// This file contains instruction definitions. // It is read by Tools/cases_generator/generate_cases.py // to generate Python/generated_cases.c.h. // Note that there is some dummy C code at the top and bottom of the file // to fool text editors like VS Code into believing this is valid C code. // The actual instruction definitions start at // BEGIN BYTECODES //. // See Tools/cases_generator/README.md for more information. #include "Python.h" #include "pycore_abstract.h" // _PyIndex_Check() #include "pycore_call.h" // _PyObject_FastCallDictTstate() #include "pycore_ceval.h" // _PyEval_SignalAsyncExc() #include "pycore_code.h" #include "pycore_function.h" #include "pycore_intrinsics.h" #include "pycore_long.h" // _PyLong_GetZero() #include "pycore_instruments.h" #include "pycore_object.h" // _PyObject_GC_TRACK() #include "pycore_moduleobject.h" // PyModuleObject #include "pycore_opcode.h" // EXTRA_CASES #include "pycore_pyerrors.h" // _PyErr_GetRaisedException() #include "pycore_pymem.h" // _PyMem_IsPtrFreed() #include "pycore_pystate.h" // _PyInterpreterState_GET() #include "pycore_range.h" // _PyRangeIterObject #include "pycore_sliceobject.h" // _PyBuildSlice_ConsumeRefs #include "pycore_sysmodule.h" // _PySys_Audit() #include "pycore_tuple.h" // _PyTuple_ITEMS() #include "pycore_typeobject.h" // _PySuper_Lookup() #include "pycore_emscripten_signal.h" // _Py_CHECK_EMSCRIPTEN_SIGNALS #include "pycore_dict.h" #include "dictobject.h" #include "pycore_frame.h" #include "opcode.h" #include "pydtrace.h" #include "setobject.h" #include "structmember.h" // struct PyMemberDef, T_OFFSET_EX #define USE_COMPUTED_GOTOS 0 #include "ceval_macros.h" /* Flow control macros */ #define DEOPT_IF(cond, instname) ((void)0) #define ERROR_IF(cond, labelname) ((void)0) #define GO_TO_INSTRUCTION(instname) ((void)0) #define PREDICT(opname) ((void)0) #define inst(name, ...) case name: #define op(name, ...) /* NAME is ignored */ #define macro(name) static int MACRO_##name #define super(name) static int SUPER_##name #define family(name, ...) static int family_##name // Dummy variables for stack effects. static PyObject *value, *value1, *value2, *left, *right, *res, *sum, *prod, *sub; static PyObject *container, *start, *stop, *v, *lhs, *rhs, *res2; static PyObject *list, *tuple, *dict, *owner, *set, *str, *tup, *map, *keys; static PyObject *exit_func, *lasti, *val, *retval, *obj, *iter; static PyObject *aiter, *awaitable, *iterable, *w, *exc_value, *bc, *locals; static PyObject *orig, *excs, *update, *b, *fromlist, *level, *from; static PyObject **pieces, **values; static size_t jump; // Dummy variables for cache effects static uint16_t invert, counter, index, hint; static uint32_t type_version; static PyObject * dummy_func( PyThreadState *tstate, _PyInterpreterFrame *frame, unsigned char opcode, unsigned int oparg, _PyCFrame cframe, _Py_CODEUNIT *next_instr, PyObject **stack_pointer, PyObject *kwnames, int throwflag, binaryfunc binary_ops[], PyObject *args[] ) { // Dummy labels. pop_1_error: // Dummy locals. PyObject *annotations; PyObject *attrs; PyObject *bottom; PyObject *callable; PyObject *callargs; PyObject *closure; PyObject *codeobj; PyObject *cond; PyObject *defaults; PyObject *descr; _PyInterpreterFrame entry_frame; PyObject *exc; PyObject *exit; PyObject *fget; PyObject *fmt_spec; PyObject *func; uint32_t func_version; PyObject *getattribute; PyObject *kwargs; PyObject *kwdefaults; PyObject *len_o; PyObject *match; PyObject *match_type; PyObject *method; PyObject *mgr; Py_ssize_t min_args; PyObject *names; PyObject *new_exc; PyObject *next; PyObject *none; PyObject *null; PyObject *prev_exc; PyObject *receiver; PyObject *rest; int result; PyObject *self; PyObject *seq; PyObject *slice; PyObject *step; PyObject *subject; PyObject *top; PyObject *type; PyObject *typevars; int values_or_none; switch (opcode) { // BEGIN BYTECODES // inst(NOP, (--)) { } inst(RESUME, (--)) { assert(tstate->cframe == &cframe); assert(frame == cframe.current_frame); /* Possibly combine this with eval breaker */ if (frame->f_code->_co_instrumentation_version != tstate->interp->monitoring_version) { int err = _Py_Instrument(frame->f_code, tstate->interp); ERROR_IF(err, error); next_instr--; } else if (_Py_atomic_load_relaxed_int32(&tstate->interp->ceval.eval_breaker) && oparg < 2) { goto handle_eval_breaker; } } inst(INSTRUMENTED_RESUME, (--)) { /* Possible performance enhancement: * We need to check the eval breaker anyway, can we * combine the instrument verison check and the eval breaker test? */ if (frame->f_code->_co_instrumentation_version != tstate->interp->monitoring_version) { if (_Py_Instrument(frame->f_code, tstate->interp)) { goto error; } next_instr--; } else { _PyFrame_SetStackPointer(frame, stack_pointer); int err = _Py_call_instrumentation( tstate, oparg > 0, frame, next_instr-1); stack_pointer = _PyFrame_GetStackPointer(frame); ERROR_IF(err, error); if (frame->prev_instr != next_instr-1) { /* Instrumentation has jumped */ next_instr = frame->prev_instr; DISPATCH(); } if (_Py_atomic_load_relaxed_int32(&tstate->interp->ceval.eval_breaker) && oparg < 2) { goto handle_eval_breaker; } } } inst(LOAD_CLOSURE, (-- value)) { /* We keep LOAD_CLOSURE so that the bytecode stays more readable. */ value = GETLOCAL(oparg); ERROR_IF(value == NULL, unbound_local_error); Py_INCREF(value); } inst(LOAD_FAST_CHECK, (-- value)) { value = GETLOCAL(oparg); ERROR_IF(value == NULL, unbound_local_error); Py_INCREF(value); } inst(LOAD_FAST, (-- value)) { value = GETLOCAL(oparg); assert(value != NULL); Py_INCREF(value); } inst(LOAD_FAST_AND_CLEAR, (-- value)) { value = GETLOCAL(oparg); // do not use SETLOCAL here, it decrefs the old value GETLOCAL(oparg) = NULL; } inst(LOAD_CONST, (-- value)) { value = GETITEM(frame->f_code->co_consts, oparg); Py_INCREF(value); } inst(STORE_FAST, (value --)) { SETLOCAL(oparg, value); } super(LOAD_FAST__LOAD_FAST) = LOAD_FAST + LOAD_FAST; super(LOAD_FAST__LOAD_CONST) = LOAD_FAST + LOAD_CONST; super(STORE_FAST__LOAD_FAST) = STORE_FAST + LOAD_FAST; super(STORE_FAST__STORE_FAST) = STORE_FAST + STORE_FAST; super(LOAD_CONST__LOAD_FAST) = LOAD_CONST + LOAD_FAST; inst(POP_TOP, (value --)) { DECREF_INPUTS(); } inst(PUSH_NULL, (-- res)) { res = NULL; } macro(END_FOR) = POP_TOP + POP_TOP; inst(INSTRUMENTED_END_FOR, (receiver, value --)) { /* Need to create a fake StopIteration error here, * to conform to PEP 380 */ if (PyGen_Check(receiver)) { PyErr_SetObject(PyExc_StopIteration, value); if (monitor_stop_iteration(tstate, frame, next_instr-1)) { goto error; } PyErr_SetRaisedException(NULL); } DECREF_INPUTS(); } inst(END_SEND, (receiver, value -- value)) { Py_DECREF(receiver); } inst(INSTRUMENTED_END_SEND, (receiver, value -- value)) { if (PyGen_Check(receiver) || PyCoro_CheckExact(receiver)) { PyErr_SetObject(PyExc_StopIteration, value); if (monitor_stop_iteration(tstate, frame, next_instr-1)) { goto error; } PyErr_SetRaisedException(NULL); } Py_DECREF(receiver); } inst(UNARY_NEGATIVE, (value -- res)) { res = PyNumber_Negative(value); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } inst(UNARY_NOT, (value -- res)) { int err = PyObject_IsTrue(value); DECREF_INPUTS(); ERROR_IF(err < 0, error); if (err == 0) { res = Py_True; } else { res = Py_False; } } inst(UNARY_INVERT, (value -- res)) { res = PyNumber_Invert(value); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } family(binary_op, INLINE_CACHE_ENTRIES_BINARY_OP) = { BINARY_OP, BINARY_OP_ADD_FLOAT, BINARY_OP_ADD_INT, BINARY_OP_ADD_UNICODE, // BINARY_OP_INPLACE_ADD_UNICODE, // This is an odd duck. BINARY_OP_MULTIPLY_FLOAT, BINARY_OP_MULTIPLY_INT, BINARY_OP_SUBTRACT_FLOAT, BINARY_OP_SUBTRACT_INT, }; inst(BINARY_OP_MULTIPLY_INT, (unused/1, left, right -- prod)) { DEOPT_IF(!PyLong_CheckExact(left), BINARY_OP); DEOPT_IF(!PyLong_CheckExact(right), BINARY_OP); STAT_INC(BINARY_OP, hit); prod = _PyLong_Multiply((PyLongObject *)left, (PyLongObject *)right); _Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free); _Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free); ERROR_IF(prod == NULL, error); } inst(BINARY_OP_MULTIPLY_FLOAT, (unused/1, left, right -- prod)) { DEOPT_IF(!PyFloat_CheckExact(left), BINARY_OP); DEOPT_IF(!PyFloat_CheckExact(right), BINARY_OP); STAT_INC(BINARY_OP, hit); double dprod = ((PyFloatObject *)left)->ob_fval * ((PyFloatObject *)right)->ob_fval; DECREF_INPUTS_AND_REUSE_FLOAT(left, right, dprod, prod); } inst(BINARY_OP_SUBTRACT_INT, (unused/1, left, right -- sub)) { DEOPT_IF(!PyLong_CheckExact(left), BINARY_OP); DEOPT_IF(!PyLong_CheckExact(right), BINARY_OP); STAT_INC(BINARY_OP, hit); sub = _PyLong_Subtract((PyLongObject *)left, (PyLongObject *)right); _Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free); _Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free); ERROR_IF(sub == NULL, error); } inst(BINARY_OP_SUBTRACT_FLOAT, (unused/1, left, right -- sub)) { DEOPT_IF(!PyFloat_CheckExact(left), BINARY_OP); DEOPT_IF(!PyFloat_CheckExact(right), BINARY_OP); STAT_INC(BINARY_OP, hit); double dsub = ((PyFloatObject *)left)->ob_fval - ((PyFloatObject *)right)->ob_fval; DECREF_INPUTS_AND_REUSE_FLOAT(left, right, dsub, sub); } inst(BINARY_OP_ADD_UNICODE, (unused/1, left, right -- res)) { DEOPT_IF(!PyUnicode_CheckExact(left), BINARY_OP); DEOPT_IF(Py_TYPE(right) != Py_TYPE(left), BINARY_OP); STAT_INC(BINARY_OP, hit); res = PyUnicode_Concat(left, right); _Py_DECREF_SPECIALIZED(left, _PyUnicode_ExactDealloc); _Py_DECREF_SPECIALIZED(right, _PyUnicode_ExactDealloc); ERROR_IF(res == NULL, error); } // This is a subtle one. It's a super-instruction for // BINARY_OP_ADD_UNICODE followed by STORE_FAST // where the store goes into the left argument. // So the inputs are the same as for all BINARY_OP // specializations, but there is no output. // At the end we just skip over the STORE_FAST. inst(BINARY_OP_INPLACE_ADD_UNICODE, (left, right --)) { DEOPT_IF(!PyUnicode_CheckExact(left), BINARY_OP); DEOPT_IF(Py_TYPE(right) != Py_TYPE(left), BINARY_OP); _Py_CODEUNIT true_next = next_instr[INLINE_CACHE_ENTRIES_BINARY_OP]; assert(true_next.op.code == STORE_FAST || true_next.op.code == STORE_FAST__LOAD_FAST); PyObject **target_local = &GETLOCAL(true_next.op.arg); DEOPT_IF(*target_local != left, BINARY_OP); STAT_INC(BINARY_OP, hit); /* Handle `left = left + right` or `left += right` for str. * * When possible, extend `left` in place rather than * allocating a new PyUnicodeObject. This attempts to avoid * quadratic behavior when one neglects to use str.join(). * * If `left` has only two references remaining (one from * the stack, one in the locals), DECREFing `left` leaves * only the locals reference, so PyUnicode_Append knows * that the string is safe to mutate. */ assert(Py_REFCNT(left) >= 2); _Py_DECREF_NO_DEALLOC(left); PyUnicode_Append(target_local, right); _Py_DECREF_SPECIALIZED(right, _PyUnicode_ExactDealloc); ERROR_IF(*target_local == NULL, error); // The STORE_FAST is already done. JUMPBY(INLINE_CACHE_ENTRIES_BINARY_OP + 1); } inst(BINARY_OP_ADD_FLOAT, (unused/1, left, right -- sum)) { DEOPT_IF(!PyFloat_CheckExact(left), BINARY_OP); DEOPT_IF(Py_TYPE(right) != Py_TYPE(left), BINARY_OP); STAT_INC(BINARY_OP, hit); double dsum = ((PyFloatObject *)left)->ob_fval + ((PyFloatObject *)right)->ob_fval; DECREF_INPUTS_AND_REUSE_FLOAT(left, right, dsum, sum); } inst(BINARY_OP_ADD_INT, (unused/1, left, right -- sum)) { DEOPT_IF(!PyLong_CheckExact(left), BINARY_OP); DEOPT_IF(Py_TYPE(right) != Py_TYPE(left), BINARY_OP); STAT_INC(BINARY_OP, hit); sum = _PyLong_Add((PyLongObject *)left, (PyLongObject *)right); _Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free); _Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free); ERROR_IF(sum == NULL, error); } family(binary_subscr, INLINE_CACHE_ENTRIES_BINARY_SUBSCR) = { BINARY_SUBSCR, BINARY_SUBSCR_DICT, BINARY_SUBSCR_GETITEM, BINARY_SUBSCR_LIST_INT, BINARY_SUBSCR_TUPLE_INT, }; inst(BINARY_SUBSCR, (unused/1, container, sub -- res)) { #if ENABLE_SPECIALIZATION _PyBinarySubscrCache *cache = (_PyBinarySubscrCache *)next_instr; if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) { next_instr--; _Py_Specialize_BinarySubscr(container, sub, next_instr); DISPATCH_SAME_OPARG(); } STAT_INC(BINARY_SUBSCR, deferred); DECREMENT_ADAPTIVE_COUNTER(cache->counter); #endif /* ENABLE_SPECIALIZATION */ res = PyObject_GetItem(container, sub); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } inst(BINARY_SLICE, (container, start, stop -- res)) { PyObject *slice = _PyBuildSlice_ConsumeRefs(start, stop); // Can't use ERROR_IF() here, because we haven't // DECREF'ed container yet, and we still own slice. if (slice == NULL) { res = NULL; } else { res = PyObject_GetItem(container, slice); Py_DECREF(slice); } Py_DECREF(container); ERROR_IF(res == NULL, error); } inst(STORE_SLICE, (v, container, start, stop -- )) { PyObject *slice = _PyBuildSlice_ConsumeRefs(start, stop); int err; if (slice == NULL) { err = 1; } else { err = PyObject_SetItem(container, slice, v); Py_DECREF(slice); } Py_DECREF(v); Py_DECREF(container); ERROR_IF(err, error); } inst(BINARY_SUBSCR_LIST_INT, (unused/1, list, sub -- res)) { DEOPT_IF(!PyLong_CheckExact(sub), BINARY_SUBSCR); DEOPT_IF(!PyList_CheckExact(list), BINARY_SUBSCR); // Deopt unless 0 <= sub < PyList_Size(list) DEOPT_IF(!_PyLong_IsNonNegativeCompact((PyLongObject *)sub), BINARY_SUBSCR); Py_ssize_t index = ((PyLongObject*)sub)->long_value.ob_digit[0]; DEOPT_IF(index >= PyList_GET_SIZE(list), BINARY_SUBSCR); STAT_INC(BINARY_SUBSCR, hit); res = PyList_GET_ITEM(list, index); assert(res != NULL); Py_INCREF(res); _Py_DECREF_SPECIALIZED(sub, (destructor)PyObject_Free); Py_DECREF(list); } inst(BINARY_SUBSCR_TUPLE_INT, (unused/1, tuple, sub -- res)) { DEOPT_IF(!PyLong_CheckExact(sub), BINARY_SUBSCR); DEOPT_IF(!PyTuple_CheckExact(tuple), BINARY_SUBSCR); // Deopt unless 0 <= sub < PyTuple_Size(list) DEOPT_IF(!_PyLong_IsNonNegativeCompact((PyLongObject *)sub), BINARY_SUBSCR); Py_ssize_t index = ((PyLongObject*)sub)->long_value.ob_digit[0]; DEOPT_IF(index >= PyTuple_GET_SIZE(tuple), BINARY_SUBSCR); STAT_INC(BINARY_SUBSCR, hit); res = PyTuple_GET_ITEM(tuple, index); assert(res != NULL); Py_INCREF(res); _Py_DECREF_SPECIALIZED(sub, (destructor)PyObject_Free); Py_DECREF(tuple); } inst(BINARY_SUBSCR_DICT, (unused/1, dict, sub -- res)) { DEOPT_IF(!PyDict_CheckExact(dict), BINARY_SUBSCR); STAT_INC(BINARY_SUBSCR, hit); res = PyDict_GetItemWithError(dict, sub); if (res == NULL) { if (!_PyErr_Occurred(tstate)) { _PyErr_SetKeyError(sub); } DECREF_INPUTS(); ERROR_IF(true, error); } Py_INCREF(res); // Do this before DECREF'ing dict, sub DECREF_INPUTS(); } inst(BINARY_SUBSCR_GETITEM, (unused/1, container, sub -- unused)) { DEOPT_IF(tstate->interp->eval_frame, BINARY_SUBSCR); PyTypeObject *tp = Py_TYPE(container); DEOPT_IF(!PyType_HasFeature(tp, Py_TPFLAGS_HEAPTYPE), BINARY_SUBSCR); PyHeapTypeObject *ht = (PyHeapTypeObject *)tp; PyObject *cached = ht->_spec_cache.getitem; DEOPT_IF(cached == NULL, BINARY_SUBSCR); assert(PyFunction_Check(cached)); PyFunctionObject *getitem = (PyFunctionObject *)cached; uint32_t cached_version = ht->_spec_cache.getitem_version; DEOPT_IF(getitem->func_version != cached_version, BINARY_SUBSCR); PyCodeObject *code = (PyCodeObject *)getitem->func_code; assert(code->co_argcount == 2); DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize), BINARY_SUBSCR); STAT_INC(BINARY_SUBSCR, hit); Py_INCREF(getitem); _PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, getitem, 2); STACK_SHRINK(2); new_frame->localsplus[0] = container; new_frame->localsplus[1] = sub; JUMPBY(INLINE_CACHE_ENTRIES_BINARY_SUBSCR); frame->return_offset = 0; DISPATCH_INLINED(new_frame); } inst(LIST_APPEND, (list, unused[oparg-1], v -- list, unused[oparg-1])) { ERROR_IF(_PyList_AppendTakeRef((PyListObject *)list, v) < 0, error); PREDICT(JUMP_BACKWARD); } inst(SET_ADD, (set, unused[oparg-1], v -- set, unused[oparg-1])) { int err = PySet_Add(set, v); DECREF_INPUTS(); ERROR_IF(err, error); PREDICT(JUMP_BACKWARD); } family(store_subscr, INLINE_CACHE_ENTRIES_STORE_SUBSCR) = { STORE_SUBSCR, STORE_SUBSCR_DICT, STORE_SUBSCR_LIST_INT, }; inst(STORE_SUBSCR, (counter/1, v, container, sub -- )) { #if ENABLE_SPECIALIZATION if (ADAPTIVE_COUNTER_IS_ZERO(counter)) { next_instr--; _Py_Specialize_StoreSubscr(container, sub, next_instr); DISPATCH_SAME_OPARG(); } STAT_INC(STORE_SUBSCR, deferred); _PyStoreSubscrCache *cache = (_PyStoreSubscrCache *)next_instr; DECREMENT_ADAPTIVE_COUNTER(cache->counter); #else (void)counter; // Unused. #endif /* ENABLE_SPECIALIZATION */ /* container[sub] = v */ int err = PyObject_SetItem(container, sub, v); DECREF_INPUTS(); ERROR_IF(err, error); } inst(STORE_SUBSCR_LIST_INT, (unused/1, value, list, sub -- )) { DEOPT_IF(!PyLong_CheckExact(sub), STORE_SUBSCR); DEOPT_IF(!PyList_CheckExact(list), STORE_SUBSCR); // Ensure nonnegative, zero-or-one-digit ints. DEOPT_IF(!_PyLong_IsNonNegativeCompact((PyLongObject *)sub), STORE_SUBSCR); Py_ssize_t index = ((PyLongObject*)sub)->long_value.ob_digit[0]; // Ensure index < len(list) DEOPT_IF(index >= PyList_GET_SIZE(list), STORE_SUBSCR); STAT_INC(STORE_SUBSCR, hit); PyObject *old_value = PyList_GET_ITEM(list, index); PyList_SET_ITEM(list, index, value); assert(old_value != NULL); Py_DECREF(old_value); _Py_DECREF_SPECIALIZED(sub, (destructor)PyObject_Free); Py_DECREF(list); } inst(STORE_SUBSCR_DICT, (unused/1, value, dict, sub -- )) { DEOPT_IF(!PyDict_CheckExact(dict), STORE_SUBSCR); STAT_INC(STORE_SUBSCR, hit); int err = _PyDict_SetItem_Take2((PyDictObject *)dict, sub, value); Py_DECREF(dict); ERROR_IF(err, error); } inst(DELETE_SUBSCR, (container, sub --)) { /* del container[sub] */ int err = PyObject_DelItem(container, sub); DECREF_INPUTS(); ERROR_IF(err, error); } inst(CALL_INTRINSIC_1, (value -- res)) { assert(oparg <= MAX_INTRINSIC_1); res = _PyIntrinsics_UnaryFunctions[oparg](tstate, value); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } inst(CALL_INTRINSIC_2, (value2, value1 -- res)) { assert(oparg <= MAX_INTRINSIC_2); res = _PyIntrinsics_BinaryFunctions[oparg](tstate, value2, value1); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } inst(RAISE_VARARGS, (args[oparg] -- )) { PyObject *cause = NULL, *exc = NULL; switch (oparg) { case 2: cause = args[1]; /* fall through */ case 1: exc = args[0]; /* fall through */ case 0: ERROR_IF(do_raise(tstate, exc, cause), exception_unwind); break; default: _PyErr_SetString(tstate, PyExc_SystemError, "bad RAISE_VARARGS oparg"); break; } ERROR_IF(true, error); } inst(INTERPRETER_EXIT, (retval --)) { assert(frame == &entry_frame); assert(_PyFrame_IsIncomplete(frame)); STACK_SHRINK(1); // Since we're not going to DISPATCH() assert(EMPTY()); /* Restore previous cframe and return. */ tstate->cframe = cframe.previous; assert(tstate->cframe->current_frame == frame->previous); assert(!_PyErr_Occurred(tstate)); _Py_LeaveRecursiveCallTstate(tstate); return retval; } inst(RETURN_VALUE, (retval --)) { STACK_SHRINK(1); assert(EMPTY()); _PyFrame_SetStackPointer(frame, stack_pointer); _Py_LeaveRecursiveCallPy(tstate); assert(frame != &entry_frame); // GH-99729: We need to unlink the frame *before* clearing it: _PyInterpreterFrame *dying = frame; frame = cframe.current_frame = dying->previous; _PyEvalFrameClearAndPop(tstate, dying); frame->prev_instr += frame->return_offset; _PyFrame_StackPush(frame, retval); goto resume_frame; } inst(INSTRUMENTED_RETURN_VALUE, (retval --)) { int err = _Py_call_instrumentation_arg( tstate, PY_MONITORING_EVENT_PY_RETURN, frame, next_instr-1, retval); if (err) goto error; STACK_SHRINK(1); assert(EMPTY()); _PyFrame_SetStackPointer(frame, stack_pointer); _Py_LeaveRecursiveCallPy(tstate); assert(frame != &entry_frame); // GH-99729: We need to unlink the frame *before* clearing it: _PyInterpreterFrame *dying = frame; frame = cframe.current_frame = dying->previous; _PyEvalFrameClearAndPop(tstate, dying); frame->prev_instr += frame->return_offset; _PyFrame_StackPush(frame, retval); goto resume_frame; } inst(RETURN_CONST, (--)) { PyObject *retval = GETITEM(frame->f_code->co_consts, oparg); Py_INCREF(retval); assert(EMPTY()); _PyFrame_SetStackPointer(frame, stack_pointer); _Py_LeaveRecursiveCallPy(tstate); assert(frame != &entry_frame); // GH-99729: We need to unlink the frame *before* clearing it: _PyInterpreterFrame *dying = frame; frame = cframe.current_frame = dying->previous; _PyEvalFrameClearAndPop(tstate, dying); frame->prev_instr += frame->return_offset; _PyFrame_StackPush(frame, retval); goto resume_frame; } inst(INSTRUMENTED_RETURN_CONST, (--)) { PyObject *retval = GETITEM(frame->f_code->co_consts, oparg); int err = _Py_call_instrumentation_arg( tstate, PY_MONITORING_EVENT_PY_RETURN, frame, next_instr-1, retval); if (err) goto error; Py_INCREF(retval); assert(EMPTY()); _PyFrame_SetStackPointer(frame, stack_pointer); _Py_LeaveRecursiveCallPy(tstate); assert(frame != &entry_frame); // GH-99729: We need to unlink the frame *before* clearing it: _PyInterpreterFrame *dying = frame; frame = cframe.current_frame = dying->previous; _PyEvalFrameClearAndPop(tstate, dying); frame->prev_instr += frame->return_offset; _PyFrame_StackPush(frame, retval); goto resume_frame; } inst(GET_AITER, (obj -- iter)) { unaryfunc getter = NULL; PyTypeObject *type = Py_TYPE(obj); if (type->tp_as_async != NULL) { getter = type->tp_as_async->am_aiter; } if (getter == NULL) { _PyErr_Format(tstate, PyExc_TypeError, "'async for' requires an object with " "__aiter__ method, got %.100s", type->tp_name); DECREF_INPUTS(); ERROR_IF(true, error); } iter = (*getter)(obj); DECREF_INPUTS(); ERROR_IF(iter == NULL, error); if (Py_TYPE(iter)->tp_as_async == NULL || Py_TYPE(iter)->tp_as_async->am_anext == NULL) { _PyErr_Format(tstate, PyExc_TypeError, "'async for' received an object from __aiter__ " "that does not implement __anext__: %.100s", Py_TYPE(iter)->tp_name); Py_DECREF(iter); ERROR_IF(true, error); } } inst(GET_ANEXT, (aiter -- aiter, awaitable)) { unaryfunc getter = NULL; PyObject *next_iter = NULL; PyTypeObject *type = Py_TYPE(aiter); if (PyAsyncGen_CheckExact(aiter)) { awaitable = type->tp_as_async->am_anext(aiter); if (awaitable == NULL) { goto error; } } else { if (type->tp_as_async != NULL){ getter = type->tp_as_async->am_anext; } if (getter != NULL) { next_iter = (*getter)(aiter); if (next_iter == NULL) { goto error; } } else { _PyErr_Format(tstate, PyExc_TypeError, "'async for' requires an iterator with " "__anext__ method, got %.100s", type->tp_name); goto error; } awaitable = _PyCoro_GetAwaitableIter(next_iter); if (awaitable == NULL) { _PyErr_FormatFromCause( PyExc_TypeError, "'async for' received an invalid object " "from __anext__: %.100s", Py_TYPE(next_iter)->tp_name); Py_DECREF(next_iter); goto error; } else { Py_DECREF(next_iter); } } PREDICT(LOAD_CONST); } inst(GET_AWAITABLE, (iterable -- iter)) { iter = _PyCoro_GetAwaitableIter(iterable); if (iter == NULL) { format_awaitable_error(tstate, Py_TYPE(iterable), oparg); } DECREF_INPUTS(); if (iter != NULL && PyCoro_CheckExact(iter)) { PyObject *yf = _PyGen_yf((PyGenObject*)iter); if (yf != NULL) { /* `iter` is a coroutine object that is being awaited, `yf` is a pointer to the current awaitable being awaited on. */ Py_DECREF(yf); Py_CLEAR(iter); _PyErr_SetString(tstate, PyExc_RuntimeError, "coroutine is being awaited already"); /* The code below jumps to `error` if `iter` is NULL. */ } } ERROR_IF(iter == NULL, error); PREDICT(LOAD_CONST); } family(send, INLINE_CACHE_ENTRIES_SEND) = { SEND, SEND_GEN, }; inst(SEND, (unused/1, receiver, v -- receiver, retval)) { #if ENABLE_SPECIALIZATION _PySendCache *cache = (_PySendCache *)next_instr; if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) { next_instr--; _Py_Specialize_Send(receiver, next_instr); DISPATCH_SAME_OPARG(); } STAT_INC(SEND, deferred); DECREMENT_ADAPTIVE_COUNTER(cache->counter); #endif /* ENABLE_SPECIALIZATION */ assert(frame != &entry_frame); if ((tstate->interp->eval_frame == NULL) && (Py_TYPE(receiver) == &PyGen_Type || Py_TYPE(receiver) == &PyCoro_Type) && ((PyGenObject *)receiver)->gi_frame_state < FRAME_EXECUTING) { PyGenObject *gen = (PyGenObject *)receiver; _PyInterpreterFrame *gen_frame = (_PyInterpreterFrame *)gen->gi_iframe; frame->return_offset = oparg; STACK_SHRINK(1); _PyFrame_StackPush(gen_frame, v); gen->gi_frame_state = FRAME_EXECUTING; gen->gi_exc_state.previous_item = tstate->exc_info; tstate->exc_info = &gen->gi_exc_state; JUMPBY(INLINE_CACHE_ENTRIES_SEND); DISPATCH_INLINED(gen_frame); } if (Py_IsNone(v) && PyIter_Check(receiver)) { retval = Py_TYPE(receiver)->tp_iternext(receiver); } else { retval = PyObject_CallMethodOneArg(receiver, &_Py_ID(send), v); } if (retval == NULL) { if (_PyErr_ExceptionMatches(tstate, PyExc_StopIteration) ) { monitor_raise(tstate, frame, next_instr-1); } if (_PyGen_FetchStopIterationValue(&retval) == 0) { assert(retval != NULL); JUMPBY(oparg); } else { goto error; } } Py_DECREF(v); } inst(SEND_GEN, (unused/1, receiver, v -- receiver, unused)) { DEOPT_IF(tstate->interp->eval_frame, SEND); PyGenObject *gen = (PyGenObject *)receiver; DEOPT_IF(Py_TYPE(gen) != &PyGen_Type && Py_TYPE(gen) != &PyCoro_Type, SEND); DEOPT_IF(gen->gi_frame_state >= FRAME_EXECUTING, SEND); STAT_INC(SEND, hit); _PyInterpreterFrame *gen_frame = (_PyInterpreterFrame *)gen->gi_iframe; frame->return_offset = oparg; STACK_SHRINK(1); _PyFrame_StackPush(gen_frame, v); gen->gi_frame_state = FRAME_EXECUTING; gen->gi_exc_state.previous_item = tstate->exc_info; tstate->exc_info = &gen->gi_exc_state; JUMPBY(INLINE_CACHE_ENTRIES_SEND); DISPATCH_INLINED(gen_frame); } inst(INSTRUMENTED_YIELD_VALUE, (retval -- unused)) { assert(frame != &entry_frame); PyGenObject *gen = _PyFrame_GetGenerator(frame); gen->gi_frame_state = FRAME_SUSPENDED; _PyFrame_SetStackPointer(frame, stack_pointer - 1); int err = _Py_call_instrumentation_arg( tstate, PY_MONITORING_EVENT_PY_YIELD, frame, next_instr-1, retval); if (err) goto error; tstate->exc_info = gen->gi_exc_state.previous_item; gen->gi_exc_state.previous_item = NULL; _Py_LeaveRecursiveCallPy(tstate); _PyInterpreterFrame *gen_frame = frame; frame = cframe.current_frame = frame->previous; gen_frame->previous = NULL; _PyFrame_StackPush(frame, retval); goto resume_frame; } inst(YIELD_VALUE, (retval -- unused)) { // NOTE: It's important that YIELD_VALUE never raises an exception! // The compiler treats any exception raised here as a failed close() // or throw() call. assert(frame != &entry_frame); PyGenObject *gen = _PyFrame_GetGenerator(frame); gen->gi_frame_state = FRAME_SUSPENDED; _PyFrame_SetStackPointer(frame, stack_pointer - 1); tstate->exc_info = gen->gi_exc_state.previous_item; gen->gi_exc_state.previous_item = NULL; _Py_LeaveRecursiveCallPy(tstate); _PyInterpreterFrame *gen_frame = frame; frame = cframe.current_frame = frame->previous; gen_frame->previous = NULL; _PyFrame_StackPush(frame, retval); goto resume_frame; } inst(POP_EXCEPT, (exc_value -- )) { _PyErr_StackItem *exc_info = tstate->exc_info; Py_XSETREF(exc_info->exc_value, exc_value); } inst(RERAISE, (values[oparg], exc -- values[oparg])) { assert(oparg >= 0 && oparg <= 2); if (oparg) { PyObject *lasti = values[0]; if (PyLong_Check(lasti)) { frame->prev_instr = _PyCode_CODE(frame->f_code) + PyLong_AsLong(lasti); assert(!_PyErr_Occurred(tstate)); } else { assert(PyLong_Check(lasti)); _PyErr_SetString(tstate, PyExc_SystemError, "lasti is not an int"); goto error; } } assert(exc && PyExceptionInstance_Check(exc)); Py_INCREF(exc); _PyErr_SetRaisedException(tstate, exc); goto exception_unwind; } inst(END_ASYNC_FOR, (awaitable, exc -- )) { assert(exc && PyExceptionInstance_Check(exc)); if (PyErr_GivenExceptionMatches(exc, PyExc_StopAsyncIteration)) { DECREF_INPUTS(); } else { Py_INCREF(exc); _PyErr_SetRaisedException(tstate, exc); goto exception_unwind; } } inst(CLEANUP_THROW, (sub_iter, last_sent_val, exc_value -- none, value)) { assert(throwflag); assert(exc_value && PyExceptionInstance_Check(exc_value)); if (PyErr_GivenExceptionMatches(exc_value, PyExc_StopIteration)) { value = Py_NewRef(((PyStopIterationObject *)exc_value)->value); DECREF_INPUTS(); none = Py_None; } else { _PyErr_SetRaisedException(tstate, Py_NewRef(exc_value)); goto exception_unwind; } } inst(LOAD_ASSERTION_ERROR, ( -- value)) { value = Py_NewRef(PyExc_AssertionError); } inst(LOAD_BUILD_CLASS, ( -- bc)) { if (PyDict_CheckExact(BUILTINS())) { bc = _PyDict_GetItemWithError(BUILTINS(), &_Py_ID(__build_class__)); if (bc == NULL) { if (!_PyErr_Occurred(tstate)) { _PyErr_SetString(tstate, PyExc_NameError, "__build_class__ not found"); } ERROR_IF(true, error); } Py_INCREF(bc); } else { bc = PyObject_GetItem(BUILTINS(), &_Py_ID(__build_class__)); if (bc == NULL) { if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) _PyErr_SetString(tstate, PyExc_NameError, "__build_class__ not found"); ERROR_IF(true, error); } } } inst(STORE_NAME, (v -- )) { PyObject *name = GETITEM(frame->f_code->co_names, oparg); PyObject *ns = LOCALS(); int err; if (ns == NULL) { _PyErr_Format(tstate, PyExc_SystemError, "no locals found when storing %R", name); DECREF_INPUTS(); ERROR_IF(true, error); } if (PyDict_CheckExact(ns)) err = PyDict_SetItem(ns, name, v); else err = PyObject_SetItem(ns, name, v); DECREF_INPUTS(); ERROR_IF(err, error); } inst(DELETE_NAME, (--)) { PyObject *name = GETITEM(frame->f_code->co_names, oparg); PyObject *ns = LOCALS(); int err; if (ns == NULL) { _PyErr_Format(tstate, PyExc_SystemError, "no locals when deleting %R", name); goto error; } err = PyObject_DelItem(ns, name); // Can't use ERROR_IF here. if (err != 0) { format_exc_check_arg(tstate, PyExc_NameError, NAME_ERROR_MSG, name); goto error; } } family(unpack_sequence, INLINE_CACHE_ENTRIES_UNPACK_SEQUENCE) = { UNPACK_SEQUENCE, UNPACK_SEQUENCE_TWO_TUPLE, UNPACK_SEQUENCE_TUPLE, UNPACK_SEQUENCE_LIST, }; inst(UNPACK_SEQUENCE, (unused/1, seq -- unused[oparg])) { #if ENABLE_SPECIALIZATION _PyUnpackSequenceCache *cache = (_PyUnpackSequenceCache *)next_instr; if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) { next_instr--; _Py_Specialize_UnpackSequence(seq, next_instr, oparg); DISPATCH_SAME_OPARG(); } STAT_INC(UNPACK_SEQUENCE, deferred); DECREMENT_ADAPTIVE_COUNTER(cache->counter); #endif /* ENABLE_SPECIALIZATION */ PyObject **top = stack_pointer + oparg - 1; int res = unpack_iterable(tstate, seq, oparg, -1, top); DECREF_INPUTS(); ERROR_IF(res == 0, error); } inst(UNPACK_SEQUENCE_TWO_TUPLE, (unused/1, seq -- values[oparg])) { DEOPT_IF(!PyTuple_CheckExact(seq), UNPACK_SEQUENCE); DEOPT_IF(PyTuple_GET_SIZE(seq) != 2, UNPACK_SEQUENCE); assert(oparg == 2); STAT_INC(UNPACK_SEQUENCE, hit); values[0] = Py_NewRef(PyTuple_GET_ITEM(seq, 1)); values[1] = Py_NewRef(PyTuple_GET_ITEM(seq, 0)); DECREF_INPUTS(); } inst(UNPACK_SEQUENCE_TUPLE, (unused/1, seq -- values[oparg])) { DEOPT_IF(!PyTuple_CheckExact(seq), UNPACK_SEQUENCE); DEOPT_IF(PyTuple_GET_SIZE(seq) != oparg, UNPACK_SEQUENCE); STAT_INC(UNPACK_SEQUENCE, hit); PyObject **items = _PyTuple_ITEMS(seq); for (int i = oparg; --i >= 0; ) { *values++ = Py_NewRef(items[i]); } DECREF_INPUTS(); } inst(UNPACK_SEQUENCE_LIST, (unused/1, seq -- values[oparg])) { DEOPT_IF(!PyList_CheckExact(seq), UNPACK_SEQUENCE); DEOPT_IF(PyList_GET_SIZE(seq) != oparg, UNPACK_SEQUENCE); STAT_INC(UNPACK_SEQUENCE, hit); PyObject **items = _PyList_ITEMS(seq); for (int i = oparg; --i >= 0; ) { *values++ = Py_NewRef(items[i]); } DECREF_INPUTS(); } inst(UNPACK_EX, (seq -- unused[oparg & 0xFF], unused, unused[oparg >> 8])) { int totalargs = 1 + (oparg & 0xFF) + (oparg >> 8); PyObject **top = stack_pointer + totalargs - 1; int res = unpack_iterable(tstate, seq, oparg & 0xFF, oparg >> 8, top); DECREF_INPUTS(); ERROR_IF(res == 0, error); } family(store_attr, INLINE_CACHE_ENTRIES_STORE_ATTR) = { STORE_ATTR, STORE_ATTR_INSTANCE_VALUE, STORE_ATTR_SLOT, STORE_ATTR_WITH_HINT, }; inst(STORE_ATTR, (counter/1, unused/3, v, owner --)) { #if ENABLE_SPECIALIZATION if (ADAPTIVE_COUNTER_IS_ZERO(counter)) { PyObject *name = GETITEM(frame->f_code->co_names, oparg); next_instr--; _Py_Specialize_StoreAttr(owner, next_instr, name); DISPATCH_SAME_OPARG(); } STAT_INC(STORE_ATTR, deferred); _PyAttrCache *cache = (_PyAttrCache *)next_instr; DECREMENT_ADAPTIVE_COUNTER(cache->counter); #else (void)counter; // Unused. #endif /* ENABLE_SPECIALIZATION */ PyObject *name = GETITEM(frame->f_code->co_names, oparg); int err = PyObject_SetAttr(owner, name, v); DECREF_INPUTS(); ERROR_IF(err, error); } inst(DELETE_ATTR, (owner --)) { PyObject *name = GETITEM(frame->f_code->co_names, oparg); int err = PyObject_SetAttr(owner, name, (PyObject *)NULL); DECREF_INPUTS(); ERROR_IF(err, error); } inst(STORE_GLOBAL, (v --)) { PyObject *name = GETITEM(frame->f_code->co_names, oparg); int err = PyDict_SetItem(GLOBALS(), name, v); DECREF_INPUTS(); ERROR_IF(err, error); } inst(DELETE_GLOBAL, (--)) { PyObject *name = GETITEM(frame->f_code->co_names, oparg); int err; err = PyDict_DelItem(GLOBALS(), name); // Can't use ERROR_IF here. if (err != 0) { if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) { format_exc_check_arg(tstate, PyExc_NameError, NAME_ERROR_MSG, name); } goto error; } } op(_LOAD_LOCALS, ( -- locals)) { locals = LOCALS(); if (locals == NULL) { _PyErr_SetString(tstate, PyExc_SystemError, "no locals found"); ERROR_IF(true, error); } Py_INCREF(locals); } macro(LOAD_LOCALS) = _LOAD_LOCALS; op(_LOAD_FROM_DICT_OR_GLOBALS, (mod_or_class_dict -- v)) { PyObject *name = GETITEM(frame->f_code->co_names, oparg); if (PyDict_CheckExact(mod_or_class_dict)) { v = PyDict_GetItemWithError(mod_or_class_dict, name); if (v != NULL) { Py_INCREF(v); } else if (_PyErr_Occurred(tstate)) { Py_DECREF(mod_or_class_dict); goto error; } } else { v = PyObject_GetItem(mod_or_class_dict, name); if (v == NULL) { if (!_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) { Py_DECREF(mod_or_class_dict); goto error; } _PyErr_Clear(tstate); } } Py_DECREF(mod_or_class_dict); if (v == NULL) { v = PyDict_GetItemWithError(GLOBALS(), name); if (v != NULL) { Py_INCREF(v); } else if (_PyErr_Occurred(tstate)) { goto error; } else { if (PyDict_CheckExact(BUILTINS())) { v = PyDict_GetItemWithError(BUILTINS(), name); if (v == NULL) { if (!_PyErr_Occurred(tstate)) { format_exc_check_arg( tstate, PyExc_NameError, NAME_ERROR_MSG, name); } goto error; } Py_INCREF(v); } else { v = PyObject_GetItem(BUILTINS(), name); if (v == NULL) { if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) { format_exc_check_arg( tstate, PyExc_NameError, NAME_ERROR_MSG, name); } goto error; } } } } } macro(LOAD_NAME) = _LOAD_LOCALS + _LOAD_FROM_DICT_OR_GLOBALS; macro(LOAD_FROM_DICT_OR_GLOBALS) = _LOAD_FROM_DICT_OR_GLOBALS; family(load_global, INLINE_CACHE_ENTRIES_LOAD_GLOBAL) = { LOAD_GLOBAL, LOAD_GLOBAL_MODULE, LOAD_GLOBAL_BUILTIN, }; inst(LOAD_GLOBAL, (unused/1, unused/1, unused/1, unused/1 -- null if (oparg & 1), v)) { #if ENABLE_SPECIALIZATION _PyLoadGlobalCache *cache = (_PyLoadGlobalCache *)next_instr; if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) { PyObject *name = GETITEM(frame->f_code->co_names, oparg>>1); next_instr--; _Py_Specialize_LoadGlobal(GLOBALS(), BUILTINS(), next_instr, name); DISPATCH_SAME_OPARG(); } STAT_INC(LOAD_GLOBAL, deferred); DECREMENT_ADAPTIVE_COUNTER(cache->counter); #endif /* ENABLE_SPECIALIZATION */ PyObject *name = GETITEM(frame->f_code->co_names, oparg>>1); if (PyDict_CheckExact(GLOBALS()) && PyDict_CheckExact(BUILTINS())) { v = _PyDict_LoadGlobal((PyDictObject *)GLOBALS(), (PyDictObject *)BUILTINS(), name); if (v == NULL) { if (!_PyErr_Occurred(tstate)) { /* _PyDict_LoadGlobal() returns NULL without raising * an exception if the key doesn't exist */ format_exc_check_arg(tstate, PyExc_NameError, NAME_ERROR_MSG, name); } ERROR_IF(true, error); } Py_INCREF(v); } else { /* Slow-path if globals or builtins is not a dict */ /* namespace 1: globals */ v = PyObject_GetItem(GLOBALS(), name); if (v == NULL) { ERROR_IF(!_PyErr_ExceptionMatches(tstate, PyExc_KeyError), error); _PyErr_Clear(tstate); /* namespace 2: builtins */ v = PyObject_GetItem(BUILTINS(), name); if (v == NULL) { if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) { format_exc_check_arg( tstate, PyExc_NameError, NAME_ERROR_MSG, name); } ERROR_IF(true, error); } } } null = NULL; } inst(LOAD_GLOBAL_MODULE, (unused/1, index/1, version/1, unused/1 -- null if (oparg & 1), res)) { DEOPT_IF(!PyDict_CheckExact(GLOBALS()), LOAD_GLOBAL); PyDictObject *dict = (PyDictObject *)GLOBALS(); DEOPT_IF(dict->ma_keys->dk_version != version, LOAD_GLOBAL); assert(DK_IS_UNICODE(dict->ma_keys)); PyDictUnicodeEntry *entries = DK_UNICODE_ENTRIES(dict->ma_keys); res = entries[index].me_value; DEOPT_IF(res == NULL, LOAD_GLOBAL); Py_INCREF(res); STAT_INC(LOAD_GLOBAL, hit); null = NULL; } inst(LOAD_GLOBAL_BUILTIN, (unused/1, index/1, mod_version/1, bltn_version/1 -- null if (oparg & 1), res)) { DEOPT_IF(!PyDict_CheckExact(GLOBALS()), LOAD_GLOBAL); DEOPT_IF(!PyDict_CheckExact(BUILTINS()), LOAD_GLOBAL); PyDictObject *mdict = (PyDictObject *)GLOBALS(); PyDictObject *bdict = (PyDictObject *)BUILTINS(); assert(opcode == LOAD_GLOBAL_BUILTIN); DEOPT_IF(mdict->ma_keys->dk_version != mod_version, LOAD_GLOBAL); DEOPT_IF(bdict->ma_keys->dk_version != bltn_version, LOAD_GLOBAL); assert(DK_IS_UNICODE(bdict->ma_keys)); PyDictUnicodeEntry *entries = DK_UNICODE_ENTRIES(bdict->ma_keys); res = entries[index].me_value; DEOPT_IF(res == NULL, LOAD_GLOBAL); Py_INCREF(res); STAT_INC(LOAD_GLOBAL, hit); null = NULL; } inst(DELETE_FAST, (--)) { PyObject *v = GETLOCAL(oparg); ERROR_IF(v == NULL, unbound_local_error); SETLOCAL(oparg, NULL); } inst(MAKE_CELL, (--)) { // "initial" is probably NULL but not if it's an arg (or set // via PyFrame_LocalsToFast() before MAKE_CELL has run). PyObject *initial = GETLOCAL(oparg); PyObject *cell = PyCell_New(initial); if (cell == NULL) { goto resume_with_error; } SETLOCAL(oparg, cell); } inst(DELETE_DEREF, (--)) { PyObject *cell = GETLOCAL(oparg); PyObject *oldobj = PyCell_GET(cell); // Can't use ERROR_IF here. // Fortunately we don't need its superpower. if (oldobj == NULL) { format_exc_unbound(tstate, frame->f_code, oparg); goto error; } PyCell_SET(cell, NULL); Py_DECREF(oldobj); } inst(LOAD_FROM_DICT_OR_DEREF, (class_dict -- value)) { PyObject *name; assert(class_dict); assert(oparg >= 0 && oparg < frame->f_code->co_nlocalsplus); name = PyTuple_GET_ITEM(frame->f_code->co_localsplusnames, oparg); if (PyDict_CheckExact(class_dict)) { value = PyDict_GetItemWithError(class_dict, name); if (value != NULL) { Py_INCREF(value); } else if (_PyErr_Occurred(tstate)) { Py_DECREF(class_dict); goto error; } } else { value = PyObject_GetItem(class_dict, name); if (value == NULL) { if (!_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) { Py_DECREF(class_dict); goto error; } _PyErr_Clear(tstate); } } Py_DECREF(class_dict); if (!value) { PyObject *cell = GETLOCAL(oparg); value = PyCell_GET(cell); if (value == NULL) { format_exc_unbound(tstate, frame->f_code, oparg); goto error; } Py_INCREF(value); } } inst(LOAD_DEREF, ( -- value)) { PyObject *cell = GETLOCAL(oparg); value = PyCell_GET(cell); if (value == NULL) { format_exc_unbound(tstate, frame->f_code, oparg); ERROR_IF(true, error); } Py_INCREF(value); } inst(STORE_DEREF, (v --)) { PyObject *cell = GETLOCAL(oparg); PyObject *oldobj = PyCell_GET(cell); PyCell_SET(cell, v); Py_XDECREF(oldobj); } inst(COPY_FREE_VARS, (--)) { /* Copy closure variables to free variables */ PyCodeObject *co = frame->f_code; assert(PyFunction_Check(frame->f_funcobj)); PyObject *closure = ((PyFunctionObject *)frame->f_funcobj)->func_closure; assert(oparg == co->co_nfreevars); int offset = co->co_nlocalsplus - oparg; for (int i = 0; i < oparg; ++i) { PyObject *o = PyTuple_GET_ITEM(closure, i); frame->localsplus[offset + i] = Py_NewRef(o); } } inst(BUILD_STRING, (pieces[oparg] -- str)) { str = _PyUnicode_JoinArray(&_Py_STR(empty), pieces, oparg); DECREF_INPUTS(); ERROR_IF(str == NULL, error); } inst(BUILD_TUPLE, (values[oparg] -- tup)) { tup = _PyTuple_FromArraySteal(values, oparg); ERROR_IF(tup == NULL, error); } inst(BUILD_LIST, (values[oparg] -- list)) { list = _PyList_FromArraySteal(values, oparg); ERROR_IF(list == NULL, error); } inst(LIST_EXTEND, (list, unused[oparg-1], iterable -- list, unused[oparg-1])) { PyObject *none_val = _PyList_Extend((PyListObject *)list, iterable); if (none_val == NULL) { if (_PyErr_ExceptionMatches(tstate, PyExc_TypeError) && (Py_TYPE(iterable)->tp_iter == NULL && !PySequence_Check(iterable))) { _PyErr_Clear(tstate); _PyErr_Format(tstate, PyExc_TypeError, "Value after * must be an iterable, not %.200s", Py_TYPE(iterable)->tp_name); } DECREF_INPUTS(); ERROR_IF(true, error); } assert(Py_IsNone(none_val)); DECREF_INPUTS(); } inst(SET_UPDATE, (set, unused[oparg-1], iterable -- set, unused[oparg-1])) { int err = _PySet_Update(set, iterable); DECREF_INPUTS(); ERROR_IF(err < 0, error); } inst(BUILD_SET, (values[oparg] -- set)) { set = PySet_New(NULL); if (set == NULL) goto error; int err = 0; for (int i = 0; i < oparg; i++) { PyObject *item = values[i]; if (err == 0) err = PySet_Add(set, item); Py_DECREF(item); } if (err != 0) { Py_DECREF(set); ERROR_IF(true, error); } } inst(BUILD_MAP, (values[oparg*2] -- map)) { map = _PyDict_FromItems( values, 2, values+1, 2, oparg); if (map == NULL) goto error; DECREF_INPUTS(); ERROR_IF(map == NULL, error); } inst(SETUP_ANNOTATIONS, (--)) { int err; PyObject *ann_dict; if (LOCALS() == NULL) { _PyErr_Format(tstate, PyExc_SystemError, "no locals found when setting up annotations"); ERROR_IF(true, error); } /* check if __annotations__ in locals()... */ if (PyDict_CheckExact(LOCALS())) { ann_dict = _PyDict_GetItemWithError(LOCALS(), &_Py_ID(__annotations__)); if (ann_dict == NULL) { ERROR_IF(_PyErr_Occurred(tstate), error); /* ...if not, create a new one */ ann_dict = PyDict_New(); ERROR_IF(ann_dict == NULL, error); err = PyDict_SetItem(LOCALS(), &_Py_ID(__annotations__), ann_dict); Py_DECREF(ann_dict); ERROR_IF(err, error); } } else { /* do the same if locals() is not a dict */ ann_dict = PyObject_GetItem(LOCALS(), &_Py_ID(__annotations__)); if (ann_dict == NULL) { ERROR_IF(!_PyErr_ExceptionMatches(tstate, PyExc_KeyError), error); _PyErr_Clear(tstate); ann_dict = PyDict_New(); ERROR_IF(ann_dict == NULL, error); err = PyObject_SetItem(LOCALS(), &_Py_ID(__annotations__), ann_dict); Py_DECREF(ann_dict); ERROR_IF(err, error); } else { Py_DECREF(ann_dict); } } } inst(BUILD_CONST_KEY_MAP, (values[oparg], keys -- map)) { if (!PyTuple_CheckExact(keys) || PyTuple_GET_SIZE(keys) != (Py_ssize_t)oparg) { _PyErr_SetString(tstate, PyExc_SystemError, "bad BUILD_CONST_KEY_MAP keys argument"); goto error; // Pop the keys and values. } map = _PyDict_FromItems( &PyTuple_GET_ITEM(keys, 0), 1, values, 1, oparg); DECREF_INPUTS(); ERROR_IF(map == NULL, error); } inst(DICT_UPDATE, (update --)) { PyObject *dict = PEEK(oparg + 1); // update is still on the stack if (PyDict_Update(dict, update) < 0) { if (_PyErr_ExceptionMatches(tstate, PyExc_AttributeError)) { _PyErr_Format(tstate, PyExc_TypeError, "'%.200s' object is not a mapping", Py_TYPE(update)->tp_name); } DECREF_INPUTS(); ERROR_IF(true, error); } DECREF_INPUTS(); } inst(DICT_MERGE, (update --)) { PyObject *dict = PEEK(oparg + 1); // update is still on the stack if (_PyDict_MergeEx(dict, update, 2) < 0) { format_kwargs_error(tstate, PEEK(3 + oparg), update); DECREF_INPUTS(); ERROR_IF(true, error); } DECREF_INPUTS(); PREDICT(CALL_FUNCTION_EX); } inst(MAP_ADD, (key, value --)) { PyObject *dict = PEEK(oparg + 2); // key, value are still on the stack assert(PyDict_CheckExact(dict)); /* dict[key] = value */ // Do not DECREF INPUTS because the function steals the references ERROR_IF(_PyDict_SetItem_Take2((PyDictObject *)dict, key, value) != 0, error); PREDICT(JUMP_BACKWARD); } inst(INSTRUMENTED_LOAD_SUPER_ATTR, (unused/9, unused, unused, unused -- unused if (oparg & 1), unused)) { _PySuperAttrCache *cache = (_PySuperAttrCache *)next_instr; // cancel out the decrement that will happen in LOAD_SUPER_ATTR; we // don't want to specialize instrumented instructions INCREMENT_ADAPTIVE_COUNTER(cache->counter); GO_TO_INSTRUCTION(LOAD_SUPER_ATTR); } family(load_super_attr, INLINE_CACHE_ENTRIES_LOAD_SUPER_ATTR) = { LOAD_SUPER_ATTR, LOAD_SUPER_ATTR_ATTR, LOAD_SUPER_ATTR_METHOD, }; inst(LOAD_SUPER_ATTR, (unused/1, global_super, class, self -- res2 if (oparg & 1), res)) { PyObject *name = GETITEM(frame->f_code->co_names, oparg >> 2); int load_method = oparg & 1; #if ENABLE_SPECIALIZATION _PySuperAttrCache *cache = (_PySuperAttrCache *)next_instr; if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) { next_instr--; _Py_Specialize_LoadSuperAttr(global_super, class, next_instr, load_method); DISPATCH_SAME_OPARG(); } STAT_INC(LOAD_SUPER_ATTR, deferred); DECREMENT_ADAPTIVE_COUNTER(cache->counter); #endif /* ENABLE_SPECIALIZATION */ if (opcode == INSTRUMENTED_LOAD_SUPER_ATTR) { PyObject *arg = oparg & 2 ? class : &_PyInstrumentation_MISSING; int err = _Py_call_instrumentation_2args( tstate, PY_MONITORING_EVENT_CALL, frame, next_instr-1, global_super, arg); ERROR_IF(err, error); } // we make no attempt to optimize here; specializations should // handle any case whose performance we care about PyObject *stack[] = {class, self}; PyObject *super = PyObject_Vectorcall(global_super, stack, oparg & 2, NULL); if (opcode == INSTRUMENTED_LOAD_SUPER_ATTR) { PyObject *arg = oparg & 2 ? class : &_PyInstrumentation_MISSING; if (super == NULL) { _Py_call_instrumentation_exc2( tstate, PY_MONITORING_EVENT_C_RAISE, frame, next_instr-1, global_super, arg); } else { int err = _Py_call_instrumentation_2args( tstate, PY_MONITORING_EVENT_C_RETURN, frame, next_instr-1, global_super, arg); if (err < 0) { Py_CLEAR(super); } } } DECREF_INPUTS(); ERROR_IF(super == NULL, error); res = PyObject_GetAttr(super, name); Py_DECREF(super); ERROR_IF(res == NULL, error); } inst(LOAD_SUPER_ATTR_ATTR, (unused/1, global_super, class, self -- res2 if (oparg & 1), res)) { assert(!(oparg & 1)); DEOPT_IF(global_super != (PyObject *)&PySuper_Type, LOAD_SUPER_ATTR); DEOPT_IF(!PyType_Check(class), LOAD_SUPER_ATTR); STAT_INC(LOAD_SUPER_ATTR, hit); PyObject *name = GETITEM(frame->f_code->co_names, oparg >> 2); res = _PySuper_Lookup((PyTypeObject *)class, self, name, NULL); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } inst(LOAD_SUPER_ATTR_METHOD, (unused/1, global_super, class, self -- res2, res)) { assert(oparg & 1); DEOPT_IF(global_super != (PyObject *)&PySuper_Type, LOAD_SUPER_ATTR); DEOPT_IF(!PyType_Check(class), LOAD_SUPER_ATTR); STAT_INC(LOAD_SUPER_ATTR, hit); PyObject *name = GETITEM(frame->f_code->co_names, oparg >> 2); PyTypeObject *cls = (PyTypeObject *)class; int method_found = 0; res2 = _PySuper_Lookup(cls, self, name, cls->tp_getattro == PyObject_GenericGetAttr ? &method_found : NULL); Py_DECREF(global_super); Py_DECREF(class); if (res2 == NULL) { Py_DECREF(self); ERROR_IF(true, error); } if (method_found) { res = self; // transfer ownership } else { Py_DECREF(self); res = res2; res2 = NULL; } } family(load_attr, INLINE_CACHE_ENTRIES_LOAD_ATTR) = { LOAD_ATTR, LOAD_ATTR_INSTANCE_VALUE, LOAD_ATTR_MODULE, LOAD_ATTR_WITH_HINT, LOAD_ATTR_SLOT, LOAD_ATTR_CLASS, LOAD_ATTR_PROPERTY, LOAD_ATTR_GETATTRIBUTE_OVERRIDDEN, LOAD_ATTR_METHOD_WITH_VALUES, LOAD_ATTR_METHOD_NO_DICT, LOAD_ATTR_METHOD_LAZY_DICT, }; inst(LOAD_ATTR, (unused/9, owner -- res2 if (oparg & 1), res)) { #if ENABLE_SPECIALIZATION _PyAttrCache *cache = (_PyAttrCache *)next_instr; if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) { PyObject *name = GETITEM(frame->f_code->co_names, oparg>>1); next_instr--; _Py_Specialize_LoadAttr(owner, next_instr, name); DISPATCH_SAME_OPARG(); } STAT_INC(LOAD_ATTR, deferred); DECREMENT_ADAPTIVE_COUNTER(cache->counter); #endif /* ENABLE_SPECIALIZATION */ PyObject *name = GETITEM(frame->f_code->co_names, oparg >> 1); if (oparg & 1) { /* Designed to work in tandem with CALL, pushes two values. */ PyObject* meth = NULL; if (_PyObject_GetMethod(owner, name, &meth)) { /* We can bypass temporary bound method object. meth is unbound method and obj is self. meth | self | arg1 | ... | argN */ assert(meth != NULL); // No errors on this branch res2 = meth; res = owner; // Transfer ownership } else { /* meth is not an unbound method (but a regular attr, or something was returned by a descriptor protocol). Set the second element of the stack to NULL, to signal CALL that it's not a method call. NULL | meth | arg1 | ... | argN */ DECREF_INPUTS(); ERROR_IF(meth == NULL, error); res2 = NULL; res = meth; } } else { /* Classic, pushes one value. */ res = PyObject_GetAttr(owner, name); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } } inst(LOAD_ATTR_INSTANCE_VALUE, (unused/1, type_version/2, index/1, unused/5, owner -- res2 if (oparg & 1), res)) { PyTypeObject *tp = Py_TYPE(owner); assert(type_version != 0); DEOPT_IF(tp->tp_version_tag != type_version, LOAD_ATTR); assert(tp->tp_dictoffset < 0); assert(tp->tp_flags & Py_TPFLAGS_MANAGED_DICT); PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(owner); DEOPT_IF(!_PyDictOrValues_IsValues(dorv), LOAD_ATTR); res = _PyDictOrValues_GetValues(dorv)->values[index]; DEOPT_IF(res == NULL, LOAD_ATTR); STAT_INC(LOAD_ATTR, hit); Py_INCREF(res); res2 = NULL; DECREF_INPUTS(); } inst(LOAD_ATTR_MODULE, (unused/1, type_version/2, index/1, unused/5, owner -- res2 if (oparg & 1), res)) { DEOPT_IF(!PyModule_CheckExact(owner), LOAD_ATTR); PyDictObject *dict = (PyDictObject *)((PyModuleObject *)owner)->md_dict; assert(dict != NULL); DEOPT_IF(dict->ma_keys->dk_version != type_version, LOAD_ATTR); assert(dict->ma_keys->dk_kind == DICT_KEYS_UNICODE); assert(index < dict->ma_keys->dk_nentries); PyDictUnicodeEntry *ep = DK_UNICODE_ENTRIES(dict->ma_keys) + index; res = ep->me_value; DEOPT_IF(res == NULL, LOAD_ATTR); STAT_INC(LOAD_ATTR, hit); Py_INCREF(res); res2 = NULL; DECREF_INPUTS(); } inst(LOAD_ATTR_WITH_HINT, (unused/1, type_version/2, index/1, unused/5, owner -- res2 if (oparg & 1), res)) { PyTypeObject *tp = Py_TYPE(owner); assert(type_version != 0); DEOPT_IF(tp->tp_version_tag != type_version, LOAD_ATTR); assert(tp->tp_flags & Py_TPFLAGS_MANAGED_DICT); PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(owner); DEOPT_IF(_PyDictOrValues_IsValues(dorv), LOAD_ATTR); PyDictObject *dict = (PyDictObject *)_PyDictOrValues_GetDict(dorv); DEOPT_IF(dict == NULL, LOAD_ATTR); assert(PyDict_CheckExact((PyObject *)dict)); PyObject *name = GETITEM(frame->f_code->co_names, oparg>>1); uint16_t hint = index; DEOPT_IF(hint >= (size_t)dict->ma_keys->dk_nentries, LOAD_ATTR); if (DK_IS_UNICODE(dict->ma_keys)) { PyDictUnicodeEntry *ep = DK_UNICODE_ENTRIES(dict->ma_keys) + hint; DEOPT_IF(ep->me_key != name, LOAD_ATTR); res = ep->me_value; } else { PyDictKeyEntry *ep = DK_ENTRIES(dict->ma_keys) + hint; DEOPT_IF(ep->me_key != name, LOAD_ATTR); res = ep->me_value; } DEOPT_IF(res == NULL, LOAD_ATTR); STAT_INC(LOAD_ATTR, hit); Py_INCREF(res); res2 = NULL; DECREF_INPUTS(); } inst(LOAD_ATTR_SLOT, (unused/1, type_version/2, index/1, unused/5, owner -- res2 if (oparg & 1), res)) { PyTypeObject *tp = Py_TYPE(owner); assert(type_version != 0); DEOPT_IF(tp->tp_version_tag != type_version, LOAD_ATTR); char *addr = (char *)owner + index; res = *(PyObject **)addr; DEOPT_IF(res == NULL, LOAD_ATTR); STAT_INC(LOAD_ATTR, hit); Py_INCREF(res); res2 = NULL; DECREF_INPUTS(); } inst(LOAD_ATTR_CLASS, (unused/1, type_version/2, unused/2, descr/4, cls -- res2 if (oparg & 1), res)) { DEOPT_IF(!PyType_Check(cls), LOAD_ATTR); DEOPT_IF(((PyTypeObject *)cls)->tp_version_tag != type_version, LOAD_ATTR); assert(type_version != 0); STAT_INC(LOAD_ATTR, hit); res2 = NULL; res = descr; assert(res != NULL); Py_INCREF(res); DECREF_INPUTS(); } inst(LOAD_ATTR_PROPERTY, (unused/1, type_version/2, func_version/2, fget/4, owner -- unused if (oparg & 1), unused)) { DEOPT_IF(tstate->interp->eval_frame, LOAD_ATTR); PyTypeObject *cls = Py_TYPE(owner); DEOPT_IF(cls->tp_version_tag != type_version, LOAD_ATTR); assert(type_version != 0); assert(Py_IS_TYPE(fget, &PyFunction_Type)); PyFunctionObject *f = (PyFunctionObject *)fget; assert(func_version != 0); DEOPT_IF(f->func_version != func_version, LOAD_ATTR); PyCodeObject *code = (PyCodeObject *)f->func_code; assert(code->co_argcount == 1); DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize), LOAD_ATTR); STAT_INC(LOAD_ATTR, hit); Py_INCREF(fget); _PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, f, 1); // Manipulate stack directly because we exit with DISPATCH_INLINED(). SET_TOP(NULL); int shrink_stack = !(oparg & 1); STACK_SHRINK(shrink_stack); new_frame->localsplus[0] = owner; JUMPBY(INLINE_CACHE_ENTRIES_LOAD_ATTR); frame->return_offset = 0; DISPATCH_INLINED(new_frame); } inst(LOAD_ATTR_GETATTRIBUTE_OVERRIDDEN, (unused/1, type_version/2, func_version/2, getattribute/4, owner -- unused if (oparg & 1), unused)) { DEOPT_IF(tstate->interp->eval_frame, LOAD_ATTR); PyTypeObject *cls = Py_TYPE(owner); DEOPT_IF(cls->tp_version_tag != type_version, LOAD_ATTR); assert(type_version != 0); assert(Py_IS_TYPE(getattribute, &PyFunction_Type)); PyFunctionObject *f = (PyFunctionObject *)getattribute; assert(func_version != 0); DEOPT_IF(f->func_version != func_version, LOAD_ATTR); PyCodeObject *code = (PyCodeObject *)f->func_code; assert(code->co_argcount == 2); DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize), LOAD_ATTR); STAT_INC(LOAD_ATTR, hit); PyObject *name = GETITEM(frame->f_code->co_names, oparg >> 1); Py_INCREF(f); _PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, f, 2); // Manipulate stack directly because we exit with DISPATCH_INLINED(). SET_TOP(NULL); int shrink_stack = !(oparg & 1); STACK_SHRINK(shrink_stack); new_frame->localsplus[0] = owner; new_frame->localsplus[1] = Py_NewRef(name); JUMPBY(INLINE_CACHE_ENTRIES_LOAD_ATTR); frame->return_offset = 0; DISPATCH_INLINED(new_frame); } inst(STORE_ATTR_INSTANCE_VALUE, (unused/1, type_version/2, index/1, value, owner --)) { PyTypeObject *tp = Py_TYPE(owner); assert(type_version != 0); DEOPT_IF(tp->tp_version_tag != type_version, STORE_ATTR); assert(tp->tp_flags & Py_TPFLAGS_MANAGED_DICT); PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(owner); DEOPT_IF(!_PyDictOrValues_IsValues(dorv), STORE_ATTR); STAT_INC(STORE_ATTR, hit); PyDictValues *values = _PyDictOrValues_GetValues(dorv); PyObject *old_value = values->values[index]; values->values[index] = value; if (old_value == NULL) { _PyDictValues_AddToInsertionOrder(values, index); } else { Py_DECREF(old_value); } Py_DECREF(owner); } inst(STORE_ATTR_WITH_HINT, (unused/1, type_version/2, hint/1, value, owner --)) { PyTypeObject *tp = Py_TYPE(owner); assert(type_version != 0); DEOPT_IF(tp->tp_version_tag != type_version, STORE_ATTR); assert(tp->tp_flags & Py_TPFLAGS_MANAGED_DICT); PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(owner); DEOPT_IF(_PyDictOrValues_IsValues(dorv), STORE_ATTR); PyDictObject *dict = (PyDictObject *)_PyDictOrValues_GetDict(dorv); DEOPT_IF(dict == NULL, STORE_ATTR); assert(PyDict_CheckExact((PyObject *)dict)); PyObject *name = GETITEM(frame->f_code->co_names, oparg); DEOPT_IF(hint >= (size_t)dict->ma_keys->dk_nentries, STORE_ATTR); PyObject *old_value; uint64_t new_version; if (DK_IS_UNICODE(dict->ma_keys)) { PyDictUnicodeEntry *ep = DK_UNICODE_ENTRIES(dict->ma_keys) + hint; DEOPT_IF(ep->me_key != name, STORE_ATTR); old_value = ep->me_value; DEOPT_IF(old_value == NULL, STORE_ATTR); new_version = _PyDict_NotifyEvent(tstate->interp, PyDict_EVENT_MODIFIED, dict, name, value); ep->me_value = value; } else { PyDictKeyEntry *ep = DK_ENTRIES(dict->ma_keys) + hint; DEOPT_IF(ep->me_key != name, STORE_ATTR); old_value = ep->me_value; DEOPT_IF(old_value == NULL, STORE_ATTR); new_version = _PyDict_NotifyEvent(tstate->interp, PyDict_EVENT_MODIFIED, dict, name, value); ep->me_value = value; } Py_DECREF(old_value); STAT_INC(STORE_ATTR, hit); /* Ensure dict is GC tracked if it needs to be */ if (!_PyObject_GC_IS_TRACKED(dict) && _PyObject_GC_MAY_BE_TRACKED(value)) { _PyObject_GC_TRACK(dict); } /* PEP 509 */ dict->ma_version_tag = new_version; Py_DECREF(owner); } inst(STORE_ATTR_SLOT, (unused/1, type_version/2, index/1, value, owner --)) { PyTypeObject *tp = Py_TYPE(owner); assert(type_version != 0); DEOPT_IF(tp->tp_version_tag != type_version, STORE_ATTR); char *addr = (char *)owner + index; STAT_INC(STORE_ATTR, hit); PyObject *old_value = *(PyObject **)addr; *(PyObject **)addr = value; Py_XDECREF(old_value); Py_DECREF(owner); } family(compare_op, INLINE_CACHE_ENTRIES_COMPARE_OP) = { COMPARE_OP, COMPARE_OP_FLOAT, COMPARE_OP_INT, COMPARE_OP_STR, }; inst(COMPARE_OP, (unused/1, left, right -- res)) { #if ENABLE_SPECIALIZATION _PyCompareOpCache *cache = (_PyCompareOpCache *)next_instr; if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) { next_instr--; _Py_Specialize_CompareOp(left, right, next_instr, oparg); DISPATCH_SAME_OPARG(); } STAT_INC(COMPARE_OP, deferred); DECREMENT_ADAPTIVE_COUNTER(cache->counter); #endif /* ENABLE_SPECIALIZATION */ assert((oparg >> 4) <= Py_GE); res = PyObject_RichCompare(left, right, oparg>>4); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } inst(COMPARE_OP_FLOAT, (unused/1, left, right -- res)) { DEOPT_IF(!PyFloat_CheckExact(left), COMPARE_OP); DEOPT_IF(!PyFloat_CheckExact(right), COMPARE_OP); STAT_INC(COMPARE_OP, hit); double dleft = PyFloat_AS_DOUBLE(left); double dright = PyFloat_AS_DOUBLE(right); // 1 if NaN, 2 if <, 4 if >, 8 if ==; this matches low four bits of the oparg int sign_ish = COMPARISON_BIT(dleft, dright); _Py_DECREF_SPECIALIZED(left, _PyFloat_ExactDealloc); _Py_DECREF_SPECIALIZED(right, _PyFloat_ExactDealloc); res = (sign_ish & oparg) ? Py_True : Py_False; } // Similar to COMPARE_OP_FLOAT inst(COMPARE_OP_INT, (unused/1, left, right -- res)) { DEOPT_IF(!PyLong_CheckExact(left), COMPARE_OP); DEOPT_IF(!PyLong_CheckExact(right), COMPARE_OP); DEOPT_IF(!_PyLong_IsCompact((PyLongObject *)left), COMPARE_OP); DEOPT_IF(!_PyLong_IsCompact((PyLongObject *)right), COMPARE_OP); STAT_INC(COMPARE_OP, hit); assert(_PyLong_DigitCount((PyLongObject *)left) <= 1 && _PyLong_DigitCount((PyLongObject *)right) <= 1); Py_ssize_t ileft = _PyLong_CompactValue((PyLongObject *)left); Py_ssize_t iright = _PyLong_CompactValue((PyLongObject *)right); // 2 if <, 4 if >, 8 if ==; this matches the low 4 bits of the oparg int sign_ish = COMPARISON_BIT(ileft, iright); _Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free); _Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free); res = (sign_ish & oparg) ? Py_True : Py_False; } // Similar to COMPARE_OP_FLOAT, but for ==, != only inst(COMPARE_OP_STR, (unused/1, left, right -- res)) { DEOPT_IF(!PyUnicode_CheckExact(left), COMPARE_OP); DEOPT_IF(!PyUnicode_CheckExact(right), COMPARE_OP); STAT_INC(COMPARE_OP, hit); int eq = _PyUnicode_Equal(left, right); assert((oparg >>4) == Py_EQ || (oparg >>4) == Py_NE); _Py_DECREF_SPECIALIZED(left, _PyUnicode_ExactDealloc); _Py_DECREF_SPECIALIZED(right, _PyUnicode_ExactDealloc); assert(eq == 0 || eq == 1); assert((oparg & 0xf) == COMPARISON_NOT_EQUALS || (oparg & 0xf) == COMPARISON_EQUALS); assert(COMPARISON_NOT_EQUALS + 1 == COMPARISON_EQUALS); res = ((COMPARISON_NOT_EQUALS + eq) & oparg) ? Py_True : Py_False; } inst(IS_OP, (left, right -- b)) { int res = Py_Is(left, right) ^ oparg; DECREF_INPUTS(); b = res ? Py_True : Py_False; } inst(CONTAINS_OP, (left, right -- b)) { int res = PySequence_Contains(right, left); DECREF_INPUTS(); ERROR_IF(res < 0, error); b = (res ^ oparg) ? Py_True : Py_False; } inst(CHECK_EG_MATCH, (exc_value, match_type -- rest, match)) { if (check_except_star_type_valid(tstate, match_type) < 0) { DECREF_INPUTS(); ERROR_IF(true, error); } match = NULL; rest = NULL; int res = exception_group_match(exc_value, match_type, &match, &rest); DECREF_INPUTS(); ERROR_IF(res < 0, error); assert((match == NULL) == (rest == NULL)); ERROR_IF(match == NULL, error); if (!Py_IsNone(match)) { PyErr_SetHandledException(match); } } inst(CHECK_EXC_MATCH, (left, right -- left, b)) { assert(PyExceptionInstance_Check(left)); if (check_except_type_valid(tstate, right) < 0) { DECREF_INPUTS(); ERROR_IF(true, error); } int res = PyErr_GivenExceptionMatches(left, right); DECREF_INPUTS(); b = res ? Py_True : Py_False; } inst(IMPORT_NAME, (level, fromlist -- res)) { PyObject *name = GETITEM(frame->f_code->co_names, oparg); res = import_name(tstate, frame, name, fromlist, level); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } inst(IMPORT_FROM, (from -- from, res)) { PyObject *name = GETITEM(frame->f_code->co_names, oparg); res = import_from(tstate, from, name); ERROR_IF(res == NULL, error); } inst(JUMP_FORWARD, (--)) { JUMPBY(oparg); } inst(JUMP_BACKWARD, (--)) { assert(oparg < INSTR_OFFSET()); JUMPBY(-oparg); CHECK_EVAL_BREAKER(); } inst(POP_JUMP_IF_FALSE, (cond -- )) { if (Py_IsFalse(cond)) { JUMPBY(oparg); } else if (!Py_IsTrue(cond)) { int err = PyObject_IsTrue(cond); DECREF_INPUTS(); if (err == 0) { JUMPBY(oparg); } else { ERROR_IF(err < 0, error); } } } inst(POP_JUMP_IF_TRUE, (cond -- )) { if (Py_IsTrue(cond)) { JUMPBY(oparg); } else if (!Py_IsFalse(cond)) { int err = PyObject_IsTrue(cond); DECREF_INPUTS(); if (err > 0) { JUMPBY(oparg); } else { ERROR_IF(err < 0, error); } } } inst(POP_JUMP_IF_NOT_NONE, (value -- )) { if (!Py_IsNone(value)) { DECREF_INPUTS(); JUMPBY(oparg); } } inst(POP_JUMP_IF_NONE, (value -- )) { if (Py_IsNone(value)) { JUMPBY(oparg); } else { DECREF_INPUTS(); } } inst(JUMP_BACKWARD_NO_INTERRUPT, (--)) { /* This bytecode is used in the `yield from` or `await` loop. * If there is an interrupt, we want it handled in the innermost * generator or coroutine, so we deliberately do not check it here. * (see bpo-30039). */ JUMPBY(-oparg); } inst(GET_LEN, (obj -- obj, len_o)) { // PUSH(len(TOS)) Py_ssize_t len_i = PyObject_Length(obj); ERROR_IF(len_i < 0, error); len_o = PyLong_FromSsize_t(len_i); ERROR_IF(len_o == NULL, error); } inst(MATCH_CLASS, (subject, type, names -- attrs)) { // Pop TOS and TOS1. Set TOS to a tuple of attributes on success, or // None on failure. assert(PyTuple_CheckExact(names)); attrs = match_class(tstate, subject, type, oparg, names); DECREF_INPUTS(); if (attrs) { assert(PyTuple_CheckExact(attrs)); // Success! } else { ERROR_IF(_PyErr_Occurred(tstate), error); // Error! attrs = Py_None; // Failure! } } inst(MATCH_MAPPING, (subject -- subject, res)) { int match = Py_TYPE(subject)->tp_flags & Py_TPFLAGS_MAPPING; res = match ? Py_True : Py_False; PREDICT(POP_JUMP_IF_FALSE); } inst(MATCH_SEQUENCE, (subject -- subject, res)) { int match = Py_TYPE(subject)->tp_flags & Py_TPFLAGS_SEQUENCE; res = match ? Py_True : Py_False; PREDICT(POP_JUMP_IF_FALSE); } inst(MATCH_KEYS, (subject, keys -- subject, keys, values_or_none)) { // On successful match, PUSH(values). Otherwise, PUSH(None). values_or_none = match_keys(tstate, subject, keys); ERROR_IF(values_or_none == NULL, error); } inst(GET_ITER, (iterable -- iter)) { /* before: [obj]; after [getiter(obj)] */ iter = PyObject_GetIter(iterable); DECREF_INPUTS(); ERROR_IF(iter == NULL, error); } inst(GET_YIELD_FROM_ITER, (iterable -- iter)) { /* before: [obj]; after [getiter(obj)] */ if (PyCoro_CheckExact(iterable)) { /* `iterable` is a coroutine */ if (!(frame->f_code->co_flags & (CO_COROUTINE | CO_ITERABLE_COROUTINE))) { /* and it is used in a 'yield from' expression of a regular generator. */ _PyErr_SetString(tstate, PyExc_TypeError, "cannot 'yield from' a coroutine object " "in a non-coroutine generator"); goto error; } iter = iterable; } else if (PyGen_CheckExact(iterable)) { iter = iterable; } else { /* `iterable` is not a generator. */ iter = PyObject_GetIter(iterable); if (iter == NULL) { goto error; } DECREF_INPUTS(); } PREDICT(LOAD_CONST); } // Most members of this family are "secretly" super-instructions. // When the loop is exhausted, they jump, and the jump target is // always END_FOR, which pops two values off the stack. // This is optimized by skipping that instruction and combining // its effect (popping 'iter' instead of pushing 'next'.) family(for_iter, INLINE_CACHE_ENTRIES_FOR_ITER) = { FOR_ITER, FOR_ITER_LIST, FOR_ITER_TUPLE, FOR_ITER_RANGE, FOR_ITER_GEN, }; inst(FOR_ITER, (unused/1, iter -- iter, next)) { #if ENABLE_SPECIALIZATION _PyForIterCache *cache = (_PyForIterCache *)next_instr; if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) { next_instr--; _Py_Specialize_ForIter(iter, next_instr, oparg); DISPATCH_SAME_OPARG(); } STAT_INC(FOR_ITER, deferred); DECREMENT_ADAPTIVE_COUNTER(cache->counter); #endif /* ENABLE_SPECIALIZATION */ /* before: [iter]; after: [iter, iter()] *or* [] (and jump over END_FOR.) */ next = (*Py_TYPE(iter)->tp_iternext)(iter); if (next == NULL) { if (_PyErr_Occurred(tstate)) { if (!_PyErr_ExceptionMatches(tstate, PyExc_StopIteration)) { goto error; } monitor_raise(tstate, frame, next_instr-1); _PyErr_Clear(tstate); } /* iterator ended normally */ assert(next_instr[INLINE_CACHE_ENTRIES_FOR_ITER + oparg].op.code == END_FOR || next_instr[INLINE_CACHE_ENTRIES_FOR_ITER + oparg].op.code == INSTRUMENTED_END_FOR); Py_DECREF(iter); STACK_SHRINK(1); /* Jump forward oparg, then skip following END_FOR instruction */ JUMPBY(INLINE_CACHE_ENTRIES_FOR_ITER + oparg + 1); DISPATCH(); } // Common case: no jump, leave it to the code generator } inst(INSTRUMENTED_FOR_ITER, ( -- )) { _Py_CODEUNIT *here = next_instr-1; _Py_CODEUNIT *target; PyObject *iter = TOP(); PyObject *next = (*Py_TYPE(iter)->tp_iternext)(iter); if (next != NULL) { PUSH(next); target = next_instr + INLINE_CACHE_ENTRIES_FOR_ITER; } else { if (_PyErr_Occurred(tstate)) { if (!_PyErr_ExceptionMatches(tstate, PyExc_StopIteration)) { goto error; } monitor_raise(tstate, frame, here); _PyErr_Clear(tstate); } /* iterator ended normally */ assert(next_instr[INLINE_CACHE_ENTRIES_FOR_ITER + oparg].op.code == END_FOR || next_instr[INLINE_CACHE_ENTRIES_FOR_ITER + oparg].op.code == INSTRUMENTED_END_FOR); STACK_SHRINK(1); Py_DECREF(iter); /* Skip END_FOR */ target = next_instr + INLINE_CACHE_ENTRIES_FOR_ITER + oparg + 1; } INSTRUMENTED_JUMP(here, target, PY_MONITORING_EVENT_BRANCH); } inst(FOR_ITER_LIST, (unused/1, iter -- iter, next)) { DEOPT_IF(Py_TYPE(iter) != &PyListIter_Type, FOR_ITER); _PyListIterObject *it = (_PyListIterObject *)iter; STAT_INC(FOR_ITER, hit); PyListObject *seq = it->it_seq; if (seq) { if (it->it_index < PyList_GET_SIZE(seq)) { next = Py_NewRef(PyList_GET_ITEM(seq, it->it_index++)); goto end_for_iter_list; // End of this instruction } it->it_seq = NULL; Py_DECREF(seq); } Py_DECREF(iter); STACK_SHRINK(1); /* Jump forward oparg, then skip following END_FOR instruction */ JUMPBY(INLINE_CACHE_ENTRIES_FOR_ITER + oparg + 1); DISPATCH(); end_for_iter_list: // Common case: no jump, leave it to the code generator } inst(FOR_ITER_TUPLE, (unused/1, iter -- iter, next)) { _PyTupleIterObject *it = (_PyTupleIterObject *)iter; DEOPT_IF(Py_TYPE(it) != &PyTupleIter_Type, FOR_ITER); STAT_INC(FOR_ITER, hit); PyTupleObject *seq = it->it_seq; if (seq) { if (it->it_index < PyTuple_GET_SIZE(seq)) { next = Py_NewRef(PyTuple_GET_ITEM(seq, it->it_index++)); goto end_for_iter_tuple; // End of this instruction } it->it_seq = NULL; Py_DECREF(seq); } Py_DECREF(iter); STACK_SHRINK(1); /* Jump forward oparg, then skip following END_FOR instruction */ JUMPBY(INLINE_CACHE_ENTRIES_FOR_ITER + oparg + 1); DISPATCH(); end_for_iter_tuple: // Common case: no jump, leave it to the code generator } inst(FOR_ITER_RANGE, (unused/1, iter -- iter, next)) { _PyRangeIterObject *r = (_PyRangeIterObject *)iter; DEOPT_IF(Py_TYPE(r) != &PyRangeIter_Type, FOR_ITER); STAT_INC(FOR_ITER, hit); if (r->len <= 0) { STACK_SHRINK(1); Py_DECREF(r); // Jump over END_FOR instruction. JUMPBY(INLINE_CACHE_ENTRIES_FOR_ITER + oparg + 1); DISPATCH(); } long value = r->start; r->start = value + r->step; r->len--; next = PyLong_FromLong(value); if (next == NULL) { goto error; } } inst(FOR_ITER_GEN, (unused/1, iter -- iter, unused)) { DEOPT_IF(tstate->interp->eval_frame, FOR_ITER); PyGenObject *gen = (PyGenObject *)iter; DEOPT_IF(Py_TYPE(gen) != &PyGen_Type, FOR_ITER); DEOPT_IF(gen->gi_frame_state >= FRAME_EXECUTING, FOR_ITER); STAT_INC(FOR_ITER, hit); _PyInterpreterFrame *gen_frame = (_PyInterpreterFrame *)gen->gi_iframe; frame->return_offset = oparg; _PyFrame_StackPush(gen_frame, Py_None); gen->gi_frame_state = FRAME_EXECUTING; gen->gi_exc_state.previous_item = tstate->exc_info; tstate->exc_info = &gen->gi_exc_state; JUMPBY(INLINE_CACHE_ENTRIES_FOR_ITER); assert(next_instr[oparg].op.code == END_FOR || next_instr[oparg].op.code == INSTRUMENTED_END_FOR); DISPATCH_INLINED(gen_frame); } inst(BEFORE_ASYNC_WITH, (mgr -- exit, res)) { PyObject *enter = _PyObject_LookupSpecial(mgr, &_Py_ID(__aenter__)); if (enter == NULL) { if (!_PyErr_Occurred(tstate)) { _PyErr_Format(tstate, PyExc_TypeError, "'%.200s' object does not support the " "asynchronous context manager protocol", Py_TYPE(mgr)->tp_name); } goto error; } exit = _PyObject_LookupSpecial(mgr, &_Py_ID(__aexit__)); if (exit == NULL) { if (!_PyErr_Occurred(tstate)) { _PyErr_Format(tstate, PyExc_TypeError, "'%.200s' object does not support the " "asynchronous context manager protocol " "(missed __aexit__ method)", Py_TYPE(mgr)->tp_name); } Py_DECREF(enter); goto error; } DECREF_INPUTS(); res = _PyObject_CallNoArgs(enter); Py_DECREF(enter); if (res == NULL) { Py_DECREF(exit); ERROR_IF(true, error); } PREDICT(GET_AWAITABLE); } inst(BEFORE_WITH, (mgr -- exit, res)) { /* pop the context manager, push its __exit__ and the * value returned from calling its __enter__ */ PyObject *enter = _PyObject_LookupSpecial(mgr, &_Py_ID(__enter__)); if (enter == NULL) { if (!_PyErr_Occurred(tstate)) { _PyErr_Format(tstate, PyExc_TypeError, "'%.200s' object does not support the " "context manager protocol", Py_TYPE(mgr)->tp_name); } goto error; } exit = _PyObject_LookupSpecial(mgr, &_Py_ID(__exit__)); if (exit == NULL) { if (!_PyErr_Occurred(tstate)) { _PyErr_Format(tstate, PyExc_TypeError, "'%.200s' object does not support the " "context manager protocol " "(missed __exit__ method)", Py_TYPE(mgr)->tp_name); } Py_DECREF(enter); goto error; } DECREF_INPUTS(); res = _PyObject_CallNoArgs(enter); Py_DECREF(enter); if (res == NULL) { Py_DECREF(exit); ERROR_IF(true, error); } } inst(WITH_EXCEPT_START, (exit_func, lasti, unused, val -- exit_func, lasti, unused, val, res)) { /* At the top of the stack are 4 values: - val: TOP = exc_info() - unused: SECOND = previous exception - lasti: THIRD = lasti of exception in exc_info() - exit_func: FOURTH = the context.__exit__ bound method We call FOURTH(type(TOP), TOP, GetTraceback(TOP)). Then we push the __exit__ return value. */ PyObject *exc, *tb; assert(val && PyExceptionInstance_Check(val)); exc = PyExceptionInstance_Class(val); tb = PyException_GetTraceback(val); Py_XDECREF(tb); assert(PyLong_Check(lasti)); (void)lasti; // Shut up compiler warning if asserts are off PyObject *stack[4] = {NULL, exc, val, tb}; res = PyObject_Vectorcall(exit_func, stack + 1, 3 | PY_VECTORCALL_ARGUMENTS_OFFSET, NULL); ERROR_IF(res == NULL, error); } inst(PUSH_EXC_INFO, (new_exc -- prev_exc, new_exc)) { _PyErr_StackItem *exc_info = tstate->exc_info; if (exc_info->exc_value != NULL) { prev_exc = exc_info->exc_value; } else { prev_exc = Py_None; } assert(PyExceptionInstance_Check(new_exc)); exc_info->exc_value = Py_NewRef(new_exc); } inst(LOAD_ATTR_METHOD_WITH_VALUES, (unused/1, type_version/2, keys_version/2, descr/4, self -- res2 if (oparg & 1), res)) { /* Cached method object */ PyTypeObject *self_cls = Py_TYPE(self); assert(type_version != 0); DEOPT_IF(self_cls->tp_version_tag != type_version, LOAD_ATTR); assert(self_cls->tp_flags & Py_TPFLAGS_MANAGED_DICT); PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(self); DEOPT_IF(!_PyDictOrValues_IsValues(dorv), LOAD_ATTR); PyHeapTypeObject *self_heap_type = (PyHeapTypeObject *)self_cls; DEOPT_IF(self_heap_type->ht_cached_keys->dk_version != keys_version, LOAD_ATTR); STAT_INC(LOAD_ATTR, hit); assert(descr != NULL); res2 = Py_NewRef(descr); assert(_PyType_HasFeature(Py_TYPE(res2), Py_TPFLAGS_METHOD_DESCRIPTOR)); res = self; assert(oparg & 1); } inst(LOAD_ATTR_METHOD_NO_DICT, (unused/1, type_version/2, unused/2, descr/4, self -- res2 if (oparg & 1), res)) { PyTypeObject *self_cls = Py_TYPE(self); DEOPT_IF(self_cls->tp_version_tag != type_version, LOAD_ATTR); assert(self_cls->tp_dictoffset == 0); STAT_INC(LOAD_ATTR, hit); assert(descr != NULL); assert(_PyType_HasFeature(Py_TYPE(descr), Py_TPFLAGS_METHOD_DESCRIPTOR)); res2 = Py_NewRef(descr); res = self; assert(oparg & 1); } inst(LOAD_ATTR_METHOD_LAZY_DICT, (unused/1, type_version/2, unused/2, descr/4, self -- res2 if (oparg & 1), res)) { PyTypeObject *self_cls = Py_TYPE(self); DEOPT_IF(self_cls->tp_version_tag != type_version, LOAD_ATTR); Py_ssize_t dictoffset = self_cls->tp_dictoffset; assert(dictoffset > 0); PyObject *dict = *(PyObject **)((char *)self + dictoffset); /* This object has a __dict__, just not yet created */ DEOPT_IF(dict != NULL, LOAD_ATTR); STAT_INC(LOAD_ATTR, hit); assert(descr != NULL); assert(_PyType_HasFeature(Py_TYPE(descr), Py_TPFLAGS_METHOD_DESCRIPTOR)); res2 = Py_NewRef(descr); res = self; assert(oparg & 1); } inst(KW_NAMES, (--)) { assert(kwnames == NULL); assert(oparg < PyTuple_GET_SIZE(frame->f_code->co_consts)); kwnames = GETITEM(frame->f_code->co_consts, oparg); } inst(INSTRUMENTED_CALL, ( -- )) { int is_meth = PEEK(oparg+2) != NULL; int total_args = oparg + is_meth; PyObject *function = PEEK(total_args + 1); PyObject *arg = total_args == 0 ? &_PyInstrumentation_MISSING : PEEK(total_args); int err = _Py_call_instrumentation_2args( tstate, PY_MONITORING_EVENT_CALL, frame, next_instr-1, function, arg); ERROR_IF(err, error); _PyCallCache *cache = (_PyCallCache *)next_instr; INCREMENT_ADAPTIVE_COUNTER(cache->counter); GO_TO_INSTRUCTION(CALL); } // Cache layout: counter/1, func_version/2 // Neither CALL_INTRINSIC_1/2 nor CALL_FUNCTION_EX are members! family(call, INLINE_CACHE_ENTRIES_CALL) = { CALL, CALL_BOUND_METHOD_EXACT_ARGS, CALL_PY_EXACT_ARGS, CALL_PY_WITH_DEFAULTS, CALL_NO_KW_TYPE_1, CALL_NO_KW_STR_1, CALL_NO_KW_TUPLE_1, CALL_BUILTIN_CLASS, CALL_NO_KW_BUILTIN_O, CALL_NO_KW_BUILTIN_FAST, CALL_BUILTIN_FAST_WITH_KEYWORDS, CALL_NO_KW_LEN, CALL_NO_KW_ISINSTANCE, CALL_NO_KW_LIST_APPEND, CALL_NO_KW_METHOD_DESCRIPTOR_O, CALL_METHOD_DESCRIPTOR_FAST_WITH_KEYWORDS, CALL_NO_KW_METHOD_DESCRIPTOR_NOARGS, CALL_NO_KW_METHOD_DESCRIPTOR_FAST, }; // On entry, the stack is either // [NULL, callable, arg1, arg2, ...] // or // [method, self, arg1, arg2, ...] // (Some args may be keywords, see KW_NAMES, which sets 'kwnames'.) // On exit, the stack is [result]. // When calling Python, inline the call using DISPATCH_INLINED(). inst(CALL, (unused/1, unused/2, method, callable, args[oparg] -- res)) { int is_meth = method != NULL; int total_args = oparg; if (is_meth) { callable = method; args--; total_args++; } #if ENABLE_SPECIALIZATION _PyCallCache *cache = (_PyCallCache *)next_instr; if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) { next_instr--; _Py_Specialize_Call(callable, next_instr, total_args, kwnames); DISPATCH_SAME_OPARG(); } STAT_INC(CALL, deferred); DECREMENT_ADAPTIVE_COUNTER(cache->counter); #endif /* ENABLE_SPECIALIZATION */ if (!is_meth && Py_TYPE(callable) == &PyMethod_Type) { is_meth = 1; // For consistenct; it's dead, though args--; total_args++; PyObject *self = ((PyMethodObject *)callable)->im_self; args[0] = Py_NewRef(self); method = ((PyMethodObject *)callable)->im_func; args[-1] = Py_NewRef(method); Py_DECREF(callable); callable = method; } int positional_args = total_args - KWNAMES_LEN(); // Check if the call can be inlined or not if (Py_TYPE(callable) == &PyFunction_Type && tstate->interp->eval_frame == NULL && ((PyFunctionObject *)callable)->vectorcall == _PyFunction_Vectorcall) { int code_flags = ((PyCodeObject*)PyFunction_GET_CODE(callable))->co_flags; PyObject *locals = code_flags & CO_OPTIMIZED ? NULL : Py_NewRef(PyFunction_GET_GLOBALS(callable)); _PyInterpreterFrame *new_frame = _PyEvalFramePushAndInit( tstate, (PyFunctionObject *)callable, locals, args, positional_args, kwnames ); kwnames = NULL; // Manipulate stack directly since we leave using DISPATCH_INLINED(). STACK_SHRINK(oparg + 2); // The frame has stolen all the arguments from the stack, // so there is no need to clean them up. if (new_frame == NULL) { goto error; } JUMPBY(INLINE_CACHE_ENTRIES_CALL); frame->return_offset = 0; DISPATCH_INLINED(new_frame); } /* Callable is not a normal Python function */ res = PyObject_Vectorcall( callable, args, positional_args | PY_VECTORCALL_ARGUMENTS_OFFSET, kwnames); if (opcode == INSTRUMENTED_CALL) { PyObject *arg = total_args == 0 ? &_PyInstrumentation_MISSING : PEEK(total_args); if (res == NULL) { _Py_call_instrumentation_exc2( tstate, PY_MONITORING_EVENT_C_RAISE, frame, next_instr-1, callable, arg); } else { int err = _Py_call_instrumentation_2args( tstate, PY_MONITORING_EVENT_C_RETURN, frame, next_instr-1, callable, arg); if (err < 0) { Py_CLEAR(res); } } } kwnames = NULL; assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); Py_DECREF(callable); for (int i = 0; i < total_args; i++) { Py_DECREF(args[i]); } ERROR_IF(res == NULL, error); CHECK_EVAL_BREAKER(); } // Start out with [NULL, bound_method, arg1, arg2, ...] // Transform to [callable, self, arg1, arg2, ...] // Then fall through to CALL_PY_EXACT_ARGS inst(CALL_BOUND_METHOD_EXACT_ARGS, (unused/1, unused/2, method, callable, unused[oparg] -- unused)) { DEOPT_IF(method != NULL, CALL); DEOPT_IF(Py_TYPE(callable) != &PyMethod_Type, CALL); STAT_INC(CALL, hit); PyObject *self = ((PyMethodObject *)callable)->im_self; PEEK(oparg + 1) = Py_NewRef(self); // callable PyObject *meth = ((PyMethodObject *)callable)->im_func; PEEK(oparg + 2) = Py_NewRef(meth); // method Py_DECREF(callable); GO_TO_INSTRUCTION(CALL_PY_EXACT_ARGS); } inst(CALL_PY_EXACT_ARGS, (unused/1, func_version/2, method, callable, args[oparg] -- unused)) { assert(kwnames == NULL); DEOPT_IF(tstate->interp->eval_frame, CALL); int is_meth = method != NULL; int argcount = oparg; if (is_meth) { callable = method; args--; argcount++; } DEOPT_IF(!PyFunction_Check(callable), CALL); PyFunctionObject *func = (PyFunctionObject *)callable; DEOPT_IF(func->func_version != func_version, CALL); PyCodeObject *code = (PyCodeObject *)func->func_code; DEOPT_IF(code->co_argcount != argcount, CALL); DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize), CALL); STAT_INC(CALL, hit); _PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, func, argcount); for (int i = 0; i < argcount; i++) { new_frame->localsplus[i] = args[i]; } // Manipulate stack directly since we leave using DISPATCH_INLINED(). STACK_SHRINK(oparg + 2); JUMPBY(INLINE_CACHE_ENTRIES_CALL); frame->return_offset = 0; DISPATCH_INLINED(new_frame); } inst(CALL_PY_WITH_DEFAULTS, (unused/1, func_version/2, method, callable, args[oparg] -- unused)) { assert(kwnames == NULL); DEOPT_IF(tstate->interp->eval_frame, CALL); int is_meth = method != NULL; int argcount = oparg; if (is_meth) { callable = method; args--; argcount++; } DEOPT_IF(!PyFunction_Check(callable), CALL); PyFunctionObject *func = (PyFunctionObject *)callable; DEOPT_IF(func->func_version != func_version, CALL); PyCodeObject *code = (PyCodeObject *)func->func_code; assert(func->func_defaults); assert(PyTuple_CheckExact(func->func_defaults)); int defcount = (int)PyTuple_GET_SIZE(func->func_defaults); assert(defcount <= code->co_argcount); int min_args = code->co_argcount - defcount; DEOPT_IF(argcount > code->co_argcount, CALL); DEOPT_IF(argcount < min_args, CALL); DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize), CALL); STAT_INC(CALL, hit); _PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, func, code->co_argcount); for (int i = 0; i < argcount; i++) { new_frame->localsplus[i] = args[i]; } for (int i = argcount; i < code->co_argcount; i++) { PyObject *def = PyTuple_GET_ITEM(func->func_defaults, i - min_args); new_frame->localsplus[i] = Py_NewRef(def); } // Manipulate stack and cache directly since we leave using DISPATCH_INLINED(). STACK_SHRINK(oparg + 2); JUMPBY(INLINE_CACHE_ENTRIES_CALL); frame->return_offset = 0; DISPATCH_INLINED(new_frame); } inst(CALL_NO_KW_TYPE_1, (unused/1, unused/2, null, callable, args[oparg] -- res)) { assert(kwnames == NULL); assert(oparg == 1); DEOPT_IF(null != NULL, CALL); PyObject *obj = args[0]; DEOPT_IF(callable != (PyObject *)&PyType_Type, CALL); STAT_INC(CALL, hit); res = Py_NewRef(Py_TYPE(obj)); Py_DECREF(obj); Py_DECREF(&PyType_Type); // I.e., callable } inst(CALL_NO_KW_STR_1, (unused/1, unused/2, null, callable, args[oparg] -- res)) { assert(kwnames == NULL); assert(oparg == 1); DEOPT_IF(null != NULL, CALL); DEOPT_IF(callable != (PyObject *)&PyUnicode_Type, CALL); STAT_INC(CALL, hit); PyObject *arg = args[0]; res = PyObject_Str(arg); Py_DECREF(arg); Py_DECREF(&PyUnicode_Type); // I.e., callable ERROR_IF(res == NULL, error); CHECK_EVAL_BREAKER(); } inst(CALL_NO_KW_TUPLE_1, (unused/1, unused/2, null, callable, args[oparg] -- res)) { assert(kwnames == NULL); assert(oparg == 1); DEOPT_IF(null != NULL, CALL); DEOPT_IF(callable != (PyObject *)&PyTuple_Type, CALL); STAT_INC(CALL, hit); PyObject *arg = args[0]; res = PySequence_Tuple(arg); Py_DECREF(arg); Py_DECREF(&PyTuple_Type); // I.e., tuple ERROR_IF(res == NULL, error); CHECK_EVAL_BREAKER(); } inst(CALL_BUILTIN_CLASS, (unused/1, unused/2, method, callable, args[oparg] -- res)) { int is_meth = method != NULL; int total_args = oparg; if (is_meth) { callable = method; args--; total_args++; } int kwnames_len = KWNAMES_LEN(); DEOPT_IF(!PyType_Check(callable), CALL); PyTypeObject *tp = (PyTypeObject *)callable; DEOPT_IF(tp->tp_vectorcall == NULL, CALL); STAT_INC(CALL, hit); res = tp->tp_vectorcall((PyObject *)tp, args, total_args - kwnames_len, kwnames); kwnames = NULL; /* Free the arguments. */ for (int i = 0; i < total_args; i++) { Py_DECREF(args[i]); } Py_DECREF(tp); ERROR_IF(res == NULL, error); CHECK_EVAL_BREAKER(); } inst(CALL_NO_KW_BUILTIN_O, (unused/1, unused/2, method, callable, args[oparg] -- res)) { /* Builtin METH_O functions */ assert(kwnames == NULL); int is_meth = method != NULL; int total_args = oparg; if (is_meth) { callable = method; args--; total_args++; } DEOPT_IF(total_args != 1, CALL); DEOPT_IF(!PyCFunction_CheckExact(callable), CALL); DEOPT_IF(PyCFunction_GET_FLAGS(callable) != METH_O, CALL); STAT_INC(CALL, hit); PyCFunction cfunc = PyCFunction_GET_FUNCTION(callable); // This is slower but CPython promises to check all non-vectorcall // function calls. if (_Py_EnterRecursiveCallTstate(tstate, " while calling a Python object")) { goto error; } PyObject *arg = args[0]; res = _PyCFunction_TrampolineCall(cfunc, PyCFunction_GET_SELF(callable), arg); _Py_LeaveRecursiveCallTstate(tstate); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); Py_DECREF(arg); Py_DECREF(callable); ERROR_IF(res == NULL, error); CHECK_EVAL_BREAKER(); } inst(CALL_NO_KW_BUILTIN_FAST, (unused/1, unused/2, method, callable, args[oparg] -- res)) { /* Builtin METH_FASTCALL functions, without keywords */ assert(kwnames == NULL); int is_meth = method != NULL; int total_args = oparg; if (is_meth) { callable = method; args--; total_args++; } DEOPT_IF(!PyCFunction_CheckExact(callable), CALL); DEOPT_IF(PyCFunction_GET_FLAGS(callable) != METH_FASTCALL, CALL); STAT_INC(CALL, hit); PyCFunction cfunc = PyCFunction_GET_FUNCTION(callable); /* res = func(self, args, nargs) */ res = ((_PyCFunctionFast)(void(*)(void))cfunc)( PyCFunction_GET_SELF(callable), args, total_args); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); /* Free the arguments. */ for (int i = 0; i < total_args; i++) { Py_DECREF(args[i]); } Py_DECREF(callable); ERROR_IF(res == NULL, error); /* Not deopting because this doesn't mean our optimization was wrong. `res` can be NULL for valid reasons. Eg. getattr(x, 'invalid'). In those cases an exception is set, so we must handle it. */ CHECK_EVAL_BREAKER(); } inst(CALL_BUILTIN_FAST_WITH_KEYWORDS, (unused/1, unused/2, method, callable, args[oparg] -- res)) { /* Builtin METH_FASTCALL | METH_KEYWORDS functions */ int is_meth = method != NULL; int total_args = oparg; if (is_meth) { callable = method; args--; total_args++; } DEOPT_IF(!PyCFunction_CheckExact(callable), CALL); DEOPT_IF(PyCFunction_GET_FLAGS(callable) != (METH_FASTCALL | METH_KEYWORDS), CALL); STAT_INC(CALL, hit); /* res = func(self, args, nargs, kwnames) */ _PyCFunctionFastWithKeywords cfunc = (_PyCFunctionFastWithKeywords)(void(*)(void)) PyCFunction_GET_FUNCTION(callable); res = cfunc( PyCFunction_GET_SELF(callable), args, total_args - KWNAMES_LEN(), kwnames ); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); kwnames = NULL; /* Free the arguments. */ for (int i = 0; i < total_args; i++) { Py_DECREF(args[i]); } Py_DECREF(callable); ERROR_IF(res == NULL, error); CHECK_EVAL_BREAKER(); } inst(CALL_NO_KW_LEN, (unused/1, unused/2, method, callable, args[oparg] -- res)) { assert(kwnames == NULL); /* len(o) */ int is_meth = method != NULL; int total_args = oparg; if (is_meth) { callable = method; args--; total_args++; } DEOPT_IF(total_args != 1, CALL); PyInterpreterState *interp = _PyInterpreterState_GET(); DEOPT_IF(callable != interp->callable_cache.len, CALL); STAT_INC(CALL, hit); PyObject *arg = args[0]; Py_ssize_t len_i = PyObject_Length(arg); if (len_i < 0) { goto error; } res = PyLong_FromSsize_t(len_i); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); Py_DECREF(callable); Py_DECREF(arg); ERROR_IF(res == NULL, error); } inst(CALL_NO_KW_ISINSTANCE, (unused/1, unused/2, method, callable, args[oparg] -- res)) { assert(kwnames == NULL); /* isinstance(o, o2) */ int is_meth = method != NULL; int total_args = oparg; if (is_meth) { callable = method; args--; total_args++; } DEOPT_IF(total_args != 2, CALL); PyInterpreterState *interp = _PyInterpreterState_GET(); DEOPT_IF(callable != interp->callable_cache.isinstance, CALL); STAT_INC(CALL, hit); PyObject *cls = args[1]; PyObject *inst = args[0]; int retval = PyObject_IsInstance(inst, cls); if (retval < 0) { goto error; } res = PyBool_FromLong(retval); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); Py_DECREF(inst); Py_DECREF(cls); Py_DECREF(callable); ERROR_IF(res == NULL, error); } // This is secretly a super-instruction inst(CALL_NO_KW_LIST_APPEND, (unused/1, unused/2, method, self, args[oparg] -- unused)) { assert(kwnames == NULL); assert(oparg == 1); assert(method != NULL); PyInterpreterState *interp = _PyInterpreterState_GET(); DEOPT_IF(method != interp->callable_cache.list_append, CALL); DEOPT_IF(!PyList_Check(self), CALL); STAT_INC(CALL, hit); if (_PyList_AppendTakeRef((PyListObject *)self, args[0]) < 0) { goto pop_1_error; // Since arg is DECREF'ed already } Py_DECREF(self); Py_DECREF(method); STACK_SHRINK(3); // CALL + POP_TOP JUMPBY(INLINE_CACHE_ENTRIES_CALL + 1); assert(next_instr[-1].op.code == POP_TOP); DISPATCH(); } inst(CALL_NO_KW_METHOD_DESCRIPTOR_O, (unused/1, unused/2, method, unused, args[oparg] -- res)) { assert(kwnames == NULL); int is_meth = method != NULL; int total_args = oparg; if (is_meth) { args--; total_args++; } PyMethodDescrObject *callable = (PyMethodDescrObject *)PEEK(total_args + 1); DEOPT_IF(total_args != 2, CALL); DEOPT_IF(!Py_IS_TYPE(callable, &PyMethodDescr_Type), CALL); PyMethodDef *meth = callable->d_method; DEOPT_IF(meth->ml_flags != METH_O, CALL); PyObject *arg = args[1]; PyObject *self = args[0]; DEOPT_IF(!Py_IS_TYPE(self, callable->d_common.d_type), CALL); STAT_INC(CALL, hit); PyCFunction cfunc = meth->ml_meth; // This is slower but CPython promises to check all non-vectorcall // function calls. if (_Py_EnterRecursiveCallTstate(tstate, " while calling a Python object")) { goto error; } res = _PyCFunction_TrampolineCall(cfunc, self, arg); _Py_LeaveRecursiveCallTstate(tstate); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); Py_DECREF(self); Py_DECREF(arg); Py_DECREF(callable); ERROR_IF(res == NULL, error); CHECK_EVAL_BREAKER(); } inst(CALL_METHOD_DESCRIPTOR_FAST_WITH_KEYWORDS, (unused/1, unused/2, method, unused, args[oparg] -- res)) { int is_meth = method != NULL; int total_args = oparg; if (is_meth) { args--; total_args++; } PyMethodDescrObject *callable = (PyMethodDescrObject *)PEEK(total_args + 1); DEOPT_IF(!Py_IS_TYPE(callable, &PyMethodDescr_Type), CALL); PyMethodDef *meth = callable->d_method; DEOPT_IF(meth->ml_flags != (METH_FASTCALL|METH_KEYWORDS), CALL); PyTypeObject *d_type = callable->d_common.d_type; PyObject *self = args[0]; DEOPT_IF(!Py_IS_TYPE(self, d_type), CALL); STAT_INC(CALL, hit); int nargs = total_args - 1; _PyCFunctionFastWithKeywords cfunc = (_PyCFunctionFastWithKeywords)(void(*)(void))meth->ml_meth; res = cfunc(self, args + 1, nargs - KWNAMES_LEN(), kwnames); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); kwnames = NULL; /* Free the arguments. */ for (int i = 0; i < total_args; i++) { Py_DECREF(args[i]); } Py_DECREF(callable); ERROR_IF(res == NULL, error); CHECK_EVAL_BREAKER(); } inst(CALL_NO_KW_METHOD_DESCRIPTOR_NOARGS, (unused/1, unused/2, method, unused, args[oparg] -- res)) { assert(kwnames == NULL); assert(oparg == 0 || oparg == 1); int is_meth = method != NULL; int total_args = oparg; if (is_meth) { args--; total_args++; } DEOPT_IF(total_args != 1, CALL); PyMethodDescrObject *callable = (PyMethodDescrObject *)SECOND(); DEOPT_IF(!Py_IS_TYPE(callable, &PyMethodDescr_Type), CALL); PyMethodDef *meth = callable->d_method; PyObject *self = args[0]; DEOPT_IF(!Py_IS_TYPE(self, callable->d_common.d_type), CALL); DEOPT_IF(meth->ml_flags != METH_NOARGS, CALL); STAT_INC(CALL, hit); PyCFunction cfunc = meth->ml_meth; // This is slower but CPython promises to check all non-vectorcall // function calls. if (_Py_EnterRecursiveCallTstate(tstate, " while calling a Python object")) { goto error; } res = _PyCFunction_TrampolineCall(cfunc, self, NULL); _Py_LeaveRecursiveCallTstate(tstate); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); Py_DECREF(self); Py_DECREF(callable); ERROR_IF(res == NULL, error); CHECK_EVAL_BREAKER(); } inst(CALL_NO_KW_METHOD_DESCRIPTOR_FAST, (unused/1, unused/2, method, unused, args[oparg] -- res)) { assert(kwnames == NULL); int is_meth = method != NULL; int total_args = oparg; if (is_meth) { args--; total_args++; } PyMethodDescrObject *callable = (PyMethodDescrObject *)PEEK(total_args + 1); /* Builtin METH_FASTCALL methods, without keywords */ DEOPT_IF(!Py_IS_TYPE(callable, &PyMethodDescr_Type), CALL); PyMethodDef *meth = callable->d_method; DEOPT_IF(meth->ml_flags != METH_FASTCALL, CALL); PyObject *self = args[0]; DEOPT_IF(!Py_IS_TYPE(self, callable->d_common.d_type), CALL); STAT_INC(CALL, hit); _PyCFunctionFast cfunc = (_PyCFunctionFast)(void(*)(void))meth->ml_meth; int nargs = total_args - 1; res = cfunc(self, args + 1, nargs); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); /* Clear the stack of the arguments. */ for (int i = 0; i < total_args; i++) { Py_DECREF(args[i]); } Py_DECREF(callable); ERROR_IF(res == NULL, error); CHECK_EVAL_BREAKER(); } inst(INSTRUMENTED_CALL_FUNCTION_EX, ( -- )) { GO_TO_INSTRUCTION(CALL_FUNCTION_EX); } inst(CALL_FUNCTION_EX, (unused, func, callargs, kwargs if (oparg & 1) -- result)) { // DICT_MERGE is called before this opcode if there are kwargs. // It converts all dict subtypes in kwargs into regular dicts. assert(kwargs == NULL || PyDict_CheckExact(kwargs)); if (!PyTuple_CheckExact(callargs)) { if (check_args_iterable(tstate, func, callargs) < 0) { goto error; } PyObject *tuple = PySequence_Tuple(callargs); if (tuple == NULL) { goto error; } Py_SETREF(callargs, tuple); } assert(PyTuple_CheckExact(callargs)); EVAL_CALL_STAT_INC_IF_FUNCTION(EVAL_CALL_FUNCTION_EX, func); if (opcode == INSTRUMENTED_CALL_FUNCTION_EX && !PyFunction_Check(func) && !PyMethod_Check(func) ) { PyObject *arg = PyTuple_GET_SIZE(callargs) > 0 ? PyTuple_GET_ITEM(callargs, 0) : Py_None; int err = _Py_call_instrumentation_2args( tstate, PY_MONITORING_EVENT_CALL, frame, next_instr-1, func, arg); if (err) goto error; result = PyObject_Call(func, callargs, kwargs); if (result == NULL) { _Py_call_instrumentation_exc2( tstate, PY_MONITORING_EVENT_C_RAISE, frame, next_instr-1, func, arg); } else { int err = _Py_call_instrumentation_2args( tstate, PY_MONITORING_EVENT_C_RETURN, frame, next_instr-1, func, arg); if (err < 0) { Py_CLEAR(result); } } } else { if (Py_TYPE(func) == &PyFunction_Type && tstate->interp->eval_frame == NULL && ((PyFunctionObject *)func)->vectorcall == _PyFunction_Vectorcall) { assert(PyTuple_CheckExact(callargs)); Py_ssize_t nargs = PyTuple_GET_SIZE(callargs); int code_flags = ((PyCodeObject *)PyFunction_GET_CODE(func))->co_flags; PyObject *locals = code_flags & CO_OPTIMIZED ? NULL : Py_NewRef(PyFunction_GET_GLOBALS(func)); _PyInterpreterFrame *new_frame = _PyEvalFramePushAndInit_Ex(tstate, (PyFunctionObject *)func, locals, nargs, callargs, kwargs); // Need to manually shrink the stack since we exit with DISPATCH_INLINED. STACK_SHRINK(oparg + 3); if (new_frame == NULL) { goto error; } frame->return_offset = 0; DISPATCH_INLINED(new_frame); } result = PyObject_Call(func, callargs, kwargs); } DECREF_INPUTS(); assert(PEEK(3 + (oparg & 1)) == NULL); ERROR_IF(result == NULL, error); CHECK_EVAL_BREAKER(); } inst(MAKE_FUNCTION, (defaults if (oparg & 0x01), kwdefaults if (oparg & 0x02), annotations if (oparg & 0x04), closure if (oparg & 0x08), codeobj -- func)) { PyFunctionObject *func_obj = (PyFunctionObject *) PyFunction_New(codeobj, GLOBALS()); Py_DECREF(codeobj); if (func_obj == NULL) { goto error; } if (oparg & 0x08) { assert(PyTuple_CheckExact(closure)); func_obj->func_closure = closure; } if (oparg & 0x04) { assert(PyTuple_CheckExact(annotations)); func_obj->func_annotations = annotations; } if (oparg & 0x02) { assert(PyDict_CheckExact(kwdefaults)); func_obj->func_kwdefaults = kwdefaults; } if (oparg & 0x01) { assert(PyTuple_CheckExact(defaults)); func_obj->func_defaults = defaults; } func_obj->func_version = ((PyCodeObject *)codeobj)->co_version; func = (PyObject *)func_obj; } inst(RETURN_GENERATOR, (--)) { assert(PyFunction_Check(frame->f_funcobj)); PyFunctionObject *func = (PyFunctionObject *)frame->f_funcobj; PyGenObject *gen = (PyGenObject *)_Py_MakeCoro(func); if (gen == NULL) { goto error; } assert(EMPTY()); _PyFrame_SetStackPointer(frame, stack_pointer); _PyInterpreterFrame *gen_frame = (_PyInterpreterFrame *)gen->gi_iframe; _PyFrame_Copy(frame, gen_frame); assert(frame->frame_obj == NULL); gen->gi_frame_state = FRAME_CREATED; gen_frame->owner = FRAME_OWNED_BY_GENERATOR; _Py_LeaveRecursiveCallPy(tstate); assert(frame != &entry_frame); _PyInterpreterFrame *prev = frame->previous; _PyThreadState_PopFrame(tstate, frame); frame = cframe.current_frame = prev; _PyFrame_StackPush(frame, (PyObject *)gen); goto resume_frame; } inst(BUILD_SLICE, (start, stop, step if (oparg == 3) -- slice)) { slice = PySlice_New(start, stop, step); DECREF_INPUTS(); ERROR_IF(slice == NULL, error); } inst(FORMAT_VALUE, (value, fmt_spec if ((oparg & FVS_MASK) == FVS_HAVE_SPEC) -- result)) { /* Handles f-string value formatting. */ PyObject *(*conv_fn)(PyObject *); int which_conversion = oparg & FVC_MASK; /* See if any conversion is specified. */ switch (which_conversion) { case FVC_NONE: conv_fn = NULL; break; case FVC_STR: conv_fn = PyObject_Str; break; case FVC_REPR: conv_fn = PyObject_Repr; break; case FVC_ASCII: conv_fn = PyObject_ASCII; break; default: _PyErr_Format(tstate, PyExc_SystemError, "unexpected conversion flag %d", which_conversion); goto error; } /* If there's a conversion function, call it and replace value with that result. Otherwise, just use value, without conversion. */ if (conv_fn != NULL) { result = conv_fn(value); Py_DECREF(value); if (result == NULL) { Py_XDECREF(fmt_spec); ERROR_IF(true, error); } value = result; } result = PyObject_Format(value, fmt_spec); Py_DECREF(value); Py_XDECREF(fmt_spec); ERROR_IF(result == NULL, error); } inst(COPY, (bottom, unused[oparg-1] -- bottom, unused[oparg-1], top)) { assert(oparg > 0); top = Py_NewRef(bottom); } inst(BINARY_OP, (unused/1, lhs, rhs -- res)) { #if ENABLE_SPECIALIZATION _PyBinaryOpCache *cache = (_PyBinaryOpCache *)next_instr; if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) { next_instr--; _Py_Specialize_BinaryOp(lhs, rhs, next_instr, oparg, &GETLOCAL(0)); DISPATCH_SAME_OPARG(); } STAT_INC(BINARY_OP, deferred); DECREMENT_ADAPTIVE_COUNTER(cache->counter); #endif /* ENABLE_SPECIALIZATION */ assert(0 <= oparg); assert((unsigned)oparg < Py_ARRAY_LENGTH(binary_ops)); assert(binary_ops[oparg]); res = binary_ops[oparg](lhs, rhs); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } inst(SWAP, (bottom, unused[oparg-2], top -- top, unused[oparg-2], bottom)) { assert(oparg >= 2); } inst(INSTRUMENTED_INSTRUCTION, ( -- )) { int next_opcode = _Py_call_instrumentation_instruction( tstate, frame, next_instr-1); ERROR_IF(next_opcode < 0, error); next_instr--; if (_PyOpcode_Caches[next_opcode]) { _PyBinaryOpCache *cache = (_PyBinaryOpCache *)(next_instr+1); INCREMENT_ADAPTIVE_COUNTER(cache->counter); } assert(next_opcode > 0 && next_opcode < 256); opcode = next_opcode; DISPATCH_GOTO(); } inst(INSTRUMENTED_JUMP_FORWARD, ( -- )) { INSTRUMENTED_JUMP(next_instr-1, next_instr+oparg, PY_MONITORING_EVENT_JUMP); } inst(INSTRUMENTED_JUMP_BACKWARD, ( -- )) { INSTRUMENTED_JUMP(next_instr-1, next_instr-oparg, PY_MONITORING_EVENT_JUMP); CHECK_EVAL_BREAKER(); } inst(INSTRUMENTED_POP_JUMP_IF_TRUE, ( -- )) { PyObject *cond = POP(); int err = PyObject_IsTrue(cond); Py_DECREF(cond); ERROR_IF(err < 0, error); _Py_CODEUNIT *here = next_instr-1; assert(err == 0 || err == 1); int offset = err*oparg; INSTRUMENTED_JUMP(here, next_instr + offset, PY_MONITORING_EVENT_BRANCH); } inst(INSTRUMENTED_POP_JUMP_IF_FALSE, ( -- )) { PyObject *cond = POP(); int err = PyObject_IsTrue(cond); Py_DECREF(cond); ERROR_IF(err < 0, error); _Py_CODEUNIT *here = next_instr-1; assert(err == 0 || err == 1); int offset = (1-err)*oparg; INSTRUMENTED_JUMP(here, next_instr + offset, PY_MONITORING_EVENT_BRANCH); } inst(INSTRUMENTED_POP_JUMP_IF_NONE, ( -- )) { PyObject *value = POP(); _Py_CODEUNIT *here = next_instr-1; int offset; if (Py_IsNone(value)) { offset = oparg; } else { Py_DECREF(value); offset = 0; } INSTRUMENTED_JUMP(here, next_instr + offset, PY_MONITORING_EVENT_BRANCH); } inst(INSTRUMENTED_POP_JUMP_IF_NOT_NONE, ( -- )) { PyObject *value = POP(); _Py_CODEUNIT *here = next_instr-1; int offset; if (Py_IsNone(value)) { offset = 0; } else { Py_DECREF(value); offset = oparg; } INSTRUMENTED_JUMP(here, next_instr + offset, PY_MONITORING_EVENT_BRANCH); } inst(EXTENDED_ARG, ( -- )) { assert(oparg); opcode = next_instr->op.code; oparg = oparg << 8 | next_instr->op.arg; PRE_DISPATCH_GOTO(); DISPATCH_GOTO(); } inst(CACHE, (--)) { assert(0 && "Executing a cache."); Py_UNREACHABLE(); } inst(RESERVED, (--)) { assert(0 && "Executing RESERVED instruction."); Py_UNREACHABLE(); } // END BYTECODES // } dispatch_opcode: error: exception_unwind: exit_unwind: handle_eval_breaker: resume_frame: resume_with_error: start_frame: unbound_local_error: ; } // Future families go below this point // family(store_fast) = { STORE_FAST, STORE_FAST__LOAD_FAST, STORE_FAST__STORE_FAST };