contain Name or Attribute nodes."); ret = 0; break; } } if (ret == 0) { break; } for (Py_ssize_t i = 0; i < asdl_seq_LEN(p->v.MatchClass.kwd_attrs); i++) { PyObject *identifier = asdl_seq_GET(p->v.MatchClass.kwd_attrs, i); if (!validate_name(identifier)) { ret = 0; break; } } if (ret == 0) { break; } if (!validate_patterns(state, p->v.MatchClass.patterns, /*star_ok=*/0)) { ret = 0; break; } ret = validate_patterns(state, p->v.MatchClass.kwd_patterns, /*star_ok=*/0); break; case MatchStar_kind: if (!star_ok) { PyErr_SetString(PyExc_ValueError, "can't use MatchStar here"); ret = 0; break; } ret = p->v.MatchStar.name == NULL || validate_capture(p->v.MatchStar.name); break; case MatchAs_kind: if (p->v.MatchAs.name && !validate_capture(p->v.MatchAs.name)) { ret = 0; break; } if (p->v.MatchAs.pattern == NULL) { ret = 1; } else if (p->v.MatchAs.name == NULL) { PyErr_SetString(PyExc_ValueError, "MatchAs must specify a target name if a pattern is given"); ret = 0; } else { ret = validate_pattern(state, p->v.MatchAs.pattern, /*star_ok=*/0); } break; case MatchOr_kind: if (asdl_seq_LEN(p->v.MatchOr.patterns) < 2) { PyErr_SetString(PyExc_ValueError, "MatchOr requires at least 2 patterns"); ret = 0; break; } ret = validate_patterns(state, p->v.MatchOr.patterns, /*star_ok=*/0); break; // No default case, so the compiler will emit a warning if new pattern // kinds are added without being handled here } if (ret < 0) { PyErr_SetString(PyExc_SystemError, "unexpected pattern"); ret = 0; } state->recursion_depth--; return ret; } static int _validate_nonempty_seq(asdl_seq *seq, const char *what, const char *owner) { if (asdl_seq_LEN(seq)) return 1; PyErr_Format(PyExc_ValueError, "empty %s on %s", what, owner); return 0; } #define validate_nonempty_seq(seq, what, owner) _validate_nonempty_seq((asdl_seq*)seq, what, owner) static int validate_assignlist(struct validator *state, asdl_expr_seq *targets, expr_context_ty ctx) { assert(!PyErr_Occurred()); return validate_nonempty_seq(targets, "targets", ctx == Del ? "Delete" : "Assign") && validate_exprs(state, targets, ctx, 0); } static int validate_body(struct validator *state, asdl_stmt_seq *body, const char *owner) { assert(!PyErr_Occurred()); return validate_nonempty_seq(body, "body", owner) && validate_stmts(state, body); } static int validate_stmt(struct validator *state, stmt_ty stmt) { assert(!PyErr_Occurred()); VALIDATE_POSITIONS(stmt); int ret = -1; if (++state->recursion_depth > state->recursion_limit) { PyErr_SetString(PyExc_RecursionError, "maximum recursion depth exceeded during compilation"); return 0; } switch (stmt->kind) { case FunctionDef_kind: ret = validate_body(state, stmt->v.FunctionDef.body, "FunctionDef") && validate_type_params(state, stmt->v.FunctionDef.type_params) && validate_arguments(state, stmt->v.FunctionDef.args) && validate_exprs(state, stmt->v.FunctionDef.decorator_list, Load, 0) && (!stmt->v.FunctionDef.returns || validate_expr(state, stmt->v.FunctionDef.returns, Load)); break; case ClassDef_kind: ret = validate_body(state, stmt->v.ClassDef.body, "ClassDef") && validate_type_params(state, stmt->v.ClassDef.type_params) && validate_exprs(state, stmt->v.ClassDef.bases, Load, 0) && validate_keywords(state, stmt->v.ClassDef.keywords) && validate_exprs(state, stmt->v.ClassDef.decorator_list, Load, 0); break; case Return_kind: ret = !stmt->v.Return.value || validate_expr(state, stmt->v.Return.value, Load); break; case Delete_kind: ret = validate_assignlist(state, stmt->v.Delete.targets, Del); break; case Assign_kind: ret = validate_assignlist(state, stmt->v.Assign.targets, Store) && validate_expr(state, stmt->v.Assign.value, Load); break; case AugAssign_kind: ret = validate_expr(state, stmt->v.AugAssign.target, Store) && validate_expr(state, stmt->v.AugAssign.value, Load); break; case AnnAssign_kind: if (stmt->v.AnnAssign.target->kind != Name_kind && stmt->v.AnnAssign.simple) { PyErr_SetString(PyExc_TypeError, "AnnAssign with simple non-Name target"); return 0; } ret = validate_expr(state, stmt->v.AnnAssign.target, Store) && (!stmt->v.AnnAssign.value || validate_expr(state, stmt->v.AnnAssign.value, Load)) && validate_expr(state, stmt->v.AnnAssign.annotation, Load); break; case TypeAlias_kind: if (stmt->v.TypeAlias.name->kind != Name_kind) { PyErr_SetString(PyExc_TypeError, "TypeAlias with non-Name name"); return 0; } ret = validate_expr(state, stmt->v.TypeAlias.name, Store) && validate_type_params(state, stmt->v.TypeAlias.type_params) && validate_expr(state, stmt->v.TypeAlias.value, Load); break; case For_kind: ret = validate_expr(state, stmt->v.For.target, Store) && validate_expr(state, stmt->v.For.iter, Load) && validate_body(state, stmt->v.For.body, "For") && validate_stmts(state, stmt->v.For.orelse); break; case AsyncFor_kind: ret = validate_expr(state, stmt->v.AsyncFor.target, Store) && validate_expr(state, stmt->v.AsyncFor.iter, Load) && validate_body(state, stmt->v.AsyncFor.body, "AsyncFor") && validate_stmts(state, stmt->v.AsyncFor.orelse); break; case While_kind: ret = validate_expr(state, stmt->v.While.test, Load) && validate_body(state, stmt->v.While.body, "While") && validate_stmts(state, stmt->v.While.orelse); break; case If_kind: ret = validate_expr(state, stmt->v.If.test, Load) && validate_body(state, stmt->v.If.body, "If") && validate_stmts(state, stmt->v.If.orelse); break; case With_kind: if (!validate_nonempty_seq(stmt->v.With.items, "items", "With")) return 0; for (Py_ssize_t i = 0; i < asdl_seq_LEN(stmt->v.With.items); i++) { withitem_ty item = asdl_seq_GET(stmt->v.With.items, i); if (!validate_expr(state, item->context_expr, Load) || (item->optional_vars && !validate_expr(state, item->optional_vars, Store))) return 0; } ret = validate_body(state, stmt->v.With.body, "With"); break; case AsyncWith_kind: if (!validate_nonempty_seq(stmt->v.AsyncWith.items, "items", "AsyncWith")) return 0; for (Py_ssize_t i = 0; i < asdl_seq_LEN(stmt->v.AsyncWith.items); i++) { withitem_ty item = asdl_seq_GET(stmt->v.AsyncWith.items, i); if (!validate_expr(state, item->context_expr, Load) || (item->optional_vars && !validate_expr(state, item->optional_vars, Store))) return 0; } ret = validate_body(state, stmt->v.AsyncWith.body, "AsyncWith"); break; case Match_kind: if (!validate_expr(state, stmt->v.Match.subject, Load) || !validate_nonempty_seq(stmt->v.Match.cases, "cases", "Match")) { return 0; } for (Py_ssize_t i = 0; i < asdl_seq_LEN(stmt->v.Match.cases); i++) { match_case_ty m = asdl_seq_GET(stmt->v.Match.cases, i); if (!validate_pattern(state, m->pattern, /*star_ok=*/0) || (m->guard && !validate_expr(state, m->guard, Load)) || !validate_body(state, m->body, "match_case")) { return 0; } } ret = 1; break; case Raise_kind: if (stmt->v.Raise.exc) { ret = validate_expr(state, stmt->v.Raise.exc, Load) && (!stmt->v.Raise.cause || validate_expr(state, stmt->v.Raise.cause, Load)); break; } if (stmt->v.Raise.cause) { PyErr_SetString(PyExc_ValueError, "Raise with cause but no exception"); return 0; } ret = 1; break; case Try_kind: if (!validate_body(state, stmt->v.Try.body, "Try")) return 0; if (!asdl_seq_LEN(stmt->v.Try.handlers) && !asdl_seq_LEN(stmt->v.Try.finalbody)) { PyErr_SetString(PyExc_ValueError, "Try has neither except handlers nor finalbody"); return 0; } if (!asdl_seq_LEN(stmt->v.Try.handlers) && asdl_seq_LEN(stmt->v.Try.orelse)) { PyErr_SetString(PyExc_ValueError, "Try has orelse but no except handlers"); return 0; } for (Py_ssize_t i = 0; i < asdl_seq_LEN(stmt->v.Try.handlers); i++) { excepthandler_ty handler = asdl_seq_GET(stmt->v.Try.handlers, i); VALIDATE_POSITIONS(handler); if ((handler->v.ExceptHandler.type && !validate_expr(state, handler->v.ExceptHandler.type, Load)) || !validate_body(state, handler->v.ExceptHandler.body, "ExceptHandler")) return 0; } ret = (!asdl_seq_LEN(stmt->v.Try.finalbody) || validate_stmts(state, stmt->v.Try.finalbody)) && (!asdl_seq_LEN(stmt->v.Try.orelse) || validate_stmts(state, stmt->v.Try.orelse)); break; case TryStar_kind: if (!validate_body(state, stmt->v.TryStar.body, "TryStar")) return 0; if (!asdl_seq_LEN(stmt->v.TryStar.handlers) && !asdl_seq_LEN(stmt->v.TryStar.finalbody)) { PyErr_SetString(PyExc_ValueError, "TryStar has neither except handlers nor finalbody"); return 0; } if (!asdl_seq_LEN(stmt->v.TryStar.handlers) && asdl_seq_LEN(stmt->v.TryStar.orelse)) { PyErr_SetString(PyExc_ValueError, "TryStar has orelse but no except handlers"); return 0; } for (Py_ssize_t i = 0; i < asdl_seq_LEN(stmt->v.TryStar.handlers); i++) { excepthandler_ty handler = asdl_seq_GET(stmt->v.TryStar.handlers, i); if ((handler->v.ExceptHandler.type && !validate_expr(state, handler->v.ExceptHandler.type, Load)) || !validate_body(state, handler->v.ExceptHandler.body, "ExceptHandler")) return 0; } ret = (!asdl_seq_LEN(stmt->v.TryStar.finalbody) || validate_stmts(state, stmt->v.TryStar.finalbody)) && (!asdl_seq_LEN(stmt->v.TryStar.orelse) || validate_stmts(state, stmt->v.TryStar.orelse)); break; case Assert_kind: ret = validate_expr(state, stmt->v.Assert.test, Load) && (!stmt->v.Assert.msg || validate_expr(state, stmt->v.Assert.msg, Load)); break; case Import_kind: ret = validate_nonempty_seq(stmt->v.Import.names, "names", "Import"); break; case ImportFrom_kind: if (stmt->v.ImportFrom.level < 0) { PyErr_SetString(PyExc_ValueError, "Negative ImportFrom level"); return 0; } ret = validate_nonempty_seq(stmt->v.ImportFrom.names, "names", "ImportFrom"); break; case Global_kind: ret = validate_nonempty_seq(stmt->v.Global.names, "names", "Global"); break; case Nonlocal_kind: ret = validate_nonempty_seq(stmt->v.Nonlocal.names, "names", "Nonlocal"); break; case Expr_kind: ret = validate_expr(state, stmt->v.Expr.value, Load); break; case AsyncFunctionDef_kind: ret = validate_body(state, stmt->v.AsyncFunctionDef.body, "AsyncFunctionDef") && validate_type_params(state, stmt->v.AsyncFunctionDef.type_params) && validate_arguments(state, stmt->v.AsyncFunctionDef.args) && validate_exprs(state, stmt->v.AsyncFunctionDef.decorator_list, Load, 0) && (!stmt->v.AsyncFunctionDef.returns || validate_expr(state, stmt->v.AsyncFunctionDef.returns, Load)); break; case Pass_kind: case Break_kind: case Continue_kind: ret = 1; break; // No default case so compiler emits warning for unhandled cases } if (ret < 0) { PyErr_SetString(PyExc_SystemError, "unexpected statement"); ret = 0; } state->recursion_depth--; return ret; } static int validate_stmts(struct validator *state, asdl_stmt_seq *seq) { assert(!PyErr_Occurred()); for (Py_ssize_t i = 0; i < asdl_seq_LEN(seq); i++) { stmt_ty stmt = asdl_seq_GET(seq, i); if (stmt) { if (!validate_stmt(state, stmt)) return 0; } else { PyErr_SetString(PyExc_ValueError, "None disallowed in statement list"); return 0; } } return 1; } static int validate_exprs(struct validator *state, asdl_expr_seq *exprs, expr_context_ty ctx, int null_ok) { assert(!PyErr_Occurred()); for (Py_ssize_t i = 0; i < asdl_seq_LEN(exprs); i++) { expr_ty expr = asdl_seq_GET(exprs, i); if (expr) { if (!validate_expr(state, expr, ctx)) return 0; } else if (!null_ok) { PyErr_SetString(PyExc_ValueError, "None disallowed in expression list"); return 0; } } return 1; } static int validate_patterns(struct validator *state, asdl_pattern_seq *patterns, int star_ok) { assert(!PyErr_Occurred()); for (Py_ssize_t i = 0; i < asdl_seq_LEN(patterns); i++) { pattern_ty pattern = asdl_seq_GET(patterns, i); if (!validate_pattern(state, pattern, star_ok)) { return 0; } } return 1; } static int validate_typeparam(struct validator *state, type_param_ty tp) { VALIDATE_POSITIONS(tp); int ret = -1; switch (tp->kind) { case TypeVar_kind: ret = validate_name(tp->v.TypeVar.name) && (!tp->v.TypeVar.bound || validate_expr(state, tp->v.TypeVar.bound, Load)); break; case ParamSpec_kind: ret = validate_name(tp->v.ParamSpec.name); break; case TypeVarTuple_kind: ret = validate_name(tp->v.TypeVarTuple.name); break; } return ret; } static int validate_type_params(struct validator *state, asdl_type_param_seq *tps) { Py_ssize_t i; for (i = 0; i < asdl_seq_LEN(tps); i++) { type_param_ty tp = asdl_seq_GET(tps, i); if (tp) { if (!validate_typeparam(state, tp)) return 0; } } return 1; } int _PyAST_Validate(mod_ty mod) { assert(!PyErr_Occurred()); int res = -1; struct validator state; PyThreadState *tstate; int starting_recursion_depth; /* Setup recursion depth check counters */ tstate = _PyThreadState_GET(); if (!tstate) { return 0; } /* Be careful here to prevent overflow. */ int recursion_depth = Py_C_RECURSION_LIMIT - tstate->c_recursion_remaining; starting_recursion_depth = recursion_depth; state.recursion_depth = starting_recursion_depth; state.recursion_limit = Py_C_RECURSION_LIMIT; switch (mod->kind) { case Module_kind: res = validate_stmts(&state, mod->v.Module.body); break; case Interactive_kind: res = validate_stmts(&state, mod->v.Interactive.body); break; case Expression_kind: res = validate_expr(&state, mod->v.Expression.body, Load); break; case FunctionType_kind: res = validate_exprs(&state, mod->v.FunctionType.argtypes, Load, /*null_ok=*/0) && validate_expr(&state, mod->v.FunctionType.returns, Load); break; // No default case so compiler emits warning for unhandled cases } if (res < 0) { PyErr_SetString(PyExc_SystemError, "impossible module node"); return 0; } /* Check that the recursion depth counting balanced correctly */ if (res && state.recursion_depth != starting_recursion_depth) { PyErr_Format(PyExc_SystemError, "AST validator recursion depth mismatch (before=%d, after=%d)", starting_recursion_depth, state.recursion_depth); return 0; } return res; } PyObject * _PyAST_GetDocString(asdl_stmt_seq *body) { if (!asdl_seq_LEN(body)) { return NULL; } stmt_ty st = asdl_seq_GET(body, 0); if (st->kind != Expr_kind) { return NULL; } expr_ty e = st->v.Expr.value; if (e->kind == Constant_kind && PyUnicode_CheckExact(e->v.Constant.value)) { return e->v.Constant.value; } return NULL; }