/* Peehole optimizations for bytecode compiler. */ #include "Python.h" #include "Python-ast.h" #include "node.h" #include "pyarena.h" #include "ast.h" #include "code.h" #include "compile.h" #include "symtable.h" #include "opcode.h" #define GETARG(arr, i) ((int)((arr[i+2]<<8) + arr[i+1])) #define UNCONDITIONAL_JUMP(op) (op==JUMP_ABSOLUTE || op==JUMP_FORWARD) #define ABSOLUTE_JUMP(op) (op==JUMP_ABSOLUTE || op==CONTINUE_LOOP) #define GETJUMPTGT(arr, i) (GETARG(arr,i) + (ABSOLUTE_JUMP(arr[i]) ? 0 : i+3)) #define SETARG(arr, i, val) arr[i+2] = val>>8; arr[i+1] = val & 255 #define CODESIZE(op) (HAS_ARG(op) ? 3 : 1) #define ISBASICBLOCK(blocks, start, bytes) \ (blocks[start]==blocks[start+bytes-1]) /* Replace LOAD_CONST c1. LOAD_CONST c2 ... LOAD_CONST cn BUILD_TUPLE n with LOAD_CONST (c1, c2, ... cn). The consts table must still be in list form so that the new constant (c1, c2, ... cn) can be appended. Called with codestr pointing to the first LOAD_CONST. Bails out with no change if one or more of the LOAD_CONSTs is missing. Also works for BUILD_LIST when followed by an "in" or "not in" test. */ static int tuple_of_constants(unsigned char *codestr, int n, PyObject *consts) { PyObject *newconst, *constant; Py_ssize_t i, arg, len_consts; /* Pre-conditions */ assert(PyList_CheckExact(consts)); assert(codestr[n*3] == BUILD_TUPLE || codestr[n*3] == BUILD_LIST); assert(GETARG(codestr, (n*3)) == n); for (i=0 ; i 20) { Py_DECREF(newconst); return 0; } /* Append folded constant into consts table */ len_consts = PyList_GET_SIZE(consts); if (PyList_Append(consts, newconst)) { Py_DECREF(newconst); return 0; } Py_DECREF(newconst); /* Write NOP NOP NOP NOP LOAD_CONST newconst */ memset(codestr, NOP, 4); codestr[4] = LOAD_CONST; SETARG(codestr, 4, len_consts); return 1; } static int fold_unaryops_on_constants(unsigned char *codestr, PyObject *consts) { PyObject *newconst=NULL, *v; Py_ssize_t len_consts; int opcode; /* Pre-conditions */ assert(PyList_CheckExact(consts)); assert(codestr[0] == LOAD_CONST); /* Create new constant */ v = PyList_GET_ITEM(consts, GETARG(codestr, 0)); opcode = codestr[3]; switch (opcode) { case UNARY_NEGATIVE: /* Preserve the sign of -0.0 */ if (PyObject_IsTrue(v) == 1) newconst = PyNumber_Negative(v); break; case UNARY_INVERT: newconst = PyNumber_Invert(v); break; default: /* Called with an unknown opcode */ PyErr_Format(PyExc_SystemError, "unexpected unary operation %d on a constant", opcode); return 0; } if (newconst == NULL) { PyErr_Clear(); return 0; } /* Append folded constant into consts table */ len_consts = PyList_GET_SIZE(consts); if (PyList_Append(consts, newconst)) { Py_DECREF(newconst); return 0; } Py_DECREF(newconst); /* Write NOP LOAD_CONST newconst */ codestr[0] = NOP; codestr[1] = LOAD_CONST; SETARG(codestr, 1, len_consts); return 1; } static unsigned int * markblocks(unsigned char *code, int len) { unsigned int *blocks = (unsigned int *)PyMem_Malloc(len*sizeof(int)); int i,j, opcode, blockcnt = 0; if (blocks == NULL) { PyErr_NoMemory(); return NULL; } memset(blocks, 0, len*sizeof(int)); /* Mark labels in the first pass */ for (i=0 ; i= 255. EXTENDED_ARG can appear before MAKE_FUNCTION; in this case both opcodes are skipped. EXTENDED_ARG preceding any other opcode causes the optimizer to bail. Optimizations are restricted to simple transformations occuring within a single basic block. All transformations keep the code size the same or smaller. For those that reduce size, the gaps are initially filled with NOPs. Later those NOPs are removed and the jump addresses retargeted in a single pass. Line numbering is adjusted accordingly. */ PyObject * PyCode_Optimize(PyObject *code, PyObject* consts, PyObject *names, PyObject *lineno_obj) { Py_ssize_t i, j, codelen; int nops, h, adj; int tgt, tgttgt, opcode; unsigned char *codestr = NULL; unsigned char *lineno; int *addrmap = NULL; int new_line, cum_orig_line, last_line, tabsiz; int cumlc=0, lastlc=0; /* Count runs of consecutive LOAD_CONSTs */ unsigned int *blocks = NULL; char *name; /* Bail out if an exception is set */ if (PyErr_Occurred()) goto exitUnchanged; /* Bypass optimization when the lineno table is too complex */ assert(PyString_Check(lineno_obj)); lineno = (unsigned char*)PyString_AS_STRING(lineno_obj); tabsiz = PyString_GET_SIZE(lineno_obj); if (memchr(lineno, 255, tabsiz) != NULL) goto exitUnchanged; /* Avoid situations where jump retargeting could overflow */ assert(PyString_Check(code)); codelen = PyString_Size(code); if (codelen > 32700) goto exitUnchanged; /* Make a modifiable copy of the code string */ codestr = (unsigned char *)PyMem_Malloc(codelen); if (codestr == NULL) goto exitUnchanged; codestr = (unsigned char *)memcpy(codestr, PyString_AS_STRING(code), codelen); /* Verify that RETURN_VALUE terminates the codestring. This allows the various transformation patterns to look ahead several instructions without additional checks to make sure they are not looking beyond the end of the code string. */ if (codestr[codelen-1] != RETURN_VALUE) goto exitUnchanged; /* Mapping to new jump targets after NOPs are removed */ addrmap = (int *)PyMem_Malloc(codelen * sizeof(int)); if (addrmap == NULL) goto exitUnchanged; blocks = markblocks(codestr, codelen); if (blocks == NULL) goto exitUnchanged; assert(PyList_Check(consts)); for (i=0 ; i a is not b not a in b --> a not in b not a is not b --> a is b not a not in b --> a in b */ case COMPARE_OP: j = GETARG(codestr, i); if (j < 6 || j > 9 || codestr[i+3] != UNARY_NOT || !ISBASICBLOCK(blocks,i,4)) continue; SETARG(codestr, i, (j^1)); codestr[i+3] = NOP; break; /* Replace LOAD_GLOBAL/LOAD_NAME None with LOAD_CONST None */ case LOAD_NAME: case LOAD_GLOBAL: j = GETARG(codestr, i); name = PyString_AsString(PyTuple_GET_ITEM(names, j)); if (name == NULL || strcmp(name, "None") != 0) continue; for (j=0 ; j < PyList_GET_SIZE(consts) ; j++) { if (PyList_GET_ITEM(consts, j) == Py_None) { codestr[i] = LOAD_CONST; SETARG(codestr, i, j); cumlc = lastlc + 1; break; } } break; /* Skip over LOAD_CONST trueconst JUMP_IF_FALSE xx POP_TOP */ case LOAD_CONST: cumlc = lastlc + 1; j = GETARG(codestr, i); if (codestr[i+3] != JUMP_IF_FALSE || codestr[i+6] != POP_TOP || !ISBASICBLOCK(blocks,i,7) || !PyObject_IsTrue(PyList_GET_ITEM(consts, j))) continue; memset(codestr+i, NOP, 7); cumlc = 0; break; /* Try to fold tuples of constants (includes a case for lists which are only used for "in" and "not in" tests). Skip over BUILD_SEQN 1 UNPACK_SEQN 1. Replace BUILD_SEQN 2 UNPACK_SEQN 2 with ROT2. Replace BUILD_SEQN 3 UNPACK_SEQN 3 with ROT3 ROT2. */ case BUILD_TUPLE: case BUILD_LIST: j = GETARG(codestr, i); h = i - 3 * j; if (h >= 0 && j <= lastlc && ((opcode == BUILD_TUPLE && ISBASICBLOCK(blocks, h, 3*(j+1))) || (opcode == BUILD_LIST && codestr[i+3]==COMPARE_OP && ISBASICBLOCK(blocks, h, 3*(j+2)) && (GETARG(codestr,i+3)==6 || GETARG(codestr,i+3)==7))) && tuple_of_constants(&codestr[h], j, consts)) { assert(codestr[i] == LOAD_CONST); cumlc = 1; break; } if (codestr[i+3] != UNPACK_SEQUENCE || !ISBASICBLOCK(blocks,i,6) || j != GETARG(codestr, i+3)) continue; if (j == 1) { memset(codestr+i, NOP, 6); } else if (j == 2) { codestr[i] = ROT_TWO; memset(codestr+i+1, NOP, 5); } else if (j == 3) { codestr[i] = ROT_THREE; codestr[i+1] = ROT_TWO; memset(codestr+i+2, NOP, 4); } break; /* Fold binary ops on constants. LOAD_CONST c1 LOAD_CONST c2 BINOP --> LOAD_CONST binop(c1,c2) */ case BINARY_POWER: case BINARY_MULTIPLY: case BINARY_TRUE_DIVIDE: case BINARY_FLOOR_DIVIDE: case BINARY_MODULO: case BINARY_ADD: case BINARY_SUBTRACT: case BINARY_SUBSCR: case BINARY_LSHIFT: case BINARY_RSHIFT: case BINARY_AND: case BINARY_XOR: case BINARY_OR: if (lastlc >= 2 && ISBASICBLOCK(blocks, i-6, 7) && fold_binops_on_constants(&codestr[i-6], consts)) { i -= 2; assert(codestr[i] == LOAD_CONST); cumlc = 1; } break; /* Fold unary ops on constants. LOAD_CONST c1 UNARY_OP --> LOAD_CONST unary_op(c) */ case UNARY_NEGATIVE: case UNARY_INVERT: if (lastlc >= 1 && ISBASICBLOCK(blocks, i-3, 4) && fold_unaryops_on_constants(&codestr[i-3], consts)) { i -= 2; assert(codestr[i] == LOAD_CONST); cumlc = 1; } break; /* Simplify conditional jump to conditional jump where the result of the first test implies the success of a similar test or the failure of the opposite test. Arises in code like: "if a and b:" "if a or b:" "a and b or c" "(a and b) and c" x:JUMP_IF_FALSE y y:JUMP_IF_FALSE z --> x:JUMP_IF_FALSE z x:JUMP_IF_FALSE y y:JUMP_IF_TRUE z --> x:JUMP_IF_FALSE y+3 where y+3 is the instruction following the second test. */ case JUMP_IF_FALSE: case JUMP_IF_TRUE: tgt = GETJUMPTGT(codestr, i); j = codestr[tgt]; if (j == JUMP_IF_FALSE || j == JUMP_IF_TRUE) { if (j == opcode) { tgttgt = GETJUMPTGT(codestr, tgt) - i - 3; SETARG(codestr, i, tgttgt); } else { tgt -= i; SETARG(codestr, i, tgt); } break; } /* Intentional fallthrough */ /* Replace jumps to unconditional jumps */ case FOR_ITER: case JUMP_FORWARD: case JUMP_ABSOLUTE: case CONTINUE_LOOP: case SETUP_LOOP: case SETUP_EXCEPT: case SETUP_FINALLY: tgt = GETJUMPTGT(codestr, i); /* Replace JUMP_* to a RETURN into just a RETURN */ if (UNCONDITIONAL_JUMP(opcode) && codestr[tgt] == RETURN_VALUE) { codestr[i] = RETURN_VALUE; memset(codestr+i+1, NOP, 2); continue; } if (!UNCONDITIONAL_JUMP(codestr[tgt])) continue; tgttgt = GETJUMPTGT(codestr, tgt); if (opcode == JUMP_FORWARD) /* JMP_ABS can go backwards */ opcode = JUMP_ABSOLUTE; if (!ABSOLUTE_JUMP(opcode)) tgttgt -= i + 3; /* Calc relative jump addr */ if (tgttgt < 0) /* No backward relative jumps */ continue; codestr[i] = opcode; SETARG(codestr, i, tgttgt); break; case EXTENDED_ARG: if (codestr[i+3] != MAKE_FUNCTION) goto exitUnchanged; /* don't visit MAKE_FUNCTION as GETARG will be wrong */ i += 3; break; /* Replace RETURN LOAD_CONST None RETURN with just RETURN */ /* Remove unreachable JUMPs after RETURN */ case RETURN_VALUE: if (i+4 >= codelen) continue; if (codestr[i+4] == RETURN_VALUE && ISBASICBLOCK(blocks,i,5)) memset(codestr+i+1, NOP, 4); else if (UNCONDITIONAL_JUMP(codestr[i+1]) && ISBASICBLOCK(blocks,i,4)) memset(codestr+i+1, NOP, 3); break; } } /* Fixup linenotab */ for (i=0, nops=0 ; i