/*********************************************************** Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands. All Rights Reserved Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the names of Stichting Mathematisch Centrum or CWI or Corporation for National Research Initiatives or CNRI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. While CWI is the initial source for this software, a modified version is made available by the Corporation for National Research Initiatives (CNRI) at the Internet address ftp://ftp.python.org. STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ******************************************************************/ /* Execute compiled code */ /* XXX TO DO: XXX how to pass arguments to call_trace? XXX speed up searching for keywords by using a dictionary XXX document it! */ #include "Python.h" #include "compile.h" #include "frameobject.h" #include "eval.h" #include "opcode.h" #include #ifdef HAVE_LIMITS_H #include #else #define INT_MAX 2147483647 #endif /* Turn this on if your compiler chokes on the big switch: */ /* #define CASE_TOO_BIG 1 */ #ifdef Py_DEBUG /* For debugging the interpreter: */ #define LLTRACE 1 /* Low-level trace feature */ #define CHECKEXC 1 /* Double-check exception checking */ #endif /* Forward declarations */ static PyObject *eval_code2 Py_PROTO((PyCodeObject *, PyObject *, PyObject *, PyObject **, int, PyObject **, int, PyObject **, int, PyObject *)); #ifdef LLTRACE static int prtrace Py_PROTO((PyObject *, char *)); #endif static void call_exc_trace Py_PROTO((PyObject **, PyObject**, PyFrameObject *)); static int call_trace Py_PROTO((PyObject **, PyObject **, PyFrameObject *, char *, PyObject *)); static PyObject *call_builtin Py_PROTO((PyObject *, PyObject *, PyObject *)); static PyObject *call_function Py_PROTO((PyObject *, PyObject *, PyObject *)); static PyObject *loop_subscript Py_PROTO((PyObject *, PyObject *)); static int slice_index Py_PROTO((PyObject *, int *)); static PyObject *apply_slice Py_PROTO((PyObject *, PyObject *, PyObject *)); static int assign_slice Py_PROTO((PyObject *, PyObject *, PyObject *, PyObject *)); static PyObject *cmp_outcome Py_PROTO((int, PyObject *, PyObject *)); static int import_from Py_PROTO((PyObject *, PyObject *, PyObject *)); static PyObject *build_class Py_PROTO((PyObject *, PyObject *, PyObject *)); static int exec_statement Py_PROTO((PyFrameObject *, PyObject *, PyObject *, PyObject *)); static PyObject *find_from_args Py_PROTO((PyFrameObject *, int)); static void set_exc_info Py_PROTO((PyThreadState *, PyObject *, PyObject *, PyObject *)); static void reset_exc_info Py_PROTO((PyThreadState *)); /* Dynamic execution profile */ #ifdef DYNAMIC_EXECUTION_PROFILE #ifdef DXPAIRS static long dxpairs[257][256]; #define dxp dxpairs[256] #else static long dxp[256]; #endif #endif #ifdef WITH_THREAD #include #include "pythread.h" extern int _PyThread_Started; /* Flag for Py_Exit */ static type_lock interpreter_lock = 0; static long main_thread = 0; void PyEval_InitThreads() { if (interpreter_lock) return; _PyThread_Started = 1; interpreter_lock = allocate_lock(); acquire_lock(interpreter_lock, 1); main_thread = get_thread_ident(); } void PyEval_AcquireLock() { acquire_lock(interpreter_lock, 1); } void PyEval_ReleaseLock() { release_lock(interpreter_lock); } void PyEval_AcquireThread(tstate) PyThreadState *tstate; { if (tstate == NULL) Py_FatalError("PyEval_AcquireThread: NULL new thread state"); acquire_lock(interpreter_lock, 1); if (PyThreadState_Swap(tstate) != NULL) Py_FatalError( "PyEval_AcquireThread: non-NULL old thread state"); } void PyEval_ReleaseThread(tstate) PyThreadState *tstate; { if (tstate == NULL) Py_FatalError("PyEval_ReleaseThread: NULL thread state"); if (PyThreadState_Swap(NULL) != tstate) Py_FatalError("PyEval_ReleaseThread: wrong thread state"); release_lock(interpreter_lock); } #endif /* Functions save_thread and restore_thread are always defined so dynamically loaded modules needn't be compiled separately for use with and without threads: */ PyThreadState * PyEval_SaveThread() { PyThreadState *tstate = PyThreadState_Swap(NULL); if (tstate == NULL) Py_FatalError("PyEval_SaveThread: NULL tstate"); #ifdef WITH_THREAD if (interpreter_lock) release_lock(interpreter_lock); #endif return tstate; } void PyEval_RestoreThread(tstate) PyThreadState *tstate; { if (tstate == NULL) Py_FatalError("PyEval_RestoreThread: NULL tstate"); #ifdef WITH_THREAD if (interpreter_lock) { int err = errno; acquire_lock(interpreter_lock, 1); errno = err; } #endif PyThreadState_Swap(tstate); } /* Mechanism whereby asynchronously executing callbacks (e.g. UNIX signal handlers or Mac I/O completion routines) can schedule calls to a function to be called synchronously. The synchronous function is called with one void* argument. It should return 0 for success or -1 for failure -- failure should be accompanied by an exception. If registry succeeds, the registry function returns 0; if it fails (e.g. due to too many pending calls) it returns -1 (without setting an exception condition). Note that because registry may occur from within signal handlers, or other asynchronous events, calling malloc() is unsafe! #ifdef WITH_THREAD Any thread can schedule pending calls, but only the main thread will execute them. #endif XXX WARNING! ASYNCHRONOUSLY EXECUTING CODE! There are two possible race conditions: (1) nested asynchronous registry calls; (2) registry calls made while pending calls are being processed. While (1) is very unlikely, (2) is a real possibility. The current code is safe against (2), but not against (1). The safety against (2) is derived from the fact that only one thread (the main thread) ever takes things out of the queue. XXX Darn! With the advent of thread state, we should have an array of pending calls per thread in the thread state! Later... */ #define NPENDINGCALLS 32 static struct { int (*func) Py_PROTO((ANY *)); ANY *arg; } pendingcalls[NPENDINGCALLS]; static volatile int pendingfirst = 0; static volatile int pendinglast = 0; static volatile int things_to_do = 0; int Py_AddPendingCall(func, arg) int (*func) Py_PROTO((ANY *)); ANY *arg; { static int busy = 0; int i, j; /* XXX Begin critical section */ /* XXX If you want this to be safe against nested XXX asynchronous calls, you'll have to work harder! */ if (busy) return -1; busy = 1; i = pendinglast; j = (i + 1) % NPENDINGCALLS; if (j == pendingfirst) return -1; /* Queue full */ pendingcalls[i].func = func; pendingcalls[i].arg = arg; pendinglast = j; things_to_do = 1; /* Signal main loop */ busy = 0; /* XXX End critical section */ return 0; } int Py_MakePendingCalls() { static int busy = 0; #ifdef WITH_THREAD if (main_thread && get_thread_ident() != main_thread) return 0; #endif if (busy) return 0; busy = 1; things_to_do = 0; for (;;) { int i; int (*func) Py_PROTO((ANY *)); ANY *arg; i = pendingfirst; if (i == pendinglast) break; /* Queue empty */ func = pendingcalls[i].func; arg = pendingcalls[i].arg; pendingfirst = (i + 1) % NPENDINGCALLS; if (func(arg) < 0) { busy = 0; things_to_do = 1; /* We're not done yet */ return -1; } } busy = 0; return 0; } /* Status code for main loop (reason for stack unwind) */ enum why_code { WHY_NOT, /* No error */ WHY_EXCEPTION, /* Exception occurred */ WHY_RERAISE, /* Exception re-raised by 'finally' */ WHY_RETURN, /* 'return' statement */ WHY_BREAK /* 'break' statement */ }; static enum why_code do_raise Py_PROTO((PyObject *, PyObject *, PyObject *)); static int unpack_sequence Py_PROTO((PyObject *, int, PyObject **)); /* Backward compatible interface */ PyObject * PyEval_EvalCode(co, globals, locals) PyCodeObject *co; PyObject *globals; PyObject *locals; { return eval_code2(co, globals, locals, (PyObject **)NULL, 0, (PyObject **)NULL, 0, (PyObject **)NULL, 0, (PyObject *)NULL); } /* Interpreter main loop */ #ifndef MAX_RECURSION_DEPTH #define MAX_RECURSION_DEPTH 10000 #endif static PyObject * eval_code2(co, globals, locals, args, argcount, kws, kwcount, defs, defcount, owner) PyCodeObject *co; PyObject *globals; PyObject *locals; PyObject **args; int argcount; PyObject **kws; /* length: 2*kwcount */ int kwcount; PyObject **defs; int defcount; PyObject *owner; { #ifdef DXPAIRS int lastopcode = 0; #endif register unsigned char *next_instr; register int opcode; /* Current opcode */ register int oparg; /* Current opcode argument, if any */ register PyObject **stack_pointer; register enum why_code why; /* Reason for block stack unwind */ register int err; /* Error status -- nonzero if error */ register PyObject *x; /* Result object -- NULL if error */ register PyObject *v; /* Temporary objects popped off stack */ register PyObject *w; register PyObject *u; register PyObject *t; register PyFrameObject *f; /* Current frame */ register PyObject **fastlocals; PyObject *retval; /* Return value */ PyThreadState *tstate = PyThreadState_Get(); unsigned char *first_instr; #ifdef LLTRACE int lltrace; #endif #if defined(Py_DEBUG) || defined(LLTRACE) /* Make it easier to find out where we are with a debugger */ char *filename = PyString_AsString(co->co_filename); #endif /* Code access macros */ #define GETCONST(i) Getconst(f, i) #define GETNAME(i) Getname(f, i) #define GETNAMEV(i) Getnamev(f, i) #define INSTR_OFFSET() (next_instr - first_instr) #define NEXTOP() (*next_instr++) #define NEXTARG() (next_instr += 2, (next_instr[-1]<<8) + next_instr[-2]) #define JUMPTO(x) (next_instr = first_instr + (x)) #define JUMPBY(x) (next_instr += (x)) /* Stack manipulation macros */ #define STACK_LEVEL() (stack_pointer - f->f_valuestack) #define EMPTY() (STACK_LEVEL() == 0) #define TOP() (stack_pointer[-1]) #define BASIC_PUSH(v) (*stack_pointer++ = (v)) #define BASIC_POP() (*--stack_pointer) #ifdef LLTRACE #define PUSH(v) (BASIC_PUSH(v), lltrace && prtrace(TOP(), "push")) #define POP() (lltrace && prtrace(TOP(), "pop"), BASIC_POP()) #else #define PUSH(v) BASIC_PUSH(v) #define POP() BASIC_POP() #endif /* Local variable macros */ #define GETLOCAL(i) (fastlocals[i]) #define SETLOCAL(i, value) do { Py_XDECREF(GETLOCAL(i)); \ GETLOCAL(i) = value; } while (0) /* Start of code */ #ifdef USE_STACKCHECK if (tstate->recursion_depth%10 == 0 && PyOS_CheckStack()) { PyErr_SetString(PyExc_MemoryError, "Stack overflow"); return NULL; } #endif if (globals == NULL) { PyErr_SetString(PyExc_SystemError, "eval_code2: NULL globals"); return NULL; } #ifdef LLTRACE lltrace = PyDict_GetItemString(globals, "__lltrace__") != NULL; #endif f = PyFrame_New( tstate, /*back*/ co, /*code*/ globals, /*globals*/ locals); /*locals*/ if (f == NULL) return NULL; tstate->frame = f; fastlocals = f->f_localsplus; if (co->co_argcount > 0 || co->co_flags & (CO_VARARGS | CO_VARKEYWORDS)) { int i; int n = argcount; PyObject *kwdict = NULL; if (co->co_flags & CO_VARKEYWORDS) { kwdict = PyDict_New(); if (kwdict == NULL) goto fail; i = co->co_argcount; if (co->co_flags & CO_VARARGS) i++; SETLOCAL(i, kwdict); } if (argcount > co->co_argcount) { if (!(co->co_flags & CO_VARARGS)) { PyErr_Format(PyExc_TypeError, "too many arguments; expected %d, got %d", co->co_argcount, argcount); goto fail; } n = co->co_argcount; } for (i = 0; i < n; i++) { x = args[i]; Py_INCREF(x); SETLOCAL(i, x); } if (co->co_flags & CO_VARARGS) { u = PyTuple_New(argcount - n); if (u == NULL) goto fail; SETLOCAL(co->co_argcount, u); for (i = n; i < argcount; i++) { x = args[i]; Py_INCREF(x); PyTuple_SET_ITEM(u, i-n, x); } } for (i = 0; i < kwcount; i++) { PyObject *keyword = kws[2*i]; PyObject *value = kws[2*i + 1]; int j; /* XXX slow -- speed up using dictionary? */ for (j = 0; j < co->co_argcount; j++) { PyObject *nm = PyTuple_GET_ITEM( co->co_varnames, j); if (PyObject_Compare(keyword, nm) == 0) break; } /* Check errors from Compare */ if (PyErr_Occurred()) goto fail; if (j >= co->co_argcount) { if (kwdict == NULL) { PyErr_Format(PyExc_TypeError, "unexpected keyword argument: %.400s", PyString_AsString(keyword)); goto fail; } PyDict_SetItem(kwdict, keyword, value); } else { if (GETLOCAL(j) != NULL) { PyErr_SetString(PyExc_TypeError, "keyword parameter redefined"); goto fail; } Py_INCREF(value); SETLOCAL(j, value); } } if (argcount < co->co_argcount) { int m = co->co_argcount - defcount; for (i = argcount; i < m; i++) { if (GETLOCAL(i) == NULL) { PyErr_Format(PyExc_TypeError, "not enough arguments; expected %d, got %d", m, i); goto fail; } } if (n > m) i = n - m; else i = 0; for (; i < defcount; i++) { if (GETLOCAL(m+i) == NULL) { PyObject *def = defs[i]; Py_INCREF(def); SETLOCAL(m+i, def); } } } } else { if (argcount > 0 || kwcount > 0) { PyErr_SetString(PyExc_TypeError, "no arguments expected"); goto fail; } } if (tstate->sys_tracefunc != NULL) { /* tstate->sys_tracefunc, if defined, is a function that will be called on *every* entry to a code block. Its return value, if not None, is a function that will be called at the start of each executed line of code. (Actually, the function must return itself in order to continue tracing.) The trace functions are called with three arguments: a pointer to the current frame, a string indicating why the function is called, and an argument which depends on the situation. The global trace function (sys.trace) is also called whenever an exception is detected. */ if (call_trace(&tstate->sys_tracefunc, &f->f_trace, f, "call", Py_None/*XXX how to compute arguments now?*/)) { /* Trace function raised an error */ goto fail; } } if (tstate->sys_profilefunc != NULL) { /* Similar for sys_profilefunc, except it needn't return itself and isn't called for "line" events */ if (call_trace(&tstate->sys_profilefunc, (PyObject**)0, f, "call", Py_None/*XXX*/)) { goto fail; } } if (++tstate->recursion_depth > MAX_RECURSION_DEPTH) { --tstate->recursion_depth; PyErr_SetString(PyExc_RuntimeError, "Maximum recursion depth exceeded"); tstate->frame = f->f_back; Py_DECREF(f); return NULL; } _PyCode_GETCODEPTR(co, &first_instr); next_instr = first_instr; stack_pointer = f->f_valuestack; why = WHY_NOT; err = 0; x = Py_None; /* Not a reference, just anything non-NULL */ for (;;) { /* Do periodic things. Doing this every time through the loop would add too much overhead, so we do it only every Nth instruction. We also do it if ``things_to_do'' is set, i.e. when an asynchronous event needs attention (e.g. a signal handler or async I/O handler); see Py_AddPendingCall() and Py_MakePendingCalls() above. */ if (things_to_do || --tstate->ticker < 0) { tstate->ticker = tstate->interp->checkinterval; if (things_to_do) { if (Py_MakePendingCalls() < 0) { why = WHY_EXCEPTION; goto on_error; } } #if !defined(HAVE_SIGNAL_H) || defined(macintosh) /* If we have true signals, the signal handler will call Py_AddPendingCall() so we don't have to call sigcheck(). On the Mac and DOS, alas, we have to call it. */ if (PyErr_CheckSignals()) { why = WHY_EXCEPTION; goto on_error; } #endif #ifdef WITH_THREAD if (interpreter_lock) { /* Give another thread a chance */ if (PyThreadState_Swap(NULL) != tstate) Py_FatalError("ceval: tstate mix-up"); release_lock(interpreter_lock); /* Other threads may run now */ acquire_lock(interpreter_lock, 1); if (PyThreadState_Swap(tstate) != NULL) Py_FatalError("ceval: orphan tstate"); } #endif } /* Extract opcode and argument */ #if defined(Py_DEBUG) || defined(LLTRACE) f->f_lasti = INSTR_OFFSET(); #endif opcode = NEXTOP(); if (HAS_ARG(opcode)) oparg = NEXTARG(); #ifdef DYNAMIC_EXECUTION_PROFILE #ifdef DXPAIRS dxpairs[lastopcode][opcode]++; lastopcode = opcode; #endif dxp[opcode]++; #endif #ifdef LLTRACE /* Instruction tracing */ if (lltrace) { if (HAS_ARG(opcode)) { printf("%d: %d, %d\n", (int) (INSTR_OFFSET() - 3), opcode, oparg); } else { printf("%d: %d\n", (int) (INSTR_OFFSET() - 1), opcode); } } #endif /* Main switch on opcode */ switch (opcode) { /* BEWARE! It is essential that any operation that fails sets either x to NULL, err to nonzero, or why to anything but WHY_NOT, and that no operation that succeeds does this! */ /* case STOP_CODE: this is an error! */ case POP_TOP: v = POP(); Py_DECREF(v); continue; case ROT_TWO: v = POP(); w = POP(); PUSH(v); PUSH(w); continue; case ROT_THREE: v = POP(); w = POP(); x = POP(); PUSH(v); PUSH(x); PUSH(w); continue; case DUP_TOP: v = TOP(); Py_INCREF(v); PUSH(v); continue; case UNARY_POSITIVE: v = POP(); x = PyNumber_Positive(v); Py_DECREF(v); PUSH(x); if (x != NULL) continue; break; case UNARY_NEGATIVE: v = POP(); x = PyNumber_Negative(v); Py_DECREF(v); PUSH(x); if (x != NULL) continue; break; case UNARY_NOT: v = POP(); err = PyObject_IsTrue(v); Py_DECREF(v); if (err == 0) { Py_INCREF(Py_True); PUSH(Py_True); continue; } else if (err > 0) { Py_INCREF(Py_False); PUSH(Py_False); err = 0; continue; } break; case UNARY_CONVERT: v = POP(); x = PyObject_Repr(v); Py_DECREF(v); PUSH(x); if (x != NULL) continue; break; case UNARY_INVERT: v = POP(); x = PyNumber_Invert(v); Py_DECREF(v); PUSH(x); if (x != NULL) continue; break; case BINARY_POWER: w = POP(); v = POP(); x = PyNumber_Power(v, w, Py_None); Py_DECREF(v); Py_DECREF(w); PUSH(x); if (x != NULL) continue; break; case BINARY_MULTIPLY: w = POP(); v = POP(); x = PyNumber_Multiply(v, w); Py_DECREF(v); Py_DECREF(w); PUSH(x); if (x != NULL) continue; break; case BINARY_DIVIDE: w = POP(); v = POP(); x = PyNumber_Divide(v, w); Py_DECREF(v); Py_DECREF(w); PUSH(x); if (x != NULL) continue; break; case BINARY_MODULO: w = POP(); v = POP(); x = PyNumber_Remainder(v, w); Py_DECREF(v); Py_DECREF(w); PUSH(x); if (x != NULL) continue; break; case BINARY_ADD: w = POP(); v = POP(); if (PyInt_Check(v) && PyInt_Check(w)) { /* INLINE: int + int */ register long a, b, i; a = ((PyIntObject*) v)->ob_ival; b = ((PyIntObject*) w)->ob_ival; i = a + b; if ((i^a) < 0 && (i^b) < 0) { PyErr_SetString(PyExc_OverflowError, "integer addition"); x = NULL; } else x = PyInt_FromLong(i); } else x = PyNumber_Add(v, w); Py_DECREF(v); Py_DECREF(w); PUSH(x); if (x != NULL) continue; break; case BINARY_SUBTRACT: w = POP(); v = POP(); if (PyInt_Check(v) && PyInt_Check(w)) { /* INLINE: int - int */ register long a, b, i; a = ((PyIntObject*) v)->ob_ival; b = ((PyIntObject*) w)->ob_ival; i = a - b; if ((i^a) < 0 && (i^~b) < 0) { PyErr_SetString(PyExc_OverflowError, "integer subtraction"); x = NULL; } else x = PyInt_FromLong(i); } else x = PyNumber_Subtract(v, w); Py_DECREF(v); Py_DECREF(w); PUSH(x); if (x != NULL) continue; break; case BINARY_SUBSCR: w = POP(); v = POP(); if (PyList_Check(v) && PyInt_Check(w)) { /* INLINE: list[int] */ long i = PyInt_AsLong(w); if (i < 0) i += PyList_GET_SIZE(v); if (i < 0 || i >= PyList_GET_SIZE(v)) { PyErr_SetString(PyExc_IndexError, "list index out of range"); x = NULL; } else { x = PyList_GET_ITEM(v, i); Py_INCREF(x); } } else x = PyObject_GetItem(v, w); Py_DECREF(v); Py_DECREF(w); PUSH(x); if (x != NULL) continue; break; case BINARY_LSHIFT: w = POP(); v = POP(); x = PyNumber_Lshift(v, w); Py_DECREF(v); Py_DECREF(w); PUSH(x); if (x != NULL) continue; break; case BINARY_RSHIFT: w = POP(); v = POP(); x = PyNumber_Rshift(v, w); Py_DECREF(v); Py_DECREF(w); PUSH(x); if (x != NULL) continue; break; case BINARY_AND: w = POP(); v = POP(); x = PyNumber_And(v, w); Py_DECREF(v); Py_DECREF(w); PUSH(x); if (x != NULL) continue; break; case BINARY_XOR: w = POP(); v = POP(); x = PyNumber_Xor(v, w); Py_DECREF(v); Py_DECREF(w); PUSH(x); if (x != NULL) continue; break; case BINARY_OR: w = POP(); v = POP(); x = PyNumber_Or(v, w); Py_DECREF(v); Py_DECREF(w); PUSH(x); if (x != NULL) continue; break; case SLICE+0: case SLICE+1: case SLICE+2: case SLICE+3: if ((opcode-SLICE) & 2) w = POP(); else w = NULL; if ((opcode-SLICE) & 1) v = POP(); else v = NULL; u = POP(); x = apply_slice(u, v, w); Py_DECREF(u); Py_XDECREF(v); Py_XDECREF(w); PUSH(x); if (x != NULL) continue; break; case STORE_SLICE+0: case STORE_SLICE+1: case STORE_SLICE+2: case STORE_SLICE+3: if ((opcode-STORE_SLICE) & 2) w = POP(); else w = NULL; if ((opcode-STORE_SLICE) & 1) v = POP(); else v = NULL; u = POP(); t = POP(); err = assign_slice(u, v, w, t); /* u[v:w] = t */ Py_DECREF(t); Py_DECREF(u); Py_XDECREF(v); Py_XDECREF(w); if (err == 0) continue; break; case DELETE_SLICE+0: case DELETE_SLICE+1: case DELETE_SLICE+2: case DELETE_SLICE+3: if ((opcode-DELETE_SLICE) & 2) w = POP(); else w = NULL; if ((opcode-DELETE_SLICE) & 1) v = POP(); else v = NULL; u = POP(); err = assign_slice(u, v, w, (PyObject *)NULL); /* del u[v:w] */ Py_DECREF(u); Py_XDECREF(v); Py_XDECREF(w); if (err == 0) continue; break; case STORE_SUBSCR: w = POP(); v = POP(); u = POP(); /* v[w] = u */ err = PyObject_SetItem(v, w, u); Py_DECREF(u); Py_DECREF(v); Py_DECREF(w); if (err == 0) continue; break; case DELETE_SUBSCR: w = POP(); v = POP(); /* del v[w] */ err = PyObject_DelItem(v, w); Py_DECREF(v); Py_DECREF(w); if (err == 0) continue; break; case PRINT_EXPR: v = POP(); /* Print value except if None */ /* After printing, also assign to '_' */ /* Before, set '_' to None to avoid recursion */ if (v != Py_None && (err = PyDict_SetItemString( f->f_builtins, "_", Py_None)) == 0) { err = Py_FlushLine(); if (err == 0) { x = PySys_GetObject("stdout"); if (x == NULL) { PyErr_SetString( PyExc_RuntimeError, "lost sys.stdout"); err = -1; } } if (err == 0) err = PyFile_WriteObject(v, x, 0); if (err == 0) { PyFile_SoftSpace(x, 1); err = Py_FlushLine(); } if (err == 0) { err = PyDict_SetItemString( f->f_builtins, "_", v); } } Py_DECREF(v); break; case PRINT_ITEM: v = POP(); w = PySys_GetObject("stdout"); if (w == NULL) { PyErr_SetString(PyExc_RuntimeError, "lost sys.stdout"); err = -1; } else if (PyFile_SoftSpace(w, 1)) err = PyFile_WriteString(" ", w); if (err == 0) err = PyFile_WriteObject(v, w, Py_PRINT_RAW); if (err == 0 && PyString_Check(v)) { /* XXX move into writeobject() ? */ char *s = PyString_AsString(v); int len = PyString_Size(v); if (len > 0 && isspace(Py_CHARMASK(s[len-1])) && s[len-1] != ' ') PyFile_SoftSpace(w, 0); } Py_DECREF(v); if (err == 0) continue; break; case PRINT_NEWLINE: x = PySys_GetObject("stdout"); if (x == NULL) PyErr_SetString(PyExc_RuntimeError, "lost sys.stdout"); else { err = PyFile_WriteString("\n", x); if (err == 0) PyFile_SoftSpace(x, 0); } break; case BREAK_LOOP: why = WHY_BREAK; break; case RAISE_VARARGS: u = v = w = NULL; switch (oparg) { case 3: u = POP(); /* traceback */ /* Fallthrough */ case 2: v = POP(); /* value */ /* Fallthrough */ case 1: w = POP(); /* exc */ case 0: /* Fallthrough */ why = do_raise(w, v, u); break; default: PyErr_SetString(PyExc_SystemError, "bad RAISE_VARARGS oparg"); why = WHY_EXCEPTION; break; } break; case LOAD_LOCALS: if ((x = f->f_locals) == NULL) { PyErr_SetString(PyExc_SystemError, "no locals"); break; } Py_INCREF(x); PUSH(x); break; case RETURN_VALUE: retval = POP(); why = WHY_RETURN; break; case EXEC_STMT: w = POP(); v = POP(); u = POP(); err = exec_statement(f, u, v, w); Py_DECREF(u); Py_DECREF(v); Py_DECREF(w); break; case POP_BLOCK: { PyTryBlock *b = PyFrame_BlockPop(f); while (STACK_LEVEL() > b->b_level) { v = POP(); Py_DECREF(v); } } break; case END_FINALLY: v = POP(); if (PyInt_Check(v)) { why = (enum why_code) PyInt_AsLong(v); if (why == WHY_RETURN) retval = POP(); } else if (PyString_Check(v) || PyClass_Check(v)) { w = POP(); u = POP(); PyErr_Restore(v, w, u); why = WHY_RERAISE; break; } else if (v != Py_None) { PyErr_SetString(PyExc_SystemError, "'finally' pops bad exception"); why = WHY_EXCEPTION; } Py_DECREF(v); break; case BUILD_CLASS: u = POP(); v = POP(); w = POP(); x = build_class(u, v, w); PUSH(x); Py_DECREF(u); Py_DECREF(v); Py_DECREF(w); break; case STORE_NAME: w = GETNAMEV(oparg); v = POP(); if ((x = f->f_locals) == NULL) { PyErr_SetString(PyExc_SystemError, "no locals"); break; } err = PyDict_SetItem(x, w, v); Py_DECREF(v); break; case DELETE_NAME: w = GETNAMEV(oparg); if ((x = f->f_locals) == NULL) { PyErr_SetString(PyExc_SystemError, "no locals"); break; } if ((err = PyDict_DelItem(x, w)) != 0) PyErr_SetObject(PyExc_NameError, w); break; #ifdef CASE_TOO_BIG default: switch (opcode) { #endif case UNPACK_TUPLE: case UNPACK_LIST: v = POP(); if (PyTuple_Check(v)) { if (PyTuple_Size(v) != oparg) { PyErr_SetString(PyExc_ValueError, "unpack tuple of wrong size"); why = WHY_EXCEPTION; } else { for (; --oparg >= 0; ) { w = PyTuple_GET_ITEM(v, oparg); Py_INCREF(w); PUSH(w); } } } else if (PyList_Check(v)) { if (PyList_Size(v) != oparg) { PyErr_SetString(PyExc_ValueError, "unpack list of wrong size"); why = WHY_EXCEPTION; } else { for (; --oparg >= 0; ) { w = PyList_GET_ITEM(v, oparg); Py_INCREF(w); PUSH(w); } } } else if (PySequence_Check(v)) { if (unpack_sequence(v, oparg, stack_pointer + oparg)) stack_pointer += oparg; else why = WHY_EXCEPTION; } else { PyErr_SetString(PyExc_TypeError, "unpack non-sequence"); why = WHY_EXCEPTION; } Py_DECREF(v); break; case STORE_ATTR: w = GETNAMEV(oparg); v = POP(); u = POP(); err = PyObject_SetAttr(v, w, u); /* v.w = u */ Py_DECREF(v); Py_DECREF(u); break; case DELETE_ATTR: w = GETNAMEV(oparg); v = POP(); err = PyObject_SetAttr(v, w, (PyObject *)NULL); /* del v.w */ Py_DECREF(v); break; case STORE_GLOBAL: w = GETNAMEV(oparg); v = POP(); err = PyDict_SetItem(f->f_globals, w, v); Py_DECREF(v); break; case DELETE_GLOBAL: w = GETNAMEV(oparg); if ((err = PyDict_DelItem(f->f_globals, w)) != 0) PyErr_SetObject(PyExc_NameError, w); break; case LOAD_CONST: x = GETCONST(oparg); Py_INCREF(x); PUSH(x); break; case LOAD_NAME: w = GETNAMEV(oparg); if ((x = f->f_locals) == NULL) { PyErr_SetString(PyExc_SystemError, "no locals"); break; } x = PyDict_GetItem(x, w); if (x == NULL) { x = PyDict_GetItem(f->f_globals, w); if (x == NULL) { x = PyDict_GetItem(f->f_builtins, w); if (x == NULL) { PyErr_SetObject( PyExc_NameError, w); break; } } } Py_INCREF(x); PUSH(x); break; case LOAD_GLOBAL: w = GETNAMEV(oparg); x = PyDict_GetItem(f->f_globals, w); if (x == NULL) { x = PyDict_GetItem(f->f_builtins, w); if (x == NULL) { PyErr_SetObject(PyExc_NameError, w); break; } } Py_INCREF(x); PUSH(x); break; case LOAD_FAST: x = GETLOCAL(oparg); if (x == NULL) { PyErr_SetObject(PyExc_NameError, PyTuple_GetItem(co->co_varnames, oparg)); break; } Py_INCREF(x); PUSH(x); if (x != NULL) continue; break; case STORE_FAST: v = POP(); SETLOCAL(oparg, v); continue; case DELETE_FAST: x = GETLOCAL(oparg); if (x == NULL) { PyErr_SetObject(PyExc_NameError, PyTuple_GetItem(co->co_varnames, oparg)); break; } SETLOCAL(oparg, NULL); continue; case BUILD_TUPLE: x = PyTuple_New(oparg); if (x != NULL) { for (; --oparg >= 0;) { w = POP(); PyTuple_SET_ITEM(x, oparg, w); } PUSH(x); continue; } break; case BUILD_LIST: x = PyList_New(oparg); if (x != NULL) { for (; --oparg >= 0;) { w = POP(); PyList_SET_ITEM(x, oparg, w); } PUSH(x); continue; } break; case BUILD_MAP: x = PyDict_New(); PUSH(x); if (x != NULL) continue; break; case LOAD_ATTR: w = GETNAMEV(oparg); v = POP(); x = PyObject_GetAttr(v, w); Py_DECREF(v); PUSH(x); if (x != NULL) continue; break; case COMPARE_OP: w = POP(); v = POP(); if (PyInt_Check(v) && PyInt_Check(w)) { /* INLINE: cmp(int, int) */ register long a, b; register int res; a = ((PyIntObject*) v)->ob_ival; b = ((PyIntObject*) w)->ob_ival; switch (oparg) { case LT: res = a < b; break; case LE: res = a <= b; break; case EQ: res = a == b; break; case NE: res = a != b; break; case GT: res = a > b; break; case GE: res = a >= b; break; case IS: res = v == w; break; case IS_NOT: res = v != w; break; default: goto slow_compare; } x = res ? Py_True : Py_False; Py_INCREF(x); } else { slow_compare: x = cmp_outcome(oparg, v, w); } Py_DECREF(v); Py_DECREF(w); PUSH(x); if (x != NULL) continue; break; case IMPORT_NAME: w = GETNAMEV(oparg); x = PyDict_GetItemString(f->f_builtins, "__import__"); if (x == NULL) { PyErr_SetString(PyExc_ImportError, "__import__ not found"); break; } u = find_from_args(f, INSTR_OFFSET()); if (u == NULL) { x = u; break; } w = Py_BuildValue("(OOOO)", w, f->f_globals, f->f_locals == NULL ? Py_None : f->f_locals, u); Py_DECREF(u); if (w == NULL) { x = NULL; break; } x = PyEval_CallObject(x, w); Py_DECREF(w); PUSH(x); if (x != NULL) continue; break; case IMPORT_FROM: w = GETNAMEV(oparg); v = TOP(); PyFrame_FastToLocals(f); if ((x = f->f_locals) == NULL) { PyErr_SetString(PyExc_SystemError, "no locals"); break; } err = import_from(x, v, w); PyFrame_LocalsToFast(f, 0); if (err == 0) continue; break; case JUMP_FORWARD: JUMPBY(oparg); continue; case JUMP_IF_FALSE: err = PyObject_IsTrue(TOP()); if (err > 0) err = 0; else if (err == 0) JUMPBY(oparg); else break; continue; case JUMP_IF_TRUE: err = PyObject_IsTrue(TOP()); if (err > 0) { err = 0; JUMPBY(oparg); } else if (err == 0) ; else break; continue; case JUMP_ABSOLUTE: JUMPTO(oparg); continue; case FOR_LOOP: /* for v in s: ... On entry: stack contains s, i. On exit: stack contains s, i+1, s[i]; but if loop exhausted: s, i are popped, and we jump */ w = POP(); /* Loop index */ v = POP(); /* Sequence object */ u = loop_subscript(v, w); if (u != NULL) { PUSH(v); x = PyInt_FromLong(PyInt_AsLong(w)+1); PUSH(x); Py_DECREF(w); PUSH(u); if (x != NULL) continue; } else { Py_DECREF(v); Py_DECREF(w); /* A NULL can mean "s exhausted" but also an error: */ if (PyErr_Occurred()) why = WHY_EXCEPTION; else { JUMPBY(oparg); continue; } } break; case SETUP_LOOP: case SETUP_EXCEPT: case SETUP_FINALLY: PyFrame_BlockSetup(f, opcode, INSTR_OFFSET() + oparg, STACK_LEVEL()); continue; case SET_LINENO: #ifdef LLTRACE if (lltrace) printf("--- %s:%d \n", filename, oparg); #endif f->f_lineno = oparg; if (f->f_trace == NULL) continue; /* Trace each line of code reached */ f->f_lasti = INSTR_OFFSET(); err = call_trace(&f->f_trace, &f->f_trace, f, "line", Py_None); break; case CALL_FUNCTION: { int na = oparg & 0xff; int nk = (oparg>>8) & 0xff; int n = na + 2*nk; PyObject **pfunc = stack_pointer - n - 1; PyObject *func = *pfunc; PyObject *self = NULL; PyObject *class = NULL; f->f_lasti = INSTR_OFFSET() - 3; /* For tracing */ if (PyMethod_Check(func)) { self = PyMethod_Self(func); class = PyMethod_Class(func); func = PyMethod_Function(func); Py_INCREF(func); if (self != NULL) { Py_INCREF(self); Py_DECREF(*pfunc); *pfunc = self; na++; n++; } else { /* Unbound methods must be called with an instance of the class (or a derived class) as first argument */ if (na > 0 && (self = stack_pointer[-n]) != NULL && PyInstance_Check(self) && PyClass_IsSubclass( (PyObject *) (((PyInstanceObject *)self) ->in_class), class)) /* Handy-dandy */ ; else { PyErr_SetString( PyExc_TypeError, "unbound method must be called with class instance 1st argument"); x = NULL; break; } } } else Py_INCREF(func); if (PyFunction_Check(func)) { PyObject *co = PyFunction_GetCode(func); PyObject *globals = PyFunction_GetGlobals(func); PyObject *argdefs = PyFunction_GetDefaults(func); PyObject **d; int nd; if (argdefs != NULL) { d = &PyTuple_GET_ITEM(argdefs, 0); nd = ((PyTupleObject *)argdefs) -> ob_size; } else { d = NULL; nd = 0; } x = eval_code2( (PyCodeObject *)co, globals, (PyObject *)NULL, stack_pointer-n, na, stack_pointer-2*nk, nk, d, nd, class); } else { PyObject *args = PyTuple_New(na); PyObject *kwdict = NULL; if (args == NULL) { x = NULL; break; } if (nk > 0) { kwdict = PyDict_New(); if (kwdict == NULL) { x = NULL; break; } err = 0; while (--nk >= 0) { PyObject *value = POP(); PyObject *key = POP(); err = PyDict_SetItem( kwdict, key, value); Py_DECREF(key); Py_DECREF(value); if (err) break; } if (err) { Py_DECREF(args); Py_DECREF(kwdict); break; } } while (--na >= 0) { w = POP(); PyTuple_SET_ITEM(args, na, w); } x = PyEval_CallObjectWithKeywords( func, args, kwdict); Py_DECREF(args); Py_XDECREF(kwdict); } Py_DECREF(func); while (stack_pointer > pfunc) { w = POP(); Py_DECREF(w); } PUSH(x); if (x != NULL) continue; break; } case MAKE_FUNCTION: v = POP(); /* code object */ x = PyFunction_New(v, f->f_globals); Py_DECREF(v); /* XXX Maybe this should be a separate opcode? */ if (x != NULL && oparg > 0) { v = PyTuple_New(oparg); if (v == NULL) { Py_DECREF(x); x = NULL; break; } while (--oparg >= 0) { w = POP(); PyTuple_SET_ITEM(v, oparg, w); } err = PyFunction_SetDefaults(x, v); Py_DECREF(v); } PUSH(x); break; case BUILD_SLICE: if (oparg == 3) w = POP(); else w = NULL; v = POP(); u = POP(); x = PySlice_New(u, v, w); Py_DECREF(u); Py_DECREF(v); Py_XDECREF(w); PUSH(x); if (x != NULL) continue; break; default: fprintf(stderr, "XXX lineno: %d, opcode: %d\n", f->f_lineno, opcode); PyErr_SetString(PyExc_SystemError, "unknown opcode"); why = WHY_EXCEPTION; break; #ifdef CASE_TOO_BIG } #endif } /* switch */ on_error: /* Quickly continue if no error occurred */ if (why == WHY_NOT) { if (err == 0 && x != NULL) { #ifdef CHECKEXC if (PyErr_Occurred()) fprintf(stderr, "XXX undetected error\n"); else #endif continue; /* Normal, fast path */ } why = WHY_EXCEPTION; x = Py_None; err = 0; } #ifdef CHECKEXC /* Double-check exception status */ if (why == WHY_EXCEPTION || why == WHY_RERAISE) { if (!PyErr_Occurred()) { fprintf(stderr, "XXX ghost error\n"); PyErr_SetString(PyExc_SystemError, "ghost error"); why = WHY_EXCEPTION; } } else { if (PyErr_Occurred()) { fprintf(stderr, "XXX undetected error (why=%d)\n", why); why = WHY_EXCEPTION; } } #endif /* Log traceback info if this is a real exception */ if (why == WHY_EXCEPTION) { f->f_lasti = INSTR_OFFSET() - 1; if (HAS_ARG(opcode)) f->f_lasti -= 2; PyTraceBack_Here(f); if (f->f_trace) call_exc_trace(&f->f_trace, &f->f_trace, f); if (tstate->sys_profilefunc) call_exc_trace(&tstate->sys_profilefunc, (PyObject**)0, f); } /* For the rest, treat WHY_RERAISE as WHY_EXCEPTION */ if (why == WHY_RERAISE) why = WHY_EXCEPTION; /* Unwind stacks if a (pseudo) exception occurred */ while (why != WHY_NOT && f->f_iblock > 0) { PyTryBlock *b = PyFrame_BlockPop(f); while (STACK_LEVEL() > b->b_level) { v = POP(); Py_XDECREF(v); } if (b->b_type == SETUP_LOOP && why == WHY_BREAK) { why = WHY_NOT; JUMPTO(b->b_handler); break; } if (b->b_type == SETUP_FINALLY || (b->b_type == SETUP_EXCEPT && why == WHY_EXCEPTION)) { if (why == WHY_EXCEPTION) { PyObject *exc, *val, *tb; PyErr_Fetch(&exc, &val, &tb); if (val == NULL) { val = Py_None; Py_INCREF(val); } /* Make the raw exception data available to the handler, so a program can emulate the Python main loop. Don't do this for 'finally'. */ if (b->b_type == SETUP_EXCEPT) { PyErr_NormalizeException( &exc, &val, &tb); set_exc_info(tstate, exc, val, tb); } PUSH(tb); PUSH(val); PUSH(exc); } else { if (why == WHY_RETURN) PUSH(retval); v = PyInt_FromLong((long)why); PUSH(v); } why = WHY_NOT; JUMPTO(b->b_handler); break; } } /* unwind stack */ /* End the loop if we still have an error (or return) */ if (why != WHY_NOT) break; } /* main loop */ /* Pop remaining stack entries */ while (!EMPTY()) { v = POP(); Py_XDECREF(v); } if (why != WHY_RETURN) retval = NULL; if (f->f_trace) { if (why == WHY_RETURN) { if (call_trace(&f->f_trace, &f->f_trace, f, "return", retval)) { Py_XDECREF(retval); retval = NULL; why = WHY_EXCEPTION; } } } if (tstate->sys_profilefunc && why == WHY_RETURN) { if (call_trace(&tstate->sys_profilefunc, (PyObject**)0, f, "return", retval)) { Py_XDECREF(retval); retval = NULL; why = WHY_EXCEPTION; } } reset_exc_info(tstate); --tstate->recursion_depth; fail: /* Jump here from prelude on failure */ /* Restore previous frame and release the current one */ tstate->frame = f->f_back; Py_DECREF(f); return retval; } static void set_exc_info(tstate, type, value, tb) PyThreadState *tstate; PyObject *type; PyObject *value; PyObject *tb; { PyFrameObject *frame; PyObject *tmp_type, *tmp_value, *tmp_tb; frame = tstate->frame; if (frame->f_exc_type == NULL) { /* This frame didn't catch an exception before */ /* Save previous exception of this thread in this frame */ if (tstate->exc_type == NULL) { Py_INCREF(Py_None); tstate->exc_type = Py_None; } tmp_type = frame->f_exc_type; tmp_value = frame->f_exc_value; tmp_tb = frame->f_exc_traceback; Py_XINCREF(tstate->exc_type); Py_XINCREF(tstate->exc_value); Py_XINCREF(tstate->exc_traceback); frame->f_exc_type = tstate->exc_type; frame->f_exc_value = tstate->exc_value; frame->f_exc_traceback = tstate->exc_traceback; Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); } /* Set new exception for this thread */ tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; Py_XINCREF(type); Py_XINCREF(value); Py_XINCREF(tb); tstate->exc_type = type; tstate->exc_value = value; tstate->exc_traceback = tb; Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); /* For b/w compatibility */ PySys_SetObject("exc_type", type); PySys_SetObject("exc_value", value); PySys_SetObject("exc_traceback", tb); } static void reset_exc_info(tstate) PyThreadState *tstate; { PyFrameObject *frame; PyObject *tmp_type, *tmp_value, *tmp_tb; frame = tstate->frame; if (frame->f_exc_type != NULL) { /* This frame caught an exception */ tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; Py_XINCREF(frame->f_exc_type); Py_XINCREF(frame->f_exc_value); Py_XINCREF(frame->f_exc_traceback); tstate->exc_type = frame->f_exc_type; tstate->exc_value = frame->f_exc_value; tstate->exc_traceback = frame->f_exc_traceback; Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); /* For b/w compatibility */ PySys_SetObject("exc_type", frame->f_exc_type); PySys_SetObject("exc_value", frame->f_exc_value); PySys_SetObject("exc_traceback", frame->f_exc_traceback); } tmp_type = frame->f_exc_type; tmp_value = frame->f_exc_value; tmp_tb = frame->f_exc_traceback; frame->f_exc_type = NULL; frame->f_exc_value = NULL; frame->f_exc_traceback = NULL; Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); } /* Logic for the raise statement (too complicated for inlining). This *consumes* a reference count to each of its arguments. */ static enum why_code do_raise(type, value, tb) PyObject *type, *value, *tb; { if (type == NULL) { /* Reraise */ PyThreadState *tstate = PyThreadState_Get(); type = tstate->exc_type == NULL ? Py_None : tstate->exc_type; value = tstate->exc_value; tb = tstate->exc_traceback; Py_XINCREF(type); Py_XINCREF(value); Py_XINCREF(tb); } /* We support the following forms of raise: raise , raise , raise , None raise , raise , None raise , raise , None An omitted second argument is the same as None. In addition, raise , is the same as raising the tuple's first item (and it better have one!); this rule is applied recursively. Finally, an optional third argument can be supplied, which gives the traceback to be substituted (useful when re-raising an exception after examining it). */ /* First, check the traceback argument, replacing None with NULL. */ if (tb == Py_None) { Py_DECREF(tb); tb = NULL; } else if (tb != NULL && !PyTraceBack_Check(tb)) { PyErr_SetString(PyExc_TypeError, "raise 3rd arg must be traceback or None"); goto raise_error; } /* Next, replace a missing value with None */ if (value == NULL) { value = Py_None; Py_INCREF(value); } /* Next, repeatedly, replace a tuple exception with its first item */ while (PyTuple_Check(type) && PyTuple_Size(type) > 0) { PyObject *tmp = type; type = PyTuple_GET_ITEM(type, 0); Py_INCREF(type); Py_DECREF(tmp); } if (PyString_Check(type)) ; else if (PyClass_Check(type)) PyErr_NormalizeException(&type, &value, &tb); else if (PyInstance_Check(type)) { /* Raising an instance. The value should be a dummy. */ if (value != Py_None) { PyErr_SetString(PyExc_TypeError, "instance exception may not have a separate value"); goto raise_error; } else { /* Normalize to raise , */ Py_DECREF(value); value = type; type = (PyObject*) ((PyInstanceObject*)type)->in_class; Py_INCREF(type); } } else { /* Not something you can raise. You get an exception anyway, just not what you specified :-) */ PyErr_SetString(PyExc_TypeError, "exceptions must be strings, classes, or instances"); goto raise_error; } PyErr_Restore(type, value, tb); if (tb == NULL) return WHY_EXCEPTION; else return WHY_RERAISE; raise_error: Py_XDECREF(value); Py_XDECREF(type); Py_XDECREF(tb); return WHY_EXCEPTION; } static int unpack_sequence(v, argcnt, sp) PyObject *v; int argcnt; PyObject **sp; { int i; PyObject *w; for (i = 0; i < argcnt; i++) { if (! (w = PySequence_GetItem(v, i))) { if (PyErr_ExceptionMatches(PyExc_IndexError)) PyErr_SetString(PyExc_ValueError, "unpack sequence of wrong size"); goto finally; } *--sp = w; } /* we better get an IndexError now */ if (PySequence_GetItem(v, i) == NULL) { if (PyErr_ExceptionMatches(PyExc_IndexError)) { PyErr_Clear(); return 1; } /* some other exception occurred. fall through to finally */ } else PyErr_SetString(PyExc_ValueError, "unpack sequence of wrong size"); /* fall through */ finally: for (; i > 0; i--, sp++) Py_DECREF(*sp); return 0; } #ifdef LLTRACE static int prtrace(v, str) PyObject *v; char *str; { printf("%s ", str); if (PyObject_Print(v, stdout, 0) != 0) PyErr_Clear(); /* Don't know what else to do */ printf("\n"); } #endif static void call_exc_trace(p_trace, p_newtrace, f) PyObject **p_trace, **p_newtrace; PyFrameObject *f; { PyObject *type, *value, *traceback, *arg; int err; PyErr_Fetch(&type, &value, &traceback); if (value == NULL) { value = Py_None; Py_INCREF(value); } arg = Py_BuildValue("(OOO)", type, value, traceback); if (arg == NULL) { PyErr_Restore(type, value, traceback); return; } err = call_trace(p_trace, p_newtrace, f, "exception", arg); Py_DECREF(arg); if (err == 0) PyErr_Restore(type, value, traceback); else { Py_XDECREF(type); Py_XDECREF(value); Py_XDECREF(traceback); } } static int call_trace(p_trace, p_newtrace, f, msg, arg) PyObject **p_trace; /* in/out; may not be NULL; may not point to NULL variable initially */ PyObject **p_newtrace; /* in/out; may be NULL; may point to NULL variable; may be same variable as p_newtrace */ PyFrameObject *f; char *msg; PyObject *arg; { PyThreadState *tstate = f->f_tstate; PyObject *args, *what; PyObject *res = NULL; if (tstate->tracing) { /* Don't do recursive traces */ if (p_newtrace) { Py_XDECREF(*p_newtrace); *p_newtrace = NULL; } return 0; } args = PyTuple_New(3); if (args == NULL) goto cleanup; what = PyString_FromString(msg); if (what == NULL) goto cleanup; Py_INCREF(f); PyTuple_SET_ITEM(args, 0, (PyObject *)f); PyTuple_SET_ITEM(args, 1, what); if (arg == NULL) arg = Py_None; Py_INCREF(arg); PyTuple_SET_ITEM(args, 2, arg); tstate->tracing++; PyFrame_FastToLocals(f); res = PyEval_CallObject(*p_trace, args); /* May clear *p_trace! */ PyFrame_LocalsToFast(f, 1); tstate->tracing--; cleanup: Py_XDECREF(args); if (res == NULL) { /* The trace proc raised an exception */ PyTraceBack_Here(f); Py_XDECREF(*p_trace); *p_trace = NULL; if (p_newtrace) { Py_XDECREF(*p_newtrace); *p_newtrace = NULL; } return -1; } else { if (p_newtrace) { Py_XDECREF(*p_newtrace); if (res == Py_None) *p_newtrace = NULL; else { Py_INCREF(res); *p_newtrace = res; } } Py_DECREF(res); return 0; } } PyObject * PyEval_GetBuiltins() { PyThreadState *tstate = PyThreadState_Get(); PyFrameObject *current_frame = tstate->frame; if (current_frame == NULL) return tstate->interp->builtins; else return current_frame->f_builtins; } PyObject * PyEval_GetLocals() { PyFrameObject *current_frame = PyThreadState_Get()->frame; if (current_frame == NULL) return NULL; PyFrame_FastToLocals(current_frame); return current_frame->f_locals; } PyObject * PyEval_GetGlobals() { PyFrameObject *current_frame = PyThreadState_Get()->frame; if (current_frame == NULL) return NULL; else return current_frame->f_globals; } PyObject * PyEval_GetFrame() { PyFrameObject *current_frame = PyThreadState_Get()->frame; return (PyObject *)current_frame; } int PyEval_GetRestricted() { PyFrameObject *current_frame = PyThreadState_Get()->frame; return current_frame == NULL ? 0 : current_frame->f_restricted; } int Py_FlushLine() { PyObject *f = PySys_GetObject("stdout"); if (f == NULL) return 0; if (!PyFile_SoftSpace(f, 0)) return 0; return PyFile_WriteString("\n", f); } /* External interface to call any callable object. The arg must be a tuple or NULL. */ #undef PyEval_CallObject /* for backward compatibility: export this interface */ PyObject * PyEval_CallObject(func, arg) PyObject *func; PyObject *arg; { return PyEval_CallObjectWithKeywords(func, arg, (PyObject *)NULL); } #define PyEval_CallObject(func,arg) \ PyEval_CallObjectWithKeywords(func, arg, (PyObject *)NULL) PyObject * PyEval_CallObjectWithKeywords(func, arg, kw) PyObject *func; PyObject *arg; PyObject *kw; { ternaryfunc call; PyObject *result; if (arg == NULL) arg = PyTuple_New(0); else if (!PyTuple_Check(arg)) { PyErr_SetString(PyExc_TypeError, "argument list must be a tuple"); return NULL; } else Py_INCREF(arg); if (kw != NULL && !PyDict_Check(kw)) { PyErr_SetString(PyExc_TypeError, "keyword list must be a dictionary"); return NULL; } if ((call = func->ob_type->tp_call) != NULL) result = (*call)(func, arg, kw); else if (PyMethod_Check(func) || PyFunction_Check(func)) result = call_function(func, arg, kw); else result = call_builtin(func, arg, kw); Py_DECREF(arg); if (result == NULL && !PyErr_Occurred()) PyErr_SetString(PyExc_SystemError, "NULL result without error in call_object"); return result; } static PyObject * call_builtin(func, arg, kw) PyObject *func; PyObject *arg; PyObject *kw; { if (PyCFunction_Check(func)) { PyCFunction meth = PyCFunction_GetFunction(func); PyObject *self = PyCFunction_GetSelf(func); int flags = PyCFunction_GetFlags(func); if (!(flags & METH_VARARGS)) { int size = PyTuple_Size(arg); if (size == 1) arg = PyTuple_GET_ITEM(arg, 0); else if (size == 0) arg = NULL; } if (flags & METH_KEYWORDS) return (*(PyCFunctionWithKeywords)meth)(self, arg, kw); if (kw != NULL && PyDict_Size(kw) != 0) { PyErr_SetString(PyExc_TypeError, "this function takes no keyword arguments"); return NULL; } return (*meth)(self, arg); } if (PyClass_Check(func)) { return PyInstance_New(func, arg, kw); } if (PyInstance_Check(func)) { PyObject *res, *call = PyObject_GetAttrString(func,"__call__"); if (call == NULL) { PyErr_Clear(); PyErr_SetString(PyExc_AttributeError, "no __call__ method defined"); return NULL; } res = PyEval_CallObjectWithKeywords(call, arg, kw); Py_DECREF(call); return res; } PyErr_Format(PyExc_TypeError, "call of non-function (type %s)", func->ob_type->tp_name); return NULL; } static PyObject * call_function(func, arg, kw) PyObject *func; PyObject *arg; PyObject *kw; { PyObject *class = NULL; /* == owner */ PyObject *argdefs; PyObject **d, **k; int nk, nd; PyObject *result; if (kw != NULL && !PyDict_Check(kw)) { PyErr_BadInternalCall(); return NULL; } if (PyMethod_Check(func)) { PyObject *self = PyMethod_Self(func); class = PyMethod_Class(func); func = PyMethod_Function(func); if (self == NULL) { /* Unbound methods must be called with an instance of the class (or a derived class) as first argument */ if (PyTuple_Size(arg) >= 1) { self = PyTuple_GET_ITEM(arg, 0); if (self != NULL && PyInstance_Check(self) && PyClass_IsSubclass((PyObject *) (((PyInstanceObject *)self)->in_class), class)) /* Handy-dandy */ ; else self = NULL; } if (self == NULL) { PyErr_SetString(PyExc_TypeError, "unbound method must be called with class instance 1st argument"); return NULL; } Py_INCREF(arg); } else { int argcount = PyTuple_Size(arg); PyObject *newarg = PyTuple_New(argcount + 1); int i; if (newarg == NULL) return NULL; Py_INCREF(self); PyTuple_SET_ITEM(newarg, 0, self); for (i = 0; i < argcount; i++) { PyObject *v = PyTuple_GET_ITEM(arg, i); Py_XINCREF(v); PyTuple_SET_ITEM(newarg, i+1, v); } arg = newarg; } if (!PyFunction_Check(func)) { result = PyEval_CallObjectWithKeywords(func, arg, kw); Py_DECREF(arg); return result; } } else { if (!PyFunction_Check(func)) { PyErr_Format(PyExc_TypeError, "call of non-function (type %s)", func->ob_type->tp_name); return NULL; } Py_INCREF(arg); } argdefs = PyFunction_GetDefaults(func); if (argdefs != NULL && PyTuple_Check(argdefs)) { d = &PyTuple_GET_ITEM((PyTupleObject *)argdefs, 0); nd = PyTuple_Size(argdefs); } else { d = NULL; nd = 0; } if (kw != NULL) { int pos, i; nk = PyDict_Size(kw); k = PyMem_NEW(PyObject *, 2*nk); if (k == NULL) { PyErr_NoMemory(); Py_DECREF(arg); return NULL; } pos = i = 0; while (PyDict_Next(kw, &pos, &k[i], &k[i+1])) i += 2; nk = i/2; /* XXX This is broken if the caller deletes dict items! */ } else { k = NULL; nk = 0; } result = eval_code2( (PyCodeObject *)PyFunction_GetCode(func), PyFunction_GetGlobals(func), (PyObject *)NULL, &PyTuple_GET_ITEM(arg, 0), PyTuple_Size(arg), k, nk, d, nd, class); Py_DECREF(arg); PyMem_XDEL(k); return result; } #define SLICE_ERROR_MSG \ "standard sequence type does not support step size other than one" static PyObject * loop_subscript(v, w) PyObject *v, *w; { PySequenceMethods *sq = v->ob_type->tp_as_sequence; int i; if (sq == NULL || sq->sq_item == NULL) { PyErr_SetString(PyExc_TypeError, "loop over non-sequence"); return NULL; } i = PyInt_AsLong(w); v = (*sq->sq_item)(v, i); if (v) return v; if (PyErr_ExceptionMatches(PyExc_IndexError)) PyErr_Clear(); return NULL; } static int slice_index(v, pi) PyObject *v; int *pi; { if (v != NULL) { long x; if (!PyInt_Check(v)) { PyErr_SetString(PyExc_TypeError, "slice index must be int"); return -1; } x = PyInt_AsLong(v); /* Truncate -- very long indices are truncated anyway */ if (x > INT_MAX) x = INT_MAX; else if (x < -INT_MAX) x = 0; *pi = x; } return 0; } static PyObject * apply_slice(u, v, w) /* return u[v:w] */ PyObject *u, *v, *w; { int ilow = 0, ihigh = INT_MAX; if (slice_index(v, &ilow) != 0) return NULL; if (slice_index(w, &ihigh) != 0) return NULL; return PySequence_GetSlice(u, ilow, ihigh); } static int assign_slice(u, v, w, x) /* u[v:w] = x */ PyObject *u, *v, *w, *x; { int ilow = 0, ihigh = INT_MAX; if (slice_index(v, &ilow) != 0) return -1; if (slice_index(w, &ihigh) != 0) return -1; if (x == NULL) return PySequence_DelSlice(u, ilow, ihigh); else return PySequence_SetSlice(u, ilow, ihigh, x); } static PyObject * cmp_outcome(op, v, w) int op; register PyObject *v; register PyObject *w; { register int cmp; register int res = 0; switch (op) { case IS: case IS_NOT: res = (v == w); if (op == (int) IS_NOT) res = !res; break; case IN: case NOT_IN: res = PySequence_Contains(w, v); if (res < 0) return NULL; if (op == (int) NOT_IN) res = !res; break; case EXC_MATCH: res = PyErr_GivenExceptionMatches(v, w); break; default: cmp = PyObject_Compare(v, w); if (cmp && PyErr_Occurred()) return NULL; switch (op) { case LT: res = cmp < 0; break; case LE: res = cmp <= 0; break; case EQ: res = cmp == 0; break; case NE: res = cmp != 0; break; case GT: res = cmp > 0; break; case GE: res = cmp >= 0; break; /* XXX no default? (res is initialized to 0 though) */ } } v = res ? Py_True : Py_False; Py_INCREF(v); return v; } static int import_from(locals, v, name) PyObject *locals; PyObject *v; PyObject *name; { PyObject *w, *x; if (!PyModule_Check(v)) { PyErr_SetString(PyExc_TypeError, "import-from requires module object"); return -1; } w = PyModule_GetDict(v); if (PyString_AsString(name)[0] == '*') { int pos, err; PyObject *name, *value; pos = 0; while (PyDict_Next(w, &pos, &name, &value)) { if (!PyString_Check(name) || PyString_AsString(name)[0] == '_') continue; Py_INCREF(value); err = PyDict_SetItem(locals, name, value); Py_DECREF(value); if (err != 0) return -1; } return 0; } else { x = PyDict_GetItem(w, name); if (x == NULL) { char buf[250]; sprintf(buf, "cannot import name %.230s", PyString_AsString(name)); PyErr_SetString(PyExc_ImportError, buf); return -1; } else return PyDict_SetItem(locals, name, x); } } static PyObject * build_class(methods, bases, name) PyObject *methods; /* dictionary */ PyObject *bases; /* tuple containing classes */ PyObject *name; /* string */ { int i, n; if (!PyTuple_Check(bases)) { PyErr_SetString(PyExc_SystemError, "build_class with non-tuple bases"); return NULL; } if (!PyDict_Check(methods)) { PyErr_SetString(PyExc_SystemError, "build_class with non-dictionary"); return NULL; } if (!PyString_Check(name)) { PyErr_SetString(PyExc_SystemError, "build_class witn non-string name"); return NULL; } n = PyTuple_Size(bases); for (i = 0; i < n; i++) { PyObject *base = PyTuple_GET_ITEM(bases, i); if (!PyClass_Check(base)) { /* Call the base's *type*, if it is callable. This code is a hook for Donald Beaudry's and Jim Fulton's type extensions. In unexended Python it will never be triggered since its types are not callable. Ditto: call the bases's *class*, if it has one. This makes the same thing possible without writing C code. A true meta-object protocol! */ PyObject *basetype = (PyObject *)base->ob_type; PyObject *callable = NULL; if (PyCallable_Check(basetype)) callable = basetype; else callable = PyObject_GetAttrString( base, "__class__"); if (callable) { PyObject *args; PyObject *newclass = NULL; args = Py_BuildValue( "(OOO)", name, bases, methods); if (args != NULL) { newclass = PyEval_CallObject( callable, args); Py_DECREF(args); } if (callable != basetype) { Py_DECREF(callable); } return newclass; } PyErr_SetString(PyExc_TypeError, "base is not a class object"); return NULL; } } return PyClass_New(bases, methods, name); } static int exec_statement(f, prog, globals, locals) PyFrameObject *f; PyObject *prog; PyObject *globals; PyObject *locals; { char *s; int n; PyObject *v; int plain = 0; if (PyTuple_Check(prog) && globals == Py_None && locals == Py_None && ((n = PyTuple_Size(prog)) == 2 || n == 3)) { /* Backward compatibility hack */ globals = PyTuple_GetItem(prog, 1); if (n == 3) locals = PyTuple_GetItem(prog, 2); prog = PyTuple_GetItem(prog, 0); } if (globals == Py_None) { globals = PyEval_GetGlobals(); if (locals == Py_None) { locals = PyEval_GetLocals(); plain = 1; } } else if (locals == Py_None) locals = globals; if (!PyString_Check(prog) && !PyCode_Check(prog) && !PyFile_Check(prog)) { PyErr_SetString(PyExc_TypeError, "exec 1st arg must be string, code or file object"); return -1; } if (!PyDict_Check(globals) || !PyDict_Check(locals)) { PyErr_SetString(PyExc_TypeError, "exec 2nd/3rd args must be dict or None"); return -1; } if (PyDict_GetItemString(globals, "__builtins__") == NULL) PyDict_SetItemString(globals, "__builtins__", f->f_builtins); if (PyCode_Check(prog)) { v = PyEval_EvalCode((PyCodeObject *) prog, globals, locals); if (v == NULL) return -1; Py_DECREF(v); return 0; } if (PyFile_Check(prog)) { FILE *fp = PyFile_AsFile(prog); char *name = PyString_AsString(PyFile_Name(prog)); if (PyRun_File(fp, name, Py_file_input, globals, locals) == NULL) return -1; return 0; } s = PyString_AsString(prog); if ((int)strlen(s) != PyString_Size(prog)) { PyErr_SetString(PyExc_ValueError, "embedded '\\0' in exec string"); return -1; } v = PyRun_String(s, Py_file_input, globals, locals); if (v == NULL) return -1; Py_DECREF(v); if (plain) PyFrame_LocalsToFast(f, 0); return 0; } /* Hack for ni.py */ static PyObject * find_from_args(f, nexti) PyFrameObject *f; int nexti; { int opcode; int oparg; PyObject *list, *name; unsigned char *next_instr; _PyCode_GETCODEPTR(f->f_code, &next_instr); next_instr += nexti; opcode = (*next_instr++); if (opcode != IMPORT_FROM) { Py_INCREF(Py_None); return Py_None; } list = PyList_New(0); if (list == NULL) return NULL; do { oparg = (next_instr[1]<<8) + next_instr[0]; next_instr += 2; name = Getnamev(f, oparg); if (PyList_Append(list, name) < 0) { Py_DECREF(list); break; } opcode = (*next_instr++); } while (opcode == IMPORT_FROM); return list; } #ifdef DYNAMIC_EXECUTION_PROFILE PyObject * getarray(a) long a[256]; { int i; PyObject *l = PyList_New(256); if (l == NULL) return NULL; for (i = 0; i < 256; i++) { PyObject *x = PyInt_FromLong(a[i]); if (x == NULL) { Py_DECREF(l); return NULL; } PyList_SetItem(l, i, x); } for (i = 0; i < 256; i++) a[i] = 0; return l; } PyObject * _Py_GetDXProfile(self, args) PyObject *self, *args; { #ifndef DXPAIRS return getarray(dxp); #else int i; PyObject *l = PyList_New(257); if (l == NULL) return NULL; for (i = 0; i < 257; i++) { PyObject *x = getarray(dxpairs[i]); if (x == NULL) { Py_DECREF(l); return NULL; } PyList_SetItem(l, i, x); } return l; #endif } #endif