/* Thread and interpreter state structures and their interfaces */ #include "Python.h" #include "internal/pystate.h" #define GET_TSTATE() \ ((PyThreadState*)_Py_atomic_load_relaxed(&_PyThreadState_Current)) #define SET_TSTATE(value) \ _Py_atomic_store_relaxed(&_PyThreadState_Current, (uintptr_t)(value)) #define GET_INTERP_STATE() \ (GET_TSTATE()->interp) /* -------------------------------------------------------------------------- CAUTION Always use PyMem_RawMalloc() and PyMem_RawFree() directly in this file. A number of these functions are advertised as safe to call when the GIL isn't held, and in a debug build Python redirects (e.g.) PyMem_NEW (etc) to Python's debugging obmalloc functions. Those aren't thread-safe (they rely on the GIL to avoid the expense of doing their own locking). -------------------------------------------------------------------------- */ #ifdef HAVE_DLOPEN #ifdef HAVE_DLFCN_H #include <dlfcn.h> #endif #if !HAVE_DECL_RTLD_LAZY #define RTLD_LAZY 1 #endif #endif #ifdef __cplusplus extern "C" { #endif _PyInitError _PyRuntimeState_Init(_PyRuntimeState *runtime) { memset(runtime, 0, sizeof(*runtime)); _PyObject_Initialize(&runtime->obj); _PyMem_Initialize(&runtime->mem); _PyGC_Initialize(&runtime->gc); _PyEval_Initialize(&runtime->ceval); runtime->gilstate.check_enabled = 1; /* A TSS key must be initialized with Py_tss_NEEDS_INIT in accordance with the specification. */ Py_tss_t initial = Py_tss_NEEDS_INIT; runtime->gilstate.autoTSSkey = initial; runtime->interpreters.mutex = PyThread_allocate_lock(); if (runtime->interpreters.mutex == NULL) { return _Py_INIT_ERR("Can't initialize threads for interpreter"); } runtime->interpreters.next_id = -1; return _Py_INIT_OK(); } void _PyRuntimeState_Fini(_PyRuntimeState *runtime) { /* Use the same memory allocator than _PyRuntimeState_Init() */ PyMemAllocatorEx old_alloc, raw_alloc; PyMem_GetAllocator(PYMEM_DOMAIN_RAW, &old_alloc); _PyMem_GetDefaultRawAllocator(&raw_alloc); PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &raw_alloc); if (runtime->interpreters.mutex != NULL) { PyThread_free_lock(runtime->interpreters.mutex); runtime->interpreters.mutex = NULL; } PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &old_alloc); } #define HEAD_LOCK() PyThread_acquire_lock(_PyRuntime.interpreters.mutex, \ WAIT_LOCK) #define HEAD_UNLOCK() PyThread_release_lock(_PyRuntime.interpreters.mutex) static void _PyGILState_NoteThreadState(PyThreadState* tstate); _PyInitError _PyInterpreterState_Enable(_PyRuntimeState *runtime) { runtime->interpreters.next_id = 0; /* Since we only call _PyRuntimeState_Init() once per process (see _PyRuntime_Initialize()), we make sure the mutex is initialized here. */ if (runtime->interpreters.mutex == NULL) { runtime->interpreters.mutex = PyThread_allocate_lock(); if (runtime->interpreters.mutex == NULL) { return _Py_INIT_ERR("Can't initialize threads for interpreter"); } } return _Py_INIT_OK(); } PyInterpreterState * PyInterpreterState_New(void) { PyInterpreterState *interp = (PyInterpreterState *) PyMem_RawMalloc(sizeof(PyInterpreterState)); if (interp != NULL) { interp->modules = NULL; interp->modules_by_index = NULL; interp->sysdict = NULL; interp->builtins = NULL; interp->builtins_copy = NULL; interp->tstate_head = NULL; interp->check_interval = 100; interp->num_threads = 0; interp->pythread_stacksize = 0; interp->codec_search_path = NULL; interp->codec_search_cache = NULL; interp->codec_error_registry = NULL; interp->codecs_initialized = 0; interp->fscodec_initialized = 0; interp->importlib = NULL; interp->import_func = NULL; interp->eval_frame = _PyEval_EvalFrameDefault; interp->co_extra_user_count = 0; #ifdef HAVE_DLOPEN #if HAVE_DECL_RTLD_NOW interp->dlopenflags = RTLD_NOW; #else interp->dlopenflags = RTLD_LAZY; #endif #endif #ifdef HAVE_FORK interp->before_forkers = NULL; interp->after_forkers_parent = NULL; interp->after_forkers_child = NULL; #endif HEAD_LOCK(); interp->next = _PyRuntime.interpreters.head; if (_PyRuntime.interpreters.main == NULL) { _PyRuntime.interpreters.main = interp; } _PyRuntime.interpreters.head = interp; if (_PyRuntime.interpreters.next_id < 0) { /* overflow or Py_Initialize() not called! */ PyErr_SetString(PyExc_RuntimeError, "failed to get an interpreter ID"); interp = NULL; } else { interp->id = _PyRuntime.interpreters.next_id; _PyRuntime.interpreters.next_id += 1; } HEAD_UNLOCK(); } return interp; } void PyInterpreterState_Clear(PyInterpreterState *interp) { PyThreadState *p; HEAD_LOCK(); for (p = interp->tstate_head; p != NULL; p = p->next) PyThreadState_Clear(p); HEAD_UNLOCK(); Py_CLEAR(interp->codec_search_path); Py_CLEAR(interp->codec_search_cache); Py_CLEAR(interp->codec_error_registry); Py_CLEAR(interp->modules); Py_CLEAR(interp->modules_by_index); Py_CLEAR(interp->sysdict); Py_CLEAR(interp->builtins); Py_CLEAR(interp->builtins_copy); Py_CLEAR(interp->importlib); Py_CLEAR(interp->import_func); #ifdef HAVE_FORK Py_CLEAR(interp->before_forkers); Py_CLEAR(interp->after_forkers_parent); Py_CLEAR(interp->after_forkers_child); #endif } static void zapthreads(PyInterpreterState *interp) { PyThreadState *p; /* No need to lock the mutex here because this should only happen when the threads are all really dead (XXX famous last words). */ while ((p = interp->tstate_head) != NULL) { PyThreadState_Delete(p); } } void PyInterpreterState_Delete(PyInterpreterState *interp) { PyInterpreterState **p; zapthreads(interp); HEAD_LOCK(); for (p = &_PyRuntime.interpreters.head; ; p = &(*p)->next) { if (*p == NULL) Py_FatalError( "PyInterpreterState_Delete: invalid interp"); if (*p == interp) break; } if (interp->tstate_head != NULL) Py_FatalError("PyInterpreterState_Delete: remaining threads"); *p = interp->next; if (_PyRuntime.interpreters.main == interp) { _PyRuntime.interpreters.main = NULL; if (_PyRuntime.interpreters.head != NULL) Py_FatalError("PyInterpreterState_Delete: remaining subinterpreters"); } HEAD_UNLOCK(); PyMem_RawFree(interp); } int64_t PyInterpreterState_GetID(PyInterpreterState *interp) { if (interp == NULL) { PyErr_SetString(PyExc_RuntimeError, "no interpreter provided"); return -1; } return interp->id; } /* Default implementation for _PyThreadState_GetFrame */ static struct _frame * threadstate_getframe(PyThreadState *self) { return self->frame; } static PyThreadState * new_threadstate(PyInterpreterState *interp, int init) { PyThreadState *tstate = (PyThreadState *)PyMem_RawMalloc(sizeof(PyThreadState)); if (_PyThreadState_GetFrame == NULL) _PyThreadState_GetFrame = threadstate_getframe; if (tstate != NULL) { tstate->interp = interp; tstate->frame = NULL; tstate->recursion_depth = 0; tstate->overflowed = 0; tstate->recursion_critical = 0; tstate->stackcheck_counter = 0; tstate->tracing = 0; tstate->use_tracing = 0; tstate->gilstate_counter = 0; tstate->async_exc = NULL; tstate->thread_id = PyThread_get_thread_ident(); tstate->dict = NULL; tstate->curexc_type = NULL; tstate->curexc_value = NULL; tstate->curexc_traceback = NULL; tstate->exc_state.exc_type = NULL; tstate->exc_state.exc_value = NULL; tstate->exc_state.exc_traceback = NULL; tstate->exc_state.previous_item = NULL; tstate->exc_info = &tstate->exc_state; tstate->c_profilefunc = NULL; tstate->c_tracefunc = NULL; tstate->c_profileobj = NULL; tstate->c_traceobj = NULL; tstate->trash_delete_nesting = 0; tstate->trash_delete_later = NULL; tstate->on_delete = NULL; tstate->on_delete_data = NULL; tstate->coroutine_wrapper = NULL; tstate->in_coroutine_wrapper = 0; tstate->async_gen_firstiter = NULL; tstate->async_gen_finalizer = NULL; if (init) _PyThreadState_Init(tstate); HEAD_LOCK(); tstate->prev = NULL; tstate->next = interp->tstate_head; if (tstate->next) tstate->next->prev = tstate; interp->tstate_head = tstate; HEAD_UNLOCK(); } return tstate; } PyThreadState * PyThreadState_New(PyInterpreterState *interp) { return new_threadstate(interp, 1); } PyThreadState * _PyThreadState_Prealloc(PyInterpreterState *interp) { return new_threadstate(interp, 0); } void _PyThreadState_Init(PyThreadState *tstate) { _PyGILState_NoteThreadState(tstate); } PyObject* PyState_FindModule(struct PyModuleDef* module) { Py_ssize_t index = module->m_base.m_index; PyInterpreterState *state = GET_INTERP_STATE(); PyObject *res; if (module->m_slots) { return NULL; } if (index == 0) return NULL; if (state->modules_by_index == NULL) return NULL; if (index >= PyList_GET_SIZE(state->modules_by_index)) return NULL; res = PyList_GET_ITEM(state->modules_by_index, index); return res==Py_None ? NULL : res; } int _PyState_AddModule(PyObject* module, struct PyModuleDef* def) { PyInterpreterState *state; if (!def) { assert(PyErr_Occurred()); return -1; } if (def->m_slots) { PyErr_SetString(PyExc_SystemError, "PyState_AddModule called on module with slots"); return -1; } state = GET_INTERP_STATE(); if (!state->modules_by_index) { state->modules_by_index = PyList_New(0); if (!state->modules_by_index) return -1; } while(PyList_GET_SIZE(state->modules_by_index) <= def->m_base.m_index) if (PyList_Append(state->modules_by_index, Py_None) < 0) return -1; Py_INCREF(module); return PyList_SetItem(state->modules_by_index, def->m_base.m_index, module); } int PyState_AddModule(PyObject* module, struct PyModuleDef* def) { Py_ssize_t index; PyInterpreterState *state = GET_INTERP_STATE(); if (!def) { Py_FatalError("PyState_AddModule: Module Definition is NULL"); return -1; } index = def->m_base.m_index; if (state->modules_by_index) { if(PyList_GET_SIZE(state->modules_by_index) >= index) { if(module == PyList_GET_ITEM(state->modules_by_index, index)) { Py_FatalError("PyState_AddModule: Module already added!"); return -1; } } } return _PyState_AddModule(module, def); } int PyState_RemoveModule(struct PyModuleDef* def) { PyInterpreterState *state; Py_ssize_t index = def->m_base.m_index; if (def->m_slots) { PyErr_SetString(PyExc_SystemError, "PyState_RemoveModule called on module with slots"); return -1; } state = GET_INTERP_STATE(); if (index == 0) { Py_FatalError("PyState_RemoveModule: Module index invalid."); return -1; } if (state->modules_by_index == NULL) { Py_FatalError("PyState_RemoveModule: Interpreters module-list not acessible."); return -1; } if (index > PyList_GET_SIZE(state->modules_by_index)) { Py_FatalError("PyState_RemoveModule: Module index out of bounds."); return -1; } return PyList_SetItem(state->modules_by_index, index, Py_None); } /* used by import.c:PyImport_Cleanup */ void _PyState_ClearModules(void) { PyInterpreterState *state = GET_INTERP_STATE(); if (state->modules_by_index) { Py_ssize_t i; for (i = 0; i < PyList_GET_SIZE(state->modules_by_index); i++) { PyObject *m = PyList_GET_ITEM(state->modules_by_index, i); if (PyModule_Check(m)) { /* cleanup the saved copy of module dicts */ PyModuleDef *md = PyModule_GetDef(m); if (md) Py_CLEAR(md->m_base.m_copy); } } /* Setting modules_by_index to NULL could be dangerous, so we clear the list instead. */ if (PyList_SetSlice(state->modules_by_index, 0, PyList_GET_SIZE(state->modules_by_index), NULL)) PyErr_WriteUnraisable(state->modules_by_index); } } void PyThreadState_Clear(PyThreadState *tstate) { if (Py_VerboseFlag && tstate->frame != NULL) fprintf(stderr, "PyThreadState_Clear: warning: thread still has a frame\n"); Py_CLEAR(tstate->frame); Py_CLEAR(tstate->dict); Py_CLEAR(tstate->async_exc); Py_CLEAR(tstate->curexc_type); Py_CLEAR(tstate->curexc_value); Py_CLEAR(tstate->curexc_traceback); Py_CLEAR(tstate->exc_state.exc_type); Py_CLEAR(tstate->exc_state.exc_value); Py_CLEAR(tstate->exc_state.exc_traceback); /* The stack of exception states should contain just this thread. */ assert(tstate->exc_info->previous_item == NULL); if (Py_VerboseFlag && tstate->exc_info != &tstate->exc_state) { fprintf(stderr, "PyThreadState_Clear: warning: thread still has a generator\n"); } tstate->c_profilefunc = NULL; tstate->c_tracefunc = NULL; Py_CLEAR(tstate->c_profileobj); Py_CLEAR(tstate->c_traceobj); Py_CLEAR(tstate->coroutine_wrapper); Py_CLEAR(tstate->async_gen_firstiter); Py_CLEAR(tstate->async_gen_finalizer); } /* Common code for PyThreadState_Delete() and PyThreadState_DeleteCurrent() */ static void tstate_delete_common(PyThreadState *tstate) { PyInterpreterState *interp; if (tstate == NULL) Py_FatalError("PyThreadState_Delete: NULL tstate"); interp = tstate->interp; if (interp == NULL) Py_FatalError("PyThreadState_Delete: NULL interp"); HEAD_LOCK(); if (tstate->prev) tstate->prev->next = tstate->next; else interp->tstate_head = tstate->next; if (tstate->next) tstate->next->prev = tstate->prev; HEAD_UNLOCK(); if (tstate->on_delete != NULL) { tstate->on_delete(tstate->on_delete_data); } PyMem_RawFree(tstate); } void PyThreadState_Delete(PyThreadState *tstate) { if (tstate == GET_TSTATE()) Py_FatalError("PyThreadState_Delete: tstate is still current"); if (_PyRuntime.gilstate.autoInterpreterState && PyThread_tss_get(&_PyRuntime.gilstate.autoTSSkey) == tstate) { PyThread_tss_set(&_PyRuntime.gilstate.autoTSSkey, NULL); } tstate_delete_common(tstate); } void PyThreadState_DeleteCurrent() { PyThreadState *tstate = GET_TSTATE(); if (tstate == NULL) Py_FatalError( "PyThreadState_DeleteCurrent: no current tstate"); tstate_delete_common(tstate); if (_PyRuntime.gilstate.autoInterpreterState && PyThread_tss_get(&_PyRuntime.gilstate.autoTSSkey) == tstate) { PyThread_tss_set(&_PyRuntime.gilstate.autoTSSkey, NULL); } SET_TSTATE(NULL); PyEval_ReleaseLock(); } /* * Delete all thread states except the one passed as argument. * Note that, if there is a current thread state, it *must* be the one * passed as argument. Also, this won't touch any other interpreters * than the current one, since we don't know which thread state should * be kept in those other interpreteres. */ void _PyThreadState_DeleteExcept(PyThreadState *tstate) { PyInterpreterState *interp = tstate->interp; PyThreadState *p, *next, *garbage; HEAD_LOCK(); /* Remove all thread states, except tstate, from the linked list of thread states. This will allow calling PyThreadState_Clear() without holding the lock. */ garbage = interp->tstate_head; if (garbage == tstate) garbage = tstate->next; if (tstate->prev) tstate->prev->next = tstate->next; if (tstate->next) tstate->next->prev = tstate->prev; tstate->prev = tstate->next = NULL; interp->tstate_head = tstate; HEAD_UNLOCK(); /* Clear and deallocate all stale thread states. Even if this executes Python code, we should be safe since it executes in the current thread, not one of the stale threads. */ for (p = garbage; p; p = next) { next = p->next; PyThreadState_Clear(p); PyMem_RawFree(p); } } PyThreadState * _PyThreadState_UncheckedGet(void) { return GET_TSTATE(); } PyThreadState * PyThreadState_Get(void) { PyThreadState *tstate = GET_TSTATE(); if (tstate == NULL) Py_FatalError("PyThreadState_Get: no current thread"); return tstate; } PyThreadState * PyThreadState_Swap(PyThreadState *newts) { PyThreadState *oldts = GET_TSTATE(); SET_TSTATE(newts); /* It should not be possible for more than one thread state to be used for a thread. Check this the best we can in debug builds. */ #if defined(Py_DEBUG) if (newts) { /* This can be called from PyEval_RestoreThread(). Similar to it, we need to ensure errno doesn't change. */ int err = errno; PyThreadState *check = PyGILState_GetThisThreadState(); if (check && check->interp == newts->interp && check != newts) Py_FatalError("Invalid thread state for this thread"); errno = err; } #endif return oldts; } /* An extension mechanism to store arbitrary additional per-thread state. PyThreadState_GetDict() returns a dictionary that can be used to hold such state; the caller should pick a unique key and store its state there. If PyThreadState_GetDict() returns NULL, an exception has *not* been raised and the caller should assume no per-thread state is available. */ PyObject * PyThreadState_GetDict(void) { PyThreadState *tstate = GET_TSTATE(); if (tstate == NULL) return NULL; if (tstate->dict == NULL) { PyObject *d; tstate->dict = d = PyDict_New(); if (d == NULL) PyErr_Clear(); } return tstate->dict; } /* Asynchronously raise an exception in a thread. Requested by Just van Rossum and Alex Martelli. To prevent naive misuse, you must write your own extension to call this, or use ctypes. Must be called with the GIL held. Returns the number of tstates modified (normally 1, but 0 if `id` didn't match any known thread id). Can be called with exc=NULL to clear an existing async exception. This raises no exceptions. */ int PyThreadState_SetAsyncExc(unsigned long id, PyObject *exc) { PyInterpreterState *interp = GET_INTERP_STATE(); PyThreadState *p; /* Although the GIL is held, a few C API functions can be called * without the GIL held, and in particular some that create and * destroy thread and interpreter states. Those can mutate the * list of thread states we're traversing, so to prevent that we lock * head_mutex for the duration. */ HEAD_LOCK(); for (p = interp->tstate_head; p != NULL; p = p->next) { if (p->thread_id == id) { /* Tricky: we need to decref the current value * (if any) in p->async_exc, but that can in turn * allow arbitrary Python code to run, including * perhaps calls to this function. To prevent * deadlock, we need to release head_mutex before * the decref. */ PyObject *old_exc = p->async_exc; Py_XINCREF(exc); p->async_exc = exc; HEAD_UNLOCK(); Py_XDECREF(old_exc); _PyEval_SignalAsyncExc(); return 1; } } HEAD_UNLOCK(); return 0; } /* Routines for advanced debuggers, requested by David Beazley. Don't use unless you know what you are doing! */ PyInterpreterState * PyInterpreterState_Head(void) { return _PyRuntime.interpreters.head; } PyInterpreterState * PyInterpreterState_Main(void) { return _PyRuntime.interpreters.main; } PyInterpreterState * PyInterpreterState_Next(PyInterpreterState *interp) { return interp->next; } PyThreadState * PyInterpreterState_ThreadHead(PyInterpreterState *interp) { return interp->tstate_head; } PyThreadState * PyThreadState_Next(PyThreadState *tstate) { return tstate->next; } /* The implementation of sys._current_frames(). This is intended to be called with the GIL held, as it will be when called via sys._current_frames(). It's possible it would work fine even without the GIL held, but haven't thought enough about that. */ PyObject * _PyThread_CurrentFrames(void) { PyObject *result; PyInterpreterState *i; result = PyDict_New(); if (result == NULL) return NULL; /* for i in all interpreters: * for t in all of i's thread states: * if t's frame isn't NULL, map t's id to its frame * Because these lists can mutate even when the GIL is held, we * need to grab head_mutex for the duration. */ HEAD_LOCK(); for (i = _PyRuntime.interpreters.head; i != NULL; i = i->next) { PyThreadState *t; for (t = i->tstate_head; t != NULL; t = t->next) { PyObject *id; int stat; struct _frame *frame = t->frame; if (frame == NULL) continue; id = PyLong_FromUnsignedLong(t->thread_id); if (id == NULL) goto Fail; stat = PyDict_SetItem(result, id, (PyObject *)frame); Py_DECREF(id); if (stat < 0) goto Fail; } } HEAD_UNLOCK(); return result; Fail: HEAD_UNLOCK(); Py_DECREF(result); return NULL; } /* Python "auto thread state" API. */ /* Keep this as a static, as it is not reliable! It can only ever be compared to the state for the *current* thread. * If not equal, then it doesn't matter that the actual value may change immediately after comparison, as it can't possibly change to the current thread's state. * If equal, then the current thread holds the lock, so the value can't change until we yield the lock. */ static int PyThreadState_IsCurrent(PyThreadState *tstate) { /* Must be the tstate for this thread */ assert(PyGILState_GetThisThreadState()==tstate); return tstate == GET_TSTATE(); } /* Internal initialization/finalization functions called by Py_Initialize/Py_FinalizeEx */ void _PyGILState_Init(PyInterpreterState *i, PyThreadState *t) { assert(i && t); /* must init with valid states */ if (PyThread_tss_create(&_PyRuntime.gilstate.autoTSSkey) != 0) { Py_FatalError("Could not allocate TSS entry"); } _PyRuntime.gilstate.autoInterpreterState = i; assert(PyThread_tss_get(&_PyRuntime.gilstate.autoTSSkey) == NULL); assert(t->gilstate_counter == 0); _PyGILState_NoteThreadState(t); } PyInterpreterState * _PyGILState_GetInterpreterStateUnsafe(void) { return _PyRuntime.gilstate.autoInterpreterState; } void _PyGILState_Fini(void) { PyThread_tss_delete(&_PyRuntime.gilstate.autoTSSkey); _PyRuntime.gilstate.autoInterpreterState = NULL; } /* Reset the TSS key - called by PyOS_AfterFork_Child(). * This should not be necessary, but some - buggy - pthread implementations * don't reset TSS upon fork(), see issue #10517. */ void _PyGILState_Reinit(void) { _PyRuntime.interpreters.mutex = PyThread_allocate_lock(); if (_PyRuntime.interpreters.mutex == NULL) Py_FatalError("Can't initialize threads for interpreter"); PyThreadState *tstate = PyGILState_GetThisThreadState(); PyThread_tss_delete(&_PyRuntime.gilstate.autoTSSkey); if (PyThread_tss_create(&_PyRuntime.gilstate.autoTSSkey) != 0) { Py_FatalError("Could not allocate TSS entry"); } /* If the thread had an associated auto thread state, reassociate it with * the new key. */ if (tstate && PyThread_tss_set(&_PyRuntime.gilstate.autoTSSkey, (void *)tstate) != 0) { Py_FatalError("Couldn't create autoTSSkey mapping"); } } /* When a thread state is created for a thread by some mechanism other than PyGILState_Ensure, it's important that the GILState machinery knows about it so it doesn't try to create another thread state for the thread (this is a better fix for SF bug #1010677 than the first one attempted). */ static void _PyGILState_NoteThreadState(PyThreadState* tstate) { /* If autoTSSkey isn't initialized, this must be the very first threadstate created in Py_Initialize(). Don't do anything for now (we'll be back here when _PyGILState_Init is called). */ if (!_PyRuntime.gilstate.autoInterpreterState) return; /* Stick the thread state for this thread in thread specific storage. The only situation where you can legitimately have more than one thread state for an OS level thread is when there are multiple interpreters. You shouldn't really be using the PyGILState_ APIs anyway (see issues #10915 and #15751). The first thread state created for that given OS level thread will "win", which seems reasonable behaviour. */ if (PyThread_tss_get(&_PyRuntime.gilstate.autoTSSkey) == NULL) { if ((PyThread_tss_set(&_PyRuntime.gilstate.autoTSSkey, (void *)tstate) ) != 0) { Py_FatalError("Couldn't create autoTSSkey mapping"); } } /* PyGILState_Release must not try to delete this thread state. */ tstate->gilstate_counter = 1; } /* The public functions */ PyThreadState * PyGILState_GetThisThreadState(void) { if (_PyRuntime.gilstate.autoInterpreterState == NULL) return NULL; return (PyThreadState *)PyThread_tss_get(&_PyRuntime.gilstate.autoTSSkey); } int PyGILState_Check(void) { PyThreadState *tstate; if (!_PyGILState_check_enabled) return 1; if (!PyThread_tss_is_created(&_PyRuntime.gilstate.autoTSSkey)) { return 1; } tstate = GET_TSTATE(); if (tstate == NULL) return 0; return (tstate == PyGILState_GetThisThreadState()); } PyGILState_STATE PyGILState_Ensure(void) { int current; PyThreadState *tcur; /* Note that we do not auto-init Python here - apart from potential races with 2 threads auto-initializing, pep-311 spells out other issues. Embedders are expected to have called Py_Initialize() and usually PyEval_InitThreads(). */ /* Py_Initialize() hasn't been called! */ assert(_PyRuntime.gilstate.autoInterpreterState); tcur = (PyThreadState *)PyThread_tss_get(&_PyRuntime.gilstate.autoTSSkey); if (tcur == NULL) { /* At startup, Python has no concrete GIL. If PyGILState_Ensure() is called from a new thread for the first time, we need the create the GIL. */ PyEval_InitThreads(); /* Create a new thread state for this thread */ tcur = PyThreadState_New(_PyRuntime.gilstate.autoInterpreterState); if (tcur == NULL) Py_FatalError("Couldn't create thread-state for new thread"); /* This is our thread state! We'll need to delete it in the matching call to PyGILState_Release(). */ tcur->gilstate_counter = 0; current = 0; /* new thread state is never current */ } else current = PyThreadState_IsCurrent(tcur); if (current == 0) PyEval_RestoreThread(tcur); /* Update our counter in the thread-state - no need for locks: - tcur will remain valid as we hold the GIL. - the counter is safe as we are the only thread "allowed" to modify this value */ ++tcur->gilstate_counter; return current ? PyGILState_LOCKED : PyGILState_UNLOCKED; } void PyGILState_Release(PyGILState_STATE oldstate) { PyThreadState *tcur = (PyThreadState *)PyThread_tss_get( &_PyRuntime.gilstate.autoTSSkey); if (tcur == NULL) Py_FatalError("auto-releasing thread-state, " "but no thread-state for this thread"); /* We must hold the GIL and have our thread state current */ /* XXX - remove the check - the assert should be fine, but while this is very new (April 2003), the extra check by release-only users can't hurt. */ if (! PyThreadState_IsCurrent(tcur)) Py_FatalError("This thread state must be current when releasing"); assert(PyThreadState_IsCurrent(tcur)); --tcur->gilstate_counter; assert(tcur->gilstate_counter >= 0); /* illegal counter value */ /* If we're going to destroy this thread-state, we must * clear it while the GIL is held, as destructors may run. */ if (tcur->gilstate_counter == 0) { /* can't have been locked when we created it */ assert(oldstate == PyGILState_UNLOCKED); PyThreadState_Clear(tcur); /* Delete the thread-state. Note this releases the GIL too! * It's vital that the GIL be held here, to avoid shutdown * races; see bugs 225673 and 1061968 (that nasty bug has a * habit of coming back). */ PyThreadState_DeleteCurrent(); } /* Release the lock if necessary */ else if (oldstate == PyGILState_UNLOCKED) PyEval_SaveThread(); } #ifdef __cplusplus } #endif