/* bytes to hex implementation */ #include "Python.h" #include "pystrhex.h" static PyObject *_Py_strhex_impl(const char* argbuf, const Py_ssize_t arglen, const PyObject* sep, int bytes_per_sep_group, const int return_bytes) { PyObject *retval; Py_UCS1* retbuf; Py_ssize_t i, j, resultlen = 0; Py_UCS1 sep_char; unsigned int abs_bytes_per_sep; if (sep) { Py_ssize_t seplen = PyObject_Length(sep); if (seplen < 0) { return NULL; } if (seplen != 1) { PyErr_SetString(PyExc_ValueError, "sep must be length 1."); return NULL; } if (PyUnicode_Check(sep)) { if (PyUnicode_READY(sep)) return NULL; if (PyUnicode_KIND(sep) != PyUnicode_1BYTE_KIND) { PyErr_SetString(PyExc_ValueError, "sep must be ASCII."); return NULL; } sep_char = PyUnicode_READ_CHAR(sep, 0); } else if (PyBytes_Check(sep)) { sep_char = PyBytes_AS_STRING(sep)[0]; } else { PyErr_SetString(PyExc_TypeError, "sep must be str or bytes."); return NULL; } if (sep_char > 127 && !return_bytes) { PyErr_SetString(PyExc_ValueError, "sep must be ASCII."); return NULL; } } else { bytes_per_sep_group = 0; } assert(arglen >= 0); abs_bytes_per_sep = abs(bytes_per_sep_group); if (bytes_per_sep_group && arglen > 0) { /* How many sep characters we'll be inserting. */ resultlen = (arglen - 1) / abs_bytes_per_sep; } /* Bounds checking for our Py_ssize_t indices. */ if (arglen >= PY_SSIZE_T_MAX / 2 - resultlen) { return PyErr_NoMemory(); } resultlen += arglen * 2; if (abs_bytes_per_sep >= arglen) { bytes_per_sep_group = 0; abs_bytes_per_sep = 0; } if (return_bytes) { /* If _PyBytes_FromSize() were public we could avoid malloc+copy. */ retbuf = (Py_UCS1*) PyMem_Malloc(resultlen); if (!retbuf) return PyErr_NoMemory(); retval = NULL; /* silence a compiler warning, assigned later. */ } else { retval = PyUnicode_New(resultlen, 127); if (!retval) return NULL; retbuf = PyUnicode_1BYTE_DATA(retval); } /* Hexlify */ for (i=j=0; i < arglen; ++i) { assert(j < resultlen); unsigned char c; c = (argbuf[i] >> 4) & 0xf; retbuf[j++] = Py_hexdigits[c]; c = argbuf[i] & 0xf; retbuf[j++] = Py_hexdigits[c]; if (bytes_per_sep_group && i < arglen - 1) { Py_ssize_t anchor; anchor = (bytes_per_sep_group > 0) ? (arglen - 1 - i) : (i + 1); if (anchor % abs_bytes_per_sep == 0) { retbuf[j++] = sep_char; } } } assert(j == resultlen); if (return_bytes) { retval = PyBytes_FromStringAndSize((const char *)retbuf, resultlen); PyMem_Free(retbuf); } #ifdef Py_DEBUG else { assert(_PyUnicode_CheckConsistency(retval, 1)); } #endif return retval; } PyObject * _Py_strhex(const char* argbuf, const Py_ssize_t arglen) { return _Py_strhex_impl(argbuf, arglen, NULL, 0, 0); } /* Same as above but returns a bytes() instead of str() to avoid the * need to decode the str() when bytes are needed. */ PyObject * _Py_strhex_bytes(const char* argbuf, const Py_ssize_t arglen) { return _Py_strhex_impl(argbuf, arglen, NULL, 0, 1); } /* These variants include support for a separator between every N bytes: */ PyObject * _Py_strhex_with_sep(const char* argbuf, const Py_ssize_t arglen, const PyObject* sep, const int bytes_per_group) { return _Py_strhex_impl(argbuf, arglen, sep, bytes_per_group, 0); } /* Same as above but returns a bytes() instead of str() to avoid the * need to decode the str() when bytes are needed. */ PyObject * _Py_strhex_bytes_with_sep(const char* argbuf, const Py_ssize_t arglen, const PyObject* sep, const int bytes_per_group) { return _Py_strhex_impl(argbuf, arglen, sep, bytes_per_group, 1); }