#include "Python.h" #include "pycore_code.h" #include "pycore_dict.h" #include "pycore_long.h" #include "pycore_moduleobject.h" #include "pycore_object.h" #include "opcode.h" #include "structmember.h" // struct PyMemberDef, T_OFFSET_EX #include // rand() /* For guidance on adding or extending families of instructions see * ./adaptive.md */ /* We layout the quickened data as a bi-directional array: * Instructions upwards, cache entries downwards. * first_instr is aligned to a SpecializedCacheEntry. * The nth instruction is located at first_instr[n] * The nth cache is located at ((SpecializedCacheEntry *)first_instr)[-1-n] * The first (index 0) cache entry is reserved for the count, to enable finding * the first instruction from the base pointer. * The cache_count argument must include space for the count. * We use the SpecializedCacheOrInstruction union to refer to the data * to avoid type punning. Layout of quickened data, each line 8 bytes for M cache entries and N instructions: <---- co->co_quickened ... <--- co->co_first_instr ... */ Py_ssize_t _Py_QuickenedCount = 0; #if COLLECT_SPECIALIZATION_STATS SpecializationStats _specialization_stats[256] = { 0 }; #define ADD_STAT_TO_DICT(res, field) \ do { \ PyObject *val = PyLong_FromUnsignedLongLong(stats->field); \ if (val == NULL) { \ Py_DECREF(res); \ return NULL; \ } \ if (PyDict_SetItemString(res, #field, val) == -1) { \ Py_DECREF(res); \ Py_DECREF(val); \ return NULL; \ } \ Py_DECREF(val); \ } while(0); static PyObject* stats_to_dict(SpecializationStats *stats) { PyObject *res = PyDict_New(); if (res == NULL) { return NULL; } ADD_STAT_TO_DICT(res, specialization_success); ADD_STAT_TO_DICT(res, specialization_failure); ADD_STAT_TO_DICT(res, hit); ADD_STAT_TO_DICT(res, deferred); ADD_STAT_TO_DICT(res, miss); ADD_STAT_TO_DICT(res, deopt); ADD_STAT_TO_DICT(res, unquickened); #if COLLECT_SPECIALIZATION_STATS_DETAILED PyObject *failure_kinds = PyTuple_New(SPECIALIZATION_FAILURE_KINDS); if (failure_kinds == NULL) { Py_DECREF(res); return NULL; } for (int i = 0; i < SPECIALIZATION_FAILURE_KINDS; i++) { PyObject *stat = PyLong_FromUnsignedLongLong(stats->specialization_failure_kinds[i]); if (stat == NULL) { Py_DECREF(res); Py_DECREF(failure_kinds); return NULL; } PyTuple_SET_ITEM(failure_kinds, i, stat); } if (PyDict_SetItemString(res, "specialization_failure_kinds", failure_kinds)) { Py_DECREF(res); Py_DECREF(failure_kinds); return NULL; } Py_DECREF(failure_kinds); #endif return res; } #undef ADD_STAT_TO_DICT static int add_stat_dict( PyObject *res, int opcode, const char *name) { SpecializationStats *stats = &_specialization_stats[opcode]; PyObject *d = stats_to_dict(stats); if (d == NULL) { return -1; } int err = PyDict_SetItemString(res, name, d); Py_DECREF(d); return err; } #if COLLECT_SPECIALIZATION_STATS PyObject* _Py_GetSpecializationStats(void) { PyObject *stats = PyDict_New(); if (stats == NULL) { return NULL; } int err = 0; err += add_stat_dict(stats, LOAD_ATTR, "load_attr"); err += add_stat_dict(stats, LOAD_GLOBAL, "load_global"); err += add_stat_dict(stats, LOAD_METHOD, "load_method"); err += add_stat_dict(stats, BINARY_SUBSCR, "binary_subscr"); err += add_stat_dict(stats, STORE_SUBSCR, "store_subscr"); err += add_stat_dict(stats, STORE_ATTR, "store_attr"); err += add_stat_dict(stats, CALL_FUNCTION, "call_function"); err += add_stat_dict(stats, BINARY_OP, "binary_op"); err += add_stat_dict(stats, COMPARE_OP, "compare_op"); if (err < 0) { Py_DECREF(stats); return NULL; } return stats; } #endif #define PRINT_STAT(name, field) fprintf(out, " %s." #field " : %" PRIu64 "\n", name, stats->field); static void print_stats(FILE *out, SpecializationStats *stats, const char *name) { PRINT_STAT(name, specialization_success); PRINT_STAT(name, specialization_failure); PRINT_STAT(name, hit); PRINT_STAT(name, deferred); PRINT_STAT(name, miss); PRINT_STAT(name, deopt); PRINT_STAT(name, unquickened); #if PRINT_SPECIALIZATION_STATS_DETAILED for (int i = 0; i < SPECIALIZATION_FAILURE_KINDS; i++) { fprintf(out, " %s.specialization_failure_kinds[%d] : %" PRIu64 "\n", name, i, stats->specialization_failure_kinds[i]); } #endif } #undef PRINT_STAT void _Py_PrintSpecializationStats(void) { FILE *out = stderr; #if PRINT_SPECIALIZATION_STATS_TO_FILE /* Write to a file instead of stderr. */ # ifdef MS_WINDOWS const char *dirname = "c:\\temp\\py_stats\\"; # else const char *dirname = "/tmp/py_stats/"; # endif char buf[48]; sprintf(buf, "%s%u_%u.txt", dirname, (unsigned)clock(), (unsigned)rand()); FILE *fout = fopen(buf, "w"); if (fout) { out = fout; } #else fprintf(out, "Specialization stats:\n"); #endif print_stats(out, &_specialization_stats[LOAD_ATTR], "load_attr"); print_stats(out, &_specialization_stats[LOAD_GLOBAL], "load_global"); print_stats(out, &_specialization_stats[LOAD_METHOD], "load_method"); print_stats(out, &_specialization_stats[BINARY_SUBSCR], "binary_subscr"); print_stats(out, &_specialization_stats[STORE_SUBSCR], "store_subscr"); print_stats(out, &_specialization_stats[STORE_ATTR], "store_attr"); print_stats(out, &_specialization_stats[CALL_FUNCTION], "call_function"); print_stats(out, &_specialization_stats[BINARY_OP], "binary_op"); print_stats(out, &_specialization_stats[COMPARE_OP], "compare_op"); if (out != stderr) { fclose(out); } } #if COLLECT_SPECIALIZATION_STATS_DETAILED #define SPECIALIZATION_FAIL(opcode, kind) _specialization_stats[opcode].specialization_failure_kinds[kind]++ #endif #endif #ifndef SPECIALIZATION_FAIL #define SPECIALIZATION_FAIL(opcode, kind) ((void)0) #endif static SpecializedCacheOrInstruction * allocate(int cache_count, int instruction_count) { assert(sizeof(SpecializedCacheOrInstruction) == 2*sizeof(int32_t)); assert(sizeof(SpecializedCacheEntry) == 2*sizeof(int32_t)); assert(cache_count > 0); assert(instruction_count > 0); int count = cache_count + (instruction_count + INSTRUCTIONS_PER_ENTRY -1)/INSTRUCTIONS_PER_ENTRY; SpecializedCacheOrInstruction *array = (SpecializedCacheOrInstruction *) PyMem_Malloc(sizeof(SpecializedCacheOrInstruction) * count); if (array == NULL) { PyErr_NoMemory(); return NULL; } _Py_QuickenedCount++; array[0].entry.zero.cache_count = cache_count; return array; } static int get_cache_count(SpecializedCacheOrInstruction *quickened) { return quickened[0].entry.zero.cache_count; } /* Map from opcode to adaptive opcode. Values of zero are ignored. */ static uint8_t adaptive_opcodes[256] = { [LOAD_ATTR] = LOAD_ATTR_ADAPTIVE, [LOAD_GLOBAL] = LOAD_GLOBAL_ADAPTIVE, [LOAD_METHOD] = LOAD_METHOD_ADAPTIVE, [BINARY_SUBSCR] = BINARY_SUBSCR_ADAPTIVE, [STORE_SUBSCR] = STORE_SUBSCR_ADAPTIVE, [CALL_FUNCTION] = CALL_FUNCTION_ADAPTIVE, [STORE_ATTR] = STORE_ATTR_ADAPTIVE, [BINARY_OP] = BINARY_OP_ADAPTIVE, [COMPARE_OP] = COMPARE_OP_ADAPTIVE, }; /* The number of cache entries required for a "family" of instructions. */ static uint8_t cache_requirements[256] = { [LOAD_ATTR] = 2, /* _PyAdaptiveEntry and _PyAttrCache */ [LOAD_GLOBAL] = 2, /* _PyAdaptiveEntry and _PyLoadGlobalCache */ [LOAD_METHOD] = 3, /* _PyAdaptiveEntry, _PyAttrCache and _PyObjectCache */ [BINARY_SUBSCR] = 2, /* _PyAdaptiveEntry, _PyObjectCache */ [STORE_SUBSCR] = 0, [CALL_FUNCTION] = 2, /* _PyAdaptiveEntry and _PyObjectCache/_PyCallCache */ [STORE_ATTR] = 2, /* _PyAdaptiveEntry and _PyAttrCache */ [BINARY_OP] = 1, // _PyAdaptiveEntry [COMPARE_OP] = 1, /* _PyAdaptiveEntry */ }; /* Return the oparg for the cache_offset and instruction index. * * If no cache is needed then return the original oparg. * If a cache is needed, but cannot be accessed because * oparg would be too large, then return -1. * * Also updates the cache_offset, as it may need to be incremented by * more than the cache requirements, if many instructions do not need caches. * * See pycore_code.h for details of how the cache offset, * instruction index and oparg are related */ static int oparg_from_instruction_and_update_offset(int index, int opcode, int original_oparg, int *cache_offset) { /* The instruction pointer in the interpreter points to the next * instruction, so we compute the offset using nexti (index + 1) */ int nexti = index + 1; uint8_t need = cache_requirements[opcode]; if (need == 0) { return original_oparg; } assert(adaptive_opcodes[opcode] != 0); int oparg = oparg_from_offset_and_nexti(*cache_offset, nexti); assert(*cache_offset == offset_from_oparg_and_nexti(oparg, nexti)); /* Some cache space is wasted here as the minimum possible offset is (nexti>>1) */ if (oparg < 0) { oparg = 0; *cache_offset = offset_from_oparg_and_nexti(oparg, nexti); } else if (oparg > 255) { return -1; } *cache_offset += need; return oparg; } static int entries_needed(const _Py_CODEUNIT *code, int len) { int cache_offset = 0; int previous_opcode = -1; for (int i = 0; i < len; i++) { uint8_t opcode = _Py_OPCODE(code[i]); if (previous_opcode != EXTENDED_ARG) { oparg_from_instruction_and_update_offset(i, opcode, 0, &cache_offset); } previous_opcode = opcode; } return cache_offset + 1; // One extra for the count entry } static inline _Py_CODEUNIT * first_instruction(SpecializedCacheOrInstruction *quickened) { return &quickened[get_cache_count(quickened)].code[0]; } /** Insert adaptive instructions and superinstructions. * * Skip instruction preceded by EXTENDED_ARG for adaptive * instructions as those are both very rare and tricky * to handle. */ static void optimize(SpecializedCacheOrInstruction *quickened, int len) { _Py_CODEUNIT *instructions = first_instruction(quickened); int cache_offset = 0; int previous_opcode = -1; int previous_oparg = 0; for(int i = 0; i < len; i++) { int opcode = _Py_OPCODE(instructions[i]); int oparg = _Py_OPARG(instructions[i]); uint8_t adaptive_opcode = adaptive_opcodes[opcode]; if (adaptive_opcode && previous_opcode != EXTENDED_ARG) { int new_oparg = oparg_from_instruction_and_update_offset( i, opcode, oparg, &cache_offset ); if (new_oparg < 0) { /* Not possible to allocate a cache for this instruction */ previous_opcode = opcode; continue; } previous_opcode = adaptive_opcode; int entries_needed = cache_requirements[opcode]; if (entries_needed) { /* Initialize the adpative cache entry */ int cache0_offset = cache_offset-entries_needed; SpecializedCacheEntry *cache = _GetSpecializedCacheEntry(instructions, cache0_offset); cache->adaptive.original_oparg = oparg; cache->adaptive.counter = 0; } else { // oparg is the adaptive cache counter new_oparg = 0; } instructions[i] = _Py_MAKECODEUNIT(adaptive_opcode, new_oparg); } else { /* Super instructions don't use the cache, * so no need to update the offset. */ switch (opcode) { case JUMP_ABSOLUTE: instructions[i] = _Py_MAKECODEUNIT(JUMP_ABSOLUTE_QUICK, oparg); break; case LOAD_FAST: switch(previous_opcode) { case LOAD_FAST: instructions[i-1] = _Py_MAKECODEUNIT(LOAD_FAST__LOAD_FAST, previous_oparg); break; case STORE_FAST: instructions[i-1] = _Py_MAKECODEUNIT(STORE_FAST__LOAD_FAST, previous_oparg); break; case LOAD_CONST: instructions[i-1] = _Py_MAKECODEUNIT(LOAD_CONST__LOAD_FAST, previous_oparg); break; } break; case STORE_FAST: if (previous_opcode == STORE_FAST) { instructions[i-1] = _Py_MAKECODEUNIT(STORE_FAST__STORE_FAST, previous_oparg); } break; case LOAD_CONST: if (previous_opcode == LOAD_FAST) { instructions[i-1] = _Py_MAKECODEUNIT(LOAD_FAST__LOAD_CONST, previous_oparg); } break; } previous_opcode = opcode; previous_oparg = oparg; } } assert(cache_offset+1 == get_cache_count(quickened)); } int _Py_Quicken(PyCodeObject *code) { if (code->co_quickened) { return 0; } Py_ssize_t size = PyBytes_GET_SIZE(code->co_code); int instr_count = (int)(size/sizeof(_Py_CODEUNIT)); if (instr_count > MAX_SIZE_TO_QUICKEN) { code->co_warmup = QUICKENING_WARMUP_COLDEST; return 0; } int entry_count = entries_needed(code->co_firstinstr, instr_count); SpecializedCacheOrInstruction *quickened = allocate(entry_count, instr_count); if (quickened == NULL) { return -1; } _Py_CODEUNIT *new_instructions = first_instruction(quickened); memcpy(new_instructions, code->co_firstinstr, size); optimize(quickened, instr_count); code->co_quickened = quickened; code->co_firstinstr = new_instructions; return 0; } static inline int initial_counter_value(void) { /* Starting value for the counter. * This value needs to be not too low, otherwise * it would cause excessive de-optimization. * Neither should it be too high, or that would delay * de-optimization excessively when it is needed. * A value around 50 seems to work, and we choose a * prime number to avoid artifacts. */ return 53; } /* Common */ #define SPEC_FAIL_OTHER 0 #define SPEC_FAIL_NO_DICT 1 #define SPEC_FAIL_OVERRIDDEN 2 #define SPEC_FAIL_OUT_OF_VERSIONS 3 #define SPEC_FAIL_OUT_OF_RANGE 4 #define SPEC_FAIL_EXPECTED_ERROR 5 /* Attributes */ #define SPEC_FAIL_NON_STRING_OR_SPLIT 6 #define SPEC_FAIL_MODULE_ATTR_NOT_FOUND 7 #define SPEC_FAIL_OVERRIDING_DESCRIPTOR 8 #define SPEC_FAIL_NON_OVERRIDING_DESCRIPTOR 9 #define SPEC_FAIL_NOT_DESCRIPTOR 10 #define SPEC_FAIL_METHOD 11 #define SPEC_FAIL_MUTABLE_CLASS 12 #define SPEC_FAIL_PROPERTY 13 #define SPEC_FAIL_NON_OBJECT_SLOT 14 #define SPEC_FAIL_READ_ONLY 15 #define SPEC_FAIL_AUDITED_SLOT 16 #define SPEC_FAIL_NOT_MANAGED_DICT 17 /* Methods */ #define SPEC_FAIL_IS_ATTR 15 #define SPEC_FAIL_DICT_SUBCLASS 16 #define SPEC_FAIL_BUILTIN_CLASS_METHOD 17 #define SPEC_FAIL_CLASS_METHOD_OBJ 18 #define SPEC_FAIL_OBJECT_SLOT 19 /* Binary subscr */ #define SPEC_FAIL_ARRAY_INT 8 #define SPEC_FAIL_ARRAY_SLICE 9 #define SPEC_FAIL_LIST_SLICE 10 #define SPEC_FAIL_TUPLE_SLICE 11 #define SPEC_FAIL_STRING_INT 12 #define SPEC_FAIL_STRING_SLICE 13 #define SPEC_FAIL_BUFFER_INT 15 #define SPEC_FAIL_BUFFER_SLICE 16 #define SPEC_FAIL_SEQUENCE_INT 17 /* Binary add */ #define SPEC_FAIL_NON_FUNCTION_SCOPE 11 #define SPEC_FAIL_DIFFERENT_TYPES 12 /* Calls */ #define SPEC_FAIL_GENERATOR 7 #define SPEC_FAIL_COMPLEX_PARAMETERS 8 #define SPEC_FAIL_WRONG_NUMBER_ARGUMENTS 9 #define SPEC_FAIL_CO_NOT_OPTIMIZED 10 /* SPEC_FAIL_METHOD defined as 11 above */ #define SPEC_FAIL_PYCFUNCTION 13 #define SPEC_FAIL_PYCFUNCTION_WITH_KEYWORDS 14 #define SPEC_FAIL_PYCFUNCTION_FAST_WITH_KEYWORDS 15 #define SPEC_FAIL_PYCFUNCTION_NOARGS 16 #define SPEC_FAIL_BAD_CALL_FLAGS 17 #define SPEC_FAIL_CLASS 18 /* COMPARE_OP */ #define SPEC_FAIL_STRING_COMPARE 13 #define SPEC_FAIL_NOT_FOLLOWED_BY_COND_JUMP 14 #define SPEC_FAIL_BIG_INT 15 static int specialize_module_load_attr( PyObject *owner, _Py_CODEUNIT *instr, PyObject *name, _PyAdaptiveEntry *cache0, _PyAttrCache *cache1, int opcode, int opcode_module) { PyModuleObject *m = (PyModuleObject *)owner; PyObject *value = NULL; PyObject *getattr; _Py_IDENTIFIER(__getattr__); assert((owner->ob_type->tp_flags & Py_TPFLAGS_MANAGED_DICT) == 0); PyDictObject *dict = (PyDictObject *)m->md_dict; if (dict == NULL) { SPECIALIZATION_FAIL(opcode, SPEC_FAIL_NO_DICT); return -1; } if (dict->ma_keys->dk_kind != DICT_KEYS_UNICODE) { SPECIALIZATION_FAIL(opcode, SPEC_FAIL_NON_STRING_OR_SPLIT); return -1; } getattr = _PyUnicode_FromId(&PyId___getattr__); /* borrowed */ if (getattr == NULL) { SPECIALIZATION_FAIL(opcode, SPEC_FAIL_OVERRIDDEN); PyErr_Clear(); return -1; } Py_ssize_t index = _PyDict_GetItemHint(dict, getattr, -1, &value); assert(index != DKIX_ERROR); if (index != DKIX_EMPTY) { SPECIALIZATION_FAIL(opcode, SPEC_FAIL_MODULE_ATTR_NOT_FOUND); return -1; } index = _PyDict_GetItemHint(dict, name, -1, &value); assert (index != DKIX_ERROR); if (index != (uint16_t)index) { SPECIALIZATION_FAIL(opcode, SPEC_FAIL_OUT_OF_RANGE); return -1; } uint32_t keys_version = _PyDictKeys_GetVersionForCurrentState(dict->ma_keys); if (keys_version == 0) { SPECIALIZATION_FAIL(opcode, SPEC_FAIL_OUT_OF_VERSIONS); return -1; } cache1->dk_version_or_hint = keys_version; cache0->index = (uint16_t)index; *instr = _Py_MAKECODEUNIT(opcode_module, _Py_OPARG(*instr)); return 0; } /* Attribute specialization */ typedef enum { OVERRIDING, /* Is an overriding descriptor, and will remain so. */ METHOD, /* Attribute has Py_TPFLAGS_METHOD_DESCRIPTOR set */ PROPERTY, /* Is a property */ OBJECT_SLOT, /* Is an object slot descriptor */ OTHER_SLOT, /* Is a slot descriptor of another type */ NON_OVERRIDING, /* Is another non-overriding descriptor, and is an instance of an immutable class*/ BUILTIN_CLASSMETHOD, /* Builtin methods with METH_CLASS */ PYTHON_CLASSMETHOD, /* Python classmethod(func) object */ NON_DESCRIPTOR, /* Is not a descriptor, and is an instance of an immutable class */ MUTABLE, /* Instance of a mutable class; might, or might not, be a descriptor */ ABSENT, /* Attribute is not present on the class */ DUNDER_CLASS, /* __class__ attribute */ GETSET_OVERRIDDEN /* __getattribute__ or __setattr__ has been overridden */ } DesciptorClassification; static DesciptorClassification analyze_descriptor(PyTypeObject *type, PyObject *name, PyObject **descr, int store) { if (store) { if (type->tp_setattro != PyObject_GenericSetAttr) { *descr = NULL; return GETSET_OVERRIDDEN; } } else { if (type->tp_getattro != PyObject_GenericGetAttr) { *descr = NULL; return GETSET_OVERRIDDEN; } } PyObject *descriptor = _PyType_Lookup(type, name); *descr = descriptor; if (descriptor == NULL) { return ABSENT; } PyTypeObject *desc_cls = Py_TYPE(descriptor); if (!(desc_cls->tp_flags & Py_TPFLAGS_IMMUTABLETYPE)) { return MUTABLE; } if (desc_cls->tp_descr_set) { if (desc_cls == &PyMemberDescr_Type) { PyMemberDescrObject *member = (PyMemberDescrObject *)descriptor; struct PyMemberDef *dmem = member->d_member; if (dmem->type == T_OBJECT_EX) { return OBJECT_SLOT; } return OTHER_SLOT; } if (desc_cls == &PyProperty_Type) { return PROPERTY; } if (PyUnicode_CompareWithASCIIString(name, "__class__") == 0) { if (descriptor == _PyType_Lookup(&PyBaseObject_Type, name)) { return DUNDER_CLASS; } } return OVERRIDING; } if (desc_cls->tp_descr_get) { if (desc_cls->tp_flags & Py_TPFLAGS_METHOD_DESCRIPTOR) { return METHOD; } if (Py_IS_TYPE(descriptor, &PyClassMethodDescr_Type)) { return BUILTIN_CLASSMETHOD; } if (Py_IS_TYPE(descriptor, &PyClassMethod_Type)) { return PYTHON_CLASSMETHOD; } return NON_OVERRIDING; } return NON_DESCRIPTOR; } static int specialize_dict_access( PyObject *owner, _Py_CODEUNIT *instr, PyTypeObject *type, DesciptorClassification kind, PyObject *name, _PyAdaptiveEntry *cache0, _PyAttrCache *cache1, int base_op, int values_op, int hint_op) { assert(kind == NON_OVERRIDING || kind == NON_DESCRIPTOR || kind == ABSENT || kind == BUILTIN_CLASSMETHOD || kind == PYTHON_CLASSMETHOD); // No descriptor, or non overriding. if ((type->tp_flags & Py_TPFLAGS_MANAGED_DICT) == 0) { SPECIALIZATION_FAIL(base_op, SPEC_FAIL_NOT_MANAGED_DICT); return 0; } PyObject **dictptr = _PyObject_ManagedDictPointer(owner); PyDictObject *dict = (PyDictObject *)*dictptr; if (dict == NULL) { // Virtual dictionary PyDictKeysObject *keys = ((PyHeapTypeObject *)type)->ht_cached_keys; assert(PyUnicode_CheckExact(name)); Py_ssize_t index = _PyDictKeys_StringLookup(keys, name); assert (index != DKIX_ERROR); if (index != (uint16_t)index) { SPECIALIZATION_FAIL(base_op, SPEC_FAIL_OUT_OF_RANGE); return 0; } cache1->tp_version = type->tp_version_tag; cache0->index = (uint16_t)index; *instr = _Py_MAKECODEUNIT(values_op, _Py_OPARG(*instr)); } else { if (!PyDict_CheckExact(dict)) { SPECIALIZATION_FAIL(base_op, SPEC_FAIL_NO_DICT); return 0; } // We found an instance with a __dict__. PyObject *value = NULL; Py_ssize_t hint = _PyDict_GetItemHint(dict, name, -1, &value); if (hint != (uint32_t)hint) { SPECIALIZATION_FAIL(base_op, SPEC_FAIL_OUT_OF_RANGE); return 0; } cache1->dk_version_or_hint = (uint32_t)hint; cache1->tp_version = type->tp_version_tag; *instr = _Py_MAKECODEUNIT(hint_op, _Py_OPARG(*instr)); } return 1; } int _Py_Specialize_LoadAttr(PyObject *owner, _Py_CODEUNIT *instr, PyObject *name, SpecializedCacheEntry *cache) { _PyAdaptiveEntry *cache0 = &cache->adaptive; _PyAttrCache *cache1 = &cache[-1].attr; if (PyModule_CheckExact(owner)) { int err = specialize_module_load_attr(owner, instr, name, cache0, cache1, LOAD_ATTR, LOAD_ATTR_MODULE); if (err) { goto fail; } goto success; } PyTypeObject *type = Py_TYPE(owner); if (type->tp_dict == NULL) { if (PyType_Ready(type) < 0) { return -1; } } PyObject *descr; DesciptorClassification kind = analyze_descriptor(type, name, &descr, 0); switch(kind) { case OVERRIDING: SPECIALIZATION_FAIL(LOAD_ATTR, SPEC_FAIL_OVERRIDING_DESCRIPTOR); goto fail; case METHOD: SPECIALIZATION_FAIL(LOAD_ATTR, SPEC_FAIL_METHOD); goto fail; case PROPERTY: SPECIALIZATION_FAIL(LOAD_ATTR, SPEC_FAIL_PROPERTY); goto fail; case OBJECT_SLOT: { PyMemberDescrObject *member = (PyMemberDescrObject *)descr; struct PyMemberDef *dmem = member->d_member; Py_ssize_t offset = dmem->offset; if (dmem->flags & PY_AUDIT_READ) { SPECIALIZATION_FAIL(LOAD_ATTR, SPEC_FAIL_AUDITED_SLOT); goto fail; } if (offset != (uint16_t)offset) { SPECIALIZATION_FAIL(LOAD_ATTR, SPEC_FAIL_OUT_OF_RANGE); goto fail; } assert(dmem->type == T_OBJECT_EX); assert(offset > 0); cache0->index = (uint16_t)offset; cache1->tp_version = type->tp_version_tag; *instr = _Py_MAKECODEUNIT(LOAD_ATTR_SLOT, _Py_OPARG(*instr)); goto success; } case DUNDER_CLASS: { Py_ssize_t offset = offsetof(PyObject, ob_type); assert(offset == (uint16_t)offset); cache0->index = (uint16_t)offset; cache1->tp_version = type->tp_version_tag; *instr = _Py_MAKECODEUNIT(LOAD_ATTR_SLOT, _Py_OPARG(*instr)); goto success; } case OTHER_SLOT: SPECIALIZATION_FAIL(LOAD_ATTR, SPEC_FAIL_NON_OBJECT_SLOT); goto fail; case MUTABLE: SPECIALIZATION_FAIL(LOAD_ATTR, SPEC_FAIL_MUTABLE_CLASS); goto fail; case GETSET_OVERRIDDEN: SPECIALIZATION_FAIL(LOAD_ATTR, SPEC_FAIL_OVERRIDDEN); goto fail; case BUILTIN_CLASSMETHOD: case PYTHON_CLASSMETHOD: case NON_OVERRIDING: case NON_DESCRIPTOR: case ABSENT: break; } int err = specialize_dict_access( owner, instr, type, kind, name, cache0, cache1, LOAD_ATTR, LOAD_ATTR_INSTANCE_VALUE, LOAD_ATTR_WITH_HINT ); if (err < 0) { return -1; } if (err) { goto success; } fail: STAT_INC(LOAD_ATTR, specialization_failure); assert(!PyErr_Occurred()); cache_backoff(cache0); return 0; success: STAT_INC(LOAD_ATTR, specialization_success); assert(!PyErr_Occurred()); cache0->counter = initial_counter_value(); return 0; } int _Py_Specialize_StoreAttr(PyObject *owner, _Py_CODEUNIT *instr, PyObject *name, SpecializedCacheEntry *cache) { _PyAdaptiveEntry *cache0 = &cache->adaptive; _PyAttrCache *cache1 = &cache[-1].attr; PyTypeObject *type = Py_TYPE(owner); if (PyModule_CheckExact(owner)) { SPECIALIZATION_FAIL(STORE_ATTR, SPEC_FAIL_OVERRIDDEN); goto fail; } PyObject *descr; DesciptorClassification kind = analyze_descriptor(type, name, &descr, 1); switch(kind) { case OVERRIDING: SPECIALIZATION_FAIL(STORE_ATTR, SPEC_FAIL_OVERRIDING_DESCRIPTOR); goto fail; case METHOD: SPECIALIZATION_FAIL(STORE_ATTR, SPEC_FAIL_METHOD); goto fail; case PROPERTY: SPECIALIZATION_FAIL(STORE_ATTR, SPEC_FAIL_PROPERTY); goto fail; case OBJECT_SLOT: { PyMemberDescrObject *member = (PyMemberDescrObject *)descr; struct PyMemberDef *dmem = member->d_member; Py_ssize_t offset = dmem->offset; if (dmem->flags & READONLY) { SPECIALIZATION_FAIL(STORE_ATTR, SPEC_FAIL_READ_ONLY); goto fail; } if (offset != (uint16_t)offset) { SPECIALIZATION_FAIL(STORE_ATTR, SPEC_FAIL_OUT_OF_RANGE); goto fail; } assert(dmem->type == T_OBJECT_EX); assert(offset > 0); cache0->index = (uint16_t)offset; cache1->tp_version = type->tp_version_tag; *instr = _Py_MAKECODEUNIT(STORE_ATTR_SLOT, _Py_OPARG(*instr)); goto success; } case DUNDER_CLASS: case OTHER_SLOT: SPECIALIZATION_FAIL(STORE_ATTR, SPEC_FAIL_NON_OBJECT_SLOT); goto fail; case MUTABLE: SPECIALIZATION_FAIL(STORE_ATTR, SPEC_FAIL_MUTABLE_CLASS); goto fail; case GETSET_OVERRIDDEN: SPECIALIZATION_FAIL(STORE_ATTR, SPEC_FAIL_OVERRIDDEN); goto fail; case BUILTIN_CLASSMETHOD: case PYTHON_CLASSMETHOD: case NON_OVERRIDING: case NON_DESCRIPTOR: case ABSENT: break; } int err = specialize_dict_access( owner, instr, type, kind, name, cache0, cache1, STORE_ATTR, STORE_ATTR_INSTANCE_VALUE, STORE_ATTR_WITH_HINT ); if (err < 0) { return -1; } if (err) { goto success; } fail: STAT_INC(STORE_ATTR, specialization_failure); assert(!PyErr_Occurred()); cache_backoff(cache0); return 0; success: STAT_INC(STORE_ATTR, specialization_success); assert(!PyErr_Occurred()); cache0->counter = initial_counter_value(); return 0; } #if COLLECT_SPECIALIZATION_STATS_DETAILED static int load_method_fail_kind(DesciptorClassification kind) { switch (kind) { case OVERRIDING: return SPEC_FAIL_OVERRIDING_DESCRIPTOR; case METHOD: return SPEC_FAIL_METHOD; case PROPERTY: return SPEC_FAIL_PROPERTY; case OBJECT_SLOT: return SPEC_FAIL_OBJECT_SLOT; case OTHER_SLOT: return SPEC_FAIL_NON_OBJECT_SLOT; case DUNDER_CLASS: return SPEC_FAIL_OTHER; case MUTABLE: return SPEC_FAIL_MUTABLE_CLASS; case GETSET_OVERRIDDEN: return SPEC_FAIL_OVERRIDDEN; case BUILTIN_CLASSMETHOD: return SPEC_FAIL_BUILTIN_CLASS_METHOD; case PYTHON_CLASSMETHOD: return SPEC_FAIL_CLASS_METHOD_OBJ; case NON_OVERRIDING: return SPEC_FAIL_NON_OVERRIDING_DESCRIPTOR; case NON_DESCRIPTOR: return SPEC_FAIL_NOT_DESCRIPTOR; case ABSENT: return SPEC_FAIL_EXPECTED_ERROR; } Py_UNREACHABLE(); } #endif static int specialize_class_load_method(PyObject *owner, _Py_CODEUNIT *instr, PyObject *name, _PyAttrCache *cache1, _PyObjectCache *cache2) { PyObject *descr = NULL; DesciptorClassification kind = 0; kind = analyze_descriptor((PyTypeObject *)owner, name, &descr, 0); switch (kind) { case METHOD: case NON_DESCRIPTOR: cache1->tp_version = ((PyTypeObject *)owner)->tp_version_tag; cache2->obj = descr; *instr = _Py_MAKECODEUNIT(LOAD_METHOD_CLASS, _Py_OPARG(*instr)); return 0; default: SPECIALIZATION_FAIL(LOAD_METHOD, load_method_fail_kind(kind)); return -1; } } // Please collect stats carefully before and after modifying. A subtle change // can cause a significant drop in cache hits. A possible test is // python.exe -m test_typing test_re test_dis test_zlib. int _Py_Specialize_LoadMethod(PyObject *owner, _Py_CODEUNIT *instr, PyObject *name, SpecializedCacheEntry *cache) { _PyAdaptiveEntry *cache0 = &cache->adaptive; _PyAttrCache *cache1 = &cache[-1].attr; _PyObjectCache *cache2 = &cache[-2].obj; PyTypeObject *owner_cls = Py_TYPE(owner); if (PyModule_CheckExact(owner)) { int err = specialize_module_load_attr(owner, instr, name, cache0, cache1, LOAD_METHOD, LOAD_METHOD_MODULE); if (err) { goto fail; } goto success; } if (owner_cls->tp_dict == NULL) { if (PyType_Ready(owner_cls) < 0) { return -1; } } if (PyType_Check(owner)) { int err = specialize_class_load_method(owner, instr, name, cache1, cache2); if (err) { goto fail; } goto success; } PyObject *descr = NULL; DesciptorClassification kind = 0; kind = analyze_descriptor(owner_cls, name, &descr, 0); assert(descr != NULL || kind == ABSENT || kind == GETSET_OVERRIDDEN); if (kind != METHOD) { SPECIALIZATION_FAIL(LOAD_METHOD, load_method_fail_kind(kind)); goto fail; } if (owner_cls->tp_flags & Py_TPFLAGS_MANAGED_DICT) { PyObject **owner_dictptr = _PyObject_ManagedDictPointer(owner); if (*owner_dictptr) { SPECIALIZATION_FAIL(LOAD_METHOD, SPEC_FAIL_IS_ATTR); goto fail; } PyDictKeysObject *keys = ((PyHeapTypeObject *)owner_cls)->ht_cached_keys; Py_ssize_t index = _PyDictKeys_StringLookup(keys, name); if (index != DKIX_EMPTY) { SPECIALIZATION_FAIL(LOAD_METHOD, SPEC_FAIL_IS_ATTR); goto fail; } uint32_t keys_version = _PyDictKeys_GetVersionForCurrentState(keys); if (keys_version == 0) { SPECIALIZATION_FAIL(LOAD_METHOD, SPEC_FAIL_OUT_OF_VERSIONS); goto fail; } cache1->dk_version_or_hint = keys_version; *instr = _Py_MAKECODEUNIT(LOAD_METHOD_CACHED, _Py_OPARG(*instr)); } else { if (owner_cls->tp_dictoffset == 0) { *instr = _Py_MAKECODEUNIT(LOAD_METHOD_NO_DICT, _Py_OPARG(*instr)); } else { SPECIALIZATION_FAIL(LOAD_METHOD, SPEC_FAIL_IS_ATTR); goto fail; } } /* `descr` is borrowed. This is safe for methods (even inherited ones from * super classes!) as long as tp_version_tag is validated for two main reasons: * * 1. The class will always hold a reference to the method so it will * usually not be GC-ed. Should it be deleted in Python, e.g. * `del obj.meth`, tp_version_tag will be invalidated, because of reason 2. * * 2. The pre-existing type method cache (MCACHE) uses the same principles * of caching a borrowed descriptor. The MCACHE infrastructure does all the * heavy lifting for us. E.g. it invalidates tp_version_tag on any MRO * modification, on any type object change along said MRO, etc. (see * PyType_Modified usages in typeobject.c). The MCACHE has been * working since Python 2.6 and it's battle-tested. */ cache1->tp_version = owner_cls->tp_version_tag; cache2->obj = descr; // Fall through. success: STAT_INC(LOAD_METHOD, specialization_success); assert(!PyErr_Occurred()); cache0->counter = initial_counter_value(); return 0; fail: STAT_INC(LOAD_METHOD, specialization_failure); assert(!PyErr_Occurred()); cache_backoff(cache0); return 0; } int _Py_Specialize_LoadGlobal( PyObject *globals, PyObject *builtins, _Py_CODEUNIT *instr, PyObject *name, SpecializedCacheEntry *cache) { _PyAdaptiveEntry *cache0 = &cache->adaptive; _PyLoadGlobalCache *cache1 = &cache[-1].load_global; assert(PyUnicode_CheckExact(name)); if (!PyDict_CheckExact(globals)) { goto fail; } PyDictKeysObject * globals_keys = ((PyDictObject *)globals)->ma_keys; Py_ssize_t index = _PyDictKeys_StringLookup(globals_keys, name); if (index == DKIX_ERROR) { SPECIALIZATION_FAIL(LOAD_GLOBAL, SPEC_FAIL_NON_STRING_OR_SPLIT); goto fail; } if (index != DKIX_EMPTY) { if (index != (uint16_t)index) { goto fail; } uint32_t keys_version = _PyDictKeys_GetVersionForCurrentState(globals_keys); if (keys_version == 0) { goto fail; } cache1->module_keys_version = keys_version; cache0->index = (uint16_t)index; *instr = _Py_MAKECODEUNIT(LOAD_GLOBAL_MODULE, _Py_OPARG(*instr)); goto success; } if (!PyDict_CheckExact(builtins)) { goto fail; } PyDictKeysObject * builtin_keys = ((PyDictObject *)builtins)->ma_keys; index = _PyDictKeys_StringLookup(builtin_keys, name); if (index == DKIX_ERROR) { SPECIALIZATION_FAIL(LOAD_GLOBAL, SPEC_FAIL_NON_STRING_OR_SPLIT); goto fail; } if (index != (uint16_t)index) { goto fail; } uint32_t globals_version = _PyDictKeys_GetVersionForCurrentState(globals_keys); if (globals_version == 0) { SPECIALIZATION_FAIL(LOAD_GLOBAL, SPEC_FAIL_OUT_OF_VERSIONS); goto fail; } uint32_t builtins_version = _PyDictKeys_GetVersionForCurrentState(builtin_keys); if (builtins_version == 0) { SPECIALIZATION_FAIL(LOAD_GLOBAL, SPEC_FAIL_OUT_OF_VERSIONS); goto fail; } cache1->module_keys_version = globals_version; cache1->builtin_keys_version = builtins_version; cache0->index = (uint16_t)index; *instr = _Py_MAKECODEUNIT(LOAD_GLOBAL_BUILTIN, _Py_OPARG(*instr)); goto success; fail: STAT_INC(LOAD_GLOBAL, specialization_failure); assert(!PyErr_Occurred()); cache_backoff(cache0); return 0; success: STAT_INC(LOAD_GLOBAL, specialization_success); assert(!PyErr_Occurred()); cache0->counter = initial_counter_value(); return 0; } #if COLLECT_SPECIALIZATION_STATS_DETAILED static int binary_subscr_fail_kind(PyTypeObject *container_type, PyObject *sub) { if (container_type == &PyUnicode_Type) { if (PyLong_CheckExact(sub)) { return SPEC_FAIL_STRING_INT; } if (PySlice_Check(sub)) { return SPEC_FAIL_STRING_SLICE; } return SPEC_FAIL_OTHER; } else if (strcmp(container_type->tp_name, "array.array") == 0) { if (PyLong_CheckExact(sub)) { return SPEC_FAIL_ARRAY_INT; } if (PySlice_Check(sub)) { return SPEC_FAIL_ARRAY_SLICE; } return SPEC_FAIL_OTHER; } else if (container_type->tp_as_buffer) { if (PyLong_CheckExact(sub)) { return SPEC_FAIL_BUFFER_INT; } if (PySlice_Check(sub)) { return SPEC_FAIL_BUFFER_SLICE; } return SPEC_FAIL_OTHER; } else if (container_type->tp_as_sequence) { if (PyLong_CheckExact(sub) && container_type->tp_as_sequence->sq_item) { return SPEC_FAIL_SEQUENCE_INT; } } return SPEC_FAIL_OTHER; } #endif _Py_IDENTIFIER(__getitem__); #define SIMPLE_FUNCTION 0 static int function_kind(PyCodeObject *code) { int flags = code->co_flags; if (flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) { return SPEC_FAIL_GENERATOR; } if ((flags & (CO_VARKEYWORDS | CO_VARARGS)) || code->co_kwonlyargcount) { return SPEC_FAIL_COMPLEX_PARAMETERS; } if ((flags & CO_OPTIMIZED) == 0) { return SPEC_FAIL_CO_NOT_OPTIMIZED; } return SIMPLE_FUNCTION; } int _Py_Specialize_BinarySubscr( PyObject *container, PyObject *sub, _Py_CODEUNIT *instr, SpecializedCacheEntry *cache) { _PyAdaptiveEntry *cache0 = &cache->adaptive; PyTypeObject *container_type = Py_TYPE(container); if (container_type == &PyList_Type) { if (PyLong_CheckExact(sub)) { *instr = _Py_MAKECODEUNIT(BINARY_SUBSCR_LIST_INT, _Py_OPARG(*instr)); goto success; } SPECIALIZATION_FAIL(BINARY_SUBSCR, PySlice_Check(sub) ? SPEC_FAIL_LIST_SLICE : SPEC_FAIL_OTHER); goto fail; } if (container_type == &PyTuple_Type) { if (PyLong_CheckExact(sub)) { *instr = _Py_MAKECODEUNIT(BINARY_SUBSCR_TUPLE_INT, _Py_OPARG(*instr)); goto success; } SPECIALIZATION_FAIL(BINARY_SUBSCR, PySlice_Check(sub) ? SPEC_FAIL_TUPLE_SLICE : SPEC_FAIL_OTHER); goto fail; } if (container_type == &PyDict_Type) { *instr = _Py_MAKECODEUNIT(BINARY_SUBSCR_DICT, _Py_OPARG(*instr)); goto success; } PyTypeObject *cls = Py_TYPE(container); PyObject *descriptor = _PyType_LookupId(cls, &PyId___getitem__); if (descriptor && Py_TYPE(descriptor) == &PyFunction_Type) { PyFunctionObject *func = (PyFunctionObject *)descriptor; PyCodeObject *code = (PyCodeObject *)func->func_code; int kind = function_kind(code); if (kind != SIMPLE_FUNCTION) { SPECIALIZATION_FAIL(BINARY_SUBSCR, kind); goto fail; } if (code->co_argcount != 2) { SPECIALIZATION_FAIL(BINARY_SUBSCR, SPEC_FAIL_WRONG_NUMBER_ARGUMENTS); goto fail; } assert(cls->tp_version_tag != 0); cache0->version = cls->tp_version_tag; int version = _PyFunction_GetVersionForCurrentState(func); if (version == 0) { SPECIALIZATION_FAIL(BINARY_SUBSCR, SPEC_FAIL_OUT_OF_VERSIONS); goto fail; } cache0->index = version; cache[-1].obj.obj = descriptor; *instr = _Py_MAKECODEUNIT(BINARY_SUBSCR_GETITEM, _Py_OPARG(*instr)); goto success; } SPECIALIZATION_FAIL(BINARY_SUBSCR, binary_subscr_fail_kind(container_type, sub)); fail: STAT_INC(BINARY_SUBSCR, specialization_failure); assert(!PyErr_Occurred()); cache_backoff(cache0); return 0; success: STAT_INC(BINARY_SUBSCR, specialization_success); assert(!PyErr_Occurred()); cache0->counter = initial_counter_value(); return 0; } int _Py_Specialize_StoreSubscr(PyObject *container, PyObject *sub, _Py_CODEUNIT *instr) { PyTypeObject *container_type = Py_TYPE(container); if (container_type == &PyList_Type) { if (PyLong_CheckExact(sub)) { if ((Py_SIZE(sub) == 0 || Py_SIZE(sub) == 1) && ((PyLongObject *)sub)->ob_digit[0] < PyList_GET_SIZE(container)) { *instr = _Py_MAKECODEUNIT(STORE_SUBSCR_LIST_INT, initial_counter_value()); goto success; } else { SPECIALIZATION_FAIL(STORE_SUBSCR, SPEC_FAIL_OUT_OF_RANGE); goto fail; } } else if (PySlice_Check(sub)) { SPECIALIZATION_FAIL(STORE_SUBSCR, SPEC_FAIL_LIST_SLICE); goto fail; } else { SPECIALIZATION_FAIL(STORE_SUBSCR, SPEC_FAIL_OTHER); goto fail; } } else if (container_type == &PyDict_Type) { *instr = _Py_MAKECODEUNIT(STORE_SUBSCR_DICT, initial_counter_value()); goto success; } else { SPECIALIZATION_FAIL(STORE_SUBSCR, SPEC_FAIL_OTHER); goto fail; } fail: STAT_INC(STORE_SUBSCR, specialization_failure); assert(!PyErr_Occurred()); *instr = _Py_MAKECODEUNIT(_Py_OPCODE(*instr), ADAPTIVE_CACHE_BACKOFF); return 0; success: STAT_INC(STORE_SUBSCR, specialization_success); assert(!PyErr_Occurred()); return 0; } static int specialize_class_call( PyObject *callable, _Py_CODEUNIT *instr, int nargs, SpecializedCacheEntry *cache) { SPECIALIZATION_FAIL(CALL_FUNCTION, SPEC_FAIL_CLASS); return -1; } static int specialize_py_call( PyFunctionObject *func, _Py_CODEUNIT *instr, int nargs, SpecializedCacheEntry *cache) { _PyCallCache *cache1 = &cache[-1].call; PyCodeObject *code = (PyCodeObject *)func->func_code; int kind = function_kind(code); if (kind != SIMPLE_FUNCTION) { SPECIALIZATION_FAIL(CALL_FUNCTION, kind); return -1; } int argcount = code->co_argcount; int defcount = func->func_defaults == NULL ? 0 : (int)PyTuple_GET_SIZE(func->func_defaults); assert(defcount <= argcount); int min_args = argcount-defcount; if (nargs > argcount || nargs < min_args) { SPECIALIZATION_FAIL(CALL_FUNCTION, SPEC_FAIL_WRONG_NUMBER_ARGUMENTS); return -1; } assert(nargs <= argcount && nargs >= min_args); int defstart = nargs - min_args; int deflen = argcount - nargs; assert(defstart >= 0 && deflen >= 0); assert(deflen == 0 || func->func_defaults != NULL); if (defstart > 0xffff || deflen > 0xffff) { SPECIALIZATION_FAIL(CALL_FUNCTION, SPEC_FAIL_OUT_OF_RANGE); return -1; } int version = _PyFunction_GetVersionForCurrentState(func); if (version == 0) { SPECIALIZATION_FAIL(CALL_FUNCTION, SPEC_FAIL_OUT_OF_VERSIONS); return -1; } cache1->func_version = version; cache1->defaults_start = defstart; cache1->defaults_len = deflen; *instr = _Py_MAKECODEUNIT(CALL_FUNCTION_PY_SIMPLE, _Py_OPARG(*instr)); return 0; } #if COLLECT_SPECIALIZATION_STATS_DETAILED static int builtin_call_fail_kind(int ml_flags) { switch (ml_flags & (METH_VARARGS | METH_FASTCALL | METH_NOARGS | METH_O | METH_KEYWORDS | METH_METHOD)) { case METH_VARARGS: return SPEC_FAIL_PYCFUNCTION; case METH_VARARGS | METH_KEYWORDS: return SPEC_FAIL_PYCFUNCTION_WITH_KEYWORDS; case METH_FASTCALL | METH_KEYWORDS: return SPEC_FAIL_PYCFUNCTION_FAST_WITH_KEYWORDS; case METH_NOARGS: return SPEC_FAIL_PYCFUNCTION_NOARGS; /* This case should never happen with PyCFunctionObject -- only PyMethodObject. See zlib.compressobj()'s methods for an example. */ case METH_METHOD | METH_FASTCALL | METH_KEYWORDS: default: return SPEC_FAIL_BAD_CALL_FLAGS; } } #endif static int specialize_c_call(PyObject *callable, _Py_CODEUNIT *instr, int nargs, SpecializedCacheEntry *cache, PyObject *builtins) { _PyObjectCache *cache1 = &cache[-1].obj; if (PyCFunction_GET_FUNCTION(callable) == NULL) { return 1; } switch (PyCFunction_GET_FLAGS(callable) & (METH_VARARGS | METH_FASTCALL | METH_NOARGS | METH_O | METH_KEYWORDS | METH_METHOD)) { case METH_O: { if (nargs != 1) { SPECIALIZATION_FAIL(CALL_FUNCTION, SPEC_FAIL_OUT_OF_RANGE); return 1; } /* len(o) */ PyObject *builtin_len = PyDict_GetItemString(builtins, "len"); if (callable == builtin_len) { cache1->obj = builtin_len; // borrowed *instr = _Py_MAKECODEUNIT(CALL_FUNCTION_LEN, _Py_OPARG(*instr)); return 0; } *instr = _Py_MAKECODEUNIT(CALL_FUNCTION_BUILTIN_O, _Py_OPARG(*instr)); return 0; } case METH_FASTCALL: { if (nargs == 2) { /* isinstance(o1, o2) */ PyObject *builtin_isinstance = PyDict_GetItemString( builtins, "isinstance"); if (callable == builtin_isinstance) { cache1->obj = builtin_isinstance; // borrowed *instr = _Py_MAKECODEUNIT(CALL_FUNCTION_ISINSTANCE, _Py_OPARG(*instr)); return 0; } } *instr = _Py_MAKECODEUNIT(CALL_FUNCTION_BUILTIN_FAST, _Py_OPARG(*instr)); return 0; } default: SPECIALIZATION_FAIL(CALL_FUNCTION, builtin_call_fail_kind(PyCFunction_GET_FLAGS(callable))); return 1; } } #if COLLECT_SPECIALIZATION_STATS_DETAILED static int call_fail_kind(PyObject *callable) { if (PyInstanceMethod_Check(callable)) { return SPEC_FAIL_METHOD; } else if (PyMethod_Check(callable)) { return SPEC_FAIL_METHOD; } // builtin method else if (PyCMethod_Check(callable)) { return SPEC_FAIL_METHOD; } else if (PyType_Check(callable)) { return SPEC_FAIL_CLASS; } return SPEC_FAIL_OTHER; } #endif /* TODO: - Specialize calling classes. */ int _Py_Specialize_CallFunction( PyObject *callable, _Py_CODEUNIT *instr, int nargs, SpecializedCacheEntry *cache, PyObject *builtins) { int fail; if (PyCFunction_CheckExact(callable)) { fail = specialize_c_call(callable, instr, nargs, cache, builtins); } else if (PyFunction_Check(callable)) { fail = specialize_py_call((PyFunctionObject *)callable, instr, nargs, cache); } else if (PyType_Check(callable)) { fail = specialize_class_call(callable, instr, nargs, cache); } else { SPECIALIZATION_FAIL(CALL_FUNCTION, call_fail_kind(callable)); fail = -1; } _PyAdaptiveEntry *cache0 = &cache->adaptive; if (fail) { STAT_INC(CALL_FUNCTION, specialization_failure); assert(!PyErr_Occurred()); cache_backoff(cache0); } else { STAT_INC(CALL_FUNCTION, specialization_success); assert(!PyErr_Occurred()); cache0->counter = initial_counter_value(); } return 0; } void _Py_Specialize_BinaryOp(PyObject *lhs, PyObject *rhs, _Py_CODEUNIT *instr, SpecializedCacheEntry *cache) { _PyAdaptiveEntry *adaptive = &cache->adaptive; switch (adaptive->original_oparg) { case NB_ADD: case NB_INPLACE_ADD: if (!Py_IS_TYPE(lhs, Py_TYPE(rhs))) { SPECIALIZATION_FAIL(BINARY_OP, SPEC_FAIL_DIFFERENT_TYPES); goto failure; } if (PyUnicode_CheckExact(lhs)) { if (_Py_OPCODE(instr[1]) == STORE_FAST && Py_REFCNT(lhs) == 2) { *instr = _Py_MAKECODEUNIT(BINARY_OP_INPLACE_ADD_UNICODE, _Py_OPARG(*instr)); goto success; } *instr = _Py_MAKECODEUNIT(BINARY_OP_ADD_UNICODE, _Py_OPARG(*instr)); goto success; } if (PyLong_CheckExact(lhs)) { *instr = _Py_MAKECODEUNIT(BINARY_OP_ADD_INT, _Py_OPARG(*instr)); goto success; } if (PyFloat_CheckExact(lhs)) { *instr = _Py_MAKECODEUNIT(BINARY_OP_ADD_FLOAT, _Py_OPARG(*instr)); goto success; } break; case NB_MULTIPLY: case NB_INPLACE_MULTIPLY: if (!Py_IS_TYPE(lhs, Py_TYPE(rhs))) { SPECIALIZATION_FAIL(BINARY_OP, SPEC_FAIL_DIFFERENT_TYPES); goto failure; } if (PyLong_CheckExact(lhs)) { *instr = _Py_MAKECODEUNIT(BINARY_OP_MULTIPLY_INT, _Py_OPARG(*instr)); goto success; } if (PyFloat_CheckExact(lhs)) { *instr = _Py_MAKECODEUNIT(BINARY_OP_MULTIPLY_FLOAT, _Py_OPARG(*instr)); goto success; } break; case NB_SUBTRACT: case NB_INPLACE_SUBTRACT: if (!Py_IS_TYPE(lhs, Py_TYPE(rhs))) { SPECIALIZATION_FAIL(BINARY_OP, SPEC_FAIL_DIFFERENT_TYPES); goto failure; } if (PyLong_CheckExact(lhs)) { *instr = _Py_MAKECODEUNIT(BINARY_OP_SUBTRACT_INT, _Py_OPARG(*instr)); goto success; } if (PyFloat_CheckExact(lhs)) { *instr = _Py_MAKECODEUNIT(BINARY_OP_SUBTRACT_FLOAT, _Py_OPARG(*instr)); goto success; } break; default: // These operators don't have any available specializations. Rather // than repeatedly attempting to specialize them, just convert them // back to BINARY_OP (while still recording a failure, of course)! *instr = _Py_MAKECODEUNIT(BINARY_OP, adaptive->original_oparg); } SPECIALIZATION_FAIL(BINARY_OP, SPEC_FAIL_OTHER); failure: STAT_INC(BINARY_OP, specialization_failure); cache_backoff(adaptive); return; success: STAT_INC(BINARY_OP, specialization_success); adaptive->counter = initial_counter_value(); } static int compare_masks[] = { // 1-bit: jump if less than // 2-bit: jump if equal // 4-bit: jump if greater [Py_LT] = 1 | 0 | 0, [Py_LE] = 1 | 2 | 0, [Py_EQ] = 0 | 2 | 0, [Py_NE] = 1 | 0 | 4, [Py_GT] = 0 | 0 | 4, [Py_GE] = 0 | 2 | 4, }; void _Py_Specialize_CompareOp(PyObject *lhs, PyObject *rhs, _Py_CODEUNIT *instr, SpecializedCacheEntry *cache) { _PyAdaptiveEntry *adaptive = &cache->adaptive; int op = adaptive->original_oparg; int next_opcode = _Py_OPCODE(instr[1]); if (next_opcode != POP_JUMP_IF_FALSE && next_opcode != POP_JUMP_IF_TRUE) { // Can't ever combine, so don't don't bother being adaptive. SPECIALIZATION_FAIL(COMPARE_OP, SPEC_FAIL_NOT_FOLLOWED_BY_COND_JUMP); *instr = _Py_MAKECODEUNIT(COMPARE_OP, adaptive->original_oparg); goto failure; } assert(op <= Py_GE); int when_to_jump_mask = compare_masks[op]; if (next_opcode == POP_JUMP_IF_FALSE) { when_to_jump_mask = (1 | 2 | 4) & ~when_to_jump_mask; } if (Py_TYPE(lhs) != Py_TYPE(rhs)) { SPECIALIZATION_FAIL(COMPARE_OP, SPEC_FAIL_DIFFERENT_TYPES); goto failure; } if (PyFloat_CheckExact(lhs)) { *instr = _Py_MAKECODEUNIT(COMPARE_OP_FLOAT_JUMP, _Py_OPARG(*instr)); adaptive->index = when_to_jump_mask; goto success; } if (PyLong_CheckExact(lhs)) { if (Py_ABS(Py_SIZE(lhs)) <= 1 && Py_ABS(Py_SIZE(rhs)) <= 1) { *instr = _Py_MAKECODEUNIT(COMPARE_OP_INT_JUMP, _Py_OPARG(*instr)); adaptive->index = when_to_jump_mask; goto success; } else { SPECIALIZATION_FAIL(COMPARE_OP, SPEC_FAIL_BIG_INT); goto failure; } } if (PyUnicode_CheckExact(lhs)) { if (op != Py_EQ && op != Py_NE) { SPECIALIZATION_FAIL(COMPARE_OP, SPEC_FAIL_STRING_COMPARE); goto failure; } else { *instr = _Py_MAKECODEUNIT(COMPARE_OP_STR_JUMP, _Py_OPARG(*instr)); adaptive->index = (when_to_jump_mask & 2) == 0; goto success; } } SPECIALIZATION_FAIL(COMPARE_OP, SPEC_FAIL_OTHER); failure: STAT_INC(COMPARE_OP, specialization_failure); cache_backoff(adaptive); return; success: STAT_INC(COMPARE_OP, specialization_success); adaptive->counter = initial_counter_value(); }