#include "pycore_interp.h" // _PyInterpreterState.threads.stacksize #include "pycore_pythread.h" // _POSIX_SEMAPHORES /* Posix threads interface */ #include <stdlib.h> #include <string.h> #if defined(__APPLE__) || defined(HAVE_PTHREAD_DESTRUCTOR) #define destructor xxdestructor #endif #ifndef HAVE_PTHREAD_STUBS # include <pthread.h> #endif #if defined(__APPLE__) || defined(HAVE_PTHREAD_DESTRUCTOR) #undef destructor #endif #include <signal.h> #if defined(__linux__) # include <sys/syscall.h> /* syscall(SYS_gettid) */ #elif defined(__FreeBSD__) # include <pthread_np.h> /* pthread_getthreadid_np() */ #elif defined(__OpenBSD__) # include <unistd.h> /* getthrid() */ #elif defined(_AIX) # include <sys/thread.h> /* thread_self() */ #elif defined(__NetBSD__) # include <lwp.h> /* _lwp_self() */ #elif defined(__DragonFly__) # include <sys/lwp.h> /* lwp_gettid() */ #endif /* The POSIX spec requires that use of pthread_attr_setstacksize be conditional on _POSIX_THREAD_ATTR_STACKSIZE being defined. */ #ifdef _POSIX_THREAD_ATTR_STACKSIZE #ifndef THREAD_STACK_SIZE #define THREAD_STACK_SIZE 0 /* use default stack size */ #endif /* The default stack size for new threads on BSD is small enough that * we'll get hard crashes instead of 'maximum recursion depth exceeded' * exceptions. * * The default stack size below is the empirically determined minimal stack * sizes where a simple recursive function doesn't cause a hard crash. * * For macOS the value of THREAD_STACK_SIZE is determined in configure.ac * as it also depends on the other configure options like chosen sanitizer * runtimes. */ #if defined(__FreeBSD__) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0 #undef THREAD_STACK_SIZE #define THREAD_STACK_SIZE 0x400000 #endif #if defined(_AIX) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0 #undef THREAD_STACK_SIZE #define THREAD_STACK_SIZE 0x200000 #endif /* bpo-38852: test_threading.test_recursion_limit() checks that 1000 recursive Python calls (default recursion limit) doesn't crash, but raise a regular RecursionError exception. In debug mode, Python function calls allocates more memory on the stack, so use a stack of 8 MiB. */ #if defined(__ANDROID__) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0 # ifdef Py_DEBUG # undef THREAD_STACK_SIZE # define THREAD_STACK_SIZE 0x800000 # endif #endif #if defined(__VXWORKS__) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0 #undef THREAD_STACK_SIZE #define THREAD_STACK_SIZE 0x100000 #endif /* for safety, ensure a viable minimum stacksize */ #define THREAD_STACK_MIN 0x8000 /* 32 KiB */ #else /* !_POSIX_THREAD_ATTR_STACKSIZE */ #ifdef THREAD_STACK_SIZE #error "THREAD_STACK_SIZE defined but _POSIX_THREAD_ATTR_STACKSIZE undefined" #endif #endif /* The POSIX spec says that implementations supporting the sem_* family of functions must indicate this by defining _POSIX_SEMAPHORES. */ #ifdef _POSIX_SEMAPHORES /* On FreeBSD 4.x, _POSIX_SEMAPHORES is defined empty, so we need to add 0 to make it work there as well. */ #if (_POSIX_SEMAPHORES+0) == -1 # define HAVE_BROKEN_POSIX_SEMAPHORES #else # include <semaphore.h> # include <errno.h> #endif #endif /* Whether or not to use semaphores directly rather than emulating them with * mutexes and condition variables: */ #if (defined(_POSIX_SEMAPHORES) && !defined(HAVE_BROKEN_POSIX_SEMAPHORES) && \ (defined(HAVE_SEM_TIMEDWAIT) || defined(HAVE_SEM_CLOCKWAIT))) # define USE_SEMAPHORES #else # undef USE_SEMAPHORES #endif /* On platforms that don't use standard POSIX threads pthread_sigmask() * isn't present. DEC threads uses sigprocmask() instead as do most * other UNIX International compliant systems that don't have the full * pthread implementation. */ #if defined(HAVE_PTHREAD_SIGMASK) && !defined(HAVE_BROKEN_PTHREAD_SIGMASK) # define SET_THREAD_SIGMASK pthread_sigmask #else # define SET_THREAD_SIGMASK sigprocmask #endif /* * pthread_cond support */ #define condattr_monotonic _PyRuntime.threads._condattr_monotonic.ptr static void init_condattr(void) { #ifdef CONDATTR_MONOTONIC # define ca _PyRuntime.threads._condattr_monotonic.val // XXX We need to check the return code? pthread_condattr_init(&ca); // XXX We need to run pthread_condattr_destroy() during runtime fini. if (pthread_condattr_setclock(&ca, CLOCK_MONOTONIC) == 0) { condattr_monotonic = &ca; // Use monotonic clock } # undef ca #endif // CONDATTR_MONOTONIC } int _PyThread_cond_init(PyCOND_T *cond) { return pthread_cond_init(cond, condattr_monotonic); } void _PyThread_cond_after(long long us, struct timespec *abs) { _PyTime_t timeout = _PyTime_FromMicrosecondsClamp(us); _PyTime_t t; #ifdef CONDATTR_MONOTONIC if (condattr_monotonic) { t = _PyTime_GetMonotonicClock(); } else #endif { t = _PyTime_GetSystemClock(); } t = _PyTime_Add(t, timeout); _PyTime_AsTimespec_clamp(t, abs); } /* A pthread mutex isn't sufficient to model the Python lock type * because, according to Draft 5 of the docs (P1003.4a/D5), both of the * following are undefined: * -> a thread tries to lock a mutex it already has locked * -> a thread tries to unlock a mutex locked by a different thread * pthread mutexes are designed for serializing threads over short pieces * of code anyway, so wouldn't be an appropriate implementation of * Python's locks regardless. * * The pthread_lock struct implements a Python lock as a "locked?" bit * and a <condition, mutex> pair. In general, if the bit can be acquired * instantly, it is, else the pair is used to block the thread until the * bit is cleared. 9 May 1994 tim@ksr.com */ typedef struct { char locked; /* 0=unlocked, 1=locked */ /* a <cond, mutex> pair to handle an acquire of a locked lock */ pthread_cond_t lock_released; pthread_mutex_t mut; } pthread_lock; #define CHECK_STATUS(name) if (status != 0) { perror(name); error = 1; } #define CHECK_STATUS_PTHREAD(name) if (status != 0) { fprintf(stderr, \ "%s: %s\n", name, strerror(status)); error = 1; } /* * Initialization for the current runtime. */ static void PyThread__init_thread(void) { // The library is only initialized once in the process, // regardless of how many times the Python runtime is initialized. static int lib_initialized = 0; if (!lib_initialized) { lib_initialized = 1; #if defined(_AIX) && defined(__GNUC__) extern void pthread_init(void); pthread_init(); #endif } init_condattr(); } /* * Thread support. */ /* bpo-33015: pythread_callback struct and pythread_wrapper() cast "void func(void *)" to "void* func(void *)": always return NULL. PyThread_start_new_thread() uses "void func(void *)" type, whereas pthread_create() requires a void* return value. */ typedef struct { void (*func) (void *); void *arg; } pythread_callback; static void * pythread_wrapper(void *arg) { /* copy func and func_arg and free the temporary structure */ pythread_callback *callback = arg; void (*func)(void *) = callback->func; void *func_arg = callback->arg; PyMem_RawFree(arg); func(func_arg); return NULL; } unsigned long PyThread_start_new_thread(void (*func)(void *), void *arg) { pthread_t th; int status; #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) pthread_attr_t attrs; #endif #if defined(THREAD_STACK_SIZE) size_t tss; #endif if (!initialized) PyThread_init_thread(); #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) if (pthread_attr_init(&attrs) != 0) return PYTHREAD_INVALID_THREAD_ID; #endif #if defined(THREAD_STACK_SIZE) PyThreadState *tstate = _PyThreadState_GET(); size_t stacksize = tstate ? tstate->interp->threads.stacksize : 0; tss = (stacksize != 0) ? stacksize : THREAD_STACK_SIZE; if (tss != 0) { if (pthread_attr_setstacksize(&attrs, tss) != 0) { pthread_attr_destroy(&attrs); return PYTHREAD_INVALID_THREAD_ID; } } #endif #if defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) pthread_attr_setscope(&attrs, PTHREAD_SCOPE_SYSTEM); #endif pythread_callback *callback = PyMem_RawMalloc(sizeof(pythread_callback)); if (callback == NULL) { return PYTHREAD_INVALID_THREAD_ID; } callback->func = func; callback->arg = arg; status = pthread_create(&th, #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) &attrs, #else (pthread_attr_t*)NULL, #endif pythread_wrapper, callback); #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) pthread_attr_destroy(&attrs); #endif if (status != 0) { PyMem_RawFree(callback); return PYTHREAD_INVALID_THREAD_ID; } pthread_detach(th); #if SIZEOF_PTHREAD_T <= SIZEOF_LONG return (unsigned long) th; #else return (unsigned long) *(unsigned long *) &th; #endif } /* XXX This implementation is considered (to quote Tim Peters) "inherently hosed" because: - It does not guarantee the promise that a non-zero integer is returned. - The cast to unsigned long is inherently unsafe. - It is not clear that the 'volatile' (for AIX?) are any longer necessary. */ unsigned long PyThread_get_thread_ident(void) { volatile pthread_t threadid; if (!initialized) PyThread_init_thread(); threadid = pthread_self(); return (unsigned long) threadid; } #ifdef PY_HAVE_THREAD_NATIVE_ID unsigned long PyThread_get_thread_native_id(void) { if (!initialized) PyThread_init_thread(); #ifdef __APPLE__ uint64_t native_id; (void) pthread_threadid_np(NULL, &native_id); #elif defined(__linux__) pid_t native_id; native_id = syscall(SYS_gettid); #elif defined(__FreeBSD__) int native_id; native_id = pthread_getthreadid_np(); #elif defined(__OpenBSD__) pid_t native_id; native_id = getthrid(); #elif defined(_AIX) tid_t native_id; native_id = thread_self(); #elif defined(__NetBSD__) lwpid_t native_id; native_id = _lwp_self(); #elif defined(__DragonFly__) lwpid_t native_id; native_id = lwp_gettid(); #endif return (unsigned long) native_id; } #endif void _Py_NO_RETURN PyThread_exit_thread(void) { if (!initialized) exit(0); #if defined(__wasi__) /* * wasi-threads doesn't have pthread_exit right now * cf. https://github.com/WebAssembly/wasi-threads/issues/7 */ abort(); #else pthread_exit(0); #endif } #ifdef USE_SEMAPHORES /* * Lock support. */ PyThread_type_lock PyThread_allocate_lock(void) { sem_t *lock; int status, error = 0; if (!initialized) PyThread_init_thread(); lock = (sem_t *)PyMem_RawMalloc(sizeof(sem_t)); if (lock) { status = sem_init(lock,0,1); CHECK_STATUS("sem_init"); if (error) { PyMem_RawFree((void *)lock); lock = NULL; } } return (PyThread_type_lock)lock; } void PyThread_free_lock(PyThread_type_lock lock) { sem_t *thelock = (sem_t *)lock; int status, error = 0; (void) error; /* silence unused-but-set-variable warning */ if (!thelock) return; status = sem_destroy(thelock); CHECK_STATUS("sem_destroy"); PyMem_RawFree((void *)thelock); } /* * As of February 2002, Cygwin thread implementations mistakenly report error * codes in the return value of the sem_ calls (like the pthread_ functions). * Correct implementations return -1 and put the code in errno. This supports * either. */ static int fix_status(int status) { return (status == -1) ? errno : status; } PyLockStatus PyThread_acquire_lock_timed(PyThread_type_lock lock, PY_TIMEOUT_T microseconds, int intr_flag) { PyLockStatus success; sem_t *thelock = (sem_t *)lock; int status, error = 0; (void) error; /* silence unused-but-set-variable warning */ _PyTime_t timeout; // relative timeout if (microseconds >= 0) { // bpo-41710: PyThread_acquire_lock_timed() cannot report timeout // overflow to the caller, so clamp the timeout to // [_PyTime_MIN, _PyTime_MAX]. // // _PyTime_MAX nanoseconds is around 292.3 years. // // _thread.Lock.acquire() and _thread.RLock.acquire() raise an // OverflowError if microseconds is greater than PY_TIMEOUT_MAX. timeout = _PyTime_FromMicrosecondsClamp(microseconds); } else { timeout = _PyTime_FromNanoseconds(-1); } #ifdef HAVE_SEM_CLOCKWAIT struct timespec abs_timeout; // Local scope for deadline { _PyTime_t deadline = _PyTime_Add(_PyTime_GetMonotonicClock(), timeout); _PyTime_AsTimespec_clamp(deadline, &abs_timeout); } #else _PyTime_t deadline = 0; if (timeout > 0 && !intr_flag) { deadline = _PyDeadline_Init(timeout); } #endif while (1) { if (timeout > 0) { #ifdef HAVE_SEM_CLOCKWAIT status = fix_status(sem_clockwait(thelock, CLOCK_MONOTONIC, &abs_timeout)); #else _PyTime_t abs_time = _PyTime_Add(_PyTime_GetSystemClock(), timeout); struct timespec ts; _PyTime_AsTimespec_clamp(abs_time, &ts); status = fix_status(sem_timedwait(thelock, &ts)); #endif } else if (timeout == 0) { status = fix_status(sem_trywait(thelock)); } else { status = fix_status(sem_wait(thelock)); } /* Retry if interrupted by a signal, unless the caller wants to be notified. */ if (intr_flag || status != EINTR) { break; } // sem_clockwait() uses an absolute timeout, there is no need // to recompute the relative timeout. #ifndef HAVE_SEM_CLOCKWAIT if (timeout > 0) { /* wait interrupted by a signal (EINTR): recompute the timeout */ timeout = _PyDeadline_Get(deadline); if (timeout < 0) { status = ETIMEDOUT; break; } } #endif } /* Don't check the status if we're stopping because of an interrupt. */ if (!(intr_flag && status == EINTR)) { if (timeout > 0) { if (status != ETIMEDOUT) { #ifdef HAVE_SEM_CLOCKWAIT CHECK_STATUS("sem_clockwait"); #else CHECK_STATUS("sem_timedwait"); #endif } } else if (timeout == 0) { if (status != EAGAIN) { CHECK_STATUS("sem_trywait"); } } else { CHECK_STATUS("sem_wait"); } } if (status == 0) { success = PY_LOCK_ACQUIRED; } else if (intr_flag && status == EINTR) { success = PY_LOCK_INTR; } else { success = PY_LOCK_FAILURE; } return success; } void PyThread_release_lock(PyThread_type_lock lock) { sem_t *thelock = (sem_t *)lock; int status, error = 0; (void) error; /* silence unused-but-set-variable warning */ status = sem_post(thelock); CHECK_STATUS("sem_post"); } #else /* USE_SEMAPHORES */ /* * Lock support. */ PyThread_type_lock PyThread_allocate_lock(void) { pthread_lock *lock; int status, error = 0; if (!initialized) PyThread_init_thread(); lock = (pthread_lock *) PyMem_RawCalloc(1, sizeof(pthread_lock)); if (lock) { lock->locked = 0; status = pthread_mutex_init(&lock->mut, NULL); CHECK_STATUS_PTHREAD("pthread_mutex_init"); /* Mark the pthread mutex underlying a Python mutex as pure happens-before. We can't simply mark the Python-level mutex as a mutex because it can be acquired and released in different threads, which will cause errors. */ _Py_ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX(&lock->mut); status = _PyThread_cond_init(&lock->lock_released); CHECK_STATUS_PTHREAD("pthread_cond_init"); if (error) { PyMem_RawFree((void *)lock); lock = 0; } } return (PyThread_type_lock) lock; } void PyThread_free_lock(PyThread_type_lock lock) { pthread_lock *thelock = (pthread_lock *)lock; int status, error = 0; (void) error; /* silence unused-but-set-variable warning */ /* some pthread-like implementations tie the mutex to the cond * and must have the cond destroyed first. */ status = pthread_cond_destroy( &thelock->lock_released ); CHECK_STATUS_PTHREAD("pthread_cond_destroy"); status = pthread_mutex_destroy( &thelock->mut ); CHECK_STATUS_PTHREAD("pthread_mutex_destroy"); PyMem_RawFree((void *)thelock); } PyLockStatus PyThread_acquire_lock_timed(PyThread_type_lock lock, PY_TIMEOUT_T microseconds, int intr_flag) { PyLockStatus success = PY_LOCK_FAILURE; pthread_lock *thelock = (pthread_lock *)lock; int status, error = 0; if (microseconds == 0) { status = pthread_mutex_trylock( &thelock->mut ); if (status != EBUSY) { CHECK_STATUS_PTHREAD("pthread_mutex_trylock[1]"); } } else { status = pthread_mutex_lock( &thelock->mut ); CHECK_STATUS_PTHREAD("pthread_mutex_lock[1]"); } if (status != 0) { goto done; } if (thelock->locked == 0) { success = PY_LOCK_ACQUIRED; goto unlock; } if (microseconds == 0) { goto unlock; } struct timespec abs_timeout; if (microseconds > 0) { _PyThread_cond_after(microseconds, &abs_timeout); } // Continue trying until we get the lock // mut must be locked by me -- part of the condition protocol while (1) { if (microseconds > 0) { status = pthread_cond_timedwait(&thelock->lock_released, &thelock->mut, &abs_timeout); if (status == 1) { break; } if (status == ETIMEDOUT) { break; } CHECK_STATUS_PTHREAD("pthread_cond_timedwait"); } else { status = pthread_cond_wait( &thelock->lock_released, &thelock->mut); CHECK_STATUS_PTHREAD("pthread_cond_wait"); } if (intr_flag && status == 0 && thelock->locked) { // We were woken up, but didn't get the lock. We probably received // a signal. Return PY_LOCK_INTR to allow the caller to handle // it and retry. success = PY_LOCK_INTR; break; } if (status == 0 && !thelock->locked) { success = PY_LOCK_ACQUIRED; break; } // Wait got interrupted by a signal: retry } unlock: if (success == PY_LOCK_ACQUIRED) { thelock->locked = 1; } status = pthread_mutex_unlock( &thelock->mut ); CHECK_STATUS_PTHREAD("pthread_mutex_unlock[1]"); done: if (error) { success = PY_LOCK_FAILURE; } return success; } void PyThread_release_lock(PyThread_type_lock lock) { pthread_lock *thelock = (pthread_lock *)lock; int status, error = 0; (void) error; /* silence unused-but-set-variable warning */ status = pthread_mutex_lock( &thelock->mut ); CHECK_STATUS_PTHREAD("pthread_mutex_lock[3]"); thelock->locked = 0; /* wake up someone (anyone, if any) waiting on the lock */ status = pthread_cond_signal( &thelock->lock_released ); CHECK_STATUS_PTHREAD("pthread_cond_signal"); status = pthread_mutex_unlock( &thelock->mut ); CHECK_STATUS_PTHREAD("pthread_mutex_unlock[3]"); } #endif /* USE_SEMAPHORES */ int _PyThread_at_fork_reinit(PyThread_type_lock *lock) { PyThread_type_lock new_lock = PyThread_allocate_lock(); if (new_lock == NULL) { return -1; } /* bpo-6721, bpo-40089: The old lock can be in an inconsistent state. fork() can be called in the middle of an operation on the lock done by another thread. So don't call PyThread_free_lock(*lock). Leak memory on purpose. Don't release the memory either since the address of a mutex is relevant. Putting two mutexes at the same address can lead to problems. */ *lock = new_lock; return 0; } int PyThread_acquire_lock(PyThread_type_lock lock, int waitflag) { return PyThread_acquire_lock_timed(lock, waitflag ? -1 : 0, /*intr_flag=*/0); } /* set the thread stack size. * Return 0 if size is valid, -1 if size is invalid, * -2 if setting stack size is not supported. */ static int _pythread_pthread_set_stacksize(size_t size) { #if defined(THREAD_STACK_SIZE) pthread_attr_t attrs; size_t tss_min; int rc = 0; #endif /* set to default */ if (size == 0) { _PyInterpreterState_GET()->threads.stacksize = 0; return 0; } #if defined(THREAD_STACK_SIZE) #if defined(PTHREAD_STACK_MIN) tss_min = PTHREAD_STACK_MIN > THREAD_STACK_MIN ? PTHREAD_STACK_MIN : THREAD_STACK_MIN; #else tss_min = THREAD_STACK_MIN; #endif if (size >= tss_min) { /* validate stack size by setting thread attribute */ if (pthread_attr_init(&attrs) == 0) { rc = pthread_attr_setstacksize(&attrs, size); pthread_attr_destroy(&attrs); if (rc == 0) { _PyInterpreterState_GET()->threads.stacksize = size; return 0; } } } return -1; #else return -2; #endif } #define THREAD_SET_STACKSIZE(x) _pythread_pthread_set_stacksize(x) /* Thread Local Storage (TLS) API This API is DEPRECATED since Python 3.7. See PEP 539 for details. */ /* Issue #25658: On platforms where native TLS key is defined in a way that cannot be safely cast to int, PyThread_create_key returns immediately a failure status and other TLS functions all are no-ops. This indicates clearly that the old API is not supported on platforms where it cannot be used reliably, and that no effort will be made to add such support. Note: PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT will be unnecessary after removing this API. */ int PyThread_create_key(void) { #ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT pthread_key_t key; int fail = pthread_key_create(&key, NULL); if (fail) return -1; if (key > INT_MAX) { /* Issue #22206: handle integer overflow */ pthread_key_delete(key); errno = ENOMEM; return -1; } return (int)key; #else return -1; /* never return valid key value. */ #endif } void PyThread_delete_key(int key) { #ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT pthread_key_delete(key); #endif } void PyThread_delete_key_value(int key) { #ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT pthread_setspecific(key, NULL); #endif } int PyThread_set_key_value(int key, void *value) { #ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT int fail = pthread_setspecific(key, value); return fail ? -1 : 0; #else return -1; #endif } void * PyThread_get_key_value(int key) { #ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT return pthread_getspecific(key); #else return NULL; #endif } void PyThread_ReInitTLS(void) { } /* Thread Specific Storage (TSS) API Platform-specific components of TSS API implementation. */ int PyThread_tss_create(Py_tss_t *key) { assert(key != NULL); /* If the key has been created, function is silently skipped. */ if (key->_is_initialized) { return 0; } int fail = pthread_key_create(&(key->_key), NULL); if (fail) { return -1; } key->_is_initialized = 1; return 0; } void PyThread_tss_delete(Py_tss_t *key) { assert(key != NULL); /* If the key has not been created, function is silently skipped. */ if (!key->_is_initialized) { return; } pthread_key_delete(key->_key); /* pthread has not provided the defined invalid value for the key. */ key->_is_initialized = 0; } int PyThread_tss_set(Py_tss_t *key, void *value) { assert(key != NULL); int fail = pthread_setspecific(key->_key, value); return fail ? -1 : 0; } void * PyThread_tss_get(Py_tss_t *key) { assert(key != NULL); return pthread_getspecific(key->_key); }