/* AST Optimizer */ #include "Python.h" #include "pycore_ast.h" // _PyAST_GetDocString() #include "pycore_compile.h" // _PyASTOptimizeState #include "pycore_pystate.h" // _PyThreadState_GET() #include "pycore_format.h" // F_LJUST static int make_const(expr_ty node, PyObject *val, PyArena *arena) { // Even if no new value was calculated, make_const may still // need to clear an error (e.g. for division by zero) if (val == NULL) { if (PyErr_ExceptionMatches(PyExc_KeyboardInterrupt)) { return 0; } PyErr_Clear(); return 1; } if (_PyArena_AddPyObject(arena, val) < 0) { Py_DECREF(val); return 0; } node->kind = Constant_kind; node->v.Constant.kind = NULL; node->v.Constant.value = val; return 1; } #define COPY_NODE(TO, FROM) (memcpy((TO), (FROM), sizeof(struct _expr))) static int has_starred(asdl_expr_seq *elts) { Py_ssize_t n = asdl_seq_LEN(elts); for (Py_ssize_t i = 0; i < n; i++) { expr_ty e = (expr_ty)asdl_seq_GET(elts, i); if (e->kind == Starred_kind) { return 1; } } return 0; } static PyObject* unary_not(PyObject *v) { int r = PyObject_IsTrue(v); if (r < 0) return NULL; return PyBool_FromLong(!r); } static int fold_unaryop(expr_ty node, PyArena *arena, _PyASTOptimizeState *state) { expr_ty arg = node->v.UnaryOp.operand; if (arg->kind != Constant_kind) { /* Fold not into comparison */ if (node->v.UnaryOp.op == Not && arg->kind == Compare_kind && asdl_seq_LEN(arg->v.Compare.ops) == 1) { /* Eq and NotEq are often implemented in terms of one another, so folding not (self == other) into self != other breaks implementation of !=. Detecting such cases doesn't seem worthwhile. Python uses for 'is subset'/'is superset' operations on sets. They don't satisfy not folding laws. */ cmpop_ty op = asdl_seq_GET(arg->v.Compare.ops, 0); switch (op) { case Is: op = IsNot; break; case IsNot: op = Is; break; case In: op = NotIn; break; case NotIn: op = In; break; // The remaining comparison operators can't be safely inverted case Eq: case NotEq: case Lt: case LtE: case Gt: case GtE: op = 0; // The AST enums leave "0" free as an "unused" marker break; // No default case, so the compiler will emit a warning if new // comparison operators are added without being handled here } if (op) { asdl_seq_SET(arg->v.Compare.ops, 0, op); COPY_NODE(node, arg); return 1; } } return 1; } typedef PyObject *(*unary_op)(PyObject*); static const unary_op ops[] = { [Invert] = PyNumber_Invert, [Not] = unary_not, [UAdd] = PyNumber_Positive, [USub] = PyNumber_Negative, }; PyObject *newval = ops[node->v.UnaryOp.op](arg->v.Constant.value); return make_const(node, newval, arena); } /* Check whether a collection doesn't containing too much items (including subcollections). This protects from creating a constant that needs too much time for calculating a hash. "limit" is the maximal number of items. Returns the negative number if the total number of items exceeds the limit. Otherwise returns the limit minus the total number of items. */ static Py_ssize_t check_complexity(PyObject *obj, Py_ssize_t limit) { if (PyTuple_Check(obj)) { Py_ssize_t i; limit -= PyTuple_GET_SIZE(obj); for (i = 0; limit >= 0 && i < PyTuple_GET_SIZE(obj); i++) { limit = check_complexity(PyTuple_GET_ITEM(obj, i), limit); } return limit; } else if (PyFrozenSet_Check(obj)) { Py_ssize_t i = 0; PyObject *item; Py_hash_t hash; limit -= PySet_GET_SIZE(obj); while (limit >= 0 && _PySet_NextEntry(obj, &i, &item, &hash)) { limit = check_complexity(item, limit); } } return limit; } #define MAX_INT_SIZE 128 /* bits */ #define MAX_COLLECTION_SIZE 256 /* items */ #define MAX_STR_SIZE 4096 /* characters */ #define MAX_TOTAL_ITEMS 1024 /* including nested collections */ static PyObject * safe_multiply(PyObject *v, PyObject *w) { if (PyLong_Check(v) && PyLong_Check(w) && Py_SIZE(v) && Py_SIZE(w)) { size_t vbits = _PyLong_NumBits(v); size_t wbits = _PyLong_NumBits(w); if (vbits == (size_t)-1 || wbits == (size_t)-1) { return NULL; } if (vbits + wbits > MAX_INT_SIZE) { return NULL; } } else if (PyLong_Check(v) && (PyTuple_Check(w) || PyFrozenSet_Check(w))) { Py_ssize_t size = PyTuple_Check(w) ? PyTuple_GET_SIZE(w) : PySet_GET_SIZE(w); if (size) { long n = PyLong_AsLong(v); if (n < 0 || n > MAX_COLLECTION_SIZE / size) { return NULL; } if (n && check_complexity(w, MAX_TOTAL_ITEMS / n) < 0) { return NULL; } } } else if (PyLong_Check(v) && (PyUnicode_Check(w) || PyBytes_Check(w))) { Py_ssize_t size = PyUnicode_Check(w) ? PyUnicode_GET_LENGTH(w) : PyBytes_GET_SIZE(w); if (size) { long n = PyLong_AsLong(v); if (n < 0 || n > MAX_STR_SIZE / size) { return NULL; } } } else if (PyLong_Check(w) && (PyTuple_Check(v) || PyFrozenSet_Check(v) || PyUnicode_Check(v) || PyBytes_Check(v))) { return safe_multiply(w, v); } return PyNumber_Multiply(v, w); } static PyObject * safe_power(PyObject *v, PyObject *w) { if (PyLong_Check(v) && PyLong_Check(w) && Py_SIZE(v) && Py_SIZE(w) > 0) { size_t vbits = _PyLong_NumBits(v); size_t wbits = PyLong_AsSize_t(w); if (vbits == (size_t)-1 || wbits == (size_t)-1) { return NULL; } if (vbits > MAX_INT_SIZE / wbits) { return NULL; } } return PyNumber_Power(v, w, Py_None); } static PyObject * safe_lshift(PyObject *v, PyObject *w) { if (PyLong_Check(v) && PyLong_Check(w) && Py_SIZE(v) && Py_SIZE(w)) { size_t vbits = _PyLong_NumBits(v); size_t wbits = PyLong_AsSize_t(w); if (vbits == (size_t)-1 || wbits == (size_t)-1) { return NULL; } if (wbits > MAX_INT_SIZE || vbits > MAX_INT_SIZE - wbits) { return NULL; } } return PyNumber_Lshift(v, w); } static PyObject * safe_mod(PyObject *v, PyObject *w) { if (PyUnicode_Check(v) || PyBytes_Check(v)) { return NULL; } return PyNumber_Remainder(v, w); } static expr_ty parse_literal(PyObject *fmt, Py_ssize_t *ppos, PyArena *arena) { const void *data = PyUnicode_DATA(fmt); int kind = PyUnicode_KIND(fmt); Py_ssize_t size = PyUnicode_GET_LENGTH(fmt); Py_ssize_t start, pos; int has_percents = 0; start = pos = *ppos; while (pos < size) { if (PyUnicode_READ(kind, data, pos) != '%') { pos++; } else if (pos+1 < size && PyUnicode_READ(kind, data, pos+1) == '%') { has_percents = 1; pos += 2; } else { break; } } *ppos = pos; if (pos == start) { return NULL; } PyObject *str = PyUnicode_Substring(fmt, start, pos); /* str = str.replace('%%', '%') */ if (str && has_percents) { _Py_DECLARE_STR(percent, "%"); _Py_DECLARE_STR(dbl_percent, "%%"); Py_SETREF(str, PyUnicode_Replace(str, &_Py_STR(dbl_percent), &_Py_STR(percent), -1)); } if (!str) { return NULL; } if (_PyArena_AddPyObject(arena, str) < 0) { Py_DECREF(str); return NULL; } return _PyAST_Constant(str, NULL, -1, -1, -1, -1, arena); } #define MAXDIGITS 3 static int simple_format_arg_parse(PyObject *fmt, Py_ssize_t *ppos, int *spec, int *flags, int *width, int *prec) { Py_ssize_t pos = *ppos, len = PyUnicode_GET_LENGTH(fmt); Py_UCS4 ch; #define NEXTC do { \ if (pos >= len) { \ return 0; \ } \ ch = PyUnicode_READ_CHAR(fmt, pos); \ pos++; \ } while (0) *flags = 0; while (1) { NEXTC; switch (ch) { case '-': *flags |= F_LJUST; continue; case '+': *flags |= F_SIGN; continue; case ' ': *flags |= F_BLANK; continue; case '#': *flags |= F_ALT; continue; case '0': *flags |= F_ZERO; continue; case 'z': *flags |= F_NO_NEG_0; continue; } break; } if ('0' <= ch && ch <= '9') { *width = 0; int digits = 0; while ('0' <= ch && ch <= '9') { *width = *width * 10 + (ch - '0'); NEXTC; if (++digits >= MAXDIGITS) { return 0; } } } if (ch == '.') { NEXTC; *prec = 0; if ('0' <= ch && ch <= '9') { int digits = 0; while ('0' <= ch && ch <= '9') { *prec = *prec * 10 + (ch - '0'); NEXTC; if (++digits >= MAXDIGITS) { return 0; } } } } *spec = ch; *ppos = pos; return 1; #undef NEXTC } static expr_ty parse_format(PyObject *fmt, Py_ssize_t *ppos, expr_ty arg, PyArena *arena) { int spec, flags, width = -1, prec = -1; if (!simple_format_arg_parse(fmt, ppos, &spec, &flags, &width, &prec)) { // Unsupported format. return NULL; } if (spec == 's' || spec == 'r' || spec == 'a') { char buf[1 + MAXDIGITS + 1 + MAXDIGITS + 1], *p = buf; if (!(flags & F_LJUST) && width > 0) { *p++ = '>'; } if (width >= 0) { p += snprintf(p, MAXDIGITS + 1, "%d", width); } if (prec >= 0) { p += snprintf(p, MAXDIGITS + 2, ".%d", prec); } expr_ty format_spec = NULL; if (p != buf) { PyObject *str = PyUnicode_FromString(buf); if (str == NULL) { return NULL; } if (_PyArena_AddPyObject(arena, str) < 0) { Py_DECREF(str); return NULL; } format_spec = _PyAST_Constant(str, NULL, -1, -1, -1, -1, arena); if (format_spec == NULL) { return NULL; } } return _PyAST_FormattedValue(arg, spec, format_spec, arg->lineno, arg->col_offset, arg->end_lineno, arg->end_col_offset, arena); } // Unsupported format. return NULL; } static int optimize_format(expr_ty node, PyObject *fmt, asdl_expr_seq *elts, PyArena *arena) { Py_ssize_t pos = 0; Py_ssize_t cnt = 0; asdl_expr_seq *seq = _Py_asdl_expr_seq_new(asdl_seq_LEN(elts) * 2 + 1, arena); if (!seq) { return 0; } seq->size = 0; while (1) { expr_ty lit = parse_literal(fmt, &pos, arena); if (lit) { asdl_seq_SET(seq, seq->size++, lit); } else if (PyErr_Occurred()) { return 0; } if (pos >= PyUnicode_GET_LENGTH(fmt)) { break; } if (cnt >= asdl_seq_LEN(elts)) { // More format units than items. return 1; } assert(PyUnicode_READ_CHAR(fmt, pos) == '%'); pos++; expr_ty expr = parse_format(fmt, &pos, asdl_seq_GET(elts, cnt), arena); cnt++; if (!expr) { return !PyErr_Occurred(); } asdl_seq_SET(seq, seq->size++, expr); } if (cnt < asdl_seq_LEN(elts)) { // More items than format units. return 1; } expr_ty res = _PyAST_JoinedStr(seq, node->lineno, node->col_offset, node->end_lineno, node->end_col_offset, arena); if (!res) { return 0; } COPY_NODE(node, res); // PySys_FormatStderr("format = %R\n", fmt); return 1; } static int fold_binop(expr_ty node, PyArena *arena, _PyASTOptimizeState *state) { expr_ty lhs, rhs; lhs = node->v.BinOp.left; rhs = node->v.BinOp.right; if (lhs->kind != Constant_kind) { return 1; } PyObject *lv = lhs->v.Constant.value; if (node->v.BinOp.op == Mod && rhs->kind == Tuple_kind && PyUnicode_Check(lv) && !has_starred(rhs->v.Tuple.elts)) { return optimize_format(node, lv, rhs->v.Tuple.elts, arena); } if (rhs->kind != Constant_kind) { return 1; } PyObject *rv = rhs->v.Constant.value; PyObject *newval = NULL; switch (node->v.BinOp.op) { case Add: newval = PyNumber_Add(lv, rv); break; case Sub: newval = PyNumber_Subtract(lv, rv); break; case Mult: newval = safe_multiply(lv, rv); break; case Div: newval = PyNumber_TrueDivide(lv, rv); break; case FloorDiv: newval = PyNumber_FloorDivide(lv, rv); break; case Mod: newval = safe_mod(lv, rv); break; case Pow: newval = safe_power(lv, rv); break; case LShift: newval = safe_lshift(lv, rv); break; case RShift: newval = PyNumber_Rshift(lv, rv); break; case BitOr: newval = PyNumber_Or(lv, rv); break; case BitXor: newval = PyNumber_Xor(lv, rv); break; case BitAnd: newval = PyNumber_And(lv, rv); break; // No builtin constants implement the following operators case MatMult: return 1; // No default case, so the compiler will emit a warning if new binary // operators are added without being handled here } return make_const(node, newval, arena); } static PyObject* make_const_tuple(asdl_expr_seq *elts) { for (int i = 0; i < asdl_seq_LEN(elts); i++) { expr_ty e = (expr_ty)asdl_seq_GET(elts, i); if (e->kind != Constant_kind) { return NULL; } } PyObject *newval = PyTuple_New(asdl_seq_LEN(elts)); if (newval == NULL) { return NULL; } for (int i = 0; i < asdl_seq_LEN(elts); i++) { expr_ty e = (expr_ty)asdl_seq_GET(elts, i); PyObject *v = e->v.Constant.value; Py_INCREF(v); PyTuple_SET_ITEM(newval, i, v); } return newval; } static int fold_tuple(expr_ty node, PyArena *arena, _PyASTOptimizeState *state) { PyObject *newval; if (node->v.Tuple.ctx != Load) return 1; newval = make_const_tuple(node->v.Tuple.elts); return make_const(node, newval, arena); } static int fold_subscr(expr_ty node, PyArena *arena, _PyASTOptimizeState *state) { PyObject *newval; expr_ty arg, idx; arg = node->v.Subscript.value; idx = node->v.Subscript.slice; if (node->v.Subscript.ctx != Load || arg->kind != Constant_kind || idx->kind != Constant_kind) { return 1; } newval = PyObject_GetItem(arg->v.Constant.value, idx->v.Constant.value); return make_const(node, newval, arena); } /* Change literal list or set of constants into constant tuple or frozenset respectively. Change literal list of non-constants into tuple. Used for right operand of "in" and "not in" tests and for iterable in "for" loop and comprehensions. */ static int fold_iter(expr_ty arg, PyArena *arena, _PyASTOptimizeState *state) { PyObject *newval; if (arg->kind == List_kind) { /* First change a list into tuple. */ asdl_expr_seq *elts = arg->v.List.elts; if (has_starred(elts)) { return 1; } expr_context_ty ctx = arg->v.List.ctx; arg->kind = Tuple_kind; arg->v.Tuple.elts = elts; arg->v.Tuple.ctx = ctx; /* Try to create a constant tuple. */ newval = make_const_tuple(elts); } else if (arg->kind == Set_kind) { newval = make_const_tuple(arg->v.Set.elts); if (newval) { Py_SETREF(newval, PyFrozenSet_New(newval)); } } else { return 1; } return make_const(arg, newval, arena); } static int fold_compare(expr_ty node, PyArena *arena, _PyASTOptimizeState *state) { asdl_int_seq *ops; asdl_expr_seq *args; Py_ssize_t i; ops = node->v.Compare.ops; args = node->v.Compare.comparators; /* Change literal list or set in 'in' or 'not in' into tuple or frozenset respectively. */ i = asdl_seq_LEN(ops) - 1; int op = asdl_seq_GET(ops, i); if (op == In || op == NotIn) { if (!fold_iter((expr_ty)asdl_seq_GET(args, i), arena, state)) { return 0; } } return 1; } static int astfold_mod(mod_ty node_, PyArena *ctx_, _PyASTOptimizeState *state); static int astfold_stmt(stmt_ty node_, PyArena *ctx_, _PyASTOptimizeState *state); static int astfold_expr(expr_ty node_, PyArena *ctx_, _PyASTOptimizeState *state); static int astfold_arguments(arguments_ty node_, PyArena *ctx_, _PyASTOptimizeState *state); static int astfold_comprehension(comprehension_ty node_, PyArena *ctx_, _PyASTOptimizeState *state); static int astfold_keyword(keyword_ty node_, PyArena *ctx_, _PyASTOptimizeState *state); static int astfold_arg(arg_ty node_, PyArena *ctx_, _PyASTOptimizeState *state); static int astfold_withitem(withitem_ty node_, PyArena *ctx_, _PyASTOptimizeState *state); static int astfold_excepthandler(excepthandler_ty node_, PyArena *ctx_, _PyASTOptimizeState *state); static int astfold_match_case(match_case_ty node_, PyArena *ctx_, _PyASTOptimizeState *state); static int astfold_pattern(pattern_ty node_, PyArena *ctx_, _PyASTOptimizeState *state); #define CALL(FUNC, TYPE, ARG) \ if (!FUNC((ARG), ctx_, state)) \ return 0; #define CALL_OPT(FUNC, TYPE, ARG) \ if ((ARG) != NULL && !FUNC((ARG), ctx_, state)) \ return 0; #define CALL_SEQ(FUNC, TYPE, ARG) { \ int i; \ asdl_ ## TYPE ## _seq *seq = (ARG); /* avoid variable capture */ \ for (i = 0; i < asdl_seq_LEN(seq); i++) { \ TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, i); \ if (elt != NULL && !FUNC(elt, ctx_, state)) \ return 0; \ } \ } static int astfold_body(asdl_stmt_seq *stmts, PyArena *ctx_, _PyASTOptimizeState *state) { int docstring = _PyAST_GetDocString(stmts) != NULL; CALL_SEQ(astfold_stmt, stmt, stmts); if (!docstring && _PyAST_GetDocString(stmts) != NULL) { stmt_ty st = (stmt_ty)asdl_seq_GET(stmts, 0); asdl_expr_seq *values = _Py_asdl_expr_seq_new(1, ctx_); if (!values) { return 0; } asdl_seq_SET(values, 0, st->v.Expr.value); expr_ty expr = _PyAST_JoinedStr(values, st->lineno, st->col_offset, st->end_lineno, st->end_col_offset, ctx_); if (!expr) { return 0; } st->v.Expr.value = expr; } return 1; } static int astfold_mod(mod_ty node_, PyArena *ctx_, _PyASTOptimizeState *state) { switch (node_->kind) { case Module_kind: CALL(astfold_body, asdl_seq, node_->v.Module.body); break; case Interactive_kind: CALL_SEQ(astfold_stmt, stmt, node_->v.Interactive.body); break; case Expression_kind: CALL(astfold_expr, expr_ty, node_->v.Expression.body); break; // The following top level nodes don't participate in constant folding case FunctionType_kind: break; // No default case, so the compiler will emit a warning if new top level // compilation nodes are added without being handled here } return 1; } static int astfold_expr(expr_ty node_, PyArena *ctx_, _PyASTOptimizeState *state) { if (++state->recursion_depth > state->recursion_limit) { PyErr_SetString(PyExc_RecursionError, "maximum recursion depth exceeded during compilation"); return 0; } switch (node_->kind) { case BoolOp_kind: CALL_SEQ(astfold_expr, expr, node_->v.BoolOp.values); break; case BinOp_kind: CALL(astfold_expr, expr_ty, node_->v.BinOp.left); CALL(astfold_expr, expr_ty, node_->v.BinOp.right); CALL(fold_binop, expr_ty, node_); break; case UnaryOp_kind: CALL(astfold_expr, expr_ty, node_->v.UnaryOp.operand); CALL(fold_unaryop, expr_ty, node_); break; case Lambda_kind: CALL(astfold_arguments, arguments_ty, node_->v.Lambda.args); CALL(astfold_expr, expr_ty, node_->v.Lambda.body); break; case IfExp_kind: CALL(astfold_expr, expr_ty, node_->v.IfExp.test); CALL(astfold_expr, expr_ty, node_->v.IfExp.body); CALL(astfold_expr, expr_ty, node_->v.IfExp.orelse); break; case Dict_kind: CALL_SEQ(astfold_expr, expr, node_->v.Dict.keys); CALL_SEQ(astfold_expr, expr, node_->v.Dict.values); break; case Set_kind: CALL_SEQ(astfold_expr, expr, node_->v.Set.elts); break; case ListComp_kind: CALL(astfold_expr, expr_ty, node_->v.ListComp.elt); CALL_SEQ(astfold_comprehension, comprehension, node_->v.ListComp.generators); break; case SetComp_kind: CALL(astfold_expr, expr_ty, node_->v.SetComp.elt); CALL_SEQ(astfold_comprehension, comprehension, node_->v.SetComp.generators); break; case DictComp_kind: CALL(astfold_expr, expr_ty, node_->v.DictComp.key); CALL(astfold_expr, expr_ty, node_->v.DictComp.value); CALL_SEQ(astfold_comprehension, comprehension, node_->v.DictComp.generators); break; case GeneratorExp_kind: CALL(astfold_expr, expr_ty, node_->v.GeneratorExp.elt); CALL_SEQ(astfold_comprehension, comprehension, node_->v.GeneratorExp.generators); break; case Await_kind: CALL(astfold_expr, expr_ty, node_->v.Await.value); break; case Yield_kind: CALL_OPT(astfold_expr, expr_ty, node_->v.Yield.value); break; case YieldFrom_kind: CALL(astfold_expr, expr_ty, node_->v.YieldFrom.value); break; case Compare_kind: CALL(astfold_expr, expr_ty, node_->v.Compare.left); CALL_SEQ(astfold_expr, expr, node_->v.Compare.comparators); CALL(fold_compare, expr_ty, node_); break; case Call_kind: CALL(astfold_expr, expr_ty, node_->v.Call.func); CALL_SEQ(astfold_expr, expr, node_->v.Call.args); CALL_SEQ(astfold_keyword, keyword, node_->v.Call.keywords); break; case FormattedValue_kind: CALL(astfold_expr, expr_ty, node_->v.FormattedValue.value); CALL_OPT(astfold_expr, expr_ty, node_->v.FormattedValue.format_spec); break; case JoinedStr_kind: CALL_SEQ(astfold_expr, expr, node_->v.JoinedStr.values); break; case Attribute_kind: CALL(astfold_expr, expr_ty, node_->v.Attribute.value); break; case Subscript_kind: CALL(astfold_expr, expr_ty, node_->v.Subscript.value); CALL(astfold_expr, expr_ty, node_->v.Subscript.slice); CALL(fold_subscr, expr_ty, node_); break; case Starred_kind: CALL(astfold_expr, expr_ty, node_->v.Starred.value); break; case Slice_kind: CALL_OPT(astfold_expr, expr_ty, node_->v.Slice.lower); CALL_OPT(astfold_expr, expr_ty, node_->v.Slice.upper); CALL_OPT(astfold_expr, expr_ty, node_->v.Slice.step); break; case List_kind: CALL_SEQ(astfold_expr, expr, node_->v.List.elts); break; case Tuple_kind: CALL_SEQ(astfold_expr, expr, node_->v.Tuple.elts); CALL(fold_tuple, expr_ty, node_); break; case Name_kind: if (node_->v.Name.ctx == Load && _PyUnicode_EqualToASCIIString(node_->v.Name.id, "__debug__")) { state->recursion_depth--; return make_const(node_, PyBool_FromLong(!state->optimize), ctx_); } break; case NamedExpr_kind: CALL(astfold_expr, expr_ty, node_->v.NamedExpr.value); break; case Constant_kind: // Already a constant, nothing further to do break; // No default case, so the compiler will emit a warning if new expression // kinds are added without being handled here } state->recursion_depth--; return 1; } static int astfold_keyword(keyword_ty node_, PyArena *ctx_, _PyASTOptimizeState *state) { CALL(astfold_expr, expr_ty, node_->value); return 1; } static int astfold_comprehension(comprehension_ty node_, PyArena *ctx_, _PyASTOptimizeState *state) { CALL(astfold_expr, expr_ty, node_->target); CALL(astfold_expr, expr_ty, node_->iter); CALL_SEQ(astfold_expr, expr, node_->ifs); CALL(fold_iter, expr_ty, node_->iter); return 1; } static int astfold_arguments(arguments_ty node_, PyArena *ctx_, _PyASTOptimizeState *state) { CALL_SEQ(astfold_arg, arg, node_->posonlyargs); CALL_SEQ(astfold_arg, arg, node_->args); CALL_OPT(astfold_arg, arg_ty, node_->vararg); CALL_SEQ(astfold_arg, arg, node_->kwonlyargs); CALL_SEQ(astfold_expr, expr, node_->kw_defaults); CALL_OPT(astfold_arg, arg_ty, node_->kwarg); CALL_SEQ(astfold_expr, expr, node_->defaults); return 1; } static int astfold_arg(arg_ty node_, PyArena *ctx_, _PyASTOptimizeState *state) { if (!(state->ff_features & CO_FUTURE_ANNOTATIONS)) { CALL_OPT(astfold_expr, expr_ty, node_->annotation); } return 1; } static int astfold_stmt(stmt_ty node_, PyArena *ctx_, _PyASTOptimizeState *state) { if (++state->recursion_depth > state->recursion_limit) { PyErr_SetString(PyExc_RecursionError, "maximum recursion depth exceeded during compilation"); return 0; } switch (node_->kind) { case FunctionDef_kind: CALL(astfold_arguments, arguments_ty, node_->v.FunctionDef.args); CALL(astfold_body, asdl_seq, node_->v.FunctionDef.body); CALL_SEQ(astfold_expr, expr, node_->v.FunctionDef.decorator_list); if (!(state->ff_features & CO_FUTURE_ANNOTATIONS)) { CALL_OPT(astfold_expr, expr_ty, node_->v.FunctionDef.returns); } break; case AsyncFunctionDef_kind: CALL(astfold_arguments, arguments_ty, node_->v.AsyncFunctionDef.args); CALL(astfold_body, asdl_seq, node_->v.AsyncFunctionDef.body); CALL_SEQ(astfold_expr, expr, node_->v.AsyncFunctionDef.decorator_list); if (!(state->ff_features & CO_FUTURE_ANNOTATIONS)) { CALL_OPT(astfold_expr, expr_ty, node_->v.AsyncFunctionDef.returns); } break; case ClassDef_kind: CALL_SEQ(astfold_expr, expr, node_->v.ClassDef.bases); CALL_SEQ(astfold_keyword, keyword, node_->v.ClassDef.keywords); CALL(astfold_body, asdl_seq, node_->v.ClassDef.body); CALL_SEQ(astfold_expr, expr, node_->v.ClassDef.decorator_list); break; case Return_kind: CALL_OPT(astfold_expr, expr_ty, node_->v.Return.value); break; case Delete_kind: CALL_SEQ(astfold_expr, expr, node_->v.Delete.targets); break; case Assign_kind: CALL_SEQ(astfold_expr, expr, node_->v.Assign.targets); CALL(astfold_expr, expr_ty, node_->v.Assign.value); break; case AugAssign_kind: CALL(astfold_expr, expr_ty, node_->v.AugAssign.target); CALL(astfold_expr, expr_ty, node_->v.AugAssign.value); break; case AnnAssign_kind: CALL(astfold_expr, expr_ty, node_->v.AnnAssign.target); if (!(state->ff_features & CO_FUTURE_ANNOTATIONS)) { CALL(astfold_expr, expr_ty, node_->v.AnnAssign.annotation); } CALL_OPT(astfold_expr, expr_ty, node_->v.AnnAssign.value); break; case For_kind: CALL(astfold_expr, expr_ty, node_->v.For.target); CALL(astfold_expr, expr_ty, node_->v.For.iter); CALL_SEQ(astfold_stmt, stmt, node_->v.For.body); CALL_SEQ(astfold_stmt, stmt, node_->v.For.orelse); CALL(fold_iter, expr_ty, node_->v.For.iter); break; case AsyncFor_kind: CALL(astfold_expr, expr_ty, node_->v.AsyncFor.target); CALL(astfold_expr, expr_ty, node_->v.AsyncFor.iter); CALL_SEQ(astfold_stmt, stmt, node_->v.AsyncFor.body); CALL_SEQ(astfold_stmt, stmt, node_->v.AsyncFor.orelse); break; case While_kind: CALL(astfold_expr, expr_ty, node_->v.While.test); CALL_SEQ(astfold_stmt, stmt, node_->v.While.body); CALL_SEQ(astfold_stmt, stmt, node_->v.While.orelse); break; case If_kind: CALL(astfold_expr, expr_ty, node_->v.If.test); CALL_SEQ(astfold_stmt, stmt, node_->v.If.body); CALL_SEQ(astfold_stmt, stmt, node_->v.If.orelse); break; case With_kind: CALL_SEQ(astfold_withitem, withitem, node_->v.With.items); CALL_SEQ(astfold_stmt, stmt, node_->v.With.body); break; case AsyncWith_kind: CALL_SEQ(astfold_withitem, withitem, node_->v.AsyncWith.items); CALL_SEQ(astfold_stmt, stmt, node_->v.AsyncWith.body); break; case Raise_kind: CALL_OPT(astfold_expr, expr_ty, node_->v.Raise.exc); CALL_OPT(astfold_expr, expr_ty, node_->v.Raise.cause); break; case Try_kind: CALL_SEQ(astfold_stmt, stmt, node_->v.Try.body); CALL_SEQ(astfold_excepthandler, excepthandler, node_->v.Try.handlers); CALL_SEQ(astfold_stmt, stmt, node_->v.Try.orelse); CALL_SEQ(astfold_stmt, stmt, node_->v.Try.finalbody); break; case TryStar_kind: CALL_SEQ(astfold_stmt, stmt, node_->v.TryStar.body); CALL_SEQ(astfold_excepthandler, excepthandler, node_->v.TryStar.handlers); CALL_SEQ(astfold_stmt, stmt, node_->v.TryStar.orelse); CALL_SEQ(astfold_stmt, stmt, node_->v.TryStar.finalbody); break; case Assert_kind: CALL(astfold_expr, expr_ty, node_->v.Assert.test); CALL_OPT(astfold_expr, expr_ty, node_->v.Assert.msg); break; case Expr_kind: CALL(astfold_expr, expr_ty, node_->v.Expr.value); break; case Match_kind: CALL(astfold_expr, expr_ty, node_->v.Match.subject); CALL_SEQ(astfold_match_case, match_case, node_->v.Match.cases); break; // The following statements don't contain any subexpressions to be folded case Import_kind: case ImportFrom_kind: case Global_kind: case Nonlocal_kind: case Pass_kind: case Break_kind: case Continue_kind: break; // No default case, so the compiler will emit a warning if new statement // kinds are added without being handled here } state->recursion_depth--; return 1; } static int astfold_excepthandler(excepthandler_ty node_, PyArena *ctx_, _PyASTOptimizeState *state) { switch (node_->kind) { case ExceptHandler_kind: CALL_OPT(astfold_expr, expr_ty, node_->v.ExceptHandler.type); CALL_SEQ(astfold_stmt, stmt, node_->v.ExceptHandler.body); break; // No default case, so the compiler will emit a warning if new handler // kinds are added without being handled here } return 1; } static int astfold_withitem(withitem_ty node_, PyArena *ctx_, _PyASTOptimizeState *state) { CALL(astfold_expr, expr_ty, node_->context_expr); CALL_OPT(astfold_expr, expr_ty, node_->optional_vars); return 1; } static int astfold_pattern(pattern_ty node_, PyArena *ctx_, _PyASTOptimizeState *state) { // Currently, this is really only used to form complex/negative numeric // constants in MatchValue and MatchMapping nodes // We still recurse into all subexpressions and subpatterns anyway if (++state->recursion_depth > state->recursion_limit) { PyErr_SetString(PyExc_RecursionError, "maximum recursion depth exceeded during compilation"); return 0; } switch (node_->kind) { case MatchValue_kind: CALL(astfold_expr, expr_ty, node_->v.MatchValue.value); break; case MatchSingleton_kind: break; case MatchSequence_kind: CALL_SEQ(astfold_pattern, pattern, node_->v.MatchSequence.patterns); break; case MatchMapping_kind: CALL_SEQ(astfold_expr, expr, node_->v.MatchMapping.keys); CALL_SEQ(astfold_pattern, pattern, node_->v.MatchMapping.patterns); break; case MatchClass_kind: CALL(astfold_expr, expr_ty, node_->v.MatchClass.cls); CALL_SEQ(astfold_pattern, pattern, node_->v.MatchClass.patterns); CALL_SEQ(astfold_pattern, pattern, node_->v.MatchClass.kwd_patterns); break; case MatchStar_kind: break; case MatchAs_kind: if (node_->v.MatchAs.pattern) { CALL(astfold_pattern, pattern_ty, node_->v.MatchAs.pattern); } break; case MatchOr_kind: CALL_SEQ(astfold_pattern, pattern, node_->v.MatchOr.patterns); break; // No default case, so the compiler will emit a warning if new pattern // kinds are added without being handled here } state->recursion_depth--; return 1; } static int astfold_match_case(match_case_ty node_, PyArena *ctx_, _PyASTOptimizeState *state) { CALL(astfold_pattern, expr_ty, node_->pattern); CALL_OPT(astfold_expr, expr_ty, node_->guard); CALL_SEQ(astfold_stmt, stmt, node_->body); return 1; } #undef CALL #undef CALL_OPT #undef CALL_SEQ /* See comments in symtable.c. */ #define COMPILER_STACK_FRAME_SCALE 3 int _PyAST_Optimize(mod_ty mod, PyArena *arena, _PyASTOptimizeState *state) { PyThreadState *tstate; int starting_recursion_depth; /* Setup recursion depth check counters */ tstate = _PyThreadState_GET(); if (!tstate) { return 0; } /* Be careful here to prevent overflow. */ int recursion_depth = C_RECURSION_LIMIT - tstate->c_recursion_remaining; starting_recursion_depth = recursion_depth * COMPILER_STACK_FRAME_SCALE; state->recursion_depth = starting_recursion_depth; state->recursion_limit = C_RECURSION_LIMIT * COMPILER_STACK_FRAME_SCALE; int ret = astfold_mod(mod, arena, state); assert(ret || PyErr_Occurred()); /* Check that the recursion depth counting balanced correctly */ if (ret && state->recursion_depth != starting_recursion_depth) { PyErr_Format(PyExc_SystemError, "AST optimizer recursion depth mismatch (before=%d, after=%d)", starting_recursion_depth, state->recursion_depth); return 0; } return ret; }