#!/usr/bin/env python3 # # Argument Clinic # Copyright 2012-2013 by Larry Hastings. # Licensed to the PSF under a contributor agreement. # import abc import ast import atexit import collections import contextlib import functools import hashlib import inspect import io import itertools import os import re import shlex import sys import tempfile import textwrap # TODO: # # soon: # # * allow mixing any two of {positional-only, positional-or-keyword, # keyword-only} # * dict constructor uses positional-only and keyword-only # * max and min use positional only with an optional group # and keyword-only # version = '1' _empty = inspect._empty _void = inspect._void NoneType = type(None) class Unspecified: def __repr__(self): return '' unspecified = Unspecified() class Null: def __repr__(self): return '' NULL = Null() def _text_accumulator(): text = [] def output(): s = ''.join(text) text.clear() return s return text, text.append, output def text_accumulator(): """ Creates a simple text accumulator / joiner. Returns a pair of callables: append, output "append" appends a string to the accumulator. "output" returns the contents of the accumulator joined together (''.join(accumulator)) and empties the accumulator. """ text, append, output = _text_accumulator() return append, output def fail(*args, filename=None, line_number=None): joined = " ".join([str(a) for a in args]) add, output = text_accumulator() add("Error") if clinic: if filename is None: filename = clinic.filename if clinic.block_parser and (line_number is None): line_number = clinic.block_parser.line_number if filename is not None: add(' in file "' + filename + '"') if line_number is not None: add(" on line " + str(line_number)) add(':\n') add(joined) print(output()) sys.exit(-1) def quoted_for_c_string(s): for old, new in ( ('"', '\\"'), ("'", "\\'"), ): s = s.replace(old, new) return s is_legal_c_identifier = re.compile('^[A-Za-z_][A-Za-z0-9_]*$').match def is_legal_py_identifier(s): return all(is_legal_c_identifier(field) for field in s.split('.')) # though it's called c_keywords, really it's a list of parameter names # that are okay in Python but aren't a good idea in C. so if they're used # Argument Clinic will add "_value" to the end of the name in C. # (We added "args", "type", "module", "self", "cls", and "null" # just to be safe, even though they're not C keywords.) c_keywords = set(""" args asm auto break case char cls const continue default do double else enum extern float for goto if inline int long module null register return self short signed sizeof static struct switch type typedef typeof union unsigned void volatile while """.strip().split()) def ensure_legal_c_identifier(s): # for now, just complain if what we're given isn't legal if not is_legal_c_identifier(s): fail("Illegal C identifier: {}".format(s)) # but if we picked a C keyword, pick something else if s in c_keywords: return s + "_value" return s def rstrip_lines(s): text, add, output = _text_accumulator() for line in s.split('\n'): add(line.rstrip()) add('\n') text.pop() return output() def linear_format(s, **kwargs): """ Perform str.format-like substitution, except: * The strings substituted must be on lines by themselves. (This line is the "source line".) * If the substitution text is empty, the source line is removed in the output. * If the substitution text is not empty: * Each line of the substituted text is indented by the indent of the source line. * A newline will be added to the end. """ add, output = text_accumulator() for line in s.split('\n'): indent, curly, trailing = line.partition('{') if not curly: add(line) add('\n') continue name, curl, trailing = trailing.partition('}') if not curly or name not in kwargs: add(line) add('\n') continue if trailing: fail("Text found after {" + name + "} block marker! It must be on a line by itself.") if indent.strip(): fail("Non-whitespace characters found before {" + name + "} block marker! It must be on a line by itself.") value = kwargs[name] if not value: continue value = textwrap.indent(rstrip_lines(value), indent) add(value) add('\n') return output()[:-1] def version_splitter(s): """Splits a version string into a tuple of integers. The following ASCII characters are allowed, and employ the following conversions: a -> -3 b -> -2 c -> -1 (This permits Python-style version strings such as "1.4b3".) """ version = [] accumulator = [] def flush(): if not accumulator: raise ValueError('Malformed version string: ' + repr(s)) version.append(int(''.join(accumulator))) accumulator.clear() for c in s: if c.isdigit(): accumulator.append(c) elif c == '.': flush() elif c in 'abc': flush() version.append('abc'.index(c) - 3) else: raise ValueError('Illegal character ' + repr(c) + ' in version string ' + repr(s)) flush() return tuple(version) def version_comparitor(version1, version2): iterator = itertools.zip_longest(version_splitter(version1), version_splitter(version2), fillvalue=0) for i, (a, b) in enumerate(iterator): if a < b: return -1 if a > b: return 1 return 0 class CRenderData: def __init__(self): # The C statements to declare variables. # Should be full lines with \n eol characters. self.declarations = [] # The C statements required to initialize the variables before the parse call. # Should be full lines with \n eol characters. self.initializers = [] # The entries for the "keywords" array for PyArg_ParseTuple. # Should be individual strings representing the names. self.keywords = [] # The "format units" for PyArg_ParseTuple. # Should be individual strings that will get self.format_units = [] # The varargs arguments for PyArg_ParseTuple. self.parse_arguments = [] # The parameter declarations for the impl function. self.impl_parameters = [] # The arguments to the impl function at the time it's called. self.impl_arguments = [] # For return converters: the name of the variable that # should receive the value returned by the impl. self.return_value = "return_value" # For return converters: the code to convert the return # value from the parse function. This is also where # you should check the _return_value for errors, and # "goto exit" if there are any. self.return_conversion = [] # The C statements required to clean up after the impl call. self.cleanup = [] class Language(metaclass=abc.ABCMeta): start_line = "" body_prefix = "" stop_line = "" checksum_line = "" @abc.abstractmethod def render(self, block): pass def validate(self): def assert_only_one(field, token='dsl_name'): line = getattr(self, field) token = '{' + token + '}' if len(line.split(token)) != 2: fail(self.__class__.__name__ + " " + field + " must contain " + token + " exactly once!") assert_only_one('start_line') assert_only_one('stop_line') assert_only_one('checksum_line') assert_only_one('checksum_line', 'checksum') if len(self.body_prefix.split('{dsl_name}')) >= 3: fail(self.__class__.__name__ + " body_prefix may contain " + token + " once at most!") class PythonLanguage(Language): language = 'Python' start_line = "#/*[{dsl_name} input]" body_prefix = "#" stop_line = "#[{dsl_name} start generated code]*/" checksum_line = "#/*[{dsl_name} end generated code: checksum={checksum}]*/" def permute_left_option_groups(l): """ Given [1, 2, 3], should yield: () (3,) (2, 3) (1, 2, 3) """ yield tuple() accumulator = [] for group in reversed(l): accumulator = list(group) + accumulator yield tuple(accumulator) def permute_right_option_groups(l): """ Given [1, 2, 3], should yield: () (1,) (1, 2) (1, 2, 3) """ yield tuple() accumulator = [] for group in l: accumulator.extend(group) yield tuple(accumulator) def permute_optional_groups(left, required, right): """ Generator function that computes the set of acceptable argument lists for the provided iterables of argument groups. (Actually it generates a tuple of tuples.) Algorithm: prefer left options over right options. If required is empty, left must also be empty. """ required = tuple(required) result = [] if not required: assert not left accumulator = [] counts = set() for r in permute_right_option_groups(right): for l in permute_left_option_groups(left): t = l + required + r if len(t) in counts: continue counts.add(len(t)) accumulator.append(t) accumulator.sort(key=len) return tuple(accumulator) class CLanguage(Language): body_prefix = "#" language = 'C' start_line = "/*[{dsl_name} input]" body_prefix = "" stop_line = "[{dsl_name} start generated code]*/" checksum_line = "/*[{dsl_name} end generated code: checksum={checksum}]*/" def render(self, signatures): function = None for o in signatures: if isinstance(o, Function): if function: fail("You may specify at most one function per block.\nFound a block containing at least two:\n\t" + repr(function) + " and " + repr(o)) function = o return self.render_function(function) def docstring_for_c_string(self, f): text, add, output = _text_accumulator() # turn docstring into a properly quoted C string for line in f.docstring.split('\n'): add('"') add(quoted_for_c_string(line)) add('\\n"\n') text.pop() add('"') return ''.join(text) impl_prototype_template = "{c_basename}_impl({impl_parameters})" @staticmethod def template_base(*args): # HACK suppress methoddef define for METHOD_NEW and METHOD_INIT base = """ PyDoc_STRVAR({c_basename}__doc__, {docstring}); """ if args[-1] == None: return base flags = '|'.join(f for f in args if f) return base + """ #define {methoddef_name} \\ {{"{name}", (PyCFunction){c_basename}, {methoddef_flags}, {c_basename}__doc__}}, """.replace('{methoddef_flags}', flags) def meth_noargs_template(self, methoddef_flags=""): return self.template_base("METH_NOARGS", methoddef_flags) + """ static {impl_return_type} {impl_prototype}; static PyObject * {c_basename}({self_type}{self_name}, PyObject *Py_UNUSED(ignored)) {{ PyObject *return_value = NULL; {declarations} {initializers} {return_value} = {c_basename}_impl({impl_arguments}); {return_conversion} {exit_label} {cleanup} return return_value; }} static {impl_return_type} {impl_prototype} """ def meth_o_template(self, methoddef_flags=""): return self.template_base("METH_O", methoddef_flags) + """ static PyObject * {c_basename}({impl_parameters}) """ def meth_o_return_converter_template(self, methoddef_flags=""): return self.template_base("METH_O", methoddef_flags) + """ static {impl_return_type} {impl_prototype}; static PyObject * {c_basename}({impl_parameters}) {{ PyObject *return_value = NULL; {declarations} {initializers} _return_value = {c_basename}_impl({impl_arguments}); {return_conversion} {exit_label} {cleanup} return return_value; }} static {impl_return_type} {impl_prototype} """ def option_group_template(self, methoddef_flags=""): return self.template_base("METH_VARARGS", methoddef_flags) + """ static {impl_return_type} {impl_prototype}; static PyObject * {c_basename}({self_type}{self_name}, PyObject *args) {{ PyObject *return_value = NULL; {declarations} {initializers} {option_group_parsing} {return_value} = {c_basename}_impl({impl_arguments}); {return_conversion} {exit_label} {cleanup} return return_value; }} static {impl_return_type} {impl_prototype} """ def keywords_template(self, methoddef_flags=""): return self.template_base("METH_VARARGS|METH_KEYWORDS", methoddef_flags) + """ static {impl_return_type} {impl_prototype}; static PyObject * {c_basename}({self_type}{self_name}, PyObject *args, PyObject *kwargs) {{ PyObject *return_value = NULL; static char *_keywords[] = {{{keywords}, NULL}}; {declarations} {initializers} if (!PyArg_ParseTupleAndKeywords(args, kwargs, "{format_units}:{name}", _keywords, {parse_arguments})) goto exit; {return_value} = {c_basename}_impl({impl_arguments}); {return_conversion} {exit_label} {cleanup} return return_value; }} static {impl_return_type} {impl_prototype} """ def positional_only_template(self, methoddef_flags=""): return self.template_base("METH_VARARGS", methoddef_flags) + """ static {impl_return_type} {impl_prototype}; static PyObject * {c_basename}({self_type}{self_name}, PyObject *args) {{ PyObject *return_value = NULL; {declarations} {initializers} if (!PyArg_ParseTuple(args, "{format_units}:{name}", {parse_arguments})) goto exit; {return_value} = {c_basename}_impl({impl_arguments}); {return_conversion} {exit_label} {cleanup} return return_value; }} static {impl_return_type} {impl_prototype} """ @staticmethod def group_to_variable_name(group): adjective = "left_" if group < 0 else "right_" return "group_" + adjective + str(abs(group)) def render_option_group_parsing(self, f, template_dict): # positional only, grouped, optional arguments! # can be optional on the left or right. # here's an example: # # [ [ [ A1 A2 ] B1 B2 B3 ] C1 C2 ] D1 D2 D3 [ E1 E2 E3 [ F1 F2 F3 ] ] # # Here group D are required, and all other groups are optional. # (Group D's "group" is actually None.) # We can figure out which sets of arguments we have based on # how many arguments are in the tuple. # # Note that you need to count up on both sides. For example, # you could have groups C+D, or C+D+E, or C+D+E+F. # # What if the number of arguments leads us to an ambiguous result? # Clinic prefers groups on the left. So in the above example, # five arguments would map to B+C, not C+D. add, output = text_accumulator() parameters = list(f.parameters.values()) groups = [] group = None left = [] right = [] required = [] last = unspecified for p in parameters: group_id = p.group if group_id != last: last = group_id group = [] if group_id < 0: left.append(group) elif group_id == 0: group = required else: right.append(group) group.append(p) count_min = sys.maxsize count_max = -1 add("switch (PyTuple_Size(args)) {{\n") for subset in permute_optional_groups(left, required, right): count = len(subset) count_min = min(count_min, count) count_max = max(count_max, count) if count == 0: add(""" case 0: break; """) continue group_ids = {p.group for p in subset} # eliminate duplicates d = {} d['count'] = count d['name'] = f.name d['groups'] = sorted(group_ids) d['format_units'] = "".join(p.converter.format_unit for p in subset) parse_arguments = [] for p in subset: p.converter.parse_argument(parse_arguments) d['parse_arguments'] = ", ".join(parse_arguments) group_ids.discard(0) lines = [self.group_to_variable_name(g) + " = 1;" for g in group_ids] lines = "\n".join(lines) s = """ case {count}: if (!PyArg_ParseTuple(args, "{format_units}:{name}", {parse_arguments})) return NULL; {group_booleans} break; """[1:] s = linear_format(s, group_booleans=lines) s = s.format_map(d) add(s) add(" default:\n") s = ' PyErr_SetString(PyExc_TypeError, "{} requires {} to {} arguments");\n' add(s.format(f.full_name, count_min, count_max)) add(' return NULL;\n') add("}}") template_dict['option_group_parsing'] = output() def render_function(self, f): if not f: return "" add, output = text_accumulator() data = CRenderData() parameters = list(f.parameters.values()) converters = [p.converter for p in parameters] template_dict = {} full_name = f.full_name template_dict['full_name'] = full_name name = full_name.rpartition('.')[2] template_dict['name'] = name if f.c_basename: c_basename = f.c_basename else: fields = full_name.split(".") if fields[-1] == '__new__': fields.pop() c_basename = "_".join(fields) template_dict['c_basename'] = c_basename methoddef_name = "{}_METHODDEF".format(c_basename.upper()) template_dict['methoddef_name'] = methoddef_name template_dict['docstring'] = self.docstring_for_c_string(f) positional = has_option_groups = False if parameters: last_group = 0 for p in parameters: c = p.converter # insert group variable group = p.group if last_group != group: last_group = group if group: group_name = self.group_to_variable_name(group) data.impl_arguments.append(group_name) data.declarations.append("int " + group_name + " = 0;") data.impl_parameters.append("int " + group_name) has_option_groups = True c.render(p, data) positional = parameters[-1].kind == inspect.Parameter.POSITIONAL_ONLY if has_option_groups and (not positional): fail("You cannot use optional groups ('[' and ']')\nunless all parameters are positional-only ('/').") # now insert our "self" (or whatever) parameters # (we deliberately don't call render on self converters) stock_self = self_converter('self', f) template_dict['self_name'] = stock_self.name template_dict['self_type'] = stock_self.type data.impl_parameters.insert(0, f.self_converter.type + ("" if f.self_converter.type.endswith('*') else " ") + f.self_converter.name) if f.self_converter.type != stock_self.type: self_cast = '(' + f.self_converter.type + ')' else: self_cast = '' data.impl_arguments.insert(0, self_cast + stock_self.name) f.return_converter.render(f, data) template_dict['impl_return_type'] = f.return_converter.type template_dict['declarations'] = "\n".join(data.declarations) template_dict['initializers'] = "\n\n".join(data.initializers) template_dict['keywords'] = '"' + '", "'.join(data.keywords) + '"' template_dict['format_units'] = ''.join(data.format_units) template_dict['parse_arguments'] = ', '.join(data.parse_arguments) template_dict['impl_parameters'] = ", ".join(data.impl_parameters) template_dict['impl_arguments'] = ", ".join(data.impl_arguments) template_dict['return_conversion'] = "".join(data.return_conversion).rstrip() template_dict['cleanup'] = "".join(data.cleanup) template_dict['return_value'] = data.return_value template_dict['impl_prototype'] = self.impl_prototype_template.format_map(template_dict) default_return_converter = (not f.return_converter or f.return_converter.type == 'PyObject *') if not parameters: template = self.meth_noargs_template(f.methoddef_flags) elif (len(parameters) == 1 and parameters[0].kind == inspect.Parameter.POSITIONAL_ONLY and not converters[0].is_optional() and isinstance(converters[0], object_converter) and converters[0].format_unit == 'O'): if default_return_converter: template = self.meth_o_template(f.methoddef_flags) else: # HACK # we're using "impl_parameters" for the # non-impl function, because that works # better for METH_O. but that means we # must supress actually declaring the # impl's parameters as variables in the # non-impl. but since it's METH_O, we # only have one anyway, so # we don't have any problem finding it. declarations_copy = list(data.declarations) before, pyobject, after = declarations_copy[0].partition('PyObject *') assert not before, "hack failed, see comment" assert pyobject, "hack failed, see comment" assert after and after[0].isalpha(), "hack failed, see comment" del declarations_copy[0] template_dict['declarations'] = "\n".join(declarations_copy) template = self.meth_o_return_converter_template(f.methoddef_flags) elif has_option_groups: self.render_option_group_parsing(f, template_dict) template = self.option_group_template(f.methoddef_flags) template = linear_format(template, option_group_parsing=template_dict['option_group_parsing']) elif positional: template = self.positional_only_template(f.methoddef_flags) else: template = self.keywords_template(f.methoddef_flags) template = linear_format(template, declarations=template_dict['declarations'], return_conversion=template_dict['return_conversion'], initializers=template_dict['initializers'], cleanup=template_dict['cleanup'], ) # Only generate the "exit:" label # if we have any gotos need_exit_label = "goto exit;" in template template = linear_format(template, exit_label="exit:" if need_exit_label else '' ) return template.format_map(template_dict) @contextlib.contextmanager def OverrideStdioWith(stdout): saved_stdout = sys.stdout sys.stdout = stdout try: yield finally: assert sys.stdout is stdout sys.stdout = saved_stdout def create_regex(before, after): """Create an re object for matching marker lines.""" pattern = r'^{}(\w+){}$' return re.compile(pattern.format(re.escape(before), re.escape(after))) class Block: r""" Represents a single block of text embedded in another file. If dsl_name is None, the block represents verbatim text, raw original text from the file, in which case "input" will be the only non-false member. If dsl_name is not None, the block represents a Clinic block. input is always str, with embedded \n characters. input represents the original text from the file; if it's a Clinic block, it is the original text with the body_prefix and redundant leading whitespace removed. dsl_name is either str or None. If str, it's the text found on the start line of the block between the square brackets. signatures is either list or None. If it's a list, it may only contain clinic.Module, clinic.Class, and clinic.Function objects. At the moment it should contain at most one of each. output is either str or None. If str, it's the output from this block, with embedded '\n' characters. indent is either str or None. It's the leading whitespace that was found on every line of input. (If body_prefix is not empty, this is the indent *after* removing the body_prefix.) preindent is either str or None. It's the whitespace that was found in front of every line of input *before* the "body_prefix" (see the Language object). If body_prefix is empty, preindent must always be empty too. To illustrate indent and preindent: Assume that '_' represents whitespace. If the block processed was in a Python file, and looked like this: ____#/*[python] ____#__for a in range(20): ____#____print(a) ____#[python]*/ "preindent" would be "____" and "indent" would be "__". """ def __init__(self, input, dsl_name=None, signatures=None, output=None, indent='', preindent=''): assert isinstance(input, str) self.input = input self.dsl_name = dsl_name self.signatures = signatures or [] self.output = output self.indent = indent self.preindent = preindent class BlockParser: """ Block-oriented parser for Argument Clinic. Iterator, yields Block objects. """ def __init__(self, input, language, *, verify=True): """ "input" should be a str object with embedded \n characters. "language" should be a Language object. """ language.validate() self.input = collections.deque(reversed(input.splitlines(keepends=True))) self.block_start_line_number = self.line_number = 0 self.language = language before, _, after = language.start_line.partition('{dsl_name}') assert _ == '{dsl_name}' self.start_re = create_regex(before, after) self.verify = verify self.last_checksum_re = None self.last_dsl_name = None self.dsl_name = None def __iter__(self): return self def __next__(self): if not self.input: raise StopIteration if self.dsl_name: return_value = self.parse_clinic_block(self.dsl_name) self.dsl_name = None return return_value return self.parse_verbatim_block() def is_start_line(self, line): match = self.start_re.match(line.lstrip()) return match.group(1) if match else None def _line(self): self.line_number += 1 return self.input.pop() def parse_verbatim_block(self): add, output = text_accumulator() self.block_start_line_number = self.line_number while self.input: line = self._line() dsl_name = self.is_start_line(line) if dsl_name: self.dsl_name = dsl_name break add(line) return Block(output()) def parse_clinic_block(self, dsl_name): input_add, input_output = text_accumulator() self.block_start_line_number = self.line_number + 1 stop_line = self.language.stop_line.format(dsl_name=dsl_name) body_prefix = self.language.body_prefix.format(dsl_name=dsl_name) def is_stop_line(line): # make sure to recognize stop line even if it # doesn't end with EOL (it could be the very end of the file) if not line.startswith(stop_line): return False remainder = line[len(stop_line):] return (not remainder) or remainder.isspace() # consume body of program while self.input: line = self._line() if is_stop_line(line) or self.is_start_line(line): break if body_prefix: line = line.lstrip() assert line.startswith(body_prefix) line = line[len(body_prefix):] input_add(line) # consume output and checksum line, if present. if self.last_dsl_name == dsl_name: checksum_re = self.last_checksum_re else: before, _, after = self.language.checksum_line.format(dsl_name=dsl_name, checksum='{checksum}').partition('{checksum}') assert _ == '{checksum}' checksum_re = create_regex(before, after) self.last_dsl_name = dsl_name self.last_checksum_re = checksum_re # scan forward for checksum line output_add, output_output = text_accumulator() checksum = None while self.input: line = self._line() match = checksum_re.match(line.lstrip()) checksum = match.group(1) if match else None if checksum: break output_add(line) if self.is_start_line(line): break output = output_output() if checksum: if self.verify: computed = compute_checksum(output) if checksum != computed: fail("Checksum mismatch!\nExpected: {}\nComputed: {}\n" "Suggested fix: remove all generated code including " "the end marker, or use the '-f' option." .format(checksum, computed)) else: # put back output output_lines = output.splitlines(keepends=True) self.line_number -= len(output_lines) self.input.extend(reversed(output_lines)) output = None return Block(input_output(), dsl_name, output=output) class BlockPrinter: def __init__(self, language, f=None): self.language = language self.f = f or io.StringIO() def print_block(self, block): input = block.input output = block.output dsl_name = block.dsl_name write = self.f.write assert not ((dsl_name == None) ^ (output == None)), "you must specify dsl_name and output together, dsl_name " + repr(dsl_name) if not dsl_name: write(input) return write(self.language.start_line.format(dsl_name=dsl_name)) write("\n") body_prefix = self.language.body_prefix.format(dsl_name=dsl_name) if not body_prefix: write(input) else: for line in input.split('\n'): write(body_prefix) write(line) write("\n") write(self.language.stop_line.format(dsl_name=dsl_name)) write("\n") output = block.output if output: write(output) if not output.endswith('\n'): write('\n') write(self.language.checksum_line.format(dsl_name=dsl_name, checksum=compute_checksum(output))) write("\n") # maps strings to Language objects. # "languages" maps the name of the language ("C", "Python"). # "extensions" maps the file extension ("c", "py"). languages = { 'C': CLanguage, 'Python': PythonLanguage } extensions = { name: CLanguage for name in "c cc cpp cxx h hh hpp hxx".split() } extensions['py'] = PythonLanguage # maps strings to callables. # these callables must be of the form: # def foo(name, default, *, ...) # The callable may have any number of keyword-only parameters. # The callable must return a CConverter object. # The callable should not call builtins.print. converters = {} # maps strings to callables. # these callables follow the same rules as those for "converters" above. # note however that they will never be called with keyword-only parameters. legacy_converters = {} # maps strings to callables. # these callables must be of the form: # def foo(*, ...) # The callable may have any number of keyword-only parameters. # The callable must return a CConverter object. # The callable should not call builtins.print. return_converters = {} class Clinic: def __init__(self, language, printer=None, *, verify=True, filename=None): # maps strings to Parser objects. # (instantiated from the "parsers" global.) self.parsers = {} self.language = language self.printer = printer or BlockPrinter(language) self.verify = verify self.filename = filename self.modules = collections.OrderedDict() self.classes = collections.OrderedDict() global clinic clinic = self def parse(self, input): printer = self.printer self.block_parser = BlockParser(input, self.language, verify=self.verify) for block in self.block_parser: dsl_name = block.dsl_name if dsl_name: if dsl_name not in self.parsers: assert dsl_name in parsers, "No parser to handle {!r} block.".format(dsl_name) self.parsers[dsl_name] = parsers[dsl_name](self) parser = self.parsers[dsl_name] parser.parse(block) printer.print_block(block) return printer.f.getvalue() def _module_and_class(self, fields): """ fields should be an iterable of field names. returns a tuple of (module, class). the module object could actually be self (a clinic object). this function is only ever used to find the parent of where a new class/module should go. """ in_classes = False parent = module = self cls = None so_far = [] for field in fields: so_far.append(field) if not in_classes: child = parent.modules.get(field) if child: parent = module = child continue in_classes = True if not hasattr(parent, 'classes'): return module, cls child = parent.classes.get(field) if not child: fail('Parent class or module ' + '.'.join(so_far) + " does not exist.") cls = parent = child return module, cls def parse_file(filename, *, verify=True, output=None, encoding='utf-8'): extension = os.path.splitext(filename)[1][1:] if not extension: fail("Can't extract file type for file " + repr(filename)) try: language = extensions[extension]() except KeyError: fail("Can't identify file type for file " + repr(filename)) clinic = Clinic(language, verify=verify, filename=filename) with open(filename, 'r', encoding=encoding) as f: raw = f.read() cooked = clinic.parse(raw) if cooked == raw: return directory = os.path.dirname(filename) or '.' with tempfile.TemporaryDirectory(prefix="clinic", dir=directory) as tmpdir: bytes = cooked.encode(encoding) tmpfilename = os.path.join(tmpdir, os.path.basename(filename)) with open(tmpfilename, "wb") as f: f.write(bytes) os.replace(tmpfilename, output or filename) def compute_checksum(input): input = input or '' return hashlib.sha1(input.encode('utf-8')).hexdigest() class PythonParser: def __init__(self, clinic): pass def parse(self, block): s = io.StringIO() with OverrideStdioWith(s): exec(block.input) block.output = s.getvalue() class Module: def __init__(self, name, module=None): self.name = name self.module = self.parent = module self.modules = collections.OrderedDict() self.classes = collections.OrderedDict() self.functions = [] def __repr__(self): return "" class Class: def __init__(self, name, module=None, cls=None): self.name = name self.module = module self.cls = cls self.parent = cls or module self.classes = collections.OrderedDict() self.functions = [] def __repr__(self): return "" unsupported_special_methods = set(""" __abs__ __add__ __and__ __bytes__ __call__ __complex__ __delitem__ __divmod__ __eq__ __float__ __floordiv__ __ge__ __getattr__ __getattribute__ __getitem__ __gt__ __hash__ __iadd__ __iand__ __idivmod__ __ifloordiv__ __ilshift__ __imod__ __imul__ __index__ __int__ __invert__ __ior__ __ipow__ __irshift__ __isub__ __iter__ __itruediv__ __ixor__ __le__ __len__ __lshift__ __lt__ __mod__ __mul__ __neg__ __new__ __next__ __or__ __pos__ __pow__ __radd__ __rand__ __rdivmod__ __repr__ __rfloordiv__ __rlshift__ __rmod__ __rmul__ __ror__ __round__ __rpow__ __rrshift__ __rshift__ __rsub__ __rtruediv__ __rxor__ __setattr__ __setitem__ __str__ __sub__ __truediv__ __xor__ """.strip().split()) INVALID, CALLABLE, STATIC_METHOD, CLASS_METHOD, METHOD_INIT, METHOD_NEW = range(6) class Function: """ Mutable duck type for inspect.Function. docstring - a str containing * embedded line breaks * text outdented to the left margin * no trailing whitespace. It will always be true that (not docstring) or ((not docstring[0].isspace()) and (docstring.rstrip() == docstring)) """ def __init__(self, parameters=None, *, name, module, cls=None, c_basename=None, full_name=None, return_converter, return_annotation=_empty, docstring=None, kind=CALLABLE, coexist=False): self.parameters = parameters or collections.OrderedDict() self.return_annotation = return_annotation self.name = name self.full_name = full_name self.module = module self.cls = cls self.parent = cls or module self.c_basename = c_basename self.return_converter = return_converter self.docstring = docstring or '' self.kind = kind self.coexist = coexist self.self_converter = None @property def methoddef_flags(self): if self.kind in (METHOD_INIT, METHOD_NEW): return None flags = [] if self.kind == CLASS_METHOD: flags.append('METH_CLASS') elif self.kind == STATIC_METHOD: flags.append('METH_STATIC') else: assert self.kind == CALLABLE, "unknown kind: " + repr(self.kind) if self.coexist: flags.append('METH_COEXIST') return '|'.join(flags) def __repr__(self): return '' class Parameter: """ Mutable duck type of inspect.Parameter. """ def __init__(self, name, kind, *, default=_empty, function, converter, annotation=_empty, docstring=None, group=0): self.name = name self.kind = kind self.default = default self.function = function self.converter = converter self.annotation = annotation self.docstring = docstring or '' self.group = group def __repr__(self): return '' def is_keyword_only(self): return self.kind == inspect.Parameter.KEYWORD_ONLY py_special_values = { NULL: "None", } def py_repr(o): special = py_special_values.get(o) if special: return special return repr(o) c_special_values = { NULL: "NULL", None: "Py_None", } def c_repr(o): special = c_special_values.get(o) if special: return special if isinstance(o, str): return '"' + quoted_for_c_string(o) + '"' return repr(o) def add_c_converter(f, name=None): if not name: name = f.__name__ if not name.endswith('_converter'): return f name = name[:-len('_converter')] converters[name] = f return f def add_default_legacy_c_converter(cls): # automatically add converter for default format unit # (but without stomping on the existing one if it's already # set, in case you subclass) if ((cls.format_unit != 'O&') and (cls.format_unit not in legacy_converters)): legacy_converters[cls.format_unit] = cls return cls def add_legacy_c_converter(format_unit, **kwargs): """ Adds a legacy converter. """ def closure(f): if not kwargs: added_f = f else: added_f = functools.partial(f, **kwargs) legacy_converters[format_unit] = added_f return f return closure class CConverterAutoRegister(type): def __init__(cls, name, bases, classdict): add_c_converter(cls) add_default_legacy_c_converter(cls) class CConverter(metaclass=CConverterAutoRegister): """ For the init function, self, name, function, and default must be keyword-or-positional parameters. All other parameters (including "required" and "doc_default") must be keyword-only. """ # The C type to use for this variable. # 'type' should be a Python string specifying the type, e.g. "int". # If this is a pointer type, the type string should end with ' *'. type = None # The Python default value for this parameter, as a Python value. # Or the magic value "unspecified" if there is no default. default = unspecified # If not None, default must be isinstance() of this type. # (You can also specify a tuple of types.) default_type = None # "default" as it should appear in the documentation, as a string. # Or None if there is no default. doc_default = None # "default" converted into a str for rendering into Python code. py_default = None # "default" converted into a C value, as a string. # Or None if there is no default. c_default = None # The default value used to initialize the C variable when # there is no default, but not specifying a default may # result in an "uninitialized variable" warning. This can # easily happen when using option groups--although # properly-written code won't actually use the variable, # the variable does get passed in to the _impl. (Ah, if # only dataflow analysis could inline the static function!) # # This value is specified as a string. # Every non-abstract subclass should supply a valid value. c_ignored_default = 'NULL' # The C converter *function* to be used, if any. # (If this is not None, format_unit must be 'O&'.) converter = None # Should Argument Clinic add a '&' before the name of # the variable when passing it into the _impl function? impl_by_reference = False # Should Argument Clinic add a '&' before the name of # the variable when passing it into PyArg_ParseTuple (AndKeywords)? parse_by_reference = True ############################################################# ############################################################# ## You shouldn't need to read anything below this point to ## ## write your own converter functions. ## ############################################################# ############################################################# # The "format unit" to specify for this variable when # parsing arguments using PyArg_ParseTuple (AndKeywords). # Custom converters should always use the default value of 'O&'. format_unit = 'O&' # What encoding do we want for this variable? Only used # by format units starting with 'e'. encoding = None # Should this object be required to be a subclass of a specific type? # If not None, should be a string representing a pointer to a # PyTypeObject (e.g. "&PyUnicode_Type"). # Only used by the 'O!' format unit (and the "object" converter). subclass_of = None # Do we want an adjacent '_length' variable for this variable? # Only used by format units ending with '#'. length = False def __init__(self, name, function, default=unspecified, *, doc_default=None, c_default=None, py_default=None, required=False, annotation=unspecified, **kwargs): self.function = function self.name = name if default is not unspecified: if self.default_type and not isinstance(default, self.default_type): if isinstance(self.default_type, type): types_str = self.default_type.__name__ else: types_str = ', '.join((cls.__name__ for cls in self.default_type)) fail("{}: default value {!r} for field {} is not of type {}".format( self.__class__.__name__, default, name, types_str)) self.default = default self.py_default = py_default if py_default is not None else py_repr(default) self.doc_default = doc_default if doc_default is not None else self.py_default self.c_default = c_default if c_default is not None else c_repr(default) else: self.py_default = py_default self.doc_default = doc_default self.c_default = c_default if annotation != unspecified: fail("The 'annotation' parameter is not currently permitted.") self.required = required self.converter_init(**kwargs) def converter_init(self): pass def is_optional(self): return (self.default is not unspecified) and (not self.required) def render(self, parameter, data): """ parameter is a clinic.Parameter instance. data is a CRenderData instance. """ self.parameter = parameter original_name = self.name name = ensure_legal_c_identifier(original_name) # declarations d = self.declaration() data.declarations.append(d) # initializers initializers = self.initialize() if initializers: data.initializers.append('/* initializers for ' + name + ' */\n' + initializers.rstrip()) # impl_arguments s = ("&" if self.impl_by_reference else "") + name data.impl_arguments.append(s) if self.length: data.impl_arguments.append(self.length_name()) # keywords data.keywords.append(original_name) # format_units if self.is_optional() and '|' not in data.format_units: data.format_units.append('|') if parameter.is_keyword_only() and '$' not in data.format_units: data.format_units.append('$') data.format_units.append(self.format_unit) # parse_arguments self.parse_argument(data.parse_arguments) # impl_parameters data.impl_parameters.append(self.simple_declaration(by_reference=self.impl_by_reference)) if self.length: data.impl_parameters.append("Py_ssize_clean_t " + self.length_name()) # cleanup cleanup = self.cleanup() if cleanup: data.cleanup.append('/* Cleanup for ' + name + ' */\n' + cleanup.rstrip() + "\n") def length_name(self): """Computes the name of the associated "length" variable.""" if not self.length: return None return ensure_legal_c_identifier(self.name) + "_length" # Why is this one broken out separately? # For "positional-only" function parsing, # which generates a bunch of PyArg_ParseTuple calls. def parse_argument(self, list): assert not (self.converter and self.encoding) if self.format_unit == 'O&': assert self.converter list.append(self.converter) if self.encoding: list.append(c_repr(self.encoding)) elif self.subclass_of: list.append(self.subclass_of) legal_name = ensure_legal_c_identifier(self.name) s = ("&" if self.parse_by_reference else "") + legal_name list.append(s) if self.length: list.append("&" + self.length_name()) # # All the functions after here are intended as extension points. # def simple_declaration(self, by_reference=False): """ Computes the basic declaration of the variable. Used in computing the prototype declaration and the variable declaration. """ prototype = [self.type] if by_reference or not self.type.endswith('*'): prototype.append(" ") if by_reference: prototype.append('*') prototype.append(ensure_legal_c_identifier(self.name)) return "".join(prototype) def declaration(self): """ The C statement to declare this variable. """ declaration = [self.simple_declaration()] default = self.c_default if not default and self.parameter.group: default = self.c_ignored_default if default: declaration.append(" = ") declaration.append(default) declaration.append(";") if self.length: declaration.append('\nPy_ssize_clean_t ') declaration.append(self.length_name()) declaration.append(';') s = "".join(declaration) # double up curly-braces, this string will be used # as part of a format_map() template later s = s.replace("{", "{{") s = s.replace("}", "}}") return s def initialize(self): """ The C statements required to set up this variable before parsing. Returns a string containing this code indented at column 0. If no initialization is necessary, returns an empty string. """ return "" def cleanup(self): """ The C statements required to clean up after this variable. Returns a string containing this code indented at column 0. If no cleanup is necessary, returns an empty string. """ return "" class bool_converter(CConverter): type = 'int' default_type = bool format_unit = 'p' c_ignored_default = '0' def converter_init(self): self.default = bool(self.default) self.c_default = str(int(self.default)) class char_converter(CConverter): type = 'char' default_type = str format_unit = 'c' c_ignored_default = "'\0'" def converter_init(self): if len(self.default) != 1: fail("char_converter: illegal default value " + repr(self.default)) @add_legacy_c_converter('B', bitwise=True) class byte_converter(CConverter): type = 'byte' default_type = int format_unit = 'b' c_ignored_default = "'\0'" def converter_init(self, *, bitwise=False): if bitwise: self.format_unit = 'B' class short_converter(CConverter): type = 'short' default_type = int format_unit = 'h' c_ignored_default = "0" class unsigned_short_converter(CConverter): type = 'unsigned short' default_type = int format_unit = 'H' c_ignored_default = "0" def converter_init(self, *, bitwise=False): if not bitwise: fail("Unsigned shorts must be bitwise (for now).") @add_legacy_c_converter('C', types='str') class int_converter(CConverter): type = 'int' default_type = int format_unit = 'i' c_ignored_default = "0" def converter_init(self, *, types='int'): if types == 'str': self.format_unit = 'C' elif types != 'int': fail("int_converter: illegal 'types' argument") class unsigned_int_converter(CConverter): type = 'unsigned int' default_type = int format_unit = 'I' c_ignored_default = "0" def converter_init(self, *, bitwise=False): if not bitwise: fail("Unsigned ints must be bitwise (for now).") class long_converter(CConverter): type = 'long' default_type = int format_unit = 'l' c_ignored_default = "0" class unsigned_long_converter(CConverter): type = 'unsigned long' default_type = int format_unit = 'k' c_ignored_default = "0" def converter_init(self, *, bitwise=False): if not bitwise: fail("Unsigned longs must be bitwise (for now).") class PY_LONG_LONG_converter(CConverter): type = 'PY_LONG_LONG' default_type = int format_unit = 'L' c_ignored_default = "0" class unsigned_PY_LONG_LONG_converter(CConverter): type = 'unsigned PY_LONG_LONG' default_type = int format_unit = 'K' c_ignored_default = "0" def converter_init(self, *, bitwise=False): if not bitwise: fail("Unsigned PY_LONG_LONGs must be bitwise (for now).") class Py_ssize_t_converter(CConverter): type = 'Py_ssize_t' default_type = int format_unit = 'n' c_ignored_default = "0" class float_converter(CConverter): type = 'float' default_type = float format_unit = 'f' c_ignored_default = "0.0" class double_converter(CConverter): type = 'double' default_type = float format_unit = 'd' c_ignored_default = "0.0" class Py_complex_converter(CConverter): type = 'Py_complex' default_type = complex format_unit = 'D' c_ignored_default = "{0.0, 0.0}" class object_converter(CConverter): type = 'PyObject *' format_unit = 'O' def converter_init(self, *, converter=None, type=None, subclass_of=None): if converter: if subclass_of: fail("object: Cannot pass in both 'converter' and 'subclass_of'") self.format_unit = 'O&' self.converter = converter elif subclass_of: self.format_unit = 'O!' self.subclass_of = subclass_of if type is not None: self.type = type @add_legacy_c_converter('s#', length=True) @add_legacy_c_converter('y', type="bytes") @add_legacy_c_converter('y#', type="bytes", length=True) @add_legacy_c_converter('z', nullable=True) @add_legacy_c_converter('z#', nullable=True, length=True) class str_converter(CConverter): type = 'const char *' default_type = (str, Null, NoneType) format_unit = 's' def converter_init(self, *, encoding=None, types="str", length=False, nullable=False, zeroes=False): types = set(types.strip().split()) bytes_type = set(("bytes",)) str_type = set(("str",)) all_3_type = set(("bytearray",)) | bytes_type | str_type is_bytes = types == bytes_type is_str = types == str_type is_all_3 = types == all_3_type self.length = bool(length) format_unit = None if encoding: self.encoding = encoding if is_str and not (length or zeroes or nullable): format_unit = 'es' elif is_all_3 and not (length or zeroes or nullable): format_unit = 'et' elif is_str and length and zeroes and not nullable: format_unit = 'es#' elif is_all_3 and length and not (nullable or zeroes): format_unit = 'et#' if format_unit.endswith('#'): print("Warning: code using format unit ", repr(format_unit), "probably doesn't work properly.") # TODO set pointer to NULL # TODO add cleanup for buffer pass else: if zeroes: fail("str_converter: illegal combination of arguments (zeroes is only legal with an encoding)") if is_bytes and not (nullable or length): format_unit = 'y' elif is_bytes and length and not nullable: format_unit = 'y#' elif is_str and not (nullable or length): format_unit = 's' elif is_str and length and not nullable: format_unit = 's#' elif is_str and nullable and not length: format_unit = 'z' elif is_str and nullable and length: format_unit = 'z#' if not format_unit: fail("str_converter: illegal combination of arguments") self.format_unit = format_unit class PyBytesObject_converter(CConverter): type = 'PyBytesObject *' format_unit = 'S' class PyByteArrayObject_converter(CConverter): type = 'PyByteArrayObject *' format_unit = 'Y' class unicode_converter(CConverter): type = 'PyObject *' default_type = (str, Null, NoneType) format_unit = 'U' @add_legacy_c_converter('u#', length=True) @add_legacy_c_converter('Z', nullable=True) @add_legacy_c_converter('Z#', nullable=True, length=True) class Py_UNICODE_converter(CConverter): type = 'Py_UNICODE *' default_type = (str, Null, NoneType) format_unit = 'u' def converter_init(self, *, nullable=False, length=False): format_unit = 'Z' if nullable else 'u' if length: format_unit += '#' self.length = True self.format_unit = format_unit # # We define three string conventions for buffer types in the 'types' argument: # 'buffer' : any object supporting the buffer interface # 'rwbuffer': any object supporting the buffer interface, but must be writeable # 'robuffer': any object supporting the buffer interface, but must not be writeable # @add_legacy_c_converter('s*', types='str bytes bytearray buffer') @add_legacy_c_converter('z*', types='str bytes bytearray buffer', nullable=True) @add_legacy_c_converter('w*', types='bytearray rwbuffer') class Py_buffer_converter(CConverter): type = 'Py_buffer' format_unit = 'y*' impl_by_reference = True c_ignored_default = "{NULL, NULL}" def converter_init(self, *, types='bytes bytearray buffer', nullable=False): if self.default not in (unspecified, None): fail("The only legal default value for Py_buffer is None.") self.c_default = self.c_ignored_default types = set(types.strip().split()) bytes_type = set(('bytes',)) bytearray_type = set(('bytearray',)) buffer_type = set(('buffer',)) rwbuffer_type = set(('rwbuffer',)) robuffer_type = set(('robuffer',)) str_type = set(('str',)) bytes_bytearray_buffer_type = bytes_type | bytearray_type | buffer_type format_unit = None if types == (str_type | bytes_bytearray_buffer_type): format_unit = 's*' if not nullable else 'z*' else: if nullable: fail('Py_buffer_converter: illegal combination of arguments (nullable=True)') elif types == (bytes_bytearray_buffer_type): format_unit = 'y*' elif types == (bytearray_type | rwbuffer_type): format_unit = 'w*' if not format_unit: fail("Py_buffer_converter: illegal combination of arguments") self.format_unit = format_unit def cleanup(self): name = ensure_legal_c_identifier(self.name) return "".join(["if (", name, ".obj)\n PyBuffer_Release(&", name, ");\n"]) class self_converter(CConverter): """ A special-case converter: this is the default converter used for "self". """ type = "PyObject *" def converter_init(self, *, type=None): f = self.function if f.kind in (CALLABLE, METHOD_INIT): if f.cls: self.name = "self" else: self.name = "module" self.type = "PyModuleDef *" elif f.kind == STATIC_METHOD: self.name = "null" self.type = "void *" elif f.kind == CLASS_METHOD: self.name = "cls" self.type = "PyTypeObject *" elif f.kind == METHOD_NEW: self.name = "type" self.type = "PyTypeObject *" if type: self.type = type def render(self, parameter, data): fail("render() should never be called on self_converter instances") def add_c_return_converter(f, name=None): if not name: name = f.__name__ if not name.endswith('_return_converter'): return f name = name[:-len('_return_converter')] return_converters[name] = f return f class CReturnConverterAutoRegister(type): def __init__(cls, name, bases, classdict): add_c_return_converter(cls) class CReturnConverter(metaclass=CReturnConverterAutoRegister): # The C type to use for this variable. # 'type' should be a Python string specifying the type, e.g. "int". # If this is a pointer type, the type string should end with ' *'. type = 'PyObject *' # The Python default value for this parameter, as a Python value. # Or the magic value "unspecified" if there is no default. default = None def __init__(self, *, doc_default=None, **kwargs): self.doc_default = doc_default try: self.return_converter_init(**kwargs) except TypeError as e: s = ', '.join(name + '=' + repr(value) for name, value in kwargs.items()) sys.exit(self.__class__.__name__ + '(' + s + ')\n' + str(e)) def return_converter_init(self): pass def declare(self, data, name="_return_value"): line = [] add = line.append add(self.type) if not self.type.endswith('*'): add(' ') add(name + ';') data.declarations.append(''.join(line)) data.return_value = name def err_occurred_if(self, expr, data): data.return_conversion.append('if (({}) && PyErr_Occurred())\n goto exit;\n'.format(expr)) def err_occurred_if_null_pointer(self, variable, data): data.return_conversion.append('if ({} == NULL)\n goto exit;\n'.format(variable)) def render(self, function, data): """ function is a clinic.Function instance. data is a CRenderData instance. """ pass add_c_return_converter(CReturnConverter, 'object') class NoneType_return_converter(CReturnConverter): def render(self, function, data): self.declare(data) data.return_conversion.append(''' if (_return_value != Py_None) goto exit; return_value = Py_None; Py_INCREF(Py_None); '''.strip()) class bool_return_converter(CReturnConverter): type = 'int' def render(self, function, data): self.declare(data) self.err_occurred_if("_return_value == -1", data) data.return_conversion.append('return_value = PyBool_FromLong((long)_return_value);\n') class long_return_converter(CReturnConverter): type = 'long' conversion_fn = 'PyLong_FromLong' cast = '' def render(self, function, data): self.declare(data) self.err_occurred_if("_return_value == -1", data) data.return_conversion.append( ''.join(('return_value = ', self.conversion_fn, '(', self.cast, '_return_value);\n'))) class int_return_converter(long_return_converter): type = 'int' cast = '(long)' class unsigned_long_return_converter(long_return_converter): type = 'unsigned long' conversion_fn = 'PyLong_FromUnsignedLong' class unsigned_int_return_converter(unsigned_long_return_converter): type = 'unsigned int' cast = '(unsigned long)' class Py_ssize_t_return_converter(long_return_converter): type = 'Py_ssize_t' conversion_fn = 'PyLong_FromSsize_t' class size_t_return_converter(long_return_converter): type = 'size_t' conversion_fn = 'PyLong_FromSize_t' class double_return_converter(CReturnConverter): type = 'double' cast = '' def render(self, function, data): self.declare(data) self.err_occurred_if("_return_value == -1.0", data) data.return_conversion.append( 'return_value = PyFloat_FromDouble(' + self.cast + '_return_value);\n') class float_return_converter(double_return_converter): type = 'float' cast = '(double)' class DecodeFSDefault_return_converter(CReturnConverter): type = 'char *' def render(self, function, data): self.declare(data) self.err_occurred_if_null_pointer("_return_value", data) data.return_conversion.append( 'return_value = PyUnicode_DecodeFSDefault(_return_value);\n') class IndentStack: def __init__(self): self.indents = [] self.margin = None def _ensure(self): if not self.indents: fail('IndentStack expected indents, but none are defined.') def measure(self, line): """ Returns the length of the line's margin. """ if '\t' in line: fail('Tab characters are illegal in the Clinic DSL.') stripped = line.lstrip() if not len(stripped): # we can't tell anything from an empty line # so just pretend it's indented like our current indent self._ensure() return self.indents[-1] return len(line) - len(stripped) def infer(self, line): """ Infer what is now the current margin based on this line. Returns: 1 if we have indented (or this is the first margin) 0 if the margin has not changed -N if we have dedented N times """ indent = self.measure(line) margin = ' ' * indent if not self.indents: self.indents.append(indent) self.margin = margin return 1 current = self.indents[-1] if indent == current: return 0 if indent > current: self.indents.append(indent) self.margin = margin return 1 # indent < current if indent not in self.indents: fail("Illegal outdent.") outdent_count = 0 while indent != current: self.indents.pop() current = self.indents[-1] outdent_count -= 1 self.margin = margin return outdent_count @property def depth(self): """ Returns how many margins are currently defined. """ return len(self.indents) def indent(self, line): """ Indents a line by the currently defined margin. """ return self.margin + line def dedent(self, line): """ Dedents a line by the currently defined margin. (The inverse of 'indent'.) """ margin = self.margin indent = self.indents[-1] if not line.startswith(margin): fail('Cannot dedent, line does not start with the previous margin:') return line[indent:] class DSLParser: def __init__(self, clinic): self.clinic = clinic self.directives = {} for name in dir(self): # functions that start with directive_ are added to directives _, s, key = name.partition("directive_") if s: self.directives[key] = getattr(self, name) # functions that start with at_ are too, with an @ in front _, s, key = name.partition("at_") if s: self.directives['@' + key] = getattr(self, name) self.reset() def reset(self): self.function = None self.state = self.state_dsl_start self.parameter_indent = None self.keyword_only = False self.group = 0 self.parameter_state = self.ps_start self.indent = IndentStack() self.kind = CALLABLE self.coexist = False def directive_version(self, required): global version if version_comparitor(version, required) < 0: fail("Insufficient Clinic version!\n Version: " + version + "\n Required: " + required) def directive_module(self, name): fields = name.split('.') new = fields.pop() module, cls = self.clinic._module_and_class(fields) if cls: fail("Can't nest a module inside a class!") m = Module(name, module) module.modules[name] = m self.block.signatures.append(m) def directive_class(self, name): fields = name.split('.') in_classes = False parent = self name = fields.pop() so_far = [] module, cls = self.clinic._module_and_class(fields) c = Class(name, module, cls) if cls: cls.classes[name] = c else: module.classes[name] = c self.block.signatures.append(c) def at_classmethod(self): assert self.kind is CALLABLE self.kind = CLASS_METHOD def at_staticmethod(self): assert self.kind is CALLABLE self.kind = STATIC_METHOD def at_coexist(self): assert self.coexist == False self.coexist = True def parse(self, block): self.reset() self.block = block block_start = self.clinic.block_parser.line_number lines = block.input.split('\n') for line_number, line in enumerate(lines, self.clinic.block_parser.block_start_line_number): if '\t' in line: fail('Tab characters are illegal in the Clinic DSL.\n\t' + repr(line), line_number=block_start) self.state(line) self.next(self.state_terminal) self.state(None) block.output = self.clinic.language.render(block.signatures) @staticmethod def ignore_line(line): # ignore comment-only lines if line.lstrip().startswith('#'): return True # Ignore empty lines too # (but not in docstring sections!) if not line.strip(): return True return False @staticmethod def calculate_indent(line): return len(line) - len(line.strip()) def next(self, state, line=None): # real_print(self.state.__name__, "->", state.__name__, ", line=", line) self.state = state if line is not None: self.state(line) def state_dsl_start(self, line): # self.block = self.ClinicOutputBlock(self) if self.ignore_line(line): return self.next(self.state_modulename_name, line) def state_modulename_name(self, line): # looking for declaration, which establishes the leftmost column # line should be # modulename.fnname [as c_basename] [-> return annotation] # square brackets denote optional syntax. # # (but we might find a directive first!) # # this line is permitted to start with whitespace. # we'll call this number of spaces F (for "function"). if not line.strip(): return self.indent.infer(line) # is it a directive? fields = shlex.split(line) directive_name = fields[0] directive = self.directives.get(directive_name, None) if directive: directive(*fields[1:]) return line, _, returns = line.partition('->') full_name, _, c_basename = line.partition(' as ') full_name = full_name.strip() c_basename = c_basename.strip() or None if not is_legal_py_identifier(full_name): fail("Illegal function name: {}".format(full_name)) if c_basename and not is_legal_c_identifier(c_basename): fail("Illegal C basename: {}".format(c_basename)) if not returns: return_converter = CReturnConverter() else: ast_input = "def x() -> {}: pass".format(returns) module = None try: module = ast.parse(ast_input) except SyntaxError: pass if not module: fail("Badly-formed annotation for " + full_name + ": " + returns) try: name, legacy, kwargs = self.parse_converter(module.body[0].returns) if legacy: fail("Legacy converter {!r} not allowed as a return converter" .format(name)) if name not in return_converters: fail("No available return converter called " + repr(name)) return_converter = return_converters[name](**kwargs) except ValueError: fail("Badly-formed annotation for " + full_name + ": " + returns) fields = [x.strip() for x in full_name.split('.')] function_name = fields.pop() module, cls = self.clinic._module_and_class(fields) fields = full_name.split('.') if fields[-1] == '__new__': if (self.kind != CLASS_METHOD) or (not cls): fail("__new__ must be a class method!") self.kind = METHOD_NEW elif fields[-1] == '__init__': if (self.kind != CALLABLE) or (not cls): fail("__init__ must be a normal method, not a class or static method!") self.kind = METHOD_INIT elif fields[-1] in unsupported_special_methods: fail(fields[-1] + " should not be converted to Argument Clinic! (Yet.)") if not module: fail("Undefined module used in declaration of " + repr(full_name.strip()) + ".") self.function = Function(name=function_name, full_name=full_name, module=module, cls=cls, c_basename=c_basename, return_converter=return_converter, kind=self.kind, coexist=self.coexist) self.block.signatures.append(self.function) self.next(self.state_parameters_start) # Now entering the parameters section. The rules, formally stated: # # * All lines must be indented with spaces only. # * The first line must be a parameter declaration. # * The first line must be indented. # * This first line establishes the indent for parameters. # * We'll call this number of spaces P (for "parameter"). # * Thenceforth: # * Lines indented with P spaces specify a parameter. # * Lines indented with > P spaces are docstrings for the previous # parameter. # * We'll call this number of spaces D (for "docstring"). # * All subsequent lines indented with >= D spaces are stored as # part of the per-parameter docstring. # * All lines will have the first D spaces of the indent stripped # before they are stored. # * It's illegal to have a line starting with a number of spaces X # such that P < X < D. # * A line with < P spaces is the first line of the function # docstring, which ends processing for parameters and per-parameter # docstrings. # * The first line of the function docstring must be at the same # indent as the function declaration. # * It's illegal to have any line in the parameters section starting # with X spaces such that F < X < P. (As before, F is the indent # of the function declaration.) # ############## # # Also, currently Argument Clinic places the following restrictions on groups: # * Each group must contain at least one parameter. # * Each group may contain at most one group, which must be the furthest # thing in the group from the required parameters. (The nested group # must be the first in the group when it's before the required # parameters, and the last thing in the group when after the required # parameters.) # * There may be at most one (top-level) group to the left or right of # the required parameters. # * You must specify a slash, and it must be after all parameters. # (In other words: either all parameters are positional-only, # or none are.) # # Said another way: # * Each group must contain at least one parameter. # * All left square brackets before the required parameters must be # consecutive. (You can't have a left square bracket followed # by a parameter, then another left square bracket. You can't # have a left square bracket, a parameter, a right square bracket, # and then a left square bracket.) # * All right square brackets after the required parameters must be # consecutive. # # These rules are enforced with a single state variable: # "parameter_state". (Previously the code was a miasma of ifs and # separate boolean state variables.) The states are: # # [ [ a, b, ] c, ] d, e, f, [ g, h, [ i ] ] / <- line # 01 2 3 4 5 6 <- state transitions # # 0: ps_start. before we've seen anything. legal transitions are to 1 or 3. # 1: ps_left_square_before. left square brackets before required parameters. # 2: ps_group_before. in a group, before required parameters. # 3: ps_required. required parameters. (renumber left groups!) # 4: ps_group_after. in a group, after required parameters. # 5: ps_right_square_after. right square brackets after required parameters. # 6: ps_seen_slash. seen slash. ps_start, ps_left_square_before, ps_group_before, ps_required, \ ps_group_after, ps_right_square_after, ps_seen_slash = range(7) def state_parameters_start(self, line): if self.ignore_line(line): return # if this line is not indented, we have no parameters if not self.indent.infer(line): return self.next(self.state_function_docstring, line) return self.next(self.state_parameter, line) def to_required(self): """ Transition to the "required" parameter state. """ if self.parameter_state != self.ps_required: self.parameter_state = self.ps_required for p in self.function.parameters.values(): p.group = -p.group def state_parameter(self, line): if self.ignore_line(line): return assert self.indent.depth == 2 indent = self.indent.infer(line) if indent == -1: # we outdented, must be to definition column return self.next(self.state_function_docstring, line) if indent == 1: # we indented, must be to new parameter docstring column return self.next(self.state_parameter_docstring_start, line) line = line.lstrip() if line in ('*', '/', '[', ']'): self.parse_special_symbol(line) return if self.parameter_state in (self.ps_start, self.ps_required): self.to_required() elif self.parameter_state == self.ps_left_square_before: self.parameter_state = self.ps_group_before elif self.parameter_state == self.ps_group_before: if not self.group: self.to_required() elif self.parameter_state == self.ps_group_after: pass else: fail("Function " + self.function.name + " has an unsupported group configuration. (Unexpected state " + str(self.parameter_state) + ")") ast_input = "def x({}): pass".format(line) module = None try: module = ast.parse(ast_input) except SyntaxError: pass if not module: fail("Function " + self.function.name + " has an invalid parameter declaration:\n\t" + line) function_args = module.body[0].args parameter = function_args.args[0] py_default = None parameter_name = parameter.arg name, legacy, kwargs = self.parse_converter(parameter.annotation) if function_args.defaults: expr = function_args.defaults[0] # mild hack: explicitly support NULL as a default value if isinstance(expr, ast.Name) and expr.id == 'NULL': value = NULL elif isinstance(expr, ast.Attribute): c_default = kwargs.get("c_default") if not (isinstance(c_default, str) and c_default): fail("When you specify a named constant (" + repr(py_default) + ") as your default value,\nyou MUST specify a valid c_default.") a = [] n = expr while isinstance(n, ast.Attribute): a.append(n.attr) n = n.value if not isinstance(n, ast.Name): fail("Malformed default value (looked like a Python constant)") a.append(n.id) py_default = ".".join(reversed(a)) kwargs["py_default"] = py_default value = eval(py_default) else: value = ast.literal_eval(expr) else: value = unspecified dict = legacy_converters if legacy else converters legacy_str = "legacy " if legacy else "" if name not in dict: fail('{} is not a valid {}converter'.format(name, legacy_str)) converter = dict[name](parameter_name, self.function, value, **kwargs) # special case: if it's the self converter, # don't actually add it to the parameter list if isinstance(converter, self_converter): if self.function.parameters or (self.parameter_state != self.ps_required): fail("The 'self' parameter, if specified, must be the very first thing in the parameter block.") if self.function.self_converter: fail("You can't specify the 'self' parameter more than once.") self.function.self_converter = converter self.parameter_state = self.ps_start return kind = inspect.Parameter.KEYWORD_ONLY if self.keyword_only else inspect.Parameter.POSITIONAL_OR_KEYWORD p = Parameter(parameter_name, kind, function=self.function, converter=converter, default=value, group=self.group) self.function.parameters[parameter_name] = p def parse_converter(self, annotation): if isinstance(annotation, ast.Str): return annotation.s, True, {} if isinstance(annotation, ast.Name): return annotation.id, False, {} if not isinstance(annotation, ast.Call): fail("Annotations must be either a name, a function call, or a string.") name = annotation.func.id kwargs = {node.arg: ast.literal_eval(node.value) for node in annotation.keywords} return name, False, kwargs def parse_special_symbol(self, symbol): if self.parameter_state == self.ps_seen_slash: fail("Function " + self.function.name + " specifies " + symbol + " after /, which is unsupported.") if symbol == '*': if self.keyword_only: fail("Function " + self.function.name + " uses '*' more than once.") self.keyword_only = True elif symbol == '[': if self.parameter_state in (self.ps_start, self.ps_left_square_before): self.parameter_state = self.ps_left_square_before elif self.parameter_state in (self.ps_required, self.ps_group_after): self.parameter_state = self.ps_group_after else: fail("Function " + self.function.name + " has an unsupported group configuration. (Unexpected state " + str(self.parameter_state) + ")") self.group += 1 elif symbol == ']': if not self.group: fail("Function " + self.function.name + " has a ] without a matching [.") if not any(p.group == self.group for p in self.function.parameters.values()): fail("Function " + self.function.name + " has an empty group.\nAll groups must contain at least one parameter.") self.group -= 1 if self.parameter_state in (self.ps_left_square_before, self.ps_group_before): self.parameter_state = self.ps_group_before elif self.parameter_state in (self.ps_group_after, self.ps_right_square_after): self.parameter_state = self.ps_right_square_after else: fail("Function " + self.function.name + " has an unsupported group configuration. (Unexpected state " + str(self.parameter_state) + ")") elif symbol == '/': # ps_required is allowed here, that allows positional-only without option groups # to work (and have default values!) if (self.parameter_state not in (self.ps_required, self.ps_right_square_after, self.ps_group_before)) or self.group: fail("Function " + self.function.name + " has an unsupported group configuration. (Unexpected state " + str(self.parameter_state) + ")") if self.keyword_only: fail("Function " + self.function.name + " mixes keyword-only and positional-only parameters, which is unsupported.") self.parameter_state = self.ps_seen_slash # fixup preceeding parameters for p in self.function.parameters.values(): if p.kind != inspect.Parameter.POSITIONAL_OR_KEYWORD: fail("Function " + self.function.name + " mixes keyword-only and positional-only parameters, which is unsupported.") p.kind = inspect.Parameter.POSITIONAL_ONLY def state_parameter_docstring_start(self, line): self.parameter_docstring_indent = len(self.indent.margin) assert self.indent.depth == 3 return self.next(self.state_parameter_docstring, line) # every line of the docstring must start with at least F spaces, # where F > P. # these F spaces will be stripped. def state_parameter_docstring(self, line): stripped = line.strip() if stripped.startswith('#'): return indent = self.indent.measure(line) if indent < self.parameter_docstring_indent: self.indent.infer(line) assert self.indent.depth < 3 if self.indent.depth == 2: # back to a parameter return self.next(self.state_parameter, line) assert self.indent.depth == 1 return self.next(self.state_function_docstring, line) assert self.function.parameters last_parameter = next(reversed(list(self.function.parameters.values()))) new_docstring = last_parameter.docstring if new_docstring: new_docstring += '\n' if stripped: new_docstring += self.indent.dedent(line) last_parameter.docstring = new_docstring # the final stanza of the DSL is the docstring. def state_function_docstring(self, line): if self.group: fail("Function " + self.function.name + " has a ] without a matching [.") stripped = line.strip() if stripped.startswith('#'): return new_docstring = self.function.docstring if new_docstring: new_docstring += "\n" if stripped: line = self.indent.dedent(line).rstrip() else: line = '' new_docstring += line self.function.docstring = new_docstring def format_docstring(self): f = self.function add, output = text_accumulator() parameters = list(f.parameters.values()) ## ## docstring first line ## add(f.name) add('(') # populate "right_bracket_count" field for every parameter if parameters: # for now, the only way Clinic supports positional-only parameters # is if all of them are positional-only. positional_only_parameters = [p.kind == inspect.Parameter.POSITIONAL_ONLY for p in parameters] if parameters[0].kind == inspect.Parameter.POSITIONAL_ONLY: assert all(positional_only_parameters) for p in parameters: p.right_bracket_count = abs(p.group) else: # don't put any right brackets around non-positional-only parameters, ever. for p in parameters: p.right_bracket_count = 0 right_bracket_count = 0 def fix_right_bracket_count(desired): nonlocal right_bracket_count s = '' while right_bracket_count < desired: s += '[' right_bracket_count += 1 while right_bracket_count > desired: s += ']' right_bracket_count -= 1 return s added_star = False add_comma = False for p in parameters: assert p.name if p.is_keyword_only() and not added_star: added_star = True if add_comma: add(', ') add('*') a = [p.name] if p.converter.is_optional(): a.append('=') value = p.converter.default a.append(p.converter.doc_default) s = fix_right_bracket_count(p.right_bracket_count) s += "".join(a) if add_comma: add(', ') add(s) add_comma = True add(fix_right_bracket_count(0)) add(')') # if f.return_converter.doc_default: # add(' -> ') # add(f.return_converter.doc_default) docstring_first_line = output() # now fix up the places where the brackets look wrong docstring_first_line = docstring_first_line.replace(', ]', ',] ') # okay. now we're officially building the "parameters" section. # create substitution text for {parameters} spacer_line = False for p in parameters: if not p.docstring.strip(): continue if spacer_line: add('\n') else: spacer_line = True add(" ") add(p.name) add('\n') add(textwrap.indent(rstrip_lines(p.docstring.rstrip()), " ")) parameters = output() if parameters: parameters += '\n' ## ## docstring body ## docstring = f.docstring.rstrip() lines = [line.rstrip() for line in docstring.split('\n')] # Enforce the summary line! # The first line of a docstring should be a summary of the function. # It should fit on one line (80 columns? 79 maybe?) and be a paragraph # by itself. # # Argument Clinic enforces the following rule: # * either the docstring is empty, # * or it must have a summary line. # # Guido said Clinic should enforce this: # http://mail.python.org/pipermail/python-dev/2013-June/127110.html if len(lines) >= 2: if lines[1]: fail("Docstring for " + f.full_name + " does not have a summary line!\n" + "Every non-blank function docstring must start with\n" + "a single line summary followed by an empty line.") elif len(lines) == 1: # the docstring is only one line right now--the summary line. # add an empty line after the summary line so we have space # between it and the {parameters} we're about to add. lines.append('') parameters_marker_count = len(docstring.split('{parameters}')) - 1 if parameters_marker_count > 1: fail('You may not specify {parameters} more than once in a docstring!') if not parameters_marker_count: # insert after summary line lines.insert(2, '{parameters}') # insert at front of docstring lines.insert(0, docstring_first_line) docstring = "\n".join(lines) add(docstring) docstring = output() docstring = linear_format(docstring, parameters=parameters) docstring = docstring.rstrip() return docstring def state_terminal(self, line): """ Called when processing the block is done. """ assert not line if not self.function: return if not self.function.self_converter: self.function.self_converter = self_converter("self", self.function) if self.keyword_only: values = self.function.parameters.values() if not values: no_parameter_after_star = True else: last_parameter = next(reversed(list(values))) no_parameter_after_star = last_parameter.kind != inspect.Parameter.KEYWORD_ONLY if no_parameter_after_star: fail("Function " + self.function.name + " specifies '*' without any parameters afterwards.") # remove trailing whitespace from all parameter docstrings for name, value in self.function.parameters.items(): if not value: continue value.docstring = value.docstring.rstrip() self.function.docstring = self.format_docstring() # maps strings to callables. # the callable should return an object # that implements the clinic parser # interface (__init__ and parse). # # example parsers: # "clinic", handles the Clinic DSL # "python", handles running Python code # parsers = {'clinic' : DSLParser, 'python': PythonParser} clinic = None def main(argv): import sys if sys.version_info.major < 3 or sys.version_info.minor < 3: sys.exit("Error: clinic.py requires Python 3.3 or greater.") import argparse cmdline = argparse.ArgumentParser() cmdline.add_argument("-f", "--force", action='store_true') cmdline.add_argument("-o", "--output", type=str) cmdline.add_argument("--converters", action='store_true') cmdline.add_argument("--make", action='store_true') cmdline.add_argument("filename", type=str, nargs="*") ns = cmdline.parse_args(argv) if ns.converters: if ns.filename: print("Usage error: can't specify --converters and a filename at the same time.") print() cmdline.print_usage() sys.exit(-1) converters = [] return_converters = [] ignored = set(""" add_c_converter add_c_return_converter add_default_legacy_c_converter add_legacy_c_converter """.strip().split()) module = globals() for name in module: for suffix, ids in ( ("_return_converter", return_converters), ("_converter", converters), ): if name in ignored: continue if name.endswith(suffix): ids.append((name, name[:-len(suffix)])) break print() print("Legacy converters:") legacy = sorted(legacy_converters) print(' ' + ' '.join(c for c in legacy if c[0].isupper())) print(' ' + ' '.join(c for c in legacy if c[0].islower())) print() for title, attribute, ids in ( ("Converters", 'converter_init', converters), ("Return converters", 'return_converter_init', return_converters), ): print(title + ":") longest = -1 for name, short_name in ids: longest = max(longest, len(short_name)) for name, short_name in sorted(ids, key=lambda x: x[1].lower()): cls = module[name] callable = getattr(cls, attribute, None) if not callable: continue signature = inspect.signature(callable) parameters = [] for parameter_name, parameter in signature.parameters.items(): if parameter.kind == inspect.Parameter.KEYWORD_ONLY: if parameter.default != inspect.Parameter.empty: s = '{}={!r}'.format(parameter_name, parameter.default) else: s = parameter_name parameters.append(s) print(' {}({})'.format(short_name, ', '.join(parameters))) # add_comma = False # for parameter_name, parameter in signature.parameters.items(): # if parameter.kind == inspect.Parameter.KEYWORD_ONLY: # if add_comma: # parameters.append(', ') # else: # add_comma = True # s = parameter_name # if parameter.default != inspect.Parameter.empty: # s += '=' + repr(parameter.default) # parameters.append(s) # parameters.append(')') # print(" ", short_name + "".join(parameters)) print() print("All converters also accept (doc_default=None, required=False, annotation=None).") print("All return converters also accept (doc_default=None).") sys.exit(0) if ns.make: if ns.output or ns.filename: print("Usage error: can't use -o or filenames with --make.") print() cmdline.print_usage() sys.exit(-1) for root, dirs, files in os.walk('.'): for rcs_dir in ('.svn', '.git', '.hg'): if rcs_dir in dirs: dirs.remove(rcs_dir) for filename in files: if not filename.endswith('.c'): continue path = os.path.join(root, filename) parse_file(path, verify=not ns.force) return if not ns.filename: cmdline.print_usage() sys.exit(-1) if ns.output and len(ns.filename) > 1: print("Usage error: can't use -o with multiple filenames.") print() cmdline.print_usage() sys.exit(-1) for filename in ns.filename: parse_file(filename, output=ns.output, verify=not ns.force) if __name__ == "__main__": sys.exit(main(sys.argv[1:]))