#include "Python.h" #include "pycore_atomic.h" // _Py_atomic_int #include "pycore_ceval.h" // _PyEval_SignalReceived() #include "pycore_pyerrors.h" // _PyErr_Fetch() #include "pycore_pylifecycle.h" // _PyErr_Print() #include "pycore_initconfig.h" // _PyStatus_OK() #include "pycore_pymem.h" // _PyMem_IsPtrFreed() /* Notes about the implementation: - The GIL is just a boolean variable (locked) whose access is protected by a mutex (gil_mutex), and whose changes are signalled by a condition variable (gil_cond). gil_mutex is taken for short periods of time, and therefore mostly uncontended. - In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be able to release the GIL on demand by another thread. A volatile boolean variable (gil_drop_request) is used for that purpose, which is checked at every turn of the eval loop. That variable is set after a wait of `interval` microseconds on `gil_cond` has timed out. [Actually, another volatile boolean variable (eval_breaker) is used which ORs several conditions into one. Volatile booleans are sufficient as inter-thread signalling means since Python is run on cache-coherent architectures only.] - A thread wanting to take the GIL will first let pass a given amount of time (`interval` microseconds) before setting gil_drop_request. This encourages a defined switching period, but doesn't enforce it since opcodes can take an arbitrary time to execute. The `interval` value is available for the user to read and modify using the Python API `sys.{get,set}switchinterval()`. - When a thread releases the GIL and gil_drop_request is set, that thread ensures that another GIL-awaiting thread gets scheduled. It does so by waiting on a condition variable (switch_cond) until the value of last_holder is changed to something else than its own thread state pointer, indicating that another thread was able to take the GIL. This is meant to prohibit the latency-adverse behaviour on multi-core machines where one thread would speculatively release the GIL, but still run and end up being the first to re-acquire it, making the "timeslices" much longer than expected. (Note: this mechanism is enabled with FORCE_SWITCHING above) */ // GH-89279: Force inlining by using a macro. #if defined(_MSC_VER) && SIZEOF_INT == 4 #define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) (assert(sizeof((ATOMIC_VAL)->_value) == 4), *((volatile int*)&((ATOMIC_VAL)->_value))) #else #define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) _Py_atomic_load_relaxed(ATOMIC_VAL) #endif /* This can set eval_breaker to 0 even though gil_drop_request became 1. We believe this is all right because the eval loop will release the GIL eventually anyway. */ static inline void COMPUTE_EVAL_BREAKER(PyInterpreterState *interp, struct _ceval_runtime_state *ceval, struct _ceval_state *ceval2) { _Py_atomic_store_relaxed(&ceval2->eval_breaker, _Py_atomic_load_relaxed_int32(&ceval2->gil_drop_request) | (_Py_atomic_load_relaxed_int32(&ceval->signals_pending) && _Py_ThreadCanHandleSignals(interp)) | (_Py_atomic_load_relaxed_int32(&ceval2->pending.calls_to_do) && _Py_ThreadCanHandlePendingCalls()) | ceval2->pending.async_exc); } static inline void SET_GIL_DROP_REQUEST(PyInterpreterState *interp) { struct _ceval_state *ceval2 = &interp->ceval; _Py_atomic_store_relaxed(&ceval2->gil_drop_request, 1); _Py_atomic_store_relaxed(&ceval2->eval_breaker, 1); } static inline void RESET_GIL_DROP_REQUEST(PyInterpreterState *interp) { struct _ceval_runtime_state *ceval = &interp->runtime->ceval; struct _ceval_state *ceval2 = &interp->ceval; _Py_atomic_store_relaxed(&ceval2->gil_drop_request, 0); COMPUTE_EVAL_BREAKER(interp, ceval, ceval2); } static inline void SIGNAL_PENDING_CALLS(PyInterpreterState *interp) { struct _ceval_runtime_state *ceval = &interp->runtime->ceval; struct _ceval_state *ceval2 = &interp->ceval; _Py_atomic_store_relaxed(&ceval2->pending.calls_to_do, 1); COMPUTE_EVAL_BREAKER(interp, ceval, ceval2); } static inline void UNSIGNAL_PENDING_CALLS(PyInterpreterState *interp) { struct _ceval_runtime_state *ceval = &interp->runtime->ceval; struct _ceval_state *ceval2 = &interp->ceval; _Py_atomic_store_relaxed(&ceval2->pending.calls_to_do, 0); COMPUTE_EVAL_BREAKER(interp, ceval, ceval2); } static inline void SIGNAL_PENDING_SIGNALS(PyInterpreterState *interp, int force) { struct _ceval_runtime_state *ceval = &interp->runtime->ceval; struct _ceval_state *ceval2 = &interp->ceval; _Py_atomic_store_relaxed(&ceval->signals_pending, 1); if (force) { _Py_atomic_store_relaxed(&ceval2->eval_breaker, 1); } else { /* eval_breaker is not set to 1 if thread_can_handle_signals() is false */ COMPUTE_EVAL_BREAKER(interp, ceval, ceval2); } } static inline void UNSIGNAL_PENDING_SIGNALS(PyInterpreterState *interp) { struct _ceval_runtime_state *ceval = &interp->runtime->ceval; struct _ceval_state *ceval2 = &interp->ceval; _Py_atomic_store_relaxed(&ceval->signals_pending, 0); COMPUTE_EVAL_BREAKER(interp, ceval, ceval2); } static inline void SIGNAL_ASYNC_EXC(PyInterpreterState *interp) { struct _ceval_state *ceval2 = &interp->ceval; ceval2->pending.async_exc = 1; _Py_atomic_store_relaxed(&ceval2->eval_breaker, 1); } static inline void UNSIGNAL_ASYNC_EXC(PyInterpreterState *interp) { struct _ceval_runtime_state *ceval = &interp->runtime->ceval; struct _ceval_state *ceval2 = &interp->ceval; ceval2->pending.async_exc = 0; COMPUTE_EVAL_BREAKER(interp, ceval, ceval2); } #ifndef NDEBUG /* Ensure that tstate is valid */ static int is_tstate_valid(PyThreadState *tstate) { assert(!_PyMem_IsPtrFreed(tstate)); assert(!_PyMem_IsPtrFreed(tstate->interp)); return 1; } #endif /* * Implementation of the Global Interpreter Lock (GIL). */ #include #include #include "pycore_atomic.h" #include "condvar.h" #define MUTEX_INIT(mut) \ if (PyMUTEX_INIT(&(mut))) { \ Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); }; #define MUTEX_FINI(mut) \ if (PyMUTEX_FINI(&(mut))) { \ Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); }; #define MUTEX_LOCK(mut) \ if (PyMUTEX_LOCK(&(mut))) { \ Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); }; #define MUTEX_UNLOCK(mut) \ if (PyMUTEX_UNLOCK(&(mut))) { \ Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); }; #define COND_INIT(cond) \ if (PyCOND_INIT(&(cond))) { \ Py_FatalError("PyCOND_INIT(" #cond ") failed"); }; #define COND_FINI(cond) \ if (PyCOND_FINI(&(cond))) { \ Py_FatalError("PyCOND_FINI(" #cond ") failed"); }; #define COND_SIGNAL(cond) \ if (PyCOND_SIGNAL(&(cond))) { \ Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); }; #define COND_WAIT(cond, mut) \ if (PyCOND_WAIT(&(cond), &(mut))) { \ Py_FatalError("PyCOND_WAIT(" #cond ") failed"); }; #define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \ { \ int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \ if (r < 0) \ Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \ if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \ timeout_result = 1; \ else \ timeout_result = 0; \ } \ #define DEFAULT_INTERVAL 5000 static void _gil_initialize(struct _gil_runtime_state *gil) { _Py_atomic_int uninitialized = {-1}; gil->locked = uninitialized; gil->interval = DEFAULT_INTERVAL; } static int gil_created(struct _gil_runtime_state *gil) { return (_Py_atomic_load_explicit(&gil->locked, _Py_memory_order_acquire) >= 0); } static void create_gil(struct _gil_runtime_state *gil) { MUTEX_INIT(gil->mutex); #ifdef FORCE_SWITCHING MUTEX_INIT(gil->switch_mutex); #endif COND_INIT(gil->cond); #ifdef FORCE_SWITCHING COND_INIT(gil->switch_cond); #endif _Py_atomic_store_relaxed(&gil->last_holder, 0); _Py_ANNOTATE_RWLOCK_CREATE(&gil->locked); _Py_atomic_store_explicit(&gil->locked, 0, _Py_memory_order_release); } static void destroy_gil(struct _gil_runtime_state *gil) { /* some pthread-like implementations tie the mutex to the cond * and must have the cond destroyed first. */ COND_FINI(gil->cond); MUTEX_FINI(gil->mutex); #ifdef FORCE_SWITCHING COND_FINI(gil->switch_cond); MUTEX_FINI(gil->switch_mutex); #endif _Py_atomic_store_explicit(&gil->locked, -1, _Py_memory_order_release); _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked); } #ifdef HAVE_FORK static void recreate_gil(struct _gil_runtime_state *gil) { _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked); /* XXX should we destroy the old OS resources here? */ create_gil(gil); } #endif static void drop_gil(struct _ceval_runtime_state *ceval, struct _ceval_state *ceval2, PyThreadState *tstate) { struct _gil_runtime_state *gil = &ceval->gil; if (!_Py_atomic_load_relaxed(&gil->locked)) { Py_FatalError("drop_gil: GIL is not locked"); } /* tstate is allowed to be NULL (early interpreter init) */ if (tstate != NULL) { /* Sub-interpreter support: threads might have been switched under our feet using PyThreadState_Swap(). Fix the GIL last holder variable so that our heuristics work. */ _Py_atomic_store_relaxed(&gil->last_holder, (uintptr_t)tstate); } MUTEX_LOCK(gil->mutex); _Py_ANNOTATE_RWLOCK_RELEASED(&gil->locked, /*is_write=*/1); _Py_atomic_store_relaxed(&gil->locked, 0); COND_SIGNAL(gil->cond); MUTEX_UNLOCK(gil->mutex); #ifdef FORCE_SWITCHING if (_Py_atomic_load_relaxed(&ceval2->gil_drop_request) && tstate != NULL) { MUTEX_LOCK(gil->switch_mutex); /* Not switched yet => wait */ if (((PyThreadState*)_Py_atomic_load_relaxed(&gil->last_holder)) == tstate) { assert(is_tstate_valid(tstate)); RESET_GIL_DROP_REQUEST(tstate->interp); /* NOTE: if COND_WAIT does not atomically start waiting when releasing the mutex, another thread can run through, take the GIL and drop it again, and reset the condition before we even had a chance to wait for it. */ COND_WAIT(gil->switch_cond, gil->switch_mutex); } MUTEX_UNLOCK(gil->switch_mutex); } #endif } /* Check if a Python thread must exit immediately, rather than taking the GIL if Py_Finalize() has been called. When this function is called by a daemon thread after Py_Finalize() has been called, the GIL does no longer exist. tstate must be non-NULL. */ static inline int tstate_must_exit(PyThreadState *tstate) { /* bpo-39877: Access _PyRuntime directly rather than using tstate->interp->runtime to support calls from Python daemon threads. After Py_Finalize() has been called, tstate can be a dangling pointer: point to PyThreadState freed memory. */ PyThreadState *finalizing = _PyRuntimeState_GetFinalizing(&_PyRuntime); return (finalizing != NULL && finalizing != tstate); } /* Take the GIL. The function saves errno at entry and restores its value at exit. tstate must be non-NULL. */ static void take_gil(PyThreadState *tstate) { int err = errno; assert(tstate != NULL); if (tstate_must_exit(tstate)) { /* bpo-39877: If Py_Finalize() has been called and tstate is not the thread which called Py_Finalize(), exit immediately the thread. This code path can be reached by a daemon thread after Py_Finalize() completes. In this case, tstate is a dangling pointer: points to PyThreadState freed memory. */ PyThread_exit_thread(); } assert(is_tstate_valid(tstate)); PyInterpreterState *interp = tstate->interp; struct _ceval_runtime_state *ceval = &interp->runtime->ceval; struct _ceval_state *ceval2 = &interp->ceval; struct _gil_runtime_state *gil = &ceval->gil; /* Check that _PyEval_InitThreads() was called to create the lock */ assert(gil_created(gil)); MUTEX_LOCK(gil->mutex); if (!_Py_atomic_load_relaxed(&gil->locked)) { goto _ready; } while (_Py_atomic_load_relaxed(&gil->locked)) { unsigned long saved_switchnum = gil->switch_number; unsigned long interval = (gil->interval >= 1 ? gil->interval : 1); int timed_out = 0; COND_TIMED_WAIT(gil->cond, gil->mutex, interval, timed_out); /* If we timed out and no switch occurred in the meantime, it is time to ask the GIL-holding thread to drop it. */ if (timed_out && _Py_atomic_load_relaxed(&gil->locked) && gil->switch_number == saved_switchnum) { if (tstate_must_exit(tstate)) { MUTEX_UNLOCK(gil->mutex); PyThread_exit_thread(); } assert(is_tstate_valid(tstate)); SET_GIL_DROP_REQUEST(interp); } } _ready: #ifdef FORCE_SWITCHING /* This mutex must be taken before modifying gil->last_holder: see drop_gil(). */ MUTEX_LOCK(gil->switch_mutex); #endif /* We now hold the GIL */ _Py_atomic_store_relaxed(&gil->locked, 1); _Py_ANNOTATE_RWLOCK_ACQUIRED(&gil->locked, /*is_write=*/1); if (tstate != (PyThreadState*)_Py_atomic_load_relaxed(&gil->last_holder)) { _Py_atomic_store_relaxed(&gil->last_holder, (uintptr_t)tstate); ++gil->switch_number; } #ifdef FORCE_SWITCHING COND_SIGNAL(gil->switch_cond); MUTEX_UNLOCK(gil->switch_mutex); #endif if (tstate_must_exit(tstate)) { /* bpo-36475: If Py_Finalize() has been called and tstate is not the thread which called Py_Finalize(), exit immediately the thread. This code path can be reached by a daemon thread which was waiting in take_gil() while the main thread called wait_for_thread_shutdown() from Py_Finalize(). */ MUTEX_UNLOCK(gil->mutex); drop_gil(ceval, ceval2, tstate); PyThread_exit_thread(); } assert(is_tstate_valid(tstate)); if (_Py_atomic_load_relaxed(&ceval2->gil_drop_request)) { RESET_GIL_DROP_REQUEST(interp); } else { /* bpo-40010: eval_breaker should be recomputed to be set to 1 if there is a pending signal: signal received by another thread which cannot handle signals. Note: RESET_GIL_DROP_REQUEST() calls COMPUTE_EVAL_BREAKER(). */ COMPUTE_EVAL_BREAKER(interp, ceval, ceval2); } /* Don't access tstate if the thread must exit */ if (tstate->async_exc != NULL) { _PyEval_SignalAsyncExc(tstate->interp); } MUTEX_UNLOCK(gil->mutex); errno = err; } void _PyEval_SetSwitchInterval(unsigned long microseconds) { struct _gil_runtime_state *gil = &_PyRuntime.ceval.gil; gil->interval = microseconds; } unsigned long _PyEval_GetSwitchInterval() { struct _gil_runtime_state *gil = &_PyRuntime.ceval.gil; return gil->interval; } int _PyEval_ThreadsInitialized(_PyRuntimeState *runtime) { return gil_created(&runtime->ceval.gil); } int PyEval_ThreadsInitialized(void) { _PyRuntimeState *runtime = &_PyRuntime; return _PyEval_ThreadsInitialized(runtime); } PyStatus _PyEval_InitGIL(PyThreadState *tstate) { if (!_Py_IsMainInterpreter(tstate->interp)) { /* Currently, the GIL is shared by all interpreters, and only the main interpreter is responsible to create and destroy it. */ return _PyStatus_OK(); } struct _gil_runtime_state *gil = &tstate->interp->runtime->ceval.gil; assert(!gil_created(gil)); PyThread_init_thread(); create_gil(gil); take_gil(tstate); assert(gil_created(gil)); return _PyStatus_OK(); } void _PyEval_FiniGIL(PyInterpreterState *interp) { if (!_Py_IsMainInterpreter(interp)) { /* Currently, the GIL is shared by all interpreters, and only the main interpreter is responsible to create and destroy it. */ return; } struct _gil_runtime_state *gil = &interp->runtime->ceval.gil; if (!gil_created(gil)) { /* First Py_InitializeFromConfig() call: the GIL doesn't exist yet: do nothing. */ return; } destroy_gil(gil); assert(!gil_created(gil)); } void PyEval_InitThreads(void) { /* Do nothing: kept for backward compatibility */ } void _PyEval_Fini(void) { #ifdef Py_STATS _Py_PrintSpecializationStats(1); #endif } void PyEval_AcquireLock(void) { _PyRuntimeState *runtime = &_PyRuntime; PyThreadState *tstate = _PyRuntimeState_GetThreadState(runtime); _Py_EnsureTstateNotNULL(tstate); take_gil(tstate); } void PyEval_ReleaseLock(void) { _PyRuntimeState *runtime = &_PyRuntime; PyThreadState *tstate = _PyRuntimeState_GetThreadState(runtime); /* This function must succeed when the current thread state is NULL. We therefore avoid PyThreadState_Get() which dumps a fatal error in debug mode. */ struct _ceval_runtime_state *ceval = &runtime->ceval; struct _ceval_state *ceval2 = &tstate->interp->ceval; drop_gil(ceval, ceval2, tstate); } void _PyEval_ReleaseLock(PyThreadState *tstate) { struct _ceval_runtime_state *ceval = &tstate->interp->runtime->ceval; struct _ceval_state *ceval2 = &tstate->interp->ceval; drop_gil(ceval, ceval2, tstate); } void PyEval_AcquireThread(PyThreadState *tstate) { _Py_EnsureTstateNotNULL(tstate); take_gil(tstate); struct _gilstate_runtime_state *gilstate = &tstate->interp->runtime->gilstate; if (_PyThreadState_Swap(gilstate, tstate) != NULL) { Py_FatalError("non-NULL old thread state"); } } void PyEval_ReleaseThread(PyThreadState *tstate) { assert(is_tstate_valid(tstate)); _PyRuntimeState *runtime = tstate->interp->runtime; PyThreadState *new_tstate = _PyThreadState_Swap(&runtime->gilstate, NULL); if (new_tstate != tstate) { Py_FatalError("wrong thread state"); } struct _ceval_runtime_state *ceval = &runtime->ceval; struct _ceval_state *ceval2 = &tstate->interp->ceval; drop_gil(ceval, ceval2, tstate); } #ifdef HAVE_FORK /* This function is called from PyOS_AfterFork_Child to destroy all threads which are not running in the child process, and clear internal locks which might be held by those threads. */ PyStatus _PyEval_ReInitThreads(PyThreadState *tstate) { _PyRuntimeState *runtime = tstate->interp->runtime; struct _gil_runtime_state *gil = &runtime->ceval.gil; if (!gil_created(gil)) { return _PyStatus_OK(); } recreate_gil(gil); take_gil(tstate); struct _pending_calls *pending = &tstate->interp->ceval.pending; if (_PyThread_at_fork_reinit(&pending->lock) < 0) { return _PyStatus_ERR("Can't reinitialize pending calls lock"); } /* Destroy all threads except the current one */ _PyThreadState_DeleteExcept(runtime, tstate); return _PyStatus_OK(); } #endif /* This function is used to signal that async exceptions are waiting to be raised. */ void _PyEval_SignalAsyncExc(PyInterpreterState *interp) { SIGNAL_ASYNC_EXC(interp); } PyThreadState * PyEval_SaveThread(void) { _PyRuntimeState *runtime = &_PyRuntime; PyThreadState *tstate = _PyThreadState_Swap(&runtime->gilstate, NULL); _Py_EnsureTstateNotNULL(tstate); struct _ceval_runtime_state *ceval = &runtime->ceval; struct _ceval_state *ceval2 = &tstate->interp->ceval; assert(gil_created(&ceval->gil)); drop_gil(ceval, ceval2, tstate); return tstate; } void PyEval_RestoreThread(PyThreadState *tstate) { _Py_EnsureTstateNotNULL(tstate); take_gil(tstate); struct _gilstate_runtime_state *gilstate = &tstate->interp->runtime->gilstate; _PyThreadState_Swap(gilstate, tstate); } /* Mechanism whereby asynchronously executing callbacks (e.g. UNIX signal handlers or Mac I/O completion routines) can schedule calls to a function to be called synchronously. The synchronous function is called with one void* argument. It should return 0 for success or -1 for failure -- failure should be accompanied by an exception. If registry succeeds, the registry function returns 0; if it fails (e.g. due to too many pending calls) it returns -1 (without setting an exception condition). Note that because registry may occur from within signal handlers, or other asynchronous events, calling malloc() is unsafe! Any thread can schedule pending calls, but only the main thread will execute them. There is no facility to schedule calls to a particular thread, but that should be easy to change, should that ever be required. In that case, the static variables here should go into the python threadstate. */ void _PyEval_SignalReceived(PyInterpreterState *interp) { #ifdef MS_WINDOWS // bpo-42296: On Windows, _PyEval_SignalReceived() is called from a signal // handler which can run in a thread different than the Python thread, in // which case _Py_ThreadCanHandleSignals() is wrong. Ignore // _Py_ThreadCanHandleSignals() and always set eval_breaker to 1. // // The next eval_frame_handle_pending() call will call // _Py_ThreadCanHandleSignals() to recompute eval_breaker. int force = 1; #else int force = 0; #endif /* bpo-30703: Function called when the C signal handler of Python gets a signal. We cannot queue a callback using _PyEval_AddPendingCall() since that function is not async-signal-safe. */ SIGNAL_PENDING_SIGNALS(interp, force); } /* Push one item onto the queue while holding the lock. */ static int _push_pending_call(struct _pending_calls *pending, int (*func)(void *), void *arg) { int i = pending->last; int j = (i + 1) % NPENDINGCALLS; if (j == pending->first) { return -1; /* Queue full */ } pending->calls[i].func = func; pending->calls[i].arg = arg; pending->last = j; return 0; } /* Pop one item off the queue while holding the lock. */ static void _pop_pending_call(struct _pending_calls *pending, int (**func)(void *), void **arg) { int i = pending->first; if (i == pending->last) { return; /* Queue empty */ } *func = pending->calls[i].func; *arg = pending->calls[i].arg; pending->first = (i + 1) % NPENDINGCALLS; } /* This implementation is thread-safe. It allows scheduling to be made from any thread, and even from an executing callback. */ int _PyEval_AddPendingCall(PyInterpreterState *interp, int (*func)(void *), void *arg) { struct _pending_calls *pending = &interp->ceval.pending; /* Ensure that _PyEval_InitState() was called and that _PyEval_FiniState() is not called yet. */ assert(pending->lock != NULL); PyThread_acquire_lock(pending->lock, WAIT_LOCK); int result = _push_pending_call(pending, func, arg); PyThread_release_lock(pending->lock); /* signal main loop */ SIGNAL_PENDING_CALLS(interp); return result; } int Py_AddPendingCall(int (*func)(void *), void *arg) { /* Best-effort to support subinterpreters and calls with the GIL released. First attempt _PyThreadState_GET() since it supports subinterpreters. If the GIL is released, _PyThreadState_GET() returns NULL . In this case, use PyGILState_GetThisThreadState() which works even if the GIL is released. Sadly, PyGILState_GetThisThreadState() doesn't support subinterpreters: see bpo-10915 and bpo-15751. Py_AddPendingCall() doesn't require the caller to hold the GIL. */ PyThreadState *tstate = _PyThreadState_GET(); if (tstate == NULL) { tstate = PyGILState_GetThisThreadState(); } PyInterpreterState *interp; if (tstate != NULL) { interp = tstate->interp; } else { /* Last resort: use the main interpreter */ interp = _PyInterpreterState_Main(); } return _PyEval_AddPendingCall(interp, func, arg); } static int handle_signals(PyThreadState *tstate) { assert(is_tstate_valid(tstate)); if (!_Py_ThreadCanHandleSignals(tstate->interp)) { return 0; } UNSIGNAL_PENDING_SIGNALS(tstate->interp); if (_PyErr_CheckSignalsTstate(tstate) < 0) { /* On failure, re-schedule a call to handle_signals(). */ SIGNAL_PENDING_SIGNALS(tstate->interp, 0); return -1; } return 0; } static int make_pending_calls(PyInterpreterState *interp) { /* only execute pending calls on main thread */ if (!_Py_ThreadCanHandlePendingCalls()) { return 0; } /* don't perform recursive pending calls */ static int busy = 0; if (busy) { return 0; } busy = 1; /* unsignal before starting to call callbacks, so that any callback added in-between re-signals */ UNSIGNAL_PENDING_CALLS(interp); int res = 0; /* perform a bounded number of calls, in case of recursion */ struct _pending_calls *pending = &interp->ceval.pending; for (int i=0; ilock, WAIT_LOCK); _pop_pending_call(pending, &func, &arg); PyThread_release_lock(pending->lock); /* having released the lock, perform the callback */ if (func == NULL) { break; } res = func(arg); if (res) { goto error; } } busy = 0; return res; error: busy = 0; SIGNAL_PENDING_CALLS(interp); return res; } void _Py_FinishPendingCalls(PyThreadState *tstate) { assert(PyGILState_Check()); assert(is_tstate_valid(tstate)); struct _pending_calls *pending = &tstate->interp->ceval.pending; if (!_Py_atomic_load_relaxed_int32(&(pending->calls_to_do))) { return; } if (make_pending_calls(tstate->interp) < 0) { PyObject *exc, *val, *tb; _PyErr_Fetch(tstate, &exc, &val, &tb); PyErr_BadInternalCall(); _PyErr_ChainExceptions(exc, val, tb); _PyErr_Print(tstate); } } /* Py_MakePendingCalls() is a simple wrapper for the sake of backward-compatibility. */ int Py_MakePendingCalls(void) { assert(PyGILState_Check()); PyThreadState *tstate = _PyThreadState_GET(); assert(is_tstate_valid(tstate)); /* Python signal handler doesn't really queue a callback: it only signals that a signal was received, see _PyEval_SignalReceived(). */ int res = handle_signals(tstate); if (res != 0) { return res; } res = make_pending_calls(tstate->interp); if (res != 0) { return res; } return 0; } /* The interpreter's recursion limit */ void _PyEval_InitRuntimeState(struct _ceval_runtime_state *ceval) { _gil_initialize(&ceval->gil); } void _PyEval_InitState(struct _ceval_state *ceval, PyThread_type_lock pending_lock) { struct _pending_calls *pending = &ceval->pending; assert(pending->lock == NULL); pending->lock = pending_lock; } void _PyEval_FiniState(struct _ceval_state *ceval) { struct _pending_calls *pending = &ceval->pending; if (pending->lock != NULL) { PyThread_free_lock(pending->lock); pending->lock = NULL; } } /* Handle signals, pending calls, GIL drop request and asynchronous exception */ int _Py_HandlePending(PyThreadState *tstate) { _PyRuntimeState * const runtime = &_PyRuntime; struct _ceval_runtime_state *ceval = &runtime->ceval; /* Pending signals */ if (_Py_atomic_load_relaxed_int32(&ceval->signals_pending)) { if (handle_signals(tstate) != 0) { return -1; } } /* Pending calls */ struct _ceval_state *ceval2 = &tstate->interp->ceval; if (_Py_atomic_load_relaxed_int32(&ceval2->pending.calls_to_do)) { if (make_pending_calls(tstate->interp) != 0) { return -1; } } /* GIL drop request */ if (_Py_atomic_load_relaxed_int32(&ceval2->gil_drop_request)) { /* Give another thread a chance */ if (_PyThreadState_Swap(&runtime->gilstate, NULL) != tstate) { Py_FatalError("tstate mix-up"); } drop_gil(ceval, ceval2, tstate); /* Other threads may run now */ take_gil(tstate); if (_PyThreadState_Swap(&runtime->gilstate, tstate) != NULL) { Py_FatalError("orphan tstate"); } } /* Check for asynchronous exception. */ if (tstate->async_exc != NULL) { PyObject *exc = tstate->async_exc; tstate->async_exc = NULL; UNSIGNAL_ASYNC_EXC(tstate->interp); _PyErr_SetNone(tstate, exc); Py_DECREF(exc); return -1; } #ifdef MS_WINDOWS // bpo-42296: On Windows, _PyEval_SignalReceived() can be called in a // different thread than the Python thread, in which case // _Py_ThreadCanHandleSignals() is wrong. Recompute eval_breaker in the // current Python thread with the correct _Py_ThreadCanHandleSignals() // value. It prevents to interrupt the eval loop at every instruction if // the current Python thread cannot handle signals (if // _Py_ThreadCanHandleSignals() is false). COMPUTE_EVAL_BREAKER(tstate->interp, ceval, ceval2); #endif return 0; }