#!/usr/bin/env python3 # # Argument Clinic # Copyright 2012-2013 by Larry Hastings. # Licensed to the PSF under a contributor agreement. # from __future__ import annotations import abc import argparse import ast import builtins as bltns import collections import contextlib import copy import cpp import dataclasses as dc import enum import functools import hashlib import inspect import io import itertools import os import pprint import re import shlex import string import sys import textwrap from collections.abc import ( Callable, Iterable, Iterator, Sequence, ) from operator import attrgetter from types import FunctionType, NoneType from typing import ( TYPE_CHECKING, Any, Final, Literal, NamedTuple, NoReturn, Protocol, TypeVar, cast, overload, ) # TODO: # # soon: # # * allow mixing any two of {positional-only, positional-or-keyword, # keyword-only} # * dict constructor uses positional-only and keyword-only # * max and min use positional only with an optional group # and keyword-only # version = '1' NO_VARARG = "PY_SSIZE_T_MAX" CLINIC_PREFIX = "__clinic_" CLINIC_PREFIXED_ARGS = { "_keywords", "_parser", "args", "argsbuf", "fastargs", "kwargs", "kwnames", "nargs", "noptargs", "return_value", } # '#include "header.h" // reason': column of '//' comment INCLUDE_COMMENT_COLUMN = 35 # match '#define Py_LIMITED_API' LIMITED_CAPI_REGEX = re.compile(r'#define +Py_LIMITED_API') class Sentinels(enum.Enum): unspecified = "unspecified" unknown = "unknown" def __repr__(self) -> str: return f"<{self.value.capitalize()}>" unspecified: Final = Sentinels.unspecified unknown: Final = Sentinels.unknown # This one needs to be a distinct class, unlike the other two class Null: def __repr__(self) -> str: return '' NULL = Null() sig_end_marker = '--' Appender = Callable[[str], None] Outputter = Callable[[], str] TemplateDict = dict[str, str] class _TextAccumulator(NamedTuple): text: list[str] append: Appender output: Outputter def _text_accumulator() -> _TextAccumulator: text: list[str] = [] def output() -> str: s = ''.join(text) text.clear() return s return _TextAccumulator(text, text.append, output) class TextAccumulator(NamedTuple): append: Appender output: Outputter def text_accumulator() -> TextAccumulator: """ Creates a simple text accumulator / joiner. Returns a pair of callables: append, output "append" appends a string to the accumulator. "output" returns the contents of the accumulator joined together (''.join(accumulator)) and empties the accumulator. """ text, append, output = _text_accumulator() return TextAccumulator(append, output) @dc.dataclass class ClinicError(Exception): message: str _: dc.KW_ONLY lineno: int | None = None filename: str | None = None def __post_init__(self) -> None: super().__init__(self.message) def report(self, *, warn_only: bool = False) -> str: msg = "Warning" if warn_only else "Error" if self.filename is not None: msg += f" in file {self.filename!r}" if self.lineno is not None: msg += f" on line {self.lineno}" msg += ":\n" msg += f"{self.message}\n" return msg @overload def warn_or_fail( *args: object, fail: Literal[True], filename: str | None = None, line_number: int | None = None, ) -> NoReturn: ... @overload def warn_or_fail( *args: object, fail: Literal[False] = False, filename: str | None = None, line_number: int | None = None, ) -> None: ... def warn_or_fail( *args: object, fail: bool = False, filename: str | None = None, line_number: int | None = None, ) -> None: joined = " ".join([str(a) for a in args]) if clinic: if filename is None: filename = clinic.filename if getattr(clinic, 'block_parser', None) and (line_number is None): line_number = clinic.block_parser.line_number error = ClinicError(joined, filename=filename, lineno=line_number) if fail: raise error else: print(error.report(warn_only=True)) def warn( *args: object, filename: str | None = None, line_number: int | None = None, ) -> None: return warn_or_fail(*args, filename=filename, line_number=line_number, fail=False) def fail( *args: object, filename: str | None = None, line_number: int | None = None, ) -> NoReturn: warn_or_fail(*args, filename=filename, line_number=line_number, fail=True) def quoted_for_c_string(s: str) -> str: for old, new in ( ('\\', '\\\\'), # must be first! ('"', '\\"'), ("'", "\\'"), ): s = s.replace(old, new) return s def c_repr(s: str) -> str: return '"' + s + '"' def wrapped_c_string_literal( text: str, *, width: int = 72, suffix: str = '', initial_indent: int = 0, subsequent_indent: int = 4 ) -> str: wrapped = textwrap.wrap(text, width=width, replace_whitespace=False, drop_whitespace=False, break_on_hyphens=False) separator = '"' + suffix + '\n' + subsequent_indent * ' ' + '"' return initial_indent * ' ' + '"' + separator.join(wrapped) + '"' is_legal_c_identifier = re.compile('^[A-Za-z_][A-Za-z0-9_]*$').match def is_legal_py_identifier(s: str) -> bool: return all(is_legal_c_identifier(field) for field in s.split('.')) # identifiers that are okay in Python but aren't a good idea in C. # so if they're used Argument Clinic will add "_value" to the end # of the name in C. c_keywords = set(""" asm auto break case char const continue default do double else enum extern float for goto if inline int long register return short signed sizeof static struct switch typedef typeof union unsigned void volatile while """.strip().split()) def ensure_legal_c_identifier(s: str) -> str: # for now, just complain if what we're given isn't legal if not is_legal_c_identifier(s): fail("Illegal C identifier:", s) # but if we picked a C keyword, pick something else if s in c_keywords: return s + "_value" return s def rstrip_lines(s: str) -> str: text, add, output = _text_accumulator() for line in s.split('\n'): add(line.rstrip()) add('\n') text.pop() return output() def format_escape(s: str) -> str: # double up curly-braces, this string will be used # as part of a format_map() template later s = s.replace('{', '{{') s = s.replace('}', '}}') return s def linear_format(s: str, **kwargs: str) -> str: """ Perform str.format-like substitution, except: * The strings substituted must be on lines by themselves. (This line is the "source line".) * If the substitution text is empty, the source line is removed in the output. * If the field is not recognized, the original line is passed unmodified through to the output. * If the substitution text is not empty: * Each line of the substituted text is indented by the indent of the source line. * A newline will be added to the end. """ add, output = text_accumulator() for line in s.split('\n'): indent, curly, trailing = line.partition('{') if not curly: add(line) add('\n') continue name, curly, trailing = trailing.partition('}') if not curly or name not in kwargs: add(line) add('\n') continue if trailing: fail(f"Text found after {{{name}}} block marker! " "It must be on a line by itself.") if indent.strip(): fail(f"Non-whitespace characters found before {{{name}}} block marker! " "It must be on a line by itself.") value = kwargs[name] if not value: continue value = textwrap.indent(rstrip_lines(value), indent) add(value) add('\n') return output()[:-1] def indent_all_lines(s: str, prefix: str) -> str: """ Returns 's', with 'prefix' prepended to all lines. If the last line is empty, prefix is not prepended to it. (If s is blank, returns s unchanged.) (textwrap.indent only adds to non-blank lines.) """ split = s.split('\n') last = split.pop() final = [] for line in split: final.append(prefix) final.append(line) final.append('\n') if last: final.append(prefix) final.append(last) return ''.join(final) def suffix_all_lines(s: str, suffix: str) -> str: """ Returns 's', with 'suffix' appended to all lines. If the last line is empty, suffix is not appended to it. (If s is blank, returns s unchanged.) """ split = s.split('\n') last = split.pop() final = [] for line in split: final.append(line) final.append(suffix) final.append('\n') if last: final.append(last) final.append(suffix) return ''.join(final) def pprint_words(items: list[str]) -> str: if len(items) <= 2: return " and ".join(items) else: return ", ".join(items[:-1]) + " and " + items[-1] def version_splitter(s: str) -> tuple[int, ...]: """Splits a version string into a tuple of integers. The following ASCII characters are allowed, and employ the following conversions: a -> -3 b -> -2 c -> -1 (This permits Python-style version strings such as "1.4b3".) """ version: list[int] = [] accumulator: list[str] = [] def flush() -> None: if not accumulator: fail(f'Unsupported version string: {s!r}') version.append(int(''.join(accumulator))) accumulator.clear() for c in s: if c.isdigit(): accumulator.append(c) elif c == '.': flush() elif c in 'abc': flush() version.append('abc'.index(c) - 3) else: fail(f'Illegal character {c!r} in version string {s!r}') flush() return tuple(version) def version_comparitor(version1: str, version2: str) -> Literal[-1, 0, 1]: iterator = itertools.zip_longest( version_splitter(version1), version_splitter(version2), fillvalue=0 ) for a, b in iterator: if a < b: return -1 if a > b: return 1 return 0 class CRenderData: def __init__(self) -> None: # The C statements to declare variables. # Should be full lines with \n eol characters. self.declarations: list[str] = [] # The C statements required to initialize the variables before the parse call. # Should be full lines with \n eol characters. self.initializers: list[str] = [] # The C statements needed to dynamically modify the values # parsed by the parse call, before calling the impl. self.modifications: list[str] = [] # The entries for the "keywords" array for PyArg_ParseTuple. # Should be individual strings representing the names. self.keywords: list[str] = [] # The "format units" for PyArg_ParseTuple. # Should be individual strings that will get self.format_units: list[str] = [] # The varargs arguments for PyArg_ParseTuple. self.parse_arguments: list[str] = [] # The parameter declarations for the impl function. self.impl_parameters: list[str] = [] # The arguments to the impl function at the time it's called. self.impl_arguments: list[str] = [] # For return converters: the name of the variable that # should receive the value returned by the impl. self.return_value = "return_value" # For return converters: the code to convert the return # value from the parse function. This is also where # you should check the _return_value for errors, and # "goto exit" if there are any. self.return_conversion: list[str] = [] self.converter_retval = "_return_value" # The C statements required to do some operations # after the end of parsing but before cleaning up. # These operations may be, for example, memory deallocations which # can only be done without any error happening during argument parsing. self.post_parsing: list[str] = [] # The C statements required to clean up after the impl call. self.cleanup: list[str] = [] # The C statements to generate critical sections (per-object locking). self.lock: list[str] = [] self.unlock: list[str] = [] class FormatCounterFormatter(string.Formatter): """ This counts how many instances of each formatter "replacement string" appear in the format string. e.g. after evaluating "string {a}, {b}, {c}, {a}" the counts dict would now look like {'a': 2, 'b': 1, 'c': 1} """ def __init__(self) -> None: self.counts = collections.Counter[str]() def get_value( self, key: str, args: object, kwargs: object # type: ignore[override] ) -> Literal['']: self.counts[key] += 1 return '' class Language(metaclass=abc.ABCMeta): start_line = "" body_prefix = "" stop_line = "" checksum_line = "" def __init__(self, filename: str) -> None: ... @abc.abstractmethod def render( self, clinic: Clinic | None, signatures: Iterable[Module | Class | Function] ) -> str: ... def parse_line(self, line: str) -> None: ... def validate(self) -> None: def assert_only_one( attr: str, *additional_fields: str ) -> None: """ Ensures that the string found at getattr(self, attr) contains exactly one formatter replacement string for each valid field. The list of valid fields is ['dsl_name'] extended by additional_fields. e.g. self.fmt = "{dsl_name} {a} {b}" # this passes self.assert_only_one('fmt', 'a', 'b') # this fails, the format string has a {b} in it self.assert_only_one('fmt', 'a') # this fails, the format string doesn't have a {c} in it self.assert_only_one('fmt', 'a', 'b', 'c') # this fails, the format string has two {a}s in it, # it must contain exactly one self.fmt2 = '{dsl_name} {a} {a}' self.assert_only_one('fmt2', 'a') """ fields = ['dsl_name'] fields.extend(additional_fields) line: str = getattr(self, attr) fcf = FormatCounterFormatter() fcf.format(line) def local_fail(should_be_there_but_isnt: bool) -> None: if should_be_there_but_isnt: fail("{} {} must contain {{{}}} exactly once!".format( self.__class__.__name__, attr, name)) else: fail("{} {} must not contain {{{}}}!".format( self.__class__.__name__, attr, name)) for name, count in fcf.counts.items(): if name in fields: if count > 1: local_fail(True) else: local_fail(False) for name in fields: if fcf.counts.get(name) != 1: local_fail(True) assert_only_one('start_line') assert_only_one('stop_line') field = "arguments" if "{arguments}" in self.checksum_line else "checksum" assert_only_one('checksum_line', field) class PythonLanguage(Language): language = 'Python' start_line = "#/*[{dsl_name} input]" body_prefix = "#" stop_line = "#[{dsl_name} start generated code]*/" checksum_line = "#/*[{dsl_name} end generated code: {arguments}]*/" ParamTuple = tuple["Parameter", ...] def permute_left_option_groups( l: Sequence[Iterable[Parameter]] ) -> Iterator[ParamTuple]: """ Given [(1,), (2,), (3,)], should yield: () (3,) (2, 3) (1, 2, 3) """ yield tuple() accumulator: list[Parameter] = [] for group in reversed(l): accumulator = list(group) + accumulator yield tuple(accumulator) def permute_right_option_groups( l: Sequence[Iterable[Parameter]] ) -> Iterator[ParamTuple]: """ Given [(1,), (2,), (3,)], should yield: () (1,) (1, 2) (1, 2, 3) """ yield tuple() accumulator: list[Parameter] = [] for group in l: accumulator.extend(group) yield tuple(accumulator) def permute_optional_groups( left: Sequence[Iterable[Parameter]], required: Iterable[Parameter], right: Sequence[Iterable[Parameter]] ) -> tuple[ParamTuple, ...]: """ Generator function that computes the set of acceptable argument lists for the provided iterables of argument groups. (Actually it generates a tuple of tuples.) Algorithm: prefer left options over right options. If required is empty, left must also be empty. """ required = tuple(required) if not required: if left: raise ValueError("required is empty but left is not") accumulator: list[ParamTuple] = [] counts = set() for r in permute_right_option_groups(right): for l in permute_left_option_groups(left): t = l + required + r if len(t) in counts: continue counts.add(len(t)) accumulator.append(t) accumulator.sort(key=len) return tuple(accumulator) def strip_leading_and_trailing_blank_lines(s: str) -> str: lines = s.rstrip().split('\n') while lines: line = lines[0] if line.strip(): break del lines[0] return '\n'.join(lines) @functools.lru_cache() def normalize_snippet( s: str, *, indent: int = 0 ) -> str: """ Reformats s: * removes leading and trailing blank lines * ensures that it does not end with a newline * dedents so the first nonwhite character on any line is at column "indent" """ s = strip_leading_and_trailing_blank_lines(s) s = textwrap.dedent(s) if indent: s = textwrap.indent(s, ' ' * indent) return s def declare_parser( f: Function, *, hasformat: bool = False, clinic: Clinic, limited_capi: bool, ) -> str: """ Generates the code template for a static local PyArg_Parser variable, with an initializer. For core code (incl. builtin modules) the kwtuple field is also statically initialized. Otherwise it is initialized at runtime. """ if hasformat: fname = '' format_ = '.format = "{format_units}:{name}",' else: fname = '.fname = "{name}",' format_ = '' num_keywords = len([ p for p in f.parameters.values() if not p.is_positional_only() and not p.is_vararg() ]) if limited_capi: declarations = """ #define KWTUPLE NULL """ elif num_keywords == 0: declarations = """ #if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE) # define KWTUPLE (PyObject *)&_Py_SINGLETON(tuple_empty) #else # define KWTUPLE NULL #endif """ else: declarations = """ #if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE) #define NUM_KEYWORDS %d static struct {{ PyGC_Head _this_is_not_used; PyObject_VAR_HEAD PyObject *ob_item[NUM_KEYWORDS]; }} _kwtuple = {{ .ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS) .ob_item = {{ {keywords_py} }}, }}; #undef NUM_KEYWORDS #define KWTUPLE (&_kwtuple.ob_base.ob_base) #else // !Py_BUILD_CORE # define KWTUPLE NULL #endif // !Py_BUILD_CORE """ % num_keywords condition = '#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)' clinic.add_include('pycore_gc.h', 'PyGC_Head', condition=condition) clinic.add_include('pycore_runtime.h', '_Py_ID()', condition=condition) declarations += """ static const char * const _keywords[] = {{{keywords_c} NULL}}; static _PyArg_Parser _parser = {{ .keywords = _keywords, %s .kwtuple = KWTUPLE, }}; #undef KWTUPLE """ % (format_ or fname) return normalize_snippet(declarations) def wrap_declarations( text: str, length: int = 78 ) -> str: """ A simple-minded text wrapper for C function declarations. It views a declaration line as looking like this: xxxxxxxx(xxxxxxxxx,xxxxxxxxx) If called with length=30, it would wrap that line into xxxxxxxx(xxxxxxxxx, xxxxxxxxx) (If the declaration has zero or one parameters, this function won't wrap it.) If this doesn't work properly, it's probably better to start from scratch with a more sophisticated algorithm, rather than try and improve/debug this dumb little function. """ lines = [] for line in text.split('\n'): prefix, _, after_l_paren = line.partition('(') if not after_l_paren: lines.append(line) continue in_paren, _, after_r_paren = after_l_paren.partition(')') if not _: lines.append(line) continue if ',' not in in_paren: lines.append(line) continue parameters = [x.strip() + ", " for x in in_paren.split(',')] prefix += "(" if len(prefix) < length: spaces = " " * len(prefix) else: spaces = " " * 4 while parameters: line = prefix first = True while parameters: if (not first and (len(line) + len(parameters[0]) > length)): break line += parameters.pop(0) first = False if not parameters: line = line.rstrip(", ") + ")" + after_r_paren lines.append(line.rstrip()) prefix = spaces return "\n".join(lines) class CLanguage(Language): body_prefix = "#" language = 'C' start_line = "/*[{dsl_name} input]" body_prefix = "" stop_line = "[{dsl_name} start generated code]*/" checksum_line = "/*[{dsl_name} end generated code: {arguments}]*/" PARSER_PROTOTYPE_KEYWORD: Final[str] = normalize_snippet(""" static PyObject * {c_basename}({self_type}{self_name}, PyObject *args, PyObject *kwargs) """) PARSER_PROTOTYPE_KEYWORD___INIT__: Final[str] = normalize_snippet(""" static int {c_basename}({self_type}{self_name}, PyObject *args, PyObject *kwargs) """) PARSER_PROTOTYPE_VARARGS: Final[str] = normalize_snippet(""" static PyObject * {c_basename}({self_type}{self_name}, PyObject *args) """) PARSER_PROTOTYPE_FASTCALL: Final[str] = normalize_snippet(""" static PyObject * {c_basename}({self_type}{self_name}, PyObject *const *args, Py_ssize_t nargs) """) PARSER_PROTOTYPE_FASTCALL_KEYWORDS: Final[str] = normalize_snippet(""" static PyObject * {c_basename}({self_type}{self_name}, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames) """) PARSER_PROTOTYPE_DEF_CLASS: Final[str] = normalize_snippet(""" static PyObject * {c_basename}({self_type}{self_name}, PyTypeObject *{defining_class_name}, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames) """) PARSER_PROTOTYPE_NOARGS: Final[str] = normalize_snippet(""" static PyObject * {c_basename}({self_type}{self_name}, PyObject *Py_UNUSED(ignored)) """) METH_O_PROTOTYPE: Final[str] = normalize_snippet(""" static PyObject * {c_basename}({impl_parameters}) """) DOCSTRING_PROTOTYPE_VAR: Final[str] = normalize_snippet(""" PyDoc_VAR({c_basename}__doc__); """) DOCSTRING_PROTOTYPE_STRVAR: Final[str] = normalize_snippet(""" PyDoc_STRVAR({c_basename}__doc__, {docstring}); """) IMPL_DEFINITION_PROTOTYPE: Final[str] = normalize_snippet(""" static {impl_return_type} {c_basename}_impl({impl_parameters}) """) METHODDEF_PROTOTYPE_DEFINE: Final[str] = normalize_snippet(r""" #define {methoddef_name} \ {{"{name}", {methoddef_cast}{c_basename}{methoddef_cast_end}, {methoddef_flags}, {c_basename}__doc__}}, """) METHODDEF_PROTOTYPE_IFNDEF: Final[str] = normalize_snippet(""" #ifndef {methoddef_name} #define {methoddef_name} #endif /* !defined({methoddef_name}) */ """) COMPILER_DEPRECATION_WARNING_PROTOTYPE: Final[str] = r""" // Emit compiler warnings when we get to Python {major}.{minor}. #if PY_VERSION_HEX >= 0x{major:02x}{minor:02x}00C0 # error {message} #elif PY_VERSION_HEX >= 0x{major:02x}{minor:02x}00A0 # ifdef _MSC_VER # pragma message ({message}) # else # warning {message} # endif #endif """ DEPRECATION_WARNING_PROTOTYPE: Final[str] = r""" if ({condition}) {{{{{errcheck} if (PyErr_WarnEx(PyExc_DeprecationWarning, {message}, 1)) {{{{ goto exit; }}}} }}}} """ def __init__(self, filename: str) -> None: super().__init__(filename) self.cpp = cpp.Monitor(filename) self.cpp.fail = fail # type: ignore[method-assign] def parse_line(self, line: str) -> None: self.cpp.writeline(line) def render( self, clinic: Clinic | None, signatures: Iterable[Module | Class | Function] ) -> str: function = None for o in signatures: if isinstance(o, Function): if function: fail("You may specify at most one function per block.\nFound a block containing at least two:\n\t" + repr(function) + " and " + repr(o)) function = o return self.render_function(clinic, function) def compiler_deprecated_warning( self, func: Function, parameters: list[Parameter], ) -> str | None: minversion: VersionTuple | None = None for p in parameters: for version in p.deprecated_positional, p.deprecated_keyword: if version and (not minversion or minversion > version): minversion = version if not minversion: return None # Format the preprocessor warning and error messages. assert isinstance(self.cpp.filename, str) message = f"Update the clinic input of {func.full_name!r}." code = self.COMPILER_DEPRECATION_WARNING_PROTOTYPE.format( major=minversion[0], minor=minversion[1], message=c_repr(message), ) return normalize_snippet(code) def deprecate_positional_use( self, func: Function, params: dict[int, Parameter], ) -> str: assert len(params) > 0 first_pos = next(iter(params)) last_pos = next(reversed(params)) # Format the deprecation message. if len(params) == 1: condition = f"nargs == {first_pos+1}" amount = f"{first_pos+1} " if first_pos else "" pl = "s" else: condition = f"nargs > {first_pos} && nargs <= {last_pos+1}" amount = f"more than {first_pos} " if first_pos else "" pl = "s" if first_pos != 1 else "" message = ( f"Passing {amount}positional argument{pl} to " f"{func.fulldisplayname}() is deprecated." ) for (major, minor), group in itertools.groupby( params.values(), key=attrgetter("deprecated_positional") ): names = [repr(p.name) for p in group] pstr = pprint_words(names) if len(names) == 1: message += ( f" Parameter {pstr} will become a keyword-only parameter " f"in Python {major}.{minor}." ) else: message += ( f" Parameters {pstr} will become keyword-only parameters " f"in Python {major}.{minor}." ) # Append deprecation warning to docstring. docstring = textwrap.fill(f"Note: {message}") func.docstring += f"\n\n{docstring}\n" # Format and return the code block. code = self.DEPRECATION_WARNING_PROTOTYPE.format( condition=condition, errcheck="", message=wrapped_c_string_literal(message, width=64, subsequent_indent=20), ) return normalize_snippet(code, indent=4) def deprecate_keyword_use( self, func: Function, params: dict[int, Parameter], argname_fmt: str | None, *, fastcall: bool, limited_capi: bool, clinic: Clinic, ) -> str: assert len(params) > 0 last_param = next(reversed(params.values())) # Format the deprecation message. containscheck = "" conditions = [] for i, p in params.items(): if p.is_optional(): if argname_fmt: conditions.append(f"nargs < {i+1} && {argname_fmt % i}") elif fastcall: conditions.append(f"nargs < {i+1} && PySequence_Contains(kwnames, &_Py_ID({p.name}))") containscheck = "PySequence_Contains" clinic.add_include('pycore_runtime.h', '_Py_ID()') else: conditions.append(f"nargs < {i+1} && PyDict_Contains(kwargs, &_Py_ID({p.name}))") containscheck = "PyDict_Contains" clinic.add_include('pycore_runtime.h', '_Py_ID()') else: conditions = [f"nargs < {i+1}"] condition = ") || (".join(conditions) if len(conditions) > 1: condition = f"(({condition}))" if last_param.is_optional(): if fastcall: if limited_capi: condition = f"kwnames && PyTuple_Size(kwnames) && {condition}" else: condition = f"kwnames && PyTuple_GET_SIZE(kwnames) && {condition}" else: if limited_capi: condition = f"kwargs && PyDict_Size(kwargs) && {condition}" else: condition = f"kwargs && PyDict_GET_SIZE(kwargs) && {condition}" names = [repr(p.name) for p in params.values()] pstr = pprint_words(names) pl = 's' if len(params) != 1 else '' message = ( f"Passing keyword argument{pl} {pstr} to " f"{func.fulldisplayname}() is deprecated." ) for (major, minor), group in itertools.groupby( params.values(), key=attrgetter("deprecated_keyword") ): names = [repr(p.name) for p in group] pstr = pprint_words(names) pl = 's' if len(names) != 1 else '' message += ( f" Parameter{pl} {pstr} will become positional-only " f"in Python {major}.{minor}." ) if containscheck: errcheck = f""" if (PyErr_Occurred()) {{{{ // {containscheck}() above can fail goto exit; }}}}""" else: errcheck = "" if argname_fmt: # Append deprecation warning to docstring. docstring = textwrap.fill(f"Note: {message}") func.docstring += f"\n\n{docstring}\n" # Format and return the code block. code = self.DEPRECATION_WARNING_PROTOTYPE.format( condition=condition, errcheck=errcheck, message=wrapped_c_string_literal(message, width=64, subsequent_indent=20), ) return normalize_snippet(code, indent=4) def docstring_for_c_string( self, f: Function ) -> str: text, add, output = _text_accumulator() # turn docstring into a properly quoted C string for line in f.docstring.split('\n'): add('"') add(quoted_for_c_string(line)) add('\\n"\n') if text[-2] == sig_end_marker: # If we only have a signature, add the blank line that the # __text_signature__ getter expects to be there. add('"\\n"') else: text.pop() add('"') return ''.join(text) def output_templates( self, f: Function, clinic: Clinic ) -> dict[str, str]: parameters = list(f.parameters.values()) assert parameters first_param = parameters.pop(0) assert isinstance(first_param.converter, self_converter) requires_defining_class = False if parameters and isinstance(parameters[0].converter, defining_class_converter): requires_defining_class = True del parameters[0] converters = [p.converter for p in parameters] # Copy includes from parameters to Clinic for converter in converters: include = converter.include if include: clinic.add_include(include.filename, include.reason, condition=include.condition) if f.critical_section: clinic.add_include('pycore_critical_section.h', 'Py_BEGIN_CRITICAL_SECTION()') has_option_groups = parameters and (parameters[0].group or parameters[-1].group) simple_return = (f.return_converter.type == 'PyObject *' and not f.critical_section) new_or_init = f.kind.new_or_init vararg: int | str = NO_VARARG pos_only = min_pos = max_pos = min_kw_only = pseudo_args = 0 for i, p in enumerate(parameters, 1): if p.is_keyword_only(): assert not p.is_positional_only() if not p.is_optional(): min_kw_only = i - max_pos elif p.is_vararg(): if vararg != NO_VARARG: fail("Too many var args") pseudo_args += 1 vararg = i - 1 else: if vararg == NO_VARARG: max_pos = i if p.is_positional_only(): pos_only = i if not p.is_optional(): min_pos = i meth_o = (len(parameters) == 1 and parameters[0].is_positional_only() and not converters[0].is_optional() and not requires_defining_class and not new_or_init) # we have to set these things before we're done: # # docstring_prototype # docstring_definition # impl_prototype # methoddef_define # parser_prototype # parser_definition # impl_definition # cpp_if # cpp_endif # methoddef_ifndef return_value_declaration = "PyObject *return_value = NULL;" methoddef_define = self.METHODDEF_PROTOTYPE_DEFINE if new_or_init and not f.docstring: docstring_prototype = docstring_definition = '' else: docstring_prototype = self.DOCSTRING_PROTOTYPE_VAR docstring_definition = self.DOCSTRING_PROTOTYPE_STRVAR impl_definition = self.IMPL_DEFINITION_PROTOTYPE impl_prototype = parser_prototype = parser_definition = None # parser_body_fields remembers the fields passed in to the # previous call to parser_body. this is used for an awful hack. parser_body_fields: tuple[str, ...] = () def parser_body( prototype: str, *fields: str, declarations: str = '' ) -> str: nonlocal parser_body_fields add, output = text_accumulator() add(prototype) parser_body_fields = fields preamble = normalize_snippet(""" {{ {return_value_declaration} {parser_declarations} {declarations} {initializers} """) + "\n" finale = normalize_snippet(""" {modifications} {lock} {return_value} = {c_basename}_impl({impl_arguments}); {unlock} {return_conversion} {post_parsing} {exit_label} {cleanup} return return_value; }} """) for field in preamble, *fields, finale: add('\n') add(field) return linear_format(output(), parser_declarations=declarations) fastcall = not new_or_init limited_capi = clinic.limited_capi if limited_capi and (pseudo_args or (any(p.is_optional() for p in parameters) and any(p.is_keyword_only() and not p.is_optional() for p in parameters)) or any(c.broken_limited_capi for c in converters)): warn(f"Function {f.full_name} cannot use limited C API") limited_capi = False parsearg: str | None if not parameters: parser_code: list[str] | None if not requires_defining_class: # no parameters, METH_NOARGS flags = "METH_NOARGS" parser_prototype = self.PARSER_PROTOTYPE_NOARGS parser_code = [] else: assert fastcall flags = "METH_METHOD|METH_FASTCALL|METH_KEYWORDS" parser_prototype = self.PARSER_PROTOTYPE_DEF_CLASS return_error = ('return NULL;' if simple_return else 'goto exit;') parser_code = [normalize_snippet(""" if (nargs) {{ PyErr_SetString(PyExc_TypeError, "{name}() takes no arguments"); %s }} """ % return_error, indent=4)] if simple_return: parser_definition = '\n'.join([ parser_prototype, '{{', *parser_code, ' return {c_basename}_impl({impl_arguments});', '}}']) else: parser_definition = parser_body(parser_prototype, *parser_code) elif meth_o: flags = "METH_O" if (isinstance(converters[0], object_converter) and converters[0].format_unit == 'O'): meth_o_prototype = self.METH_O_PROTOTYPE if simple_return: # maps perfectly to METH_O, doesn't need a return converter. # so we skip making a parse function # and call directly into the impl function. impl_prototype = parser_prototype = parser_definition = '' impl_definition = meth_o_prototype else: # SLIGHT HACK # use impl_parameters for the parser here! parser_prototype = meth_o_prototype parser_definition = parser_body(parser_prototype) else: argname = 'arg' if parameters[0].name == argname: argname += '_' parser_prototype = normalize_snippet(""" static PyObject * {c_basename}({self_type}{self_name}, PyObject *%s) """ % argname) displayname = parameters[0].get_displayname(0) parsearg = converters[0].parse_arg(argname, displayname, limited_capi=limited_capi) if parsearg is None: parsearg = """ if (!PyArg_Parse(%s, "{format_units}:{name}", {parse_arguments})) {{ goto exit; }} """ % argname parser_definition = parser_body(parser_prototype, normalize_snippet(parsearg, indent=4)) elif has_option_groups: # positional parameters with option groups # (we have to generate lots of PyArg_ParseTuple calls # in a big switch statement) flags = "METH_VARARGS" parser_prototype = self.PARSER_PROTOTYPE_VARARGS parser_definition = parser_body(parser_prototype, ' {option_group_parsing}') elif not requires_defining_class and pos_only == len(parameters) - pseudo_args: if fastcall: # positional-only, but no option groups # we only need one call to _PyArg_ParseStack flags = "METH_FASTCALL" parser_prototype = self.PARSER_PROTOTYPE_FASTCALL nargs = 'nargs' argname_fmt = 'args[%d]' else: # positional-only, but no option groups # we only need one call to PyArg_ParseTuple flags = "METH_VARARGS" parser_prototype = self.PARSER_PROTOTYPE_VARARGS if limited_capi: nargs = 'PyTuple_Size(args)' argname_fmt = 'PyTuple_GetItem(args, %d)' else: nargs = 'PyTuple_GET_SIZE(args)' argname_fmt = 'PyTuple_GET_ITEM(args, %d)' left_args = f"{nargs} - {max_pos}" max_args = NO_VARARG if (vararg != NO_VARARG) else max_pos if limited_capi: parser_code = [] if nargs != 'nargs': parser_code.append(normalize_snippet(f'Py_ssize_t nargs = {nargs};', indent=4)) nargs = 'nargs' if min_pos == max_args: pl = '' if min_pos == 1 else 's' parser_code.append(normalize_snippet(f""" if ({nargs} != {min_pos}) {{{{ PyErr_Format(PyExc_TypeError, "{{name}} expected {min_pos} argument{pl}, got %zd", {nargs}); goto exit; }}}} """, indent=4)) else: if min_pos: pl = '' if min_pos == 1 else 's' parser_code.append(normalize_snippet(f""" if ({nargs} < {min_pos}) {{{{ PyErr_Format(PyExc_TypeError, "{{name}} expected at least {min_pos} argument{pl}, got %zd", {nargs}); goto exit; }}}} """, indent=4)) if max_args != NO_VARARG: pl = '' if max_args == 1 else 's' parser_code.append(normalize_snippet(f""" if ({nargs} > {max_args}) {{{{ PyErr_Format(PyExc_TypeError, "{{name}} expected at most {max_args} argument{pl}, got %zd", {nargs}); goto exit; }}}} """, indent=4)) else: clinic.add_include('pycore_modsupport.h', '_PyArg_CheckPositional()') parser_code = [normalize_snippet(f""" if (!_PyArg_CheckPositional("{{name}}", {nargs}, {min_pos}, {max_args})) {{{{ goto exit; }}}} """, indent=4)] has_optional = False for i, p in enumerate(parameters): if p.is_vararg(): if fastcall: parser_code.append(normalize_snippet(""" %s = PyTuple_New(%s); if (!%s) {{ goto exit; }} for (Py_ssize_t i = 0; i < %s; ++i) {{ PyTuple_SET_ITEM(%s, i, Py_NewRef(args[%d + i])); }} """ % ( p.converter.parser_name, left_args, p.converter.parser_name, left_args, p.converter.parser_name, max_pos ), indent=4)) else: parser_code.append(normalize_snippet(""" %s = PyTuple_GetSlice(%d, -1); """ % ( p.converter.parser_name, max_pos ), indent=4)) continue displayname = p.get_displayname(i+1) argname = argname_fmt % i parsearg = p.converter.parse_arg(argname, displayname, limited_capi=limited_capi) if parsearg is None: parser_code = None break if has_optional or p.is_optional(): has_optional = True parser_code.append(normalize_snippet(""" if (%s < %d) {{ goto skip_optional; }} """, indent=4) % (nargs, i + 1)) parser_code.append(normalize_snippet(parsearg, indent=4)) if parser_code is not None: if has_optional: parser_code.append("skip_optional:") else: if limited_capi: fastcall = False if fastcall: clinic.add_include('pycore_modsupport.h', '_PyArg_ParseStack()') parser_code = [normalize_snippet(""" if (!_PyArg_ParseStack(args, nargs, "{format_units}:{name}", {parse_arguments})) {{ goto exit; }} """, indent=4)] else: flags = "METH_VARARGS" parser_prototype = self.PARSER_PROTOTYPE_VARARGS parser_code = [normalize_snippet(""" if (!PyArg_ParseTuple(args, "{format_units}:{name}", {parse_arguments})) {{ goto exit; }} """, indent=4)] parser_definition = parser_body(parser_prototype, *parser_code) else: deprecated_positionals: dict[int, Parameter] = {} deprecated_keywords: dict[int, Parameter] = {} for i, p in enumerate(parameters): if p.deprecated_positional: deprecated_positionals[i] = p if p.deprecated_keyword: deprecated_keywords[i] = p has_optional_kw = (max(pos_only, min_pos) + min_kw_only < len(converters) - int(vararg != NO_VARARG)) if limited_capi: parser_code = None fastcall = False else: if vararg == NO_VARARG: clinic.add_include('pycore_modsupport.h', '_PyArg_UnpackKeywords()') args_declaration = "_PyArg_UnpackKeywords", "%s, %s, %s" % ( min_pos, max_pos, min_kw_only ) nargs = "nargs" else: clinic.add_include('pycore_modsupport.h', '_PyArg_UnpackKeywordsWithVararg()') args_declaration = "_PyArg_UnpackKeywordsWithVararg", "%s, %s, %s, %s" % ( min_pos, max_pos, min_kw_only, vararg ) nargs = f"Py_MIN(nargs, {max_pos})" if max_pos else "0" if fastcall: flags = "METH_FASTCALL|METH_KEYWORDS" parser_prototype = self.PARSER_PROTOTYPE_FASTCALL_KEYWORDS argname_fmt = 'args[%d]' declarations = declare_parser(f, clinic=clinic, limited_capi=clinic.limited_capi) declarations += "\nPyObject *argsbuf[%s];" % len(converters) if has_optional_kw: declarations += "\nPy_ssize_t noptargs = %s + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - %d;" % (nargs, min_pos + min_kw_only) parser_code = [normalize_snippet(""" args = %s(args, nargs, NULL, kwnames, &_parser, %s, argsbuf); if (!args) {{ goto exit; }} """ % args_declaration, indent=4)] else: # positional-or-keyword arguments flags = "METH_VARARGS|METH_KEYWORDS" parser_prototype = self.PARSER_PROTOTYPE_KEYWORD argname_fmt = 'fastargs[%d]' declarations = declare_parser(f, clinic=clinic, limited_capi=clinic.limited_capi) declarations += "\nPyObject *argsbuf[%s];" % len(converters) declarations += "\nPyObject * const *fastargs;" declarations += "\nPy_ssize_t nargs = PyTuple_GET_SIZE(args);" if has_optional_kw: declarations += "\nPy_ssize_t noptargs = %s + (kwargs ? PyDict_GET_SIZE(kwargs) : 0) - %d;" % (nargs, min_pos + min_kw_only) parser_code = [normalize_snippet(""" fastargs = %s(_PyTuple_CAST(args)->ob_item, nargs, kwargs, NULL, &_parser, %s, argsbuf); if (!fastargs) {{ goto exit; }} """ % args_declaration, indent=4)] if requires_defining_class: flags = 'METH_METHOD|' + flags parser_prototype = self.PARSER_PROTOTYPE_DEF_CLASS if parser_code is not None: if deprecated_keywords: code = self.deprecate_keyword_use(f, deprecated_keywords, argname_fmt, clinic=clinic, fastcall=fastcall, limited_capi=limited_capi) parser_code.append(code) add_label: str | None = None for i, p in enumerate(parameters): if isinstance(p.converter, defining_class_converter): raise ValueError("defining_class should be the first " "parameter (after self)") displayname = p.get_displayname(i+1) parsearg = p.converter.parse_arg(argname_fmt % i, displayname, limited_capi=limited_capi) if parsearg is None: parser_code = None break if add_label and (i == pos_only or i == max_pos): parser_code.append("%s:" % add_label) add_label = None if not p.is_optional(): parser_code.append(normalize_snippet(parsearg, indent=4)) elif i < pos_only: add_label = 'skip_optional_posonly' parser_code.append(normalize_snippet(""" if (nargs < %d) {{ goto %s; }} """ % (i + 1, add_label), indent=4)) if has_optional_kw: parser_code.append(normalize_snippet(""" noptargs--; """, indent=4)) parser_code.append(normalize_snippet(parsearg, indent=4)) else: if i < max_pos: label = 'skip_optional_pos' first_opt = max(min_pos, pos_only) else: label = 'skip_optional_kwonly' first_opt = max_pos + min_kw_only if vararg != NO_VARARG: first_opt += 1 if i == first_opt: add_label = label parser_code.append(normalize_snippet(""" if (!noptargs) {{ goto %s; }} """ % add_label, indent=4)) if i + 1 == len(parameters): parser_code.append(normalize_snippet(parsearg, indent=4)) else: add_label = label parser_code.append(normalize_snippet(""" if (%s) {{ """ % (argname_fmt % i), indent=4)) parser_code.append(normalize_snippet(parsearg, indent=8)) parser_code.append(normalize_snippet(""" if (!--noptargs) {{ goto %s; }} }} """ % add_label, indent=4)) if parser_code is not None: if add_label: parser_code.append("%s:" % add_label) else: declarations = declare_parser(f, clinic=clinic, hasformat=True, limited_capi=limited_capi) if limited_capi: # positional-or-keyword arguments assert not fastcall flags = "METH_VARARGS|METH_KEYWORDS" parser_prototype = self.PARSER_PROTOTYPE_KEYWORD parser_code = [normalize_snippet(""" if (!PyArg_ParseTupleAndKeywords(args, kwargs, "{format_units}:{name}", _keywords, {parse_arguments})) goto exit; """, indent=4)] declarations = "static char *_keywords[] = {{{keywords_c} NULL}};" if deprecated_positionals or deprecated_keywords: declarations += "\nPy_ssize_t nargs = PyTuple_Size(args);" elif fastcall: clinic.add_include('pycore_modsupport.h', '_PyArg_ParseStackAndKeywords()') parser_code = [normalize_snippet(""" if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser{parse_arguments_comma} {parse_arguments})) {{ goto exit; }} """, indent=4)] else: clinic.add_include('pycore_modsupport.h', '_PyArg_ParseTupleAndKeywordsFast()') parser_code = [normalize_snippet(""" if (!_PyArg_ParseTupleAndKeywordsFast(args, kwargs, &_parser, {parse_arguments})) {{ goto exit; }} """, indent=4)] if deprecated_positionals or deprecated_keywords: declarations += "\nPy_ssize_t nargs = PyTuple_GET_SIZE(args);" if deprecated_keywords: code = self.deprecate_keyword_use(f, deprecated_keywords, None, clinic=clinic, fastcall=fastcall, limited_capi=limited_capi) parser_code.append(code) if deprecated_positionals: code = self.deprecate_positional_use(f, deprecated_positionals) # Insert the deprecation code before parameter parsing. parser_code.insert(0, code) assert parser_prototype is not None parser_definition = parser_body(parser_prototype, *parser_code, declarations=declarations) if new_or_init: methoddef_define = '' if f.kind is METHOD_NEW: parser_prototype = self.PARSER_PROTOTYPE_KEYWORD else: return_value_declaration = "int return_value = -1;" parser_prototype = self.PARSER_PROTOTYPE_KEYWORD___INIT__ fields = list(parser_body_fields) parses_positional = 'METH_NOARGS' not in flags parses_keywords = 'METH_KEYWORDS' in flags if parses_keywords: assert parses_positional if requires_defining_class: raise ValueError("Slot methods cannot access their defining class.") if not parses_keywords: declarations = '{base_type_ptr}' clinic.add_include('pycore_modsupport.h', '_PyArg_NoKeywords()') fields.insert(0, normalize_snippet(""" if ({self_type_check}!_PyArg_NoKeywords("{name}", kwargs)) {{ goto exit; }} """, indent=4)) if not parses_positional: clinic.add_include('pycore_modsupport.h', '_PyArg_NoPositional()') fields.insert(0, normalize_snippet(""" if ({self_type_check}!_PyArg_NoPositional("{name}", args)) {{ goto exit; }} """, indent=4)) parser_definition = parser_body(parser_prototype, *fields, declarations=declarations) methoddef_cast_end = "" if flags in ('METH_NOARGS', 'METH_O', 'METH_VARARGS'): methoddef_cast = "(PyCFunction)" elif limited_capi: methoddef_cast = "(PyCFunction)(void(*)(void))" else: methoddef_cast = "_PyCFunction_CAST(" methoddef_cast_end = ")" if f.methoddef_flags: flags += '|' + f.methoddef_flags methoddef_define = methoddef_define.replace('{methoddef_flags}', flags) methoddef_define = methoddef_define.replace('{methoddef_cast}', methoddef_cast) methoddef_define = methoddef_define.replace('{methoddef_cast_end}', methoddef_cast_end) methoddef_ifndef = '' conditional = self.cpp.condition() if not conditional: cpp_if = cpp_endif = '' else: cpp_if = "#if " + conditional cpp_endif = "#endif /* " + conditional + " */" if methoddef_define and f.full_name not in clinic.ifndef_symbols: clinic.ifndef_symbols.add(f.full_name) methoddef_ifndef = self.METHODDEF_PROTOTYPE_IFNDEF # add ';' to the end of parser_prototype and impl_prototype # (they mustn't be None, but they could be an empty string.) assert parser_prototype is not None if parser_prototype: assert not parser_prototype.endswith(';') parser_prototype += ';' if impl_prototype is None: impl_prototype = impl_definition if impl_prototype: impl_prototype += ";" parser_definition = parser_definition.replace("{return_value_declaration}", return_value_declaration) compiler_warning = self.compiler_deprecated_warning(f, parameters) if compiler_warning: parser_definition = compiler_warning + "\n\n" + parser_definition d = { "docstring_prototype" : docstring_prototype, "docstring_definition" : docstring_definition, "impl_prototype" : impl_prototype, "methoddef_define" : methoddef_define, "parser_prototype" : parser_prototype, "parser_definition" : parser_definition, "impl_definition" : impl_definition, "cpp_if" : cpp_if, "cpp_endif" : cpp_endif, "methoddef_ifndef" : methoddef_ifndef, } # make sure we didn't forget to assign something, # and wrap each non-empty value in \n's d2 = {} for name, value in d.items(): assert value is not None, "got a None value for template " + repr(name) if value: value = '\n' + value + '\n' d2[name] = value return d2 @staticmethod def group_to_variable_name(group: int) -> str: adjective = "left_" if group < 0 else "right_" return "group_" + adjective + str(abs(group)) def render_option_group_parsing( self, f: Function, template_dict: TemplateDict, limited_capi: bool, ) -> None: # positional only, grouped, optional arguments! # can be optional on the left or right. # here's an example: # # [ [ [ A1 A2 ] B1 B2 B3 ] C1 C2 ] D1 D2 D3 [ E1 E2 E3 [ F1 F2 F3 ] ] # # Here group D are required, and all other groups are optional. # (Group D's "group" is actually None.) # We can figure out which sets of arguments we have based on # how many arguments are in the tuple. # # Note that you need to count up on both sides. For example, # you could have groups C+D, or C+D+E, or C+D+E+F. # # What if the number of arguments leads us to an ambiguous result? # Clinic prefers groups on the left. So in the above example, # five arguments would map to B+C, not C+D. add, output = text_accumulator() parameters = list(f.parameters.values()) if isinstance(parameters[0].converter, self_converter): del parameters[0] group: list[Parameter] | None = None left = [] right = [] required: list[Parameter] = [] last: int | Literal[Sentinels.unspecified] = unspecified for p in parameters: group_id = p.group if group_id != last: last = group_id group = [] if group_id < 0: left.append(group) elif group_id == 0: group = required else: right.append(group) assert group is not None group.append(p) count_min = sys.maxsize count_max = -1 if limited_capi: nargs = 'PyTuple_Size(args)' else: nargs = 'PyTuple_GET_SIZE(args)' add(f"switch ({nargs}) {{\n") for subset in permute_optional_groups(left, required, right): count = len(subset) count_min = min(count_min, count) count_max = max(count_max, count) if count == 0: add(""" case 0: break; """) continue group_ids = {p.group for p in subset} # eliminate duplicates d: dict[str, str | int] = {} d['count'] = count d['name'] = f.name d['format_units'] = "".join(p.converter.format_unit for p in subset) parse_arguments: list[str] = [] for p in subset: p.converter.parse_argument(parse_arguments) d['parse_arguments'] = ", ".join(parse_arguments) group_ids.discard(0) lines = "\n".join([ self.group_to_variable_name(g) + " = 1;" for g in group_ids ]) s = """\ case {count}: if (!PyArg_ParseTuple(args, "{format_units}:{name}", {parse_arguments})) {{ goto exit; }} {group_booleans} break; """ s = linear_format(s, group_booleans=lines) s = s.format_map(d) add(s) add(" default:\n") s = ' PyErr_SetString(PyExc_TypeError, "{} requires {} to {} arguments");\n' add(s.format(f.full_name, count_min, count_max)) add(' goto exit;\n') add("}") template_dict['option_group_parsing'] = format_escape(output()) def render_function( self, clinic: Clinic | None, f: Function | None ) -> str: if f is None or clinic is None: return "" add, output = text_accumulator() data = CRenderData() assert f.parameters, "We should always have a 'self' at this point!" parameters = f.render_parameters converters = [p.converter for p in parameters] templates = self.output_templates(f, clinic) f_self = parameters[0] selfless = parameters[1:] assert isinstance(f_self.converter, self_converter), "No self parameter in " + repr(f.full_name) + "!" if f.critical_section: match len(f.target_critical_section): case 0: lock = 'Py_BEGIN_CRITICAL_SECTION({self_name});' unlock = 'Py_END_CRITICAL_SECTION();' case 1: lock = 'Py_BEGIN_CRITICAL_SECTION({target_critical_section});' unlock = 'Py_END_CRITICAL_SECTION();' case _: lock = 'Py_BEGIN_CRITICAL_SECTION2({target_critical_section});' unlock = 'Py_END_CRITICAL_SECTION2();' data.lock.append(lock) data.unlock.append(unlock) last_group = 0 first_optional = len(selfless) positional = selfless and selfless[-1].is_positional_only() has_option_groups = False # offset i by -1 because first_optional needs to ignore self for i, p in enumerate(parameters, -1): c = p.converter if (i != -1) and (p.default is not unspecified): first_optional = min(first_optional, i) if p.is_vararg(): data.cleanup.append(f"Py_XDECREF({c.parser_name});") # insert group variable group = p.group if last_group != group: last_group = group if group: group_name = self.group_to_variable_name(group) data.impl_arguments.append(group_name) data.declarations.append("int " + group_name + " = 0;") data.impl_parameters.append("int " + group_name) has_option_groups = True c.render(p, data) if has_option_groups and (not positional): fail("You cannot use optional groups ('[' and ']') " "unless all parameters are positional-only ('/').") # HACK # when we're METH_O, but have a custom return converter, # we use "impl_parameters" for the parsing function # because that works better. but that means we must # suppress actually declaring the impl's parameters # as variables in the parsing function. but since it's # METH_O, we have exactly one anyway, so we know exactly # where it is. if ("METH_O" in templates['methoddef_define'] and '{impl_parameters}' in templates['parser_prototype']): data.declarations.pop(0) full_name = f.full_name template_dict = {'full_name': full_name} template_dict['name'] = f.displayname template_dict['c_basename'] = f.c_basename template_dict['methoddef_name'] = f.c_basename.upper() + "_METHODDEF" template_dict['docstring'] = self.docstring_for_c_string(f) template_dict['self_name'] = template_dict['self_type'] = template_dict['self_type_check'] = '' template_dict['target_critical_section'] = ', '.join(f.target_critical_section) for converter in converters: converter.set_template_dict(template_dict) f.return_converter.render(f, data) template_dict['impl_return_type'] = f.return_converter.type template_dict['declarations'] = format_escape("\n".join(data.declarations)) template_dict['initializers'] = "\n\n".join(data.initializers) template_dict['modifications'] = '\n\n'.join(data.modifications) template_dict['keywords_c'] = ' '.join('"' + k + '",' for k in data.keywords) keywords = [k for k in data.keywords if k] template_dict['keywords_py'] = ' '.join('&_Py_ID(' + k + '),' for k in keywords) template_dict['format_units'] = ''.join(data.format_units) template_dict['parse_arguments'] = ', '.join(data.parse_arguments) if data.parse_arguments: template_dict['parse_arguments_comma'] = ','; else: template_dict['parse_arguments_comma'] = ''; template_dict['impl_parameters'] = ", ".join(data.impl_parameters) template_dict['impl_arguments'] = ", ".join(data.impl_arguments) template_dict['return_conversion'] = format_escape("".join(data.return_conversion).rstrip()) template_dict['post_parsing'] = format_escape("".join(data.post_parsing).rstrip()) template_dict['cleanup'] = format_escape("".join(data.cleanup)) template_dict['return_value'] = data.return_value template_dict['lock'] = "\n".join(data.lock) template_dict['unlock'] = "\n".join(data.unlock) # used by unpack tuple code generator unpack_min = first_optional unpack_max = len(selfless) template_dict['unpack_min'] = str(unpack_min) template_dict['unpack_max'] = str(unpack_max) if has_option_groups: self.render_option_group_parsing(f, template_dict, limited_capi=clinic.limited_capi) # buffers, not destination for name, destination in clinic.destination_buffers.items(): template = templates[name] if has_option_groups: template = linear_format(template, option_group_parsing=template_dict['option_group_parsing']) template = linear_format(template, declarations=template_dict['declarations'], return_conversion=template_dict['return_conversion'], initializers=template_dict['initializers'], modifications=template_dict['modifications'], post_parsing=template_dict['post_parsing'], cleanup=template_dict['cleanup'], lock=template_dict['lock'], unlock=template_dict['unlock'], ) # Only generate the "exit:" label # if we have any gotos need_exit_label = "goto exit;" in template template = linear_format(template, exit_label="exit:" if need_exit_label else '' ) s = template.format_map(template_dict) # mild hack: # reflow long impl declarations if name in {"impl_prototype", "impl_definition"}: s = wrap_declarations(s) if clinic.line_prefix: s = indent_all_lines(s, clinic.line_prefix) if clinic.line_suffix: s = suffix_all_lines(s, clinic.line_suffix) destination.append(s) return clinic.get_destination('block').dump() def create_regex( before: str, after: str, word: bool = True, whole_line: bool = True ) -> re.Pattern[str]: """Create an re object for matching marker lines.""" group_re = r"\w+" if word else ".+" pattern = r'{}({}){}' if whole_line: pattern = '^' + pattern + '$' pattern = pattern.format(re.escape(before), group_re, re.escape(after)) return re.compile(pattern) @dc.dataclass(slots=True, repr=False) class Block: r""" Represents a single block of text embedded in another file. If dsl_name is None, the block represents verbatim text, raw original text from the file, in which case "input" will be the only non-false member. If dsl_name is not None, the block represents a Clinic block. input is always str, with embedded \n characters. input represents the original text from the file; if it's a Clinic block, it is the original text with the body_prefix and redundant leading whitespace removed. dsl_name is either str or None. If str, it's the text found on the start line of the block between the square brackets. signatures is a list. It may only contain clinic.Module, clinic.Class, and clinic.Function objects. At the moment it should contain at most one of each. output is either str or None. If str, it's the output from this block, with embedded '\n' characters. indent is a str. It's the leading whitespace that was found on every line of input. (If body_prefix is not empty, this is the indent *after* removing the body_prefix.) "indent" is different from the concept of "preindent" (which is not stored as state on Block objects). "preindent" is the whitespace that was found in front of every line of input *before* the "body_prefix" (see the Language object). If body_prefix is empty, preindent must always be empty too. To illustrate the difference between "indent" and "preindent": Assume that '_' represents whitespace. If the block processed was in a Python file, and looked like this: ____#/*[python] ____#__for a in range(20): ____#____print(a) ____#[python]*/ "preindent" would be "____" and "indent" would be "__". """ input: str dsl_name: str | None = None signatures: list[Module | Class | Function] = dc.field(default_factory=list) output: Any = None # TODO: Very dynamic; probably untypeable in its current form? indent: str = '' def __repr__(self) -> str: dsl_name = self.dsl_name or "text" def summarize(s: object) -> str: s = repr(s) if len(s) > 30: return s[:26] + "..." + s[0] return s parts = ( repr(dsl_name), f"input={summarize(self.input)}", f"output={summarize(self.output)}" ) return f"" class BlockParser: """ Block-oriented parser for Argument Clinic. Iterator, yields Block objects. """ def __init__( self, input: str, language: Language, *, verify: bool = True ) -> None: """ "input" should be a str object with embedded \n characters. "language" should be a Language object. """ language.validate() self.input = collections.deque(reversed(input.splitlines(keepends=True))) self.block_start_line_number = self.line_number = 0 self.language = language before, _, after = language.start_line.partition('{dsl_name}') assert _ == '{dsl_name}' self.find_start_re = create_regex(before, after, whole_line=False) self.start_re = create_regex(before, after) self.verify = verify self.last_checksum_re: re.Pattern[str] | None = None self.last_dsl_name: str | None = None self.dsl_name: str | None = None self.first_block = True def __iter__(self) -> BlockParser: return self def __next__(self) -> Block: while True: if not self.input: raise StopIteration if self.dsl_name: return_value = self.parse_clinic_block(self.dsl_name) self.dsl_name = None self.first_block = False return return_value block = self.parse_verbatim_block() if self.first_block and not block.input: continue self.first_block = False return block def is_start_line(self, line: str) -> str | None: match = self.start_re.match(line.lstrip()) return match.group(1) if match else None def _line(self, lookahead: bool = False) -> str: self.line_number += 1 line = self.input.pop() if not lookahead: self.language.parse_line(line) return line def parse_verbatim_block(self) -> Block: add, output = text_accumulator() self.block_start_line_number = self.line_number while self.input: line = self._line() dsl_name = self.is_start_line(line) if dsl_name: self.dsl_name = dsl_name break add(line) return Block(output()) def parse_clinic_block(self, dsl_name: str) -> Block: input_add, input_output = text_accumulator() self.block_start_line_number = self.line_number + 1 stop_line = self.language.stop_line.format(dsl_name=dsl_name) body_prefix = self.language.body_prefix.format(dsl_name=dsl_name) def is_stop_line(line: str) -> bool: # make sure to recognize stop line even if it # doesn't end with EOL (it could be the very end of the file) if line.startswith(stop_line): remainder = line.removeprefix(stop_line) if remainder and not remainder.isspace(): fail(f"Garbage after stop line: {remainder!r}") return True else: # gh-92256: don't allow incorrectly formatted stop lines if line.lstrip().startswith(stop_line): fail(f"Whitespace is not allowed before the stop line: {line!r}") return False # consume body of program while self.input: line = self._line() if is_stop_line(line) or self.is_start_line(line): break if body_prefix: line = line.lstrip() assert line.startswith(body_prefix) line = line.removeprefix(body_prefix) input_add(line) # consume output and checksum line, if present. if self.last_dsl_name == dsl_name: checksum_re = self.last_checksum_re else: before, _, after = self.language.checksum_line.format(dsl_name=dsl_name, arguments='{arguments}').partition('{arguments}') assert _ == '{arguments}' checksum_re = create_regex(before, after, word=False) self.last_dsl_name = dsl_name self.last_checksum_re = checksum_re assert checksum_re is not None # scan forward for checksum line output_add, output_output = text_accumulator() arguments = None while self.input: line = self._line(lookahead=True) match = checksum_re.match(line.lstrip()) arguments = match.group(1) if match else None if arguments: break output_add(line) if self.is_start_line(line): break output: str | None output = output_output() if arguments: d = {} for field in shlex.split(arguments): name, equals, value = field.partition('=') if not equals: fail(f"Mangled Argument Clinic marker line: {line!r}") d[name.strip()] = value.strip() if self.verify: if 'input' in d: checksum = d['output'] else: checksum = d['checksum'] computed = compute_checksum(output, len(checksum)) if checksum != computed: fail("Checksum mismatch! " f"Expected {checksum!r}, computed {computed!r}. " "Suggested fix: remove all generated code including " "the end marker, or use the '-f' option.") else: # put back output output_lines = output.splitlines(keepends=True) self.line_number -= len(output_lines) self.input.extend(reversed(output_lines)) output = None return Block(input_output(), dsl_name, output=output) @dc.dataclass(slots=True, frozen=True) class Include: """ An include like: #include "pycore_long.h" // _Py_ID() """ # Example: "pycore_long.h". filename: str # Example: "_Py_ID()". reason: str # None means unconditional include. # Example: "#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)". condition: str | None def sort_key(self) -> tuple[str, str]: # order: '#if' comes before 'NO_CONDITION' return (self.condition or 'NO_CONDITION', self.filename) @dc.dataclass(slots=True) class BlockPrinter: language: Language f: io.StringIO = dc.field(default_factory=io.StringIO) def print_block( self, block: Block, *, core_includes: bool = False, limited_capi: bool, header_includes: dict[str, Include], ) -> None: input = block.input output = block.output dsl_name = block.dsl_name write = self.f.write assert not ((dsl_name is None) ^ (output is None)), "you must specify dsl_name and output together, dsl_name " + repr(dsl_name) if not dsl_name: write(input) return write(self.language.start_line.format(dsl_name=dsl_name)) write("\n") body_prefix = self.language.body_prefix.format(dsl_name=dsl_name) if not body_prefix: write(input) else: for line in input.split('\n'): write(body_prefix) write(line) write("\n") write(self.language.stop_line.format(dsl_name=dsl_name)) write("\n") output = '' if core_includes and header_includes: # Emit optional "#include" directives for C headers output += '\n' current_condition: str | None = None includes = sorted(header_includes.values(), key=Include.sort_key) for include in includes: if include.condition != current_condition: if current_condition: output += '#endif\n' current_condition = include.condition if include.condition: output += f'{include.condition}\n' if current_condition: line = f'# include "{include.filename}"' else: line = f'#include "{include.filename}"' if include.reason: comment = f'// {include.reason}\n' line = line.ljust(INCLUDE_COMMENT_COLUMN - 1) + comment output += line if current_condition: output += '#endif\n' input = ''.join(block.input) output += ''.join(block.output) if output: if not output.endswith('\n'): output += '\n' write(output) arguments = "output={output} input={input}".format( output=compute_checksum(output, 16), input=compute_checksum(input, 16) ) write(self.language.checksum_line.format(dsl_name=dsl_name, arguments=arguments)) write("\n") def write(self, text: str) -> None: self.f.write(text) class BufferSeries: """ Behaves like a "defaultlist". When you ask for an index that doesn't exist yet, the object grows the list until that item exists. So o[n] will always work. Supports negative indices for actual items. e.g. o[-1] is an element immediately preceding o[0]. """ def __init__(self) -> None: self._start = 0 self._array: list[_TextAccumulator] = [] self._constructor = _text_accumulator def __getitem__(self, i: int) -> _TextAccumulator: i -= self._start if i < 0: self._start += i prefix = [self._constructor() for x in range(-i)] self._array = prefix + self._array i = 0 while i >= len(self._array): self._array.append(self._constructor()) return self._array[i] def clear(self) -> None: for ta in self._array: ta.text.clear() def dump(self) -> str: texts = [ta.output() for ta in self._array] return "".join(texts) @dc.dataclass(slots=True, repr=False) class Destination: name: str type: str clinic: Clinic buffers: BufferSeries = dc.field(init=False, default_factory=BufferSeries) filename: str = dc.field(init=False) # set in __post_init__ args: dc.InitVar[tuple[str, ...]] = () def __post_init__(self, args: tuple[str, ...]) -> None: valid_types = ('buffer', 'file', 'suppress') if self.type not in valid_types: fail( f"Invalid destination type {self.type!r} for {self.name}, " f"must be {', '.join(valid_types)}" ) extra_arguments = 1 if self.type == "file" else 0 if len(args) < extra_arguments: fail(f"Not enough arguments for destination " f"{self.name!r} new {self.type!r}") if len(args) > extra_arguments: fail(f"Too many arguments for destination {self.name!r} new {self.type!r}") if self.type =='file': d = {} filename = self.clinic.filename d['path'] = filename dirname, basename = os.path.split(filename) if not dirname: dirname = '.' d['dirname'] = dirname d['basename'] = basename d['basename_root'], d['basename_extension'] = os.path.splitext(filename) self.filename = args[0].format_map(d) def __repr__(self) -> str: if self.type == 'file': type_repr = f"type='file' file={self.filename!r}" else: type_repr = f"type={self.type!r}" return f"" def clear(self) -> None: if self.type != 'buffer': fail(f"Can't clear destination {self.name!r}: it's not of type 'buffer'") self.buffers.clear() def dump(self) -> str: return self.buffers.dump() # "extensions" maps the file extension ("c", "py") to Language classes. LangDict = dict[str, Callable[[str], Language]] extensions: LangDict = { name: CLanguage for name in "c cc cpp cxx h hh hpp hxx".split() } extensions['py'] = PythonLanguage def write_file(filename: str, new_contents: str) -> None: try: with open(filename, encoding="utf-8") as fp: old_contents = fp.read() if old_contents == new_contents: # no change: avoid modifying the file modification time return except FileNotFoundError: pass # Atomic write using a temporary file and os.replace() filename_new = f"{filename}.new" with open(filename_new, "w", encoding="utf-8") as fp: fp.write(new_contents) try: os.replace(filename_new, filename) except: os.unlink(filename_new) raise ClassDict = dict[str, "Class"] DestinationDict = dict[str, Destination] ModuleDict = dict[str, "Module"] class Parser(Protocol): def __init__(self, clinic: Clinic) -> None: ... def parse(self, block: Block) -> None: ... clinic: Clinic | None = None class Clinic: presets_text = """ preset block everything block methoddef_ifndef buffer 1 docstring_prototype suppress parser_prototype suppress cpp_if suppress cpp_endif suppress preset original everything block methoddef_ifndef buffer 1 docstring_prototype suppress parser_prototype suppress cpp_if suppress cpp_endif suppress preset file everything file methoddef_ifndef file 1 docstring_prototype suppress parser_prototype suppress impl_definition block preset buffer everything buffer methoddef_ifndef buffer 1 impl_definition block docstring_prototype suppress impl_prototype suppress parser_prototype suppress preset partial-buffer everything buffer methoddef_ifndef buffer 1 docstring_prototype block impl_prototype suppress methoddef_define block parser_prototype block impl_definition block """ def __init__( self, language: CLanguage, printer: BlockPrinter | None = None, *, filename: str, limited_capi: bool, verify: bool = True, ) -> None: # maps strings to Parser objects. # (instantiated from the "parsers" global.) self.parsers: dict[str, Parser] = {} self.language: CLanguage = language if printer: fail("Custom printers are broken right now") self.printer = printer or BlockPrinter(language) self.verify = verify self.limited_capi = limited_capi self.filename = filename self.modules: ModuleDict = {} self.classes: ClassDict = {} self.functions: list[Function] = [] # dict: include name => Include instance self.includes: dict[str, Include] = {} self.line_prefix = self.line_suffix = '' self.destinations: DestinationDict = {} self.add_destination("block", "buffer") self.add_destination("suppress", "suppress") self.add_destination("buffer", "buffer") if filename: self.add_destination("file", "file", "{dirname}/clinic/{basename}.h") d = self.get_destination_buffer self.destination_buffers = { 'cpp_if': d('file'), 'docstring_prototype': d('suppress'), 'docstring_definition': d('file'), 'methoddef_define': d('file'), 'impl_prototype': d('file'), 'parser_prototype': d('suppress'), 'parser_definition': d('file'), 'cpp_endif': d('file'), 'methoddef_ifndef': d('file', 1), 'impl_definition': d('block'), } DestBufferType = dict[str, _TextAccumulator] DestBufferList = list[DestBufferType] self.destination_buffers_stack: DestBufferList = [] self.ifndef_symbols: set[str] = set() self.presets: dict[str, dict[Any, Any]] = {} preset = None for line in self.presets_text.strip().split('\n'): line = line.strip() if not line: continue name, value, *options = line.split() if name == 'preset': self.presets[value] = preset = {} continue if len(options): index = int(options[0]) else: index = 0 buffer = self.get_destination_buffer(value, index) if name == 'everything': for name in self.destination_buffers: preset[name] = buffer continue assert name in self.destination_buffers preset[name] = buffer global clinic clinic = self def add_include(self, name: str, reason: str, *, condition: str | None = None) -> None: try: existing = self.includes[name] except KeyError: pass else: if existing.condition and not condition: # If the previous include has a condition and the new one is # unconditional, override the include. pass else: # Already included, do nothing. Only mention a single reason, # no need to list all of them. return self.includes[name] = Include(name, reason, condition) def add_destination( self, name: str, type: str, *args: str ) -> None: if name in self.destinations: fail(f"Destination already exists: {name!r}") self.destinations[name] = Destination(name, type, self, args) def get_destination(self, name: str) -> Destination: d = self.destinations.get(name) if not d: fail(f"Destination does not exist: {name!r}") return d def get_destination_buffer( self, name: str, item: int = 0 ) -> _TextAccumulator: d = self.get_destination(name) return d.buffers[item] def parse(self, input: str) -> str: printer = self.printer self.block_parser = BlockParser(input, self.language, verify=self.verify) for block in self.block_parser: dsl_name = block.dsl_name if dsl_name: if dsl_name not in self.parsers: assert dsl_name in parsers, f"No parser to handle {dsl_name!r} block." self.parsers[dsl_name] = parsers[dsl_name](self) parser = self.parsers[dsl_name] parser.parse(block) printer.print_block(block, limited_capi=self.limited_capi, header_includes=self.includes) # these are destinations not buffers for name, destination in self.destinations.items(): if destination.type == 'suppress': continue output = destination.dump() if output: block = Block("", dsl_name="clinic", output=output) if destination.type == 'buffer': block.input = "dump " + name + "\n" warn("Destination buffer " + repr(name) + " not empty at end of file, emptying.") printer.write("\n") printer.print_block(block, limited_capi=self.limited_capi, header_includes=self.includes) continue if destination.type == 'file': try: dirname = os.path.dirname(destination.filename) try: os.makedirs(dirname) except FileExistsError: if not os.path.isdir(dirname): fail(f"Can't write to destination " f"{destination.filename!r}; " f"can't make directory {dirname!r}!") if self.verify: with open(destination.filename) as f: parser_2 = BlockParser(f.read(), language=self.language) blocks = list(parser_2) if (len(blocks) != 1) or (blocks[0].input != 'preserve\n'): fail(f"Modified destination file " f"{destination.filename!r}; not overwriting!") except FileNotFoundError: pass block.input = 'preserve\n' printer_2 = BlockPrinter(self.language) printer_2.print_block(block, core_includes=True, limited_capi=self.limited_capi, header_includes=self.includes) write_file(destination.filename, printer_2.f.getvalue()) continue return printer.f.getvalue() def _module_and_class( self, fields: Sequence[str] ) -> tuple[Module | Clinic, Class | None]: """ fields should be an iterable of field names. returns a tuple of (module, class). the module object could actually be self (a clinic object). this function is only ever used to find the parent of where a new class/module should go. """ parent: Clinic | Module | Class = self module: Clinic | Module = self cls: Class | None = None for idx, field in enumerate(fields): if not isinstance(parent, Class): if field in parent.modules: parent = module = parent.modules[field] continue if field in parent.classes: parent = cls = parent.classes[field] else: fullname = ".".join(fields[idx:]) fail(f"Parent class or module {fullname!r} does not exist.") return module, cls def __repr__(self) -> str: return "" def parse_file( filename: str, *, limited_capi: bool, output: str | None = None, verify: bool = True, ) -> None: if not output: output = filename extension = os.path.splitext(filename)[1][1:] if not extension: fail(f"Can't extract file type for file {filename!r}") try: language = extensions[extension](filename) except KeyError: fail(f"Can't identify file type for file {filename!r}") with open(filename, encoding="utf-8") as f: raw = f.read() # exit quickly if there are no clinic markers in the file find_start_re = BlockParser("", language).find_start_re if not find_start_re.search(raw): return if LIMITED_CAPI_REGEX.search(raw): limited_capi = True assert isinstance(language, CLanguage) clinic = Clinic(language, verify=verify, filename=filename, limited_capi=limited_capi) cooked = clinic.parse(raw) write_file(output, cooked) def compute_checksum( input: str | None, length: int | None = None ) -> str: input = input or '' s = hashlib.sha1(input.encode('utf-8')).hexdigest() if length: s = s[:length] return s class PythonParser: def __init__(self, clinic: Clinic) -> None: pass def parse(self, block: Block) -> None: with contextlib.redirect_stdout(io.StringIO()) as s: exec(block.input) block.output = s.getvalue() @dc.dataclass(repr=False) class Module: name: str module: Module | Clinic def __post_init__(self) -> None: self.parent = self.module self.modules: ModuleDict = {} self.classes: ClassDict = {} self.functions: list[Function] = [] def __repr__(self) -> str: return "" @dc.dataclass(repr=False) class Class: name: str module: Module | Clinic cls: Class | None typedef: str type_object: str def __post_init__(self) -> None: self.parent = self.cls or self.module self.classes: ClassDict = {} self.functions: list[Function] = [] def __repr__(self) -> str: return "" unsupported_special_methods: set[str] = set(""" __abs__ __add__ __and__ __call__ __delitem__ __divmod__ __eq__ __float__ __floordiv__ __ge__ __getattr__ __getattribute__ __getitem__ __gt__ __hash__ __iadd__ __iand__ __ifloordiv__ __ilshift__ __imatmul__ __imod__ __imul__ __index__ __int__ __invert__ __ior__ __ipow__ __irshift__ __isub__ __iter__ __itruediv__ __ixor__ __le__ __len__ __lshift__ __lt__ __matmul__ __mod__ __mul__ __neg__ __next__ __or__ __pos__ __pow__ __radd__ __rand__ __rdivmod__ __repr__ __rfloordiv__ __rlshift__ __rmatmul__ __rmod__ __rmul__ __ror__ __rpow__ __rrshift__ __rshift__ __rsub__ __rtruediv__ __rxor__ __setattr__ __setitem__ __str__ __sub__ __truediv__ __xor__ """.strip().split()) class FunctionKind(enum.Enum): INVALID = enum.auto() CALLABLE = enum.auto() STATIC_METHOD = enum.auto() CLASS_METHOD = enum.auto() METHOD_INIT = enum.auto() METHOD_NEW = enum.auto() @functools.cached_property def new_or_init(self) -> bool: return self in {FunctionKind.METHOD_INIT, FunctionKind.METHOD_NEW} def __repr__(self) -> str: return f"" INVALID: Final = FunctionKind.INVALID CALLABLE: Final = FunctionKind.CALLABLE STATIC_METHOD: Final = FunctionKind.STATIC_METHOD CLASS_METHOD: Final = FunctionKind.CLASS_METHOD METHOD_INIT: Final = FunctionKind.METHOD_INIT METHOD_NEW: Final = FunctionKind.METHOD_NEW ParamDict = dict[str, "Parameter"] ReturnConverterType = Callable[..., "CReturnConverter"] @dc.dataclass(repr=False) class Function: """ Mutable duck type for inspect.Function. docstring - a str containing * embedded line breaks * text outdented to the left margin * no trailing whitespace. It will always be true that (not docstring) or ((not docstring[0].isspace()) and (docstring.rstrip() == docstring)) """ parameters: ParamDict = dc.field(default_factory=dict) _: dc.KW_ONLY name: str module: Module | Clinic cls: Class | None c_basename: str full_name: str return_converter: CReturnConverter kind: FunctionKind coexist: bool return_annotation: object = inspect.Signature.empty docstring: str = '' # docstring_only means "don't generate a machine-readable # signature, just a normal docstring". it's True for # functions with optional groups because we can't represent # those accurately with inspect.Signature in 3.4. docstring_only: bool = False critical_section: bool = False target_critical_section: list[str] = dc.field(default_factory=list) def __post_init__(self) -> None: self.parent = self.cls or self.module self.self_converter: self_converter | None = None self.__render_parameters__: list[Parameter] | None = None @functools.cached_property def displayname(self) -> str: """Pretty-printable name.""" if self.kind.new_or_init: assert isinstance(self.cls, Class) return self.cls.name else: return self.name @functools.cached_property def fulldisplayname(self) -> str: parent: Class | Module | Clinic | None if self.kind.new_or_init: parent = getattr(self.cls, "parent", None) else: parent = self.parent name = self.displayname while isinstance(parent, (Module, Class)): name = f"{parent.name}.{name}" parent = parent.parent return name @property def render_parameters(self) -> list[Parameter]: if not self.__render_parameters__: l: list[Parameter] = [] self.__render_parameters__ = l for p in self.parameters.values(): p = p.copy() p.converter.pre_render() l.append(p) return self.__render_parameters__ @property def methoddef_flags(self) -> str | None: if self.kind.new_or_init: return None flags = [] match self.kind: case FunctionKind.CLASS_METHOD: flags.append('METH_CLASS') case FunctionKind.STATIC_METHOD: flags.append('METH_STATIC') case _ as kind: assert kind is FunctionKind.CALLABLE, f"unknown kind: {kind!r}" if self.coexist: flags.append('METH_COEXIST') return '|'.join(flags) def __repr__(self) -> str: return f'' def copy(self, **overrides: Any) -> Function: f = dc.replace(self, **overrides) f.parameters = { name: value.copy(function=f) for name, value in f.parameters.items() } return f VersionTuple = tuple[int, int] @dc.dataclass(repr=False, slots=True) class Parameter: """ Mutable duck type of inspect.Parameter. """ name: str kind: inspect._ParameterKind _: dc.KW_ONLY default: object = inspect.Parameter.empty function: Function converter: CConverter annotation: object = inspect.Parameter.empty docstring: str = '' group: int = 0 # (`None` signifies that there is no deprecation) deprecated_positional: VersionTuple | None = None deprecated_keyword: VersionTuple | None = None right_bracket_count: int = dc.field(init=False, default=0) def __repr__(self) -> str: return f'' def is_keyword_only(self) -> bool: return self.kind == inspect.Parameter.KEYWORD_ONLY def is_positional_only(self) -> bool: return self.kind == inspect.Parameter.POSITIONAL_ONLY def is_vararg(self) -> bool: return self.kind == inspect.Parameter.VAR_POSITIONAL def is_optional(self) -> bool: return not self.is_vararg() and (self.default is not unspecified) def copy( self, /, *, converter: CConverter | None = None, function: Function | None = None, **overrides: Any ) -> Parameter: function = function or self.function if not converter: converter = copy.copy(self.converter) converter.function = function return dc.replace(self, **overrides, function=function, converter=converter) def get_displayname(self, i: int) -> str: if i == 0: return 'argument' if not self.is_positional_only(): return f'argument {self.name!r}' else: return f'argument {i}' def render_docstring(self) -> str: add, out = text_accumulator() add(f" {self.name}\n") for line in self.docstring.split("\n"): add(f" {line}\n") return out().rstrip() CConverterClassT = TypeVar("CConverterClassT", bound=type["CConverter"]) def add_c_converter( f: CConverterClassT, name: str | None = None ) -> CConverterClassT: if not name: name = f.__name__ if not name.endswith('_converter'): return f name = name.removesuffix('_converter') converters[name] = f return f def add_default_legacy_c_converter(cls: CConverterClassT) -> CConverterClassT: # automatically add converter for default format unit # (but without stomping on the existing one if it's already # set, in case you subclass) if ((cls.format_unit not in ('O&', '')) and (cls.format_unit not in legacy_converters)): legacy_converters[cls.format_unit] = cls return cls def add_legacy_c_converter( format_unit: str, **kwargs: Any ) -> Callable[[CConverterClassT], CConverterClassT]: """ Adds a legacy converter. """ def closure(f: CConverterClassT) -> CConverterClassT: added_f: Callable[..., CConverter] if not kwargs: added_f = f else: added_f = functools.partial(f, **kwargs) if format_unit: legacy_converters[format_unit] = added_f return f return closure class CConverterAutoRegister(type): def __init__( cls, name: str, bases: tuple[type, ...], classdict: dict[str, Any] ) -> None: converter_cls = cast(type["CConverter"], cls) add_c_converter(converter_cls) add_default_legacy_c_converter(converter_cls) class CConverter(metaclass=CConverterAutoRegister): """ For the init function, self, name, function, and default must be keyword-or-positional parameters. All other parameters must be keyword-only. """ # The C name to use for this variable. name: str # The Python name to use for this variable. py_name: str # The C type to use for this variable. # 'type' should be a Python string specifying the type, e.g. "int". # If this is a pointer type, the type string should end with ' *'. type: str | None = None # The Python default value for this parameter, as a Python value. # Or the magic value "unspecified" if there is no default. # Or the magic value "unknown" if this value is a cannot be evaluated # at Argument-Clinic-preprocessing time (but is presumed to be valid # at runtime). default: object = unspecified # If not None, default must be isinstance() of this type. # (You can also specify a tuple of types.) default_type: bltns.type[Any] | tuple[bltns.type[Any], ...] | None = None # "default" converted into a C value, as a string. # Or None if there is no default. c_default: str | None = None # "default" converted into a Python value, as a string. # Or None if there is no default. py_default: str | None = None # The default value used to initialize the C variable when # there is no default, but not specifying a default may # result in an "uninitialized variable" warning. This can # easily happen when using option groups--although # properly-written code won't actually use the variable, # the variable does get passed in to the _impl. (Ah, if # only dataflow analysis could inline the static function!) # # This value is specified as a string. # Every non-abstract subclass should supply a valid value. c_ignored_default: str = 'NULL' # If true, wrap with Py_UNUSED. unused = False # The C converter *function* to be used, if any. # (If this is not None, format_unit must be 'O&'.) converter: str | None = None # Should Argument Clinic add a '&' before the name of # the variable when passing it into the _impl function? impl_by_reference = False # Should Argument Clinic add a '&' before the name of # the variable when passing it into PyArg_ParseTuple (AndKeywords)? parse_by_reference = True ############################################################# ############################################################# ## You shouldn't need to read anything below this point to ## ## write your own converter functions. ## ############################################################# ############################################################# # The "format unit" to specify for this variable when # parsing arguments using PyArg_ParseTuple (AndKeywords). # Custom converters should always use the default value of 'O&'. format_unit = 'O&' # What encoding do we want for this variable? Only used # by format units starting with 'e'. encoding: str | None = None # Should this object be required to be a subclass of a specific type? # If not None, should be a string representing a pointer to a # PyTypeObject (e.g. "&PyUnicode_Type"). # Only used by the 'O!' format unit (and the "object" converter). subclass_of: str | None = None # See also the 'length_name' property. # Only used by format units ending with '#'. length = False # Should we show this parameter in the generated # __text_signature__? This is *almost* always True. # (It's only False for __new__, __init__, and METH_STATIC functions.) show_in_signature = True # Overrides the name used in a text signature. # The name used for a "self" parameter must be one of # self, type, or module; however users can set their own. # This lets the self_converter overrule the user-settable # name, *just* for the text signature. # Only set by self_converter. signature_name: str | None = None include: Include | None = None broken_limited_capi: bool = False # keep in sync with self_converter.__init__! def __init__(self, # Positional args: name: str, py_name: str, function: Function, default: object = unspecified, *, # Keyword only args: c_default: str | None = None, py_default: str | None = None, annotation: str | Literal[Sentinels.unspecified] = unspecified, unused: bool = False, **kwargs: Any ) -> None: self.name = ensure_legal_c_identifier(name) self.py_name = py_name self.unused = unused if default is not unspecified: if (self.default_type and default is not unknown and not isinstance(default, self.default_type) ): if isinstance(self.default_type, type): types_str = self.default_type.__name__ else: names = [cls.__name__ for cls in self.default_type] types_str = ', '.join(names) cls_name = self.__class__.__name__ fail(f"{cls_name}: default value {default!r} for field " f"{name!r} is not of type {types_str!r}") self.default = default if c_default: self.c_default = c_default if py_default: self.py_default = py_default if annotation is not unspecified: fail("The 'annotation' parameter is not currently permitted.") # Make sure not to set self.function until after converter_init() has been called. # This prevents you from caching information # about the function in converter_init(). # (That breaks if we get cloned.) self.converter_init(**kwargs) self.function = function # Add a custom __getattr__ method to improve the error message # if somebody tries to access self.function in converter_init(). # # mypy will assume arbitrary access is okay for a class with a __getattr__ method, # and that's not what we want, # so put it inside an `if not TYPE_CHECKING` block if not TYPE_CHECKING: def __getattr__(self, attr): if attr == "function": fail( f"{self.__class__.__name__!r} object has no attribute 'function'.\n" f"Note: accessing self.function inside converter_init is disallowed!" ) return super().__getattr__(attr) # this branch is just here for coverage reporting else: # pragma: no cover pass def converter_init(self) -> None: pass def is_optional(self) -> bool: return (self.default is not unspecified) def _render_self(self, parameter: Parameter, data: CRenderData) -> None: self.parameter = parameter name = self.parser_name # impl_arguments s = ("&" if self.impl_by_reference else "") + name data.impl_arguments.append(s) if self.length: data.impl_arguments.append(self.length_name) # impl_parameters data.impl_parameters.append(self.simple_declaration(by_reference=self.impl_by_reference)) if self.length: data.impl_parameters.append(f"Py_ssize_t {self.length_name}") def _render_non_self( self, parameter: Parameter, data: CRenderData ) -> None: self.parameter = parameter name = self.name # declarations d = self.declaration(in_parser=True) data.declarations.append(d) # initializers initializers = self.initialize() if initializers: data.initializers.append('/* initializers for ' + name + ' */\n' + initializers.rstrip()) # modifications modifications = self.modify() if modifications: data.modifications.append('/* modifications for ' + name + ' */\n' + modifications.rstrip()) # keywords if parameter.is_vararg(): pass elif parameter.is_positional_only(): data.keywords.append('') else: data.keywords.append(parameter.name) # format_units if self.is_optional() and '|' not in data.format_units: data.format_units.append('|') if parameter.is_keyword_only() and '$' not in data.format_units: data.format_units.append('$') data.format_units.append(self.format_unit) # parse_arguments self.parse_argument(data.parse_arguments) # post_parsing if post_parsing := self.post_parsing(): data.post_parsing.append('/* Post parse cleanup for ' + name + ' */\n' + post_parsing.rstrip() + '\n') # cleanup cleanup = self.cleanup() if cleanup: data.cleanup.append('/* Cleanup for ' + name + ' */\n' + cleanup.rstrip() + "\n") def render(self, parameter: Parameter, data: CRenderData) -> None: """ parameter is a clinic.Parameter instance. data is a CRenderData instance. """ self._render_self(parameter, data) self._render_non_self(parameter, data) @functools.cached_property def length_name(self) -> str: """Computes the name of the associated "length" variable.""" assert self.length is not None return self.parser_name + "_length" # Why is this one broken out separately? # For "positional-only" function parsing, # which generates a bunch of PyArg_ParseTuple calls. def parse_argument(self, args: list[str]) -> None: assert not (self.converter and self.encoding) if self.format_unit == 'O&': assert self.converter args.append(self.converter) if self.encoding: args.append(c_repr(self.encoding)) elif self.subclass_of: args.append(self.subclass_of) s = ("&" if self.parse_by_reference else "") + self.parser_name args.append(s) if self.length: args.append(f"&{self.length_name}") # # All the functions after here are intended as extension points. # def simple_declaration( self, by_reference: bool = False, *, in_parser: bool = False ) -> str: """ Computes the basic declaration of the variable. Used in computing the prototype declaration and the variable declaration. """ assert isinstance(self.type, str) prototype = [self.type] if by_reference or not self.type.endswith('*'): prototype.append(" ") if by_reference: prototype.append('*') if in_parser: name = self.parser_name else: name = self.name if self.unused: name = f"Py_UNUSED({name})" prototype.append(name) return "".join(prototype) def declaration(self, *, in_parser: bool = False) -> str: """ The C statement to declare this variable. """ declaration = [self.simple_declaration(in_parser=True)] default = self.c_default if not default and self.parameter.group: default = self.c_ignored_default if default: declaration.append(" = ") declaration.append(default) declaration.append(";") if self.length: declaration.append('\n') declaration.append(f"Py_ssize_t {self.length_name};") return "".join(declaration) def initialize(self) -> str: """ The C statements required to set up this variable before parsing. Returns a string containing this code indented at column 0. If no initialization is necessary, returns an empty string. """ return "" def modify(self) -> str: """ The C statements required to modify this variable after parsing. Returns a string containing this code indented at column 0. If no modification is necessary, returns an empty string. """ return "" def post_parsing(self) -> str: """ The C statements required to do some operations after the end of parsing but before cleaning up. Return a string containing this code indented at column 0. If no operation is necessary, return an empty string. """ return "" def cleanup(self) -> str: """ The C statements required to clean up after this variable. Returns a string containing this code indented at column 0. If no cleanup is necessary, returns an empty string. """ return "" def pre_render(self) -> None: """ A second initialization function, like converter_init, called just before rendering. You are permitted to examine self.function here. """ pass def bad_argument(self, displayname: str, expected: str, *, limited_capi: bool, expected_literal: bool = True) -> str: assert '"' not in expected if limited_capi: if expected_literal: return (f'PyErr_Format(PyExc_TypeError, ' f'"{{{{name}}}}() {displayname} must be {expected}, not %.50s", ' f'{{argname}} == Py_None ? "None" : Py_TYPE({{argname}})->tp_name);') else: return (f'PyErr_Format(PyExc_TypeError, ' f'"{{{{name}}}}() {displayname} must be %.50s, not %.50s", ' f'"{expected}", ' f'{{argname}} == Py_None ? "None" : Py_TYPE({{argname}})->tp_name);') else: if expected_literal: expected = f'"{expected}"' if clinic is not None: clinic.add_include('pycore_modsupport.h', '_PyArg_BadArgument()') return f'_PyArg_BadArgument("{{{{name}}}}", "{displayname}", {expected}, {{argname}});' def format_code(self, fmt: str, *, argname: str, bad_argument: str | None = None, bad_argument2: str | None = None, **kwargs: Any) -> str: if '{bad_argument}' in fmt: if not bad_argument: raise TypeError("required 'bad_argument' argument") fmt = fmt.replace('{bad_argument}', bad_argument) if '{bad_argument2}' in fmt: if not bad_argument2: raise TypeError("required 'bad_argument2' argument") fmt = fmt.replace('{bad_argument2}', bad_argument2) return fmt.format(argname=argname, paramname=self.parser_name, **kwargs) def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'O&': return self.format_code(""" if (!{converter}({argname}, &{paramname})) {{{{ goto exit; }}}} """, argname=argname, converter=self.converter) if self.format_unit == 'O!': cast = '(%s)' % self.type if self.type != 'PyObject *' else '' if self.subclass_of in type_checks: typecheck, typename = type_checks[self.subclass_of] return self.format_code(""" if (!{typecheck}({argname})) {{{{ {bad_argument} goto exit; }}}} {paramname} = {cast}{argname}; """, argname=argname, bad_argument=self.bad_argument(displayname, typename, limited_capi=limited_capi), typecheck=typecheck, typename=typename, cast=cast) return self.format_code(""" if (!PyObject_TypeCheck({argname}, {subclass_of})) {{{{ {bad_argument} goto exit; }}}} {paramname} = {cast}{argname}; """, argname=argname, bad_argument=self.bad_argument(displayname, '({subclass_of})->tp_name', expected_literal=False, limited_capi=limited_capi), subclass_of=self.subclass_of, cast=cast) if self.format_unit == 'O': cast = '(%s)' % self.type if self.type != 'PyObject *' else '' return self.format_code(""" {paramname} = {cast}{argname}; """, argname=argname, cast=cast) return None def set_template_dict(self, template_dict: TemplateDict) -> None: pass @property def parser_name(self) -> str: if self.name in CLINIC_PREFIXED_ARGS: # bpo-39741 return CLINIC_PREFIX + self.name else: return self.name def add_include(self, name: str, reason: str, *, condition: str | None = None) -> None: if self.include is not None: raise ValueError("a converter only supports a single include") self.include = Include(name, reason, condition) type_checks = { '&PyLong_Type': ('PyLong_Check', 'int'), '&PyTuple_Type': ('PyTuple_Check', 'tuple'), '&PyList_Type': ('PyList_Check', 'list'), '&PySet_Type': ('PySet_Check', 'set'), '&PyFrozenSet_Type': ('PyFrozenSet_Check', 'frozenset'), '&PyDict_Type': ('PyDict_Check', 'dict'), '&PyUnicode_Type': ('PyUnicode_Check', 'str'), '&PyBytes_Type': ('PyBytes_Check', 'bytes'), '&PyByteArray_Type': ('PyByteArray_Check', 'bytearray'), } ConverterType = Callable[..., CConverter] ConverterDict = dict[str, ConverterType] # maps strings to callables. # these callables must be of the form: # def foo(name, default, *, ...) # The callable may have any number of keyword-only parameters. # The callable must return a CConverter object. # The callable should not call builtins.print. converters: ConverterDict = {} # maps strings to callables. # these callables follow the same rules as those for "converters" above. # note however that they will never be called with keyword-only parameters. legacy_converters: ConverterDict = {} # maps strings to callables. # these callables must be of the form: # def foo(*, ...) # The callable may have any number of keyword-only parameters. # The callable must return a CReturnConverter object. # The callable should not call builtins.print. ReturnConverterDict = dict[str, ReturnConverterType] return_converters: ReturnConverterDict = {} TypeSet = set[bltns.type[Any]] class bool_converter(CConverter): type = 'int' default_type = bool format_unit = 'p' c_ignored_default = '0' def converter_init(self, *, accept: TypeSet = {object}) -> None: if accept == {int}: self.format_unit = 'i' elif accept != {object}: fail(f"bool_converter: illegal 'accept' argument {accept!r}") if self.default is not unspecified: self.default = bool(self.default) self.c_default = str(int(self.default)) def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'i': return self.format_code(""" {paramname} = PyLong_AsInt({argname}); if ({paramname} == -1 && PyErr_Occurred()) {{{{ goto exit; }}}} """, argname=argname) elif self.format_unit == 'p': return self.format_code(""" {paramname} = PyObject_IsTrue({argname}); if ({paramname} < 0) {{{{ goto exit; }}}} """, argname=argname) return super().parse_arg(argname, displayname, limited_capi=limited_capi) class defining_class_converter(CConverter): """ A special-case converter: this is the default converter used for the defining class. """ type = 'PyTypeObject *' format_unit = '' show_in_signature = False def converter_init(self, *, type: str | None = None) -> None: self.specified_type = type def render(self, parameter: Parameter, data: CRenderData) -> None: self._render_self(parameter, data) def set_template_dict(self, template_dict: TemplateDict) -> None: template_dict['defining_class_name'] = self.name class char_converter(CConverter): type = 'char' default_type = (bytes, bytearray) format_unit = 'c' c_ignored_default = "'\0'" def converter_init(self) -> None: if isinstance(self.default, self.default_type): if len(self.default) != 1: fail(f"char_converter: illegal default value {self.default!r}") self.c_default = repr(bytes(self.default))[1:] if self.c_default == '"\'"': self.c_default = r"'\''" def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'c': return self.format_code(""" if (PyBytes_Check({argname}) && PyBytes_GET_SIZE({argname}) == 1) {{{{ {paramname} = PyBytes_AS_STRING({argname})[0]; }}}} else if (PyByteArray_Check({argname}) && PyByteArray_GET_SIZE({argname}) == 1) {{{{ {paramname} = PyByteArray_AS_STRING({argname})[0]; }}}} else {{{{ {bad_argument} goto exit; }}}} """, argname=argname, bad_argument=self.bad_argument(displayname, 'a byte string of length 1', limited_capi=limited_capi), ) return super().parse_arg(argname, displayname, limited_capi=limited_capi) @add_legacy_c_converter('B', bitwise=True) class unsigned_char_converter(CConverter): type = 'unsigned char' default_type = int format_unit = 'b' c_ignored_default = "'\0'" def converter_init(self, *, bitwise: bool = False) -> None: if bitwise: self.format_unit = 'B' def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'b': return self.format_code(""" {{{{ long ival = PyLong_AsLong({argname}); if (ival == -1 && PyErr_Occurred()) {{{{ goto exit; }}}} else if (ival < 0) {{{{ PyErr_SetString(PyExc_OverflowError, "unsigned byte integer is less than minimum"); goto exit; }}}} else if (ival > UCHAR_MAX) {{{{ PyErr_SetString(PyExc_OverflowError, "unsigned byte integer is greater than maximum"); goto exit; }}}} else {{{{ {paramname} = (unsigned char) ival; }}}} }}}} """, argname=argname) elif self.format_unit == 'B': return self.format_code(""" {{{{ unsigned long ival = PyLong_AsUnsignedLongMask({argname}); if (ival == (unsigned long)-1 && PyErr_Occurred()) {{{{ goto exit; }}}} else {{{{ {paramname} = (unsigned char) ival; }}}} }}}} """, argname=argname) return super().parse_arg(argname, displayname, limited_capi=limited_capi) class byte_converter(unsigned_char_converter): pass class short_converter(CConverter): type = 'short' default_type = int format_unit = 'h' c_ignored_default = "0" def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'h': return self.format_code(""" {{{{ long ival = PyLong_AsLong({argname}); if (ival == -1 && PyErr_Occurred()) {{{{ goto exit; }}}} else if (ival < SHRT_MIN) {{{{ PyErr_SetString(PyExc_OverflowError, "signed short integer is less than minimum"); goto exit; }}}} else if (ival > SHRT_MAX) {{{{ PyErr_SetString(PyExc_OverflowError, "signed short integer is greater than maximum"); goto exit; }}}} else {{{{ {paramname} = (short) ival; }}}} }}}} """, argname=argname) return super().parse_arg(argname, displayname, limited_capi=limited_capi) class unsigned_short_converter(CConverter): type = 'unsigned short' default_type = int c_ignored_default = "0" def converter_init(self, *, bitwise: bool = False) -> None: if bitwise: self.format_unit = 'H' else: self.converter = '_PyLong_UnsignedShort_Converter' self.add_include('pycore_long.h', '_PyLong_UnsignedShort_Converter()') def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'H': return self.format_code(""" {paramname} = (unsigned short)PyLong_AsUnsignedLongMask({argname}); if ({paramname} == (unsigned short)-1 && PyErr_Occurred()) {{{{ goto exit; }}}} """, argname=argname) if not limited_capi: return super().parse_arg(argname, displayname, limited_capi=limited_capi) # NOTE: Raises OverflowError for negative integer. return self.format_code(""" {{{{ unsigned long uval = PyLong_AsUnsignedLong({argname}); if (uval == (unsigned long)-1 && PyErr_Occurred()) {{{{ goto exit; }}}} if (uval > USHRT_MAX) {{{{ PyErr_SetString(PyExc_OverflowError, "Python int too large for C unsigned short"); goto exit; }}}} {paramname} = (unsigned short) uval; }}}} """, argname=argname) @add_legacy_c_converter('C', accept={str}) class int_converter(CConverter): type = 'int' default_type = int format_unit = 'i' c_ignored_default = "0" def converter_init( self, *, accept: TypeSet = {int}, type: str | None = None ) -> None: if accept == {str}: self.format_unit = 'C' elif accept != {int}: fail(f"int_converter: illegal 'accept' argument {accept!r}") if type is not None: self.type = type def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'i': return self.format_code(""" {paramname} = PyLong_AsInt({argname}); if ({paramname} == -1 && PyErr_Occurred()) {{{{ goto exit; }}}} """, argname=argname) elif self.format_unit == 'C': return self.format_code(""" if (!PyUnicode_Check({argname})) {{{{ {bad_argument} goto exit; }}}} if (PyUnicode_GET_LENGTH({argname}) != 1) {{{{ {bad_argument} goto exit; }}}} {paramname} = PyUnicode_READ_CHAR({argname}, 0); """, argname=argname, bad_argument=self.bad_argument(displayname, 'a unicode character', limited_capi=limited_capi), ) return super().parse_arg(argname, displayname, limited_capi=limited_capi) class unsigned_int_converter(CConverter): type = 'unsigned int' default_type = int c_ignored_default = "0" def converter_init(self, *, bitwise: bool = False) -> None: if bitwise: self.format_unit = 'I' else: self.converter = '_PyLong_UnsignedInt_Converter' self.add_include('pycore_long.h', '_PyLong_UnsignedInt_Converter()') def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'I': return self.format_code(""" {paramname} = (unsigned int)PyLong_AsUnsignedLongMask({argname}); if ({paramname} == (unsigned int)-1 && PyErr_Occurred()) {{{{ goto exit; }}}} """, argname=argname) if not limited_capi: return super().parse_arg(argname, displayname, limited_capi=limited_capi) # NOTE: Raises OverflowError for negative integer. return self.format_code(""" {{{{ unsigned long uval = PyLong_AsUnsignedLong({argname}); if (uval == (unsigned long)-1 && PyErr_Occurred()) {{{{ goto exit; }}}} if (uval > UINT_MAX) {{{{ PyErr_SetString(PyExc_OverflowError, "Python int too large for C unsigned int"); goto exit; }}}} {paramname} = (unsigned int) uval; }}}} """, argname=argname) class long_converter(CConverter): type = 'long' default_type = int format_unit = 'l' c_ignored_default = "0" def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'l': return self.format_code(""" {paramname} = PyLong_AsLong({argname}); if ({paramname} == -1 && PyErr_Occurred()) {{{{ goto exit; }}}} """, argname=argname) return super().parse_arg(argname, displayname, limited_capi=limited_capi) class unsigned_long_converter(CConverter): type = 'unsigned long' default_type = int c_ignored_default = "0" def converter_init(self, *, bitwise: bool = False) -> None: if bitwise: self.format_unit = 'k' else: self.converter = '_PyLong_UnsignedLong_Converter' self.add_include('pycore_long.h', '_PyLong_UnsignedLong_Converter()') def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'k': return self.format_code(""" if (!PyLong_Check({argname})) {{{{ {bad_argument} goto exit; }}}} {paramname} = PyLong_AsUnsignedLongMask({argname}); """, argname=argname, bad_argument=self.bad_argument(displayname, 'int', limited_capi=limited_capi), ) if not limited_capi: return super().parse_arg(argname, displayname, limited_capi=limited_capi) # NOTE: Raises OverflowError for negative integer. return self.format_code(""" {paramname} = PyLong_AsUnsignedLong({argname}); if ({paramname} == (unsigned long)-1 && PyErr_Occurred()) {{{{ goto exit; }}}} """, argname=argname) class long_long_converter(CConverter): type = 'long long' default_type = int format_unit = 'L' c_ignored_default = "0" def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'L': return self.format_code(""" {paramname} = PyLong_AsLongLong({argname}); if ({paramname} == -1 && PyErr_Occurred()) {{{{ goto exit; }}}} """, argname=argname) return super().parse_arg(argname, displayname, limited_capi=limited_capi) class unsigned_long_long_converter(CConverter): type = 'unsigned long long' default_type = int c_ignored_default = "0" def converter_init(self, *, bitwise: bool = False) -> None: if bitwise: self.format_unit = 'K' else: self.converter = '_PyLong_UnsignedLongLong_Converter' self.add_include('pycore_long.h', '_PyLong_UnsignedLongLong_Converter()') def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'K': return self.format_code(""" if (!PyLong_Check({argname})) {{{{ {bad_argument} goto exit; }}}} {paramname} = PyLong_AsUnsignedLongLongMask({argname}); """, argname=argname, bad_argument=self.bad_argument(displayname, 'int', limited_capi=limited_capi), ) if not limited_capi: return super().parse_arg(argname, displayname, limited_capi=limited_capi) # NOTE: Raises OverflowError for negative integer. return self.format_code(""" {paramname} = PyLong_AsUnsignedLongLong({argname}); if ({paramname} == (unsigned long long)-1 && PyErr_Occurred()) {{{{ goto exit; }}}} """, argname=argname) class Py_ssize_t_converter(CConverter): type = 'Py_ssize_t' c_ignored_default = "0" def converter_init(self, *, accept: TypeSet = {int}) -> None: if accept == {int}: self.format_unit = 'n' self.default_type = int self.add_include('pycore_abstract.h', '_PyNumber_Index()') elif accept == {int, NoneType}: self.converter = '_Py_convert_optional_to_ssize_t' self.add_include('pycore_abstract.h', '_Py_convert_optional_to_ssize_t()') else: fail(f"Py_ssize_t_converter: illegal 'accept' argument {accept!r}") def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'n': if limited_capi: PyNumber_Index = 'PyNumber_Index' else: PyNumber_Index = '_PyNumber_Index' return self.format_code(""" {{{{ Py_ssize_t ival = -1; PyObject *iobj = {PyNumber_Index}({argname}); if (iobj != NULL) {{{{ ival = PyLong_AsSsize_t(iobj); Py_DECREF(iobj); }}}} if (ival == -1 && PyErr_Occurred()) {{{{ goto exit; }}}} {paramname} = ival; }}}} """, argname=argname, PyNumber_Index=PyNumber_Index) if not limited_capi: return super().parse_arg(argname, displayname, limited_capi=limited_capi) return self.format_code(""" if ({argname} != Py_None) {{{{ if (PyIndex_Check({argname})) {{{{ {paramname} = PyNumber_AsSsize_t({argname}, PyExc_OverflowError); if ({paramname} == -1 && PyErr_Occurred()) {{{{ goto exit; }}}} }}}} else {{{{ {bad_argument} goto exit; }}}} }}}} """, argname=argname, bad_argument=self.bad_argument(displayname, 'integer or None', limited_capi=limited_capi), ) class slice_index_converter(CConverter): type = 'Py_ssize_t' def converter_init(self, *, accept: TypeSet = {int, NoneType}) -> None: if accept == {int}: self.converter = '_PyEval_SliceIndexNotNone' self.nullable = False elif accept == {int, NoneType}: self.converter = '_PyEval_SliceIndex' self.nullable = True else: fail(f"slice_index_converter: illegal 'accept' argument {accept!r}") def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if not limited_capi: return super().parse_arg(argname, displayname, limited_capi=limited_capi) if self.nullable: return self.format_code(""" if (!Py_IsNone({argname})) {{{{ if (PyIndex_Check({argname})) {{{{ {paramname} = PyNumber_AsSsize_t({argname}, NULL); if ({paramname} == -1 && PyErr_Occurred()) {{{{ return 0; }}}} }}}} else {{{{ PyErr_SetString(PyExc_TypeError, "slice indices must be integers or " "None or have an __index__ method"); goto exit; }}}} }}}} """, argname=argname) else: return self.format_code(""" if (PyIndex_Check({argname})) {{{{ {paramname} = PyNumber_AsSsize_t({argname}, NULL); if ({paramname} == -1 && PyErr_Occurred()) {{{{ goto exit; }}}} }}}} else {{{{ PyErr_SetString(PyExc_TypeError, "slice indices must be integers or " "have an __index__ method"); goto exit; }}}} """, argname=argname) class size_t_converter(CConverter): type = 'size_t' converter = '_PyLong_Size_t_Converter' c_ignored_default = "0" def converter_init(self, *, accept: TypeSet = {int, NoneType}) -> None: self.add_include('pycore_long.h', '_PyLong_Size_t_Converter()') def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'n': return self.format_code(""" {paramname} = PyNumber_AsSsize_t({argname}, PyExc_OverflowError); if ({paramname} == -1 && PyErr_Occurred()) {{{{ goto exit; }}}} """, argname=argname) if not limited_capi: return super().parse_arg(argname, displayname, limited_capi=limited_capi) # NOTE: Raises OverflowError for negative integer. return self.format_code(""" {paramname} = PyLong_AsSize_t({argname}); if ({paramname} == (size_t)-1 && PyErr_Occurred()) {{{{ goto exit; }}}} """, argname=argname) class fildes_converter(CConverter): type = 'int' converter = '_PyLong_FileDescriptor_Converter' def converter_init(self, *, accept: TypeSet = {int, NoneType}) -> None: self.add_include('pycore_fileutils.h', '_PyLong_FileDescriptor_Converter()') def _parse_arg(self, argname: str, displayname: str) -> str | None: return self.format_code(""" {paramname} = PyObject_AsFileDescriptor({argname}); if ({paramname} == -1) {{{{ goto exit; }}}} """, argname=argname) class float_converter(CConverter): type = 'float' default_type = float format_unit = 'f' c_ignored_default = "0.0" def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'f': return self.format_code(""" if (PyFloat_CheckExact({argname})) {{{{ {paramname} = (float) (PyFloat_AS_DOUBLE({argname})); }}}} else {{{{ {paramname} = (float) PyFloat_AsDouble({argname}); if ({paramname} == -1.0 && PyErr_Occurred()) {{{{ goto exit; }}}} }}}} """, argname=argname) return super().parse_arg(argname, displayname, limited_capi=limited_capi) class double_converter(CConverter): type = 'double' default_type = float format_unit = 'd' c_ignored_default = "0.0" def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'd': return self.format_code(""" if (PyFloat_CheckExact({argname})) {{{{ {paramname} = PyFloat_AS_DOUBLE({argname}); }}}} else {{{{ {paramname} = PyFloat_AsDouble({argname}); if ({paramname} == -1.0 && PyErr_Occurred()) {{{{ goto exit; }}}} }}}} """, argname=argname) return super().parse_arg(argname, displayname, limited_capi=limited_capi) class Py_complex_converter(CConverter): type = 'Py_complex' default_type = complex format_unit = 'D' c_ignored_default = "{0.0, 0.0}" def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'D': return self.format_code(""" {paramname} = PyComplex_AsCComplex({argname}); if (PyErr_Occurred()) {{{{ goto exit; }}}} """, argname=argname) return super().parse_arg(argname, displayname, limited_capi=limited_capi) class object_converter(CConverter): type = 'PyObject *' format_unit = 'O' def converter_init( self, *, converter: str | None = None, type: str | None = None, subclass_of: str | None = None ) -> None: if converter: if subclass_of: fail("object: Cannot pass in both 'converter' and 'subclass_of'") self.format_unit = 'O&' self.converter = converter elif subclass_of: self.format_unit = 'O!' self.subclass_of = subclass_of if type is not None: self.type = type # # We define three conventions for buffer types in the 'accept' argument: # # buffer : any object supporting the buffer interface # rwbuffer: any object supporting the buffer interface, but must be writeable # robuffer: any object supporting the buffer interface, but must not be writeable # class buffer: pass class rwbuffer: pass class robuffer: pass StrConverterKeyType = tuple[frozenset[type], bool, bool] def str_converter_key( types: TypeSet, encoding: bool | str | None, zeroes: bool ) -> StrConverterKeyType: return (frozenset(types), bool(encoding), bool(zeroes)) str_converter_argument_map: dict[StrConverterKeyType, str] = {} class str_converter(CConverter): type = 'const char *' default_type = (str, Null, NoneType) format_unit = 's' def converter_init( self, *, accept: TypeSet = {str}, encoding: str | None = None, zeroes: bool = False ) -> None: key = str_converter_key(accept, encoding, zeroes) format_unit = str_converter_argument_map.get(key) if not format_unit: fail("str_converter: illegal combination of arguments", key) self.format_unit = format_unit self.length = bool(zeroes) if encoding: if self.default not in (Null, None, unspecified): fail("str_converter: Argument Clinic doesn't support default values for encoded strings") self.encoding = encoding self.type = 'char *' # sorry, clinic can't support preallocated buffers # for es# and et# self.c_default = "NULL" if NoneType in accept and self.c_default == "Py_None": self.c_default = "NULL" def post_parsing(self) -> str: if self.encoding: name = self.name return f"PyMem_FREE({name});\n" else: return "" def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 's': return self.format_code(""" if (!PyUnicode_Check({argname})) {{{{ {bad_argument} goto exit; }}}} Py_ssize_t {length_name}; {paramname} = PyUnicode_AsUTF8AndSize({argname}, &{length_name}); if ({paramname} == NULL) {{{{ goto exit; }}}} if (strlen({paramname}) != (size_t){length_name}) {{{{ PyErr_SetString(PyExc_ValueError, "embedded null character"); goto exit; }}}} """, argname=argname, bad_argument=self.bad_argument(displayname, 'str', limited_capi=limited_capi), length_name=self.length_name) if self.format_unit == 'z': return self.format_code(""" if ({argname} == Py_None) {{{{ {paramname} = NULL; }}}} else if (PyUnicode_Check({argname})) {{{{ Py_ssize_t {length_name}; {paramname} = PyUnicode_AsUTF8AndSize({argname}, &{length_name}); if ({paramname} == NULL) {{{{ goto exit; }}}} if (strlen({paramname}) != (size_t){length_name}) {{{{ PyErr_SetString(PyExc_ValueError, "embedded null character"); goto exit; }}}} }}}} else {{{{ {bad_argument} goto exit; }}}} """, argname=argname, bad_argument=self.bad_argument(displayname, 'str or None', limited_capi=limited_capi), length_name=self.length_name) return super().parse_arg(argname, displayname, limited_capi=limited_capi) # # This is the fourth or fifth rewrite of registering all the # string converter format units. Previous approaches hid # bugs--generally mismatches between the semantics of the format # unit and the arguments necessary to represent those semantics # properly. Hopefully with this approach we'll get it 100% right. # # The r() function (short for "register") both registers the # mapping from arguments to format unit *and* registers the # legacy C converter for that format unit. # ConverterKeywordDict = dict[str, TypeSet | bool] def r(format_unit: str, *, accept: TypeSet, encoding: bool = False, zeroes: bool = False ) -> None: if not encoding and format_unit != 's': # add the legacy c converters here too. # # note: add_legacy_c_converter can't work for # es, es#, et, or et# # because of their extra encoding argument # # also don't add the converter for 's' because # the metaclass for CConverter adds it for us. kwargs: ConverterKeywordDict = {} if accept != {str}: kwargs['accept'] = accept if zeroes: kwargs['zeroes'] = True added_f = functools.partial(str_converter, **kwargs) legacy_converters[format_unit] = added_f d = str_converter_argument_map key = str_converter_key(accept, encoding, zeroes) if key in d: sys.exit("Duplicate keys specified for str_converter_argument_map!") d[key] = format_unit r('es', encoding=True, accept={str}) r('es#', encoding=True, zeroes=True, accept={str}) r('et', encoding=True, accept={bytes, bytearray, str}) r('et#', encoding=True, zeroes=True, accept={bytes, bytearray, str}) r('s', accept={str}) r('s#', zeroes=True, accept={robuffer, str}) r('y', accept={robuffer}) r('y#', zeroes=True, accept={robuffer}) r('z', accept={str, NoneType}) r('z#', zeroes=True, accept={robuffer, str, NoneType}) del r class PyBytesObject_converter(CConverter): type = 'PyBytesObject *' format_unit = 'S' # accept = {bytes} def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'S': return self.format_code(""" if (!PyBytes_Check({argname})) {{{{ {bad_argument} goto exit; }}}} {paramname} = ({type}){argname}; """, argname=argname, bad_argument=self.bad_argument(displayname, 'bytes', limited_capi=limited_capi), type=self.type) return super().parse_arg(argname, displayname, limited_capi=limited_capi) class PyByteArrayObject_converter(CConverter): type = 'PyByteArrayObject *' format_unit = 'Y' # accept = {bytearray} def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'Y': return self.format_code(""" if (!PyByteArray_Check({argname})) {{{{ {bad_argument} goto exit; }}}} {paramname} = ({type}){argname}; """, argname=argname, bad_argument=self.bad_argument(displayname, 'bytearray', limited_capi=limited_capi), type=self.type) return super().parse_arg(argname, displayname, limited_capi=limited_capi) class unicode_converter(CConverter): type = 'PyObject *' default_type = (str, Null, NoneType) format_unit = 'U' def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if self.format_unit == 'U': return self.format_code(""" if (!PyUnicode_Check({argname})) {{{{ {bad_argument} goto exit; }}}} {paramname} = {argname}; """, argname=argname, bad_argument=self.bad_argument(displayname, 'str', limited_capi=limited_capi), ) return super().parse_arg(argname, displayname, limited_capi=limited_capi) @add_legacy_c_converter('u') @add_legacy_c_converter('u#', zeroes=True) @add_legacy_c_converter('Z', accept={str, NoneType}) @add_legacy_c_converter('Z#', accept={str, NoneType}, zeroes=True) class Py_UNICODE_converter(CConverter): type = 'const wchar_t *' default_type = (str, Null, NoneType) def converter_init( self, *, accept: TypeSet = {str}, zeroes: bool = False ) -> None: format_unit = 'Z' if accept=={str, NoneType} else 'u' if zeroes: format_unit += '#' self.length = True self.format_unit = format_unit else: self.accept = accept if accept == {str}: self.converter = '_PyUnicode_WideCharString_Converter' elif accept == {str, NoneType}: self.converter = '_PyUnicode_WideCharString_Opt_Converter' else: fail(f"Py_UNICODE_converter: illegal 'accept' argument {accept!r}") self.c_default = "NULL" def cleanup(self) -> str: if self.length: return "" else: return f"""PyMem_Free((void *){self.parser_name});\n""" def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: if not self.length: if self.accept == {str}: return self.format_code(""" if (!PyUnicode_Check({argname})) {{{{ {bad_argument} goto exit; }}}} {paramname} = PyUnicode_AsWideCharString({argname}, NULL); if ({paramname} == NULL) {{{{ goto exit; }}}} """, argname=argname, bad_argument=self.bad_argument(displayname, 'str', limited_capi=limited_capi), ) elif self.accept == {str, NoneType}: return self.format_code(""" if ({argname} == Py_None) {{{{ {paramname} = NULL; }}}} else if (PyUnicode_Check({argname})) {{{{ {paramname} = PyUnicode_AsWideCharString({argname}, NULL); if ({paramname} == NULL) {{{{ goto exit; }}}} }}}} else {{{{ {bad_argument} goto exit; }}}} """, argname=argname, bad_argument=self.bad_argument(displayname, 'str or None', limited_capi=limited_capi), ) return super().parse_arg(argname, displayname, limited_capi=limited_capi) @add_legacy_c_converter('s*', accept={str, buffer}) @add_legacy_c_converter('z*', accept={str, buffer, NoneType}) @add_legacy_c_converter('w*', accept={rwbuffer}) class Py_buffer_converter(CConverter): type = 'Py_buffer' format_unit = 'y*' impl_by_reference = True c_ignored_default = "{NULL, NULL}" def converter_init(self, *, accept: TypeSet = {buffer}) -> None: if self.default not in (unspecified, None): fail("The only legal default value for Py_buffer is None.") self.c_default = self.c_ignored_default if accept == {str, buffer, NoneType}: format_unit = 'z*' elif accept == {str, buffer}: format_unit = 's*' elif accept == {buffer}: format_unit = 'y*' elif accept == {rwbuffer}: format_unit = 'w*' else: fail("Py_buffer_converter: illegal combination of arguments") self.format_unit = format_unit def cleanup(self) -> str: name = self.name return "".join(["if (", name, ".obj) {\n PyBuffer_Release(&", name, ");\n}\n"]) def parse_arg(self, argname: str, displayname: str, *, limited_capi: bool) -> str | None: # PyBUF_SIMPLE guarantees that the format units of the buffers are C-contiguous. if self.format_unit == 'y*': return self.format_code(""" if (PyObject_GetBuffer({argname}, &{paramname}, PyBUF_SIMPLE) != 0) {{{{ goto exit; }}}} """, argname=argname, bad_argument=self.bad_argument(displayname, 'contiguous buffer', limited_capi=limited_capi), ) elif self.format_unit == 's*': return self.format_code(""" if (PyUnicode_Check({argname})) {{{{ Py_ssize_t len; const char *ptr = PyUnicode_AsUTF8AndSize({argname}, &len); if (ptr == NULL) {{{{ goto exit; }}}} PyBuffer_FillInfo(&{paramname}, {argname}, (void *)ptr, len, 1, 0); }}}} else {{{{ /* any bytes-like object */ if (PyObject_GetBuffer({argname}, &{paramname}, PyBUF_SIMPLE) != 0) {{{{ goto exit; }}}} }}}} """, argname=argname, bad_argument=self.bad_argument(displayname, 'contiguous buffer', limited_capi=limited_capi), ) elif self.format_unit == 'w*': return self.format_code(""" if (PyObject_GetBuffer({argname}, &{paramname}, PyBUF_WRITABLE) < 0) {{{{ {bad_argument} goto exit; }}}} """, argname=argname, bad_argument=self.bad_argument(displayname, 'read-write bytes-like object', limited_capi=limited_capi), bad_argument2=self.bad_argument(displayname, 'contiguous buffer', limited_capi=limited_capi), ) return super().parse_arg(argname, displayname, limited_capi=limited_capi) def correct_name_for_self( f: Function ) -> tuple[str, str]: if f.kind in (CALLABLE, METHOD_INIT): if f.cls: return "PyObject *", "self" return "PyObject *", "module" if f.kind is STATIC_METHOD: return "void *", "null" if f.kind in (CLASS_METHOD, METHOD_NEW): return "PyTypeObject *", "type" raise AssertionError(f"Unhandled type of function f: {f.kind!r}") def required_type_for_self_for_parser( f: Function ) -> str | None: type, _ = correct_name_for_self(f) if f.kind in (METHOD_INIT, METHOD_NEW, STATIC_METHOD, CLASS_METHOD): return type return None class self_converter(CConverter): """ A special-case converter: this is the default converter used for "self". """ type: str | None = None format_unit = '' def converter_init(self, *, type: str | None = None) -> None: self.specified_type = type def pre_render(self) -> None: f = self.function default_type, default_name = correct_name_for_self(f) self.signature_name = default_name self.type = self.specified_type or self.type or default_type kind = self.function.kind if kind is STATIC_METHOD or kind.new_or_init: self.show_in_signature = False # tp_new (METHOD_NEW) functions are of type newfunc: # typedef PyObject *(*newfunc)(PyTypeObject *, PyObject *, PyObject *); # # tp_init (METHOD_INIT) functions are of type initproc: # typedef int (*initproc)(PyObject *, PyObject *, PyObject *); # # All other functions generated by Argument Clinic are stored in # PyMethodDef structures, in the ml_meth slot, which is of type PyCFunction: # typedef PyObject *(*PyCFunction)(PyObject *, PyObject *); # However! We habitually cast these functions to PyCFunction, # since functions that accept keyword arguments don't fit this signature # but are stored there anyway. So strict type equality isn't important # for these functions. # # So: # # * The name of the first parameter to the impl and the parsing function will always # be self.name. # # * The type of the first parameter to the impl will always be of self.type. # # * If the function is neither tp_new (METHOD_NEW) nor tp_init (METHOD_INIT): # * The type of the first parameter to the parsing function is also self.type. # This means that if you step into the parsing function, your "self" parameter # is of the correct type, which may make debugging more pleasant. # # * Else if the function is tp_new (METHOD_NEW): # * The type of the first parameter to the parsing function is "PyTypeObject *", # so the type signature of the function call is an exact match. # * If self.type != "PyTypeObject *", we cast the first parameter to self.type # in the impl call. # # * Else if the function is tp_init (METHOD_INIT): # * The type of the first parameter to the parsing function is "PyObject *", # so the type signature of the function call is an exact match. # * If self.type != "PyObject *", we cast the first parameter to self.type # in the impl call. @property def parser_type(self) -> str: assert self.type is not None return required_type_for_self_for_parser(self.function) or self.type def render(self, parameter: Parameter, data: CRenderData) -> None: """ parameter is a clinic.Parameter instance. data is a CRenderData instance. """ if self.function.kind is STATIC_METHOD: return self._render_self(parameter, data) if self.type != self.parser_type: # insert cast to impl_argument[0], aka self. # we know we're in the first slot in all the CRenderData lists, # because we render parameters in order, and self is always first. assert len(data.impl_arguments) == 1 assert data.impl_arguments[0] == self.name assert self.type is not None data.impl_arguments[0] = '(' + self.type + ")" + data.impl_arguments[0] def set_template_dict(self, template_dict: TemplateDict) -> None: template_dict['self_name'] = self.name template_dict['self_type'] = self.parser_type kind = self.function.kind cls = self.function.cls if kind.new_or_init and cls and cls.typedef: if kind is METHOD_NEW: type_check = ( '({0} == base_tp || {0}->tp_init == base_tp->tp_init)' ).format(self.name) else: type_check = ('(Py_IS_TYPE({0}, base_tp) ||\n ' ' Py_TYPE({0})->tp_new == base_tp->tp_new)' ).format(self.name) line = f'{type_check} &&\n ' template_dict['self_type_check'] = line type_object = cls.type_object type_ptr = f'PyTypeObject *base_tp = {type_object};' template_dict['base_type_ptr'] = type_ptr def add_c_return_converter( f: ReturnConverterType, name: str | None = None ) -> ReturnConverterType: if not name: name = f.__name__ if not name.endswith('_return_converter'): return f name = name.removesuffix('_return_converter') return_converters[name] = f return f class CReturnConverterAutoRegister(type): def __init__( cls: ReturnConverterType, name: str, bases: tuple[type, ...], classdict: dict[str, Any] ) -> None: add_c_return_converter(cls) class CReturnConverter(metaclass=CReturnConverterAutoRegister): # The C type to use for this variable. # 'type' should be a Python string specifying the type, e.g. "int". # If this is a pointer type, the type string should end with ' *'. type = 'PyObject *' # The Python default value for this parameter, as a Python value. # Or the magic value "unspecified" if there is no default. default: object = None def __init__( self, *, py_default: str | None = None, **kwargs: Any ) -> None: self.py_default = py_default try: self.return_converter_init(**kwargs) except TypeError as e: s = ', '.join(name + '=' + repr(value) for name, value in kwargs.items()) sys.exit(self.__class__.__name__ + '(' + s + ')\n' + str(e)) def return_converter_init(self) -> None: ... def declare(self, data: CRenderData) -> None: line: list[str] = [] add = line.append add(self.type) if not self.type.endswith('*'): add(' ') add(data.converter_retval + ';') data.declarations.append(''.join(line)) data.return_value = data.converter_retval def err_occurred_if( self, expr: str, data: CRenderData ) -> None: line = f'if (({expr}) && PyErr_Occurred()) {{\n goto exit;\n}}\n' data.return_conversion.append(line) def err_occurred_if_null_pointer( self, variable: str, data: CRenderData ) -> None: line = f'if ({variable} == NULL) {{\n goto exit;\n}}\n' data.return_conversion.append(line) def render( self, function: Function, data: CRenderData ) -> None: ... add_c_return_converter(CReturnConverter, 'object') class bool_return_converter(CReturnConverter): type = 'int' def render( self, function: Function, data: CRenderData ) -> None: self.declare(data) self.err_occurred_if(f"{data.converter_retval} == -1", data) data.return_conversion.append( f'return_value = PyBool_FromLong((long){data.converter_retval});\n' ) class long_return_converter(CReturnConverter): type = 'long' conversion_fn = 'PyLong_FromLong' cast = '' unsigned_cast = '' def render( self, function: Function, data: CRenderData ) -> None: self.declare(data) self.err_occurred_if(f"{data.converter_retval} == {self.unsigned_cast}-1", data) data.return_conversion.append( f'return_value = {self.conversion_fn}({self.cast}{data.converter_retval});\n' ) class int_return_converter(long_return_converter): type = 'int' cast = '(long)' class init_return_converter(long_return_converter): """ Special return converter for __init__ functions. """ type = 'int' cast = '(long)' def render( self, function: Function, data: CRenderData ) -> None: ... class unsigned_long_return_converter(long_return_converter): type = 'unsigned long' conversion_fn = 'PyLong_FromUnsignedLong' unsigned_cast = '(unsigned long)' class unsigned_int_return_converter(unsigned_long_return_converter): type = 'unsigned int' cast = '(unsigned long)' unsigned_cast = '(unsigned int)' class Py_ssize_t_return_converter(long_return_converter): type = 'Py_ssize_t' conversion_fn = 'PyLong_FromSsize_t' class size_t_return_converter(long_return_converter): type = 'size_t' conversion_fn = 'PyLong_FromSize_t' unsigned_cast = '(size_t)' class double_return_converter(CReturnConverter): type = 'double' cast = '' def render( self, function: Function, data: CRenderData ) -> None: self.declare(data) self.err_occurred_if(f"{data.converter_retval} == -1.0", data) data.return_conversion.append( f'return_value = PyFloat_FromDouble({self.cast}{data.converter_retval});\n' ) class float_return_converter(double_return_converter): type = 'float' cast = '(double)' def eval_ast_expr( node: ast.expr, globals: dict[str, Any], *, filename: str = '-' ) -> Any: """ Takes an ast.Expr node. Compiles it into a function object, then calls the function object with 0 arguments. Returns the result of that function call. globals represents the globals dict the expression should see. (There's no equivalent for "locals" here.) """ if isinstance(node, ast.Expr): node = node.value expr = ast.Expression(node) co = compile(expr, filename, 'eval') fn = FunctionType(co, globals) return fn() class IndentStack: def __init__(self) -> None: self.indents: list[int] = [] self.margin: str | None = None def _ensure(self) -> None: if not self.indents: fail('IndentStack expected indents, but none are defined.') def measure(self, line: str) -> int: """ Returns the length of the line's margin. """ if '\t' in line: fail('Tab characters are illegal in the Argument Clinic DSL.') stripped = line.lstrip() if not len(stripped): # we can't tell anything from an empty line # so just pretend it's indented like our current indent self._ensure() return self.indents[-1] return len(line) - len(stripped) def infer(self, line: str) -> int: """ Infer what is now the current margin based on this line. Returns: 1 if we have indented (or this is the first margin) 0 if the margin has not changed -N if we have dedented N times """ indent = self.measure(line) margin = ' ' * indent if not self.indents: self.indents.append(indent) self.margin = margin return 1 current = self.indents[-1] if indent == current: return 0 if indent > current: self.indents.append(indent) self.margin = margin return 1 # indent < current if indent not in self.indents: fail("Illegal outdent.") outdent_count = 0 while indent != current: self.indents.pop() current = self.indents[-1] outdent_count -= 1 self.margin = margin return outdent_count @property def depth(self) -> int: """ Returns how many margins are currently defined. """ return len(self.indents) def dedent(self, line: str) -> str: """ Dedents a line by the currently defined margin. """ assert self.margin is not None, "Cannot call .dedent() before calling .infer()" margin = self.margin indent = self.indents[-1] if not line.startswith(margin): fail('Cannot dedent; line does not start with the previous margin.') return line[indent:] StateKeeper = Callable[[str], None] ConverterArgs = dict[str, Any] class ParamState(enum.IntEnum): """Parameter parsing state. [ [ a, b, ] c, ] d, e, f=3, [ g, h, [ i ] ] <- line 01 2 3 4 5 6 <- state transitions """ # Before we've seen anything. # Legal transitions: to LEFT_SQUARE_BEFORE or REQUIRED START = 0 # Left square backets before required params. LEFT_SQUARE_BEFORE = 1 # In a group, before required params. GROUP_BEFORE = 2 # Required params, positional-or-keyword or positional-only (we # don't know yet). Renumber left groups! REQUIRED = 3 # Positional-or-keyword or positional-only params that now must have # default values. OPTIONAL = 4 # In a group, after required params. GROUP_AFTER = 5 # Right square brackets after required params. RIGHT_SQUARE_AFTER = 6 class FunctionNames(NamedTuple): full_name: str c_basename: str class DSLParser: function: Function | None state: StateKeeper keyword_only: bool positional_only: bool deprecated_positional: VersionTuple | None deprecated_keyword: VersionTuple | None group: int parameter_state: ParamState indent: IndentStack kind: FunctionKind coexist: bool forced_text_signature: str | None parameter_continuation: str preserve_output: bool critical_section: bool target_critical_section: list[str] from_version_re = re.compile(r'([*/]) +\[from +(.+)\]') def __init__(self, clinic: Clinic) -> None: self.clinic = clinic self.directives = {} for name in dir(self): # functions that start with directive_ are added to directives _, s, key = name.partition("directive_") if s: self.directives[key] = getattr(self, name) # functions that start with at_ are too, with an @ in front _, s, key = name.partition("at_") if s: self.directives['@' + key] = getattr(self, name) self.reset() def reset(self) -> None: self.function = None self.state = self.state_dsl_start self.keyword_only = False self.positional_only = False self.deprecated_positional = None self.deprecated_keyword = None self.group = 0 self.parameter_state: ParamState = ParamState.START self.indent = IndentStack() self.kind = CALLABLE self.coexist = False self.forced_text_signature = None self.parameter_continuation = '' self.preserve_output = False self.critical_section = False self.target_critical_section = [] def directive_version(self, required: str) -> None: global version if version_comparitor(version, required) < 0: fail("Insufficient Clinic version!\n" f" Version: {version}\n" f" Required: {required}") def directive_module(self, name: str) -> None: fields = name.split('.')[:-1] module, cls = self.clinic._module_and_class(fields) if cls: fail("Can't nest a module inside a class!") if name in module.modules: fail(f"Already defined module {name!r}!") m = Module(name, module) module.modules[name] = m self.block.signatures.append(m) def directive_class( self, name: str, typedef: str, type_object: str ) -> None: fields = name.split('.') name = fields.pop() module, cls = self.clinic._module_and_class(fields) parent = cls or module if name in parent.classes: fail(f"Already defined class {name!r}!") c = Class(name, module, cls, typedef, type_object) parent.classes[name] = c self.block.signatures.append(c) def directive_set(self, name: str, value: str) -> None: if name not in ("line_prefix", "line_suffix"): fail(f"unknown variable {name!r}") value = value.format_map({ 'block comment start': '/*', 'block comment end': '*/', }) self.clinic.__dict__[name] = value def directive_destination( self, name: str, command: str, *args: str ) -> None: match command: case "new": self.clinic.add_destination(name, *args) case "clear": self.clinic.get_destination(name).clear() case _: fail(f"unknown destination command {command!r}") def directive_output( self, command_or_name: str, destination: str = '' ) -> None: fd = self.clinic.destination_buffers if command_or_name == "preset": preset = self.clinic.presets.get(destination) if not preset: fail(f"Unknown preset {destination!r}!") fd.update(preset) return if command_or_name == "push": self.clinic.destination_buffers_stack.append(fd.copy()) return if command_or_name == "pop": if not self.clinic.destination_buffers_stack: fail("Can't 'output pop', stack is empty!") previous_fd = self.clinic.destination_buffers_stack.pop() fd.update(previous_fd) return # secret command for debugging! if command_or_name == "print": self.block.output.append(pprint.pformat(fd)) self.block.output.append('\n') return d = self.clinic.get_destination_buffer(destination) if command_or_name == "everything": for name in list(fd): fd[name] = d return if command_or_name not in fd: allowed = ["preset", "push", "pop", "print", "everything"] allowed.extend(fd) fail(f"Invalid command or destination name {command_or_name!r}. " "Must be one of:\n -", "\n - ".join([repr(word) for word in allowed])) fd[command_or_name] = d def directive_dump(self, name: str) -> None: self.block.output.append(self.clinic.get_destination(name).dump()) def directive_printout(self, *args: str) -> None: self.block.output.append(' '.join(args)) self.block.output.append('\n') def directive_preserve(self) -> None: if self.preserve_output: fail("Can't have 'preserve' twice in one block!") self.preserve_output = True def at_classmethod(self) -> None: if self.kind is not CALLABLE: fail("Can't set @classmethod, function is not a normal callable") self.kind = CLASS_METHOD def at_critical_section(self, *args: str) -> None: if len(args) > 2: fail("Up to 2 critical section variables are supported") self.target_critical_section.extend(args) self.critical_section = True def at_staticmethod(self) -> None: if self.kind is not CALLABLE: fail("Can't set @staticmethod, function is not a normal callable") self.kind = STATIC_METHOD def at_coexist(self) -> None: if self.coexist: fail("Called @coexist twice!") self.coexist = True def at_text_signature(self, text_signature: str) -> None: if self.forced_text_signature: fail("Called @text_signature twice!") self.forced_text_signature = text_signature def parse(self, block: Block) -> None: self.reset() self.block = block self.saved_output = self.block.output block.output = [] block_start = self.clinic.block_parser.line_number lines = block.input.split('\n') for line_number, line in enumerate(lines, self.clinic.block_parser.block_start_line_number): if '\t' in line: fail(f'Tab characters are illegal in the Clinic DSL: {line!r}', line_number=block_start) try: self.state(line) except ClinicError as exc: exc.lineno = line_number raise self.do_post_block_processing_cleanup(line_number) block.output.extend(self.clinic.language.render(self.clinic, block.signatures)) if self.preserve_output: if block.output: fail("'preserve' only works for blocks that don't produce any output!") block.output = self.saved_output def in_docstring(self) -> bool: """Return true if we are processing a docstring.""" return self.state in { self.state_parameter_docstring, self.state_function_docstring, } def valid_line(self, line: str) -> bool: # ignore comment-only lines if line.lstrip().startswith('#'): return False # Ignore empty lines too # (but not in docstring sections!) if not self.in_docstring() and not line.strip(): return False return True def next( self, state: StateKeeper, line: str | None = None ) -> None: self.state = state if line is not None: self.state(line) def state_dsl_start(self, line: str) -> None: if not self.valid_line(line): return # is it a directive? fields = shlex.split(line) directive_name = fields[0] directive = self.directives.get(directive_name, None) if directive: try: directive(*fields[1:]) except TypeError as e: fail(str(e)) return self.next(self.state_modulename_name, line) @staticmethod def parse_function_names(line: str) -> FunctionNames: left, as_, right = line.partition(' as ') full_name = left.strip() c_basename = right.strip() if as_ and not c_basename: fail("No C basename provided after 'as' keyword") if not c_basename: fields = full_name.split(".") if fields[-1] == '__new__': fields.pop() c_basename = "_".join(fields) if not is_legal_py_identifier(full_name): fail(f"Illegal function name: {full_name!r}") if not is_legal_c_identifier(c_basename): fail(f"Illegal C basename: {c_basename!r}") return FunctionNames(full_name=full_name, c_basename=c_basename) def update_function_kind(self, fullname: str) -> None: fields = fullname.split('.') name = fields.pop() _, cls = self.clinic._module_and_class(fields) if name in unsupported_special_methods: fail(f"{name!r} is a special method and cannot be converted to Argument Clinic!") if name == '__new__': if (self.kind is not CLASS_METHOD) or (not cls): fail("'__new__' must be a class method!") self.kind = METHOD_NEW elif name == '__init__': if (self.kind is not CALLABLE) or (not cls): fail("'__init__' must be a normal method, not a class or static method!") self.kind = METHOD_INIT def state_modulename_name(self, line: str) -> None: # looking for declaration, which establishes the leftmost column # line should be # modulename.fnname [as c_basename] [-> return annotation] # square brackets denote optional syntax. # # alternatively: # modulename.fnname [as c_basename] = modulename.existing_fn_name # clones the parameters and return converter from that # function. you can't modify them. you must enter a # new docstring. # # (but we might find a directive first!) # # this line is permitted to start with whitespace. # we'll call this number of spaces F (for "function"). assert self.valid_line(line) self.indent.infer(line) # are we cloning? before, equals, existing = line.rpartition('=') if equals: full_name, c_basename = self.parse_function_names(before) existing = existing.strip() if is_legal_py_identifier(existing): # we're cloning! fields = [x.strip() for x in existing.split('.')] function_name = fields.pop() module, cls = self.clinic._module_and_class(fields) for existing_function in (cls or module).functions: if existing_function.name == function_name: break else: print(f"{cls=}, {module=}, {existing=}", file=sys.stderr) print(f"{(cls or module).functions=}", file=sys.stderr) fail(f"Couldn't find existing function {existing!r}!") fields = [x.strip() for x in full_name.split('.')] function_name = fields.pop() module, cls = self.clinic._module_and_class(fields) self.update_function_kind(full_name) overrides: dict[str, Any] = { "name": function_name, "full_name": full_name, "module": module, "cls": cls, "c_basename": c_basename, "docstring": "", } if not (existing_function.kind is self.kind and existing_function.coexist == self.coexist): # Allow __new__ or __init__ methods. if existing_function.kind.new_or_init: overrides["kind"] = self.kind # Future enhancement: allow custom return converters overrides["return_converter"] = CReturnConverter() else: fail("'kind' of function and cloned function don't match! " "(@classmethod/@staticmethod/@coexist)") function = existing_function.copy(**overrides) self.function = function self.block.signatures.append(function) (cls or module).functions.append(function) self.next(self.state_function_docstring) return line, _, returns = line.partition('->') returns = returns.strip() full_name, c_basename = self.parse_function_names(line) return_converter = None if returns: ast_input = f"def x() -> {returns}: pass" try: module_node = ast.parse(ast_input) except SyntaxError: fail(f"Badly formed annotation for {full_name!r}: {returns!r}") function_node = module_node.body[0] assert isinstance(function_node, ast.FunctionDef) try: name, legacy, kwargs = self.parse_converter(function_node.returns) if legacy: fail(f"Legacy converter {name!r} not allowed as a return converter") if name not in return_converters: fail(f"No available return converter called {name!r}") return_converter = return_converters[name](**kwargs) except ValueError: fail(f"Badly formed annotation for {full_name!r}: {returns!r}") fields = [x.strip() for x in full_name.split('.')] function_name = fields.pop() module, cls = self.clinic._module_and_class(fields) self.update_function_kind(full_name) if self.kind is METHOD_INIT and not return_converter: return_converter = init_return_converter() if not return_converter: return_converter = CReturnConverter() self.function = Function(name=function_name, full_name=full_name, module=module, cls=cls, c_basename=c_basename, return_converter=return_converter, kind=self.kind, coexist=self.coexist, critical_section=self.critical_section, target_critical_section=self.target_critical_section) self.block.signatures.append(self.function) # insert a self converter automatically type, name = correct_name_for_self(self.function) kwargs = {} if cls and type == "PyObject *": kwargs['type'] = cls.typedef sc = self.function.self_converter = self_converter(name, name, self.function, **kwargs) p_self = Parameter(name, inspect.Parameter.POSITIONAL_ONLY, function=self.function, converter=sc) self.function.parameters[name] = p_self (cls or module).functions.append(self.function) self.next(self.state_parameters_start) # Now entering the parameters section. The rules, formally stated: # # * All lines must be indented with spaces only. # * The first line must be a parameter declaration. # * The first line must be indented. # * This first line establishes the indent for parameters. # * We'll call this number of spaces P (for "parameter"). # * Thenceforth: # * Lines indented with P spaces specify a parameter. # * Lines indented with > P spaces are docstrings for the previous # parameter. # * We'll call this number of spaces D (for "docstring"). # * All subsequent lines indented with >= D spaces are stored as # part of the per-parameter docstring. # * All lines will have the first D spaces of the indent stripped # before they are stored. # * It's illegal to have a line starting with a number of spaces X # such that P < X < D. # * A line with < P spaces is the first line of the function # docstring, which ends processing for parameters and per-parameter # docstrings. # * The first line of the function docstring must be at the same # indent as the function declaration. # * It's illegal to have any line in the parameters section starting # with X spaces such that F < X < P. (As before, F is the indent # of the function declaration.) # # Also, currently Argument Clinic places the following restrictions on groups: # * Each group must contain at least one parameter. # * Each group may contain at most one group, which must be the furthest # thing in the group from the required parameters. (The nested group # must be the first in the group when it's before the required # parameters, and the last thing in the group when after the required # parameters.) # * There may be at most one (top-level) group to the left or right of # the required parameters. # * You must specify a slash, and it must be after all parameters. # (In other words: either all parameters are positional-only, # or none are.) # # Said another way: # * Each group must contain at least one parameter. # * All left square brackets before the required parameters must be # consecutive. (You can't have a left square bracket followed # by a parameter, then another left square bracket. You can't # have a left square bracket, a parameter, a right square bracket, # and then a left square bracket.) # * All right square brackets after the required parameters must be # consecutive. # # These rules are enforced with a single state variable: # "parameter_state". (Previously the code was a miasma of ifs and # separate boolean state variables.) The states are defined in the # ParamState class. def state_parameters_start(self, line: str) -> None: if not self.valid_line(line): return # if this line is not indented, we have no parameters if not self.indent.infer(line): return self.next(self.state_function_docstring, line) self.parameter_continuation = '' return self.next(self.state_parameter, line) def to_required(self) -> None: """ Transition to the "required" parameter state. """ if self.parameter_state is not ParamState.REQUIRED: self.parameter_state = ParamState.REQUIRED assert self.function is not None for p in self.function.parameters.values(): p.group = -p.group def state_parameter(self, line: str) -> None: assert isinstance(self.function, Function) if not self.valid_line(line): return if self.parameter_continuation: line = self.parameter_continuation + ' ' + line.lstrip() self.parameter_continuation = '' assert self.indent.depth == 2 indent = self.indent.infer(line) if indent == -1: # we outdented, must be to definition column return self.next(self.state_function_docstring, line) if indent == 1: # we indented, must be to new parameter docstring column return self.next(self.state_parameter_docstring_start, line) line = line.rstrip() if line.endswith('\\'): self.parameter_continuation = line[:-1] return line = line.lstrip() version: VersionTuple | None = None match = self.from_version_re.fullmatch(line) if match: line = match[1] version = self.parse_version(match[2]) func = self.function match line: case '*': self.parse_star(func, version) case '[': self.parse_opening_square_bracket(func) case ']': self.parse_closing_square_bracket(func) case '/': self.parse_slash(func, version) case param: self.parse_parameter(param) def parse_parameter(self, line: str) -> None: assert self.function is not None match self.parameter_state: case ParamState.START | ParamState.REQUIRED: self.to_required() case ParamState.LEFT_SQUARE_BEFORE: self.parameter_state = ParamState.GROUP_BEFORE case ParamState.GROUP_BEFORE: if not self.group: self.to_required() case ParamState.GROUP_AFTER | ParamState.OPTIONAL: pass case st: fail(f"Function {self.function.name} has an unsupported group configuration. (Unexpected state {st}.a)") # handle "as" for parameters too c_name = None name, have_as_token, trailing = line.partition(' as ') if have_as_token: name = name.strip() if ' ' not in name: fields = trailing.strip().split(' ') if not fields: fail("Invalid 'as' clause!") c_name = fields[0] if c_name.endswith(':'): name += ':' c_name = c_name[:-1] fields[0] = name line = ' '.join(fields) default: str | None base, equals, default = line.rpartition('=') if not equals: base = default default = None module = None try: ast_input = f"def x({base}): pass" module = ast.parse(ast_input) except SyntaxError: try: # the last = was probably inside a function call, like # c: int(accept={str}) # so assume there was no actual default value. default = None ast_input = f"def x({line}): pass" module = ast.parse(ast_input) except SyntaxError: pass if not module: fail(f"Function {self.function.name!r} has an invalid parameter declaration:\n\t", repr(line)) function = module.body[0] assert isinstance(function, ast.FunctionDef) function_args = function.args if len(function_args.args) > 1: fail(f"Function {self.function.name!r} has an " f"invalid parameter declaration (comma?): {line!r}") if function_args.defaults or function_args.kw_defaults: fail(f"Function {self.function.name!r} has an " f"invalid parameter declaration (default value?): {line!r}") if function_args.kwarg: fail(f"Function {self.function.name!r} has an " f"invalid parameter declaration (**kwargs?): {line!r}") if function_args.vararg: is_vararg = True parameter = function_args.vararg else: is_vararg = False parameter = function_args.args[0] parameter_name = parameter.arg name, legacy, kwargs = self.parse_converter(parameter.annotation) if not default: if self.parameter_state is ParamState.OPTIONAL: fail(f"Can't have a parameter without a default ({parameter_name!r}) " "after a parameter with a default!") value: Sentinels | Null if is_vararg: value = NULL kwargs.setdefault('c_default', "NULL") else: value = unspecified if 'py_default' in kwargs: fail("You can't specify py_default without specifying a default value!") else: if is_vararg: fail("Vararg can't take a default value!") if self.parameter_state is ParamState.REQUIRED: self.parameter_state = ParamState.OPTIONAL default = default.strip() bad = False ast_input = f"x = {default}" try: module = ast.parse(ast_input) if 'c_default' not in kwargs: # we can only represent very simple data values in C. # detect whether default is okay, via a denylist # of disallowed ast nodes. class DetectBadNodes(ast.NodeVisitor): bad = False def bad_node(self, node: ast.AST) -> None: self.bad = True # inline function call visit_Call = bad_node # inline if statement ("x = 3 if y else z") visit_IfExp = bad_node # comprehensions and generator expressions visit_ListComp = visit_SetComp = bad_node visit_DictComp = visit_GeneratorExp = bad_node # literals for advanced types visit_Dict = visit_Set = bad_node visit_List = visit_Tuple = bad_node # "starred": "a = [1, 2, 3]; *a" visit_Starred = bad_node denylist = DetectBadNodes() denylist.visit(module) bad = denylist.bad else: # if they specify a c_default, we can be more lenient about the default value. # but at least make an attempt at ensuring it's a valid expression. try: value = eval(default) except NameError: pass # probably a named constant except Exception as e: fail("Malformed expression given as default value " f"{default!r} caused {e!r}") else: if value is unspecified: fail("'unspecified' is not a legal default value!") if bad: fail(f"Unsupported expression as default value: {default!r}") assignment = module.body[0] assert isinstance(assignment, ast.Assign) expr = assignment.value # mild hack: explicitly support NULL as a default value c_default: str | None if isinstance(expr, ast.Name) and expr.id == 'NULL': value = NULL py_default = '' c_default = "NULL" elif (isinstance(expr, ast.BinOp) or (isinstance(expr, ast.UnaryOp) and not (isinstance(expr.operand, ast.Constant) and type(expr.operand.value) in {int, float, complex}) )): c_default = kwargs.get("c_default") if not (isinstance(c_default, str) and c_default): fail(f"When you specify an expression ({default!r}) " f"as your default value, " f"you MUST specify a valid c_default.", ast.dump(expr)) py_default = default value = unknown elif isinstance(expr, ast.Attribute): a = [] n: ast.expr | ast.Attribute = expr while isinstance(n, ast.Attribute): a.append(n.attr) n = n.value if not isinstance(n, ast.Name): fail(f"Unsupported default value {default!r} " "(looked like a Python constant)") a.append(n.id) py_default = ".".join(reversed(a)) c_default = kwargs.get("c_default") if not (isinstance(c_default, str) and c_default): fail(f"When you specify a named constant ({py_default!r}) " "as your default value, " "you MUST specify a valid c_default.") try: value = eval(py_default) except NameError: value = unknown else: value = ast.literal_eval(expr) py_default = repr(value) if isinstance(value, (bool, NoneType)): c_default = "Py_" + py_default elif isinstance(value, str): c_default = c_repr(value) else: c_default = py_default except SyntaxError as e: fail(f"Syntax error: {e.text!r}") except (ValueError, AttributeError): value = unknown c_default = kwargs.get("c_default") py_default = default if not (isinstance(c_default, str) and c_default): fail("When you specify a named constant " f"({py_default!r}) as your default value, " "you MUST specify a valid c_default.") kwargs.setdefault('c_default', c_default) kwargs.setdefault('py_default', py_default) dict = legacy_converters if legacy else converters legacy_str = "legacy " if legacy else "" if name not in dict: fail(f'{name!r} is not a valid {legacy_str}converter') # if you use a c_name for the parameter, we just give that name to the converter # but the parameter object gets the python name converter = dict[name](c_name or parameter_name, parameter_name, self.function, value, **kwargs) kind: inspect._ParameterKind if is_vararg: kind = inspect.Parameter.VAR_POSITIONAL elif self.keyword_only: kind = inspect.Parameter.KEYWORD_ONLY else: kind = inspect.Parameter.POSITIONAL_OR_KEYWORD if isinstance(converter, self_converter): if len(self.function.parameters) == 1: if self.parameter_state is not ParamState.REQUIRED: fail("A 'self' parameter cannot be marked optional.") if value is not unspecified: fail("A 'self' parameter cannot have a default value.") if self.group: fail("A 'self' parameter cannot be in an optional group.") kind = inspect.Parameter.POSITIONAL_ONLY self.parameter_state = ParamState.START self.function.parameters.clear() else: fail("A 'self' parameter, if specified, must be the " "very first thing in the parameter block.") if isinstance(converter, defining_class_converter): _lp = len(self.function.parameters) if _lp == 1: if self.parameter_state is not ParamState.REQUIRED: fail("A 'defining_class' parameter cannot be marked optional.") if value is not unspecified: fail("A 'defining_class' parameter cannot have a default value.") if self.group: fail("A 'defining_class' parameter cannot be in an optional group.") else: fail("A 'defining_class' parameter, if specified, must either " "be the first thing in the parameter block, or come just " "after 'self'.") p = Parameter(parameter_name, kind, function=self.function, converter=converter, default=value, group=self.group, deprecated_positional=self.deprecated_positional) names = [k.name for k in self.function.parameters.values()] if parameter_name in names[1:]: fail(f"You can't have two parameters named {parameter_name!r}!") elif names and parameter_name == names[0] and c_name is None: fail(f"Parameter {parameter_name!r} requires a custom C name") key = f"{parameter_name}_as_{c_name}" if c_name else parameter_name self.function.parameters[key] = p @staticmethod def parse_converter( annotation: ast.expr | None ) -> tuple[str, bool, ConverterArgs]: match annotation: case ast.Constant(value=str() as value): return value, True, {} case ast.Name(name): return name, False, {} case ast.Call(func=ast.Name(name)): symbols = globals() kwargs: ConverterArgs = {} for node in annotation.keywords: if not isinstance(node.arg, str): fail("Cannot use a kwarg splat in a function-call annotation") kwargs[node.arg] = eval_ast_expr(node.value, symbols) return name, False, kwargs case _: fail( "Annotations must be either a name, a function call, or a string." ) def parse_version(self, thenceforth: str) -> VersionTuple: """Parse Python version in `[from ...]` marker.""" assert isinstance(self.function, Function) try: major, minor = thenceforth.split(".") return int(major), int(minor) except ValueError: fail( f"Function {self.function.name!r}: expected format '[from major.minor]' " f"where 'major' and 'minor' are integers; got {thenceforth!r}" ) def parse_star(self, function: Function, version: VersionTuple | None) -> None: """Parse keyword-only parameter marker '*'. The 'version' parameter signifies the future version from which the marker will take effect (None means it is already in effect). """ if version is None: if self.keyword_only: fail(f"Function {function.name!r} uses '*' more than once.") self.check_previous_star() self.check_remaining_star() self.keyword_only = True else: if self.keyword_only: fail(f"Function {function.name!r}: '* [from ...]' must precede '*'") if self.deprecated_positional: if self.deprecated_positional == version: fail(f"Function {function.name!r} uses '* [from " f"{version[0]}.{version[1]}]' more than once.") if self.deprecated_positional < version: fail(f"Function {function.name!r}: '* [from " f"{version[0]}.{version[1]}]' must precede '* [from " f"{self.deprecated_positional[0]}.{self.deprecated_positional[1]}]'") self.deprecated_positional = version def parse_opening_square_bracket(self, function: Function) -> None: """Parse opening parameter group symbol '['.""" match self.parameter_state: case ParamState.START | ParamState.LEFT_SQUARE_BEFORE: self.parameter_state = ParamState.LEFT_SQUARE_BEFORE case ParamState.REQUIRED | ParamState.GROUP_AFTER: self.parameter_state = ParamState.GROUP_AFTER case st: fail(f"Function {function.name!r} " f"has an unsupported group configuration. " f"(Unexpected state {st}.b)") self.group += 1 function.docstring_only = True def parse_closing_square_bracket(self, function: Function) -> None: """Parse closing parameter group symbol ']'.""" if not self.group: fail(f"Function {function.name!r} has a ']' without a matching '['.") if not any(p.group == self.group for p in function.parameters.values()): fail(f"Function {function.name!r} has an empty group. " "All groups must contain at least one parameter.") self.group -= 1 match self.parameter_state: case ParamState.LEFT_SQUARE_BEFORE | ParamState.GROUP_BEFORE: self.parameter_state = ParamState.GROUP_BEFORE case ParamState.GROUP_AFTER | ParamState.RIGHT_SQUARE_AFTER: self.parameter_state = ParamState.RIGHT_SQUARE_AFTER case st: fail(f"Function {function.name!r} " f"has an unsupported group configuration. " f"(Unexpected state {st}.c)") def parse_slash(self, function: Function, version: VersionTuple | None) -> None: """Parse positional-only parameter marker '/'. The 'version' parameter signifies the future version from which the marker will take effect (None means it is already in effect). """ if version is None: if self.deprecated_keyword: fail(f"Function {function.name!r}: '/' must precede '/ [from ...]'") if self.deprecated_positional: fail(f"Function {function.name!r}: '/' must precede '* [from ...]'") if self.keyword_only: fail(f"Function {function.name!r}: '/' must precede '*'") if self.positional_only: fail(f"Function {function.name!r} uses '/' more than once.") else: if self.deprecated_keyword: if self.deprecated_keyword == version: fail(f"Function {function.name!r} uses '/ [from " f"{version[0]}.{version[1]}]' more than once.") if self.deprecated_keyword > version: fail(f"Function {function.name!r}: '/ [from " f"{version[0]}.{version[1]}]' must precede '/ [from " f"{self.deprecated_keyword[0]}.{self.deprecated_keyword[1]}]'") if self.deprecated_positional: fail(f"Function {function.name!r}: '/ [from ...]' must precede '* [from ...]'") if self.keyword_only: fail(f"Function {function.name!r}: '/ [from ...]' must precede '*'") self.positional_only = True self.deprecated_keyword = version if version is not None: found = False for p in reversed(function.parameters.values()): found = p.kind is inspect.Parameter.POSITIONAL_OR_KEYWORD break if not found: fail(f"Function {function.name!r} specifies '/ [from ...]' " f"without preceding parameters.") # REQUIRED and OPTIONAL are allowed here, that allows positional-only # without option groups to work (and have default values!) allowed = { ParamState.REQUIRED, ParamState.OPTIONAL, ParamState.RIGHT_SQUARE_AFTER, ParamState.GROUP_BEFORE, } if (self.parameter_state not in allowed) or self.group: fail(f"Function {function.name!r} has an unsupported group configuration. " f"(Unexpected state {self.parameter_state}.d)") # fixup preceding parameters for p in function.parameters.values(): if p.kind is inspect.Parameter.POSITIONAL_OR_KEYWORD: if version is None: p.kind = inspect.Parameter.POSITIONAL_ONLY elif p.deprecated_keyword is None: p.deprecated_keyword = version def state_parameter_docstring_start(self, line: str) -> None: assert self.indent.margin is not None, "self.margin.infer() has not yet been called to set the margin" self.parameter_docstring_indent = len(self.indent.margin) assert self.indent.depth == 3 return self.next(self.state_parameter_docstring, line) def docstring_append(self, obj: Function | Parameter, line: str) -> None: """Add a rstripped line to the current docstring.""" # gh-80282: We filter out non-ASCII characters from the docstring, # since historically, some compilers may balk on non-ASCII input. # If you're using Argument Clinic in an external project, # you may not need to support the same array of platforms as CPython, # so you may be able to remove this restriction. matches = re.finditer(r'[^\x00-\x7F]', line) if offending := ", ".join([repr(m[0]) for m in matches]): warn("Non-ascii characters are not allowed in docstrings:", offending) docstring = obj.docstring if docstring: docstring += "\n" if stripped := line.rstrip(): docstring += self.indent.dedent(stripped) obj.docstring = docstring # every line of the docstring must start with at least F spaces, # where F > P. # these F spaces will be stripped. def state_parameter_docstring(self, line: str) -> None: if not self.valid_line(line): return indent = self.indent.measure(line) if indent < self.parameter_docstring_indent: self.indent.infer(line) assert self.indent.depth < 3 if self.indent.depth == 2: # back to a parameter return self.next(self.state_parameter, line) assert self.indent.depth == 1 return self.next(self.state_function_docstring, line) assert self.function and self.function.parameters last_param = next(reversed(self.function.parameters.values())) self.docstring_append(last_param, line) # the final stanza of the DSL is the docstring. def state_function_docstring(self, line: str) -> None: assert self.function is not None if self.group: fail(f"Function {self.function.name!r} has a ']' without a matching '['.") if not self.valid_line(line): return self.docstring_append(self.function, line) def format_docstring_signature( self, f: Function, parameters: list[Parameter] ) -> str: text, add, output = _text_accumulator() add(f.displayname) if self.forced_text_signature: add(self.forced_text_signature) else: add('(') # populate "right_bracket_count" field for every parameter assert parameters, "We should always have a self parameter. " + repr(f) assert isinstance(parameters[0].converter, self_converter) # self is always positional-only. assert parameters[0].is_positional_only() assert parameters[0].right_bracket_count == 0 positional_only = True for p in parameters[1:]: if not p.is_positional_only(): positional_only = False else: assert positional_only if positional_only: p.right_bracket_count = abs(p.group) else: # don't put any right brackets around non-positional-only parameters, ever. p.right_bracket_count = 0 right_bracket_count = 0 def fix_right_bracket_count(desired: int) -> str: nonlocal right_bracket_count s = '' while right_bracket_count < desired: s += '[' right_bracket_count += 1 while right_bracket_count > desired: s += ']' right_bracket_count -= 1 return s need_slash = False added_slash = False need_a_trailing_slash = False # we only need a trailing slash: # * if this is not a "docstring_only" signature # * and if the last *shown* parameter is # positional only if not f.docstring_only: for p in reversed(parameters): if not p.converter.show_in_signature: continue if p.is_positional_only(): need_a_trailing_slash = True break added_star = False first_parameter = True last_p = parameters[-1] line_length = len(''.join(text)) indent = " " * line_length def add_parameter(text: str) -> None: nonlocal line_length nonlocal first_parameter if first_parameter: s = text first_parameter = False else: s = ' ' + text if line_length + len(s) >= 72: add('\n') add(indent) line_length = len(indent) s = text line_length += len(s) add(s) for p in parameters: if not p.converter.show_in_signature: continue assert p.name is_self = isinstance(p.converter, self_converter) if is_self and f.docstring_only: # this isn't a real machine-parsable signature, # so let's not print the "self" parameter continue if p.is_positional_only(): need_slash = not f.docstring_only elif need_slash and not (added_slash or p.is_positional_only()): added_slash = True add_parameter('/,') if p.is_keyword_only() and not added_star: added_star = True add_parameter('*,') p_add, p_output = text_accumulator() p_add(fix_right_bracket_count(p.right_bracket_count)) if isinstance(p.converter, self_converter): # annotate first parameter as being a "self". # # if inspect.Signature gets this function, # and it's already bound, the self parameter # will be stripped off. # # if it's not bound, it should be marked # as positional-only. # # note: we don't print "self" for __init__, # because this isn't actually the signature # for __init__. (it can't be, __init__ doesn't # have a docstring.) if this is an __init__ # (or __new__), then this signature is for # calling the class to construct a new instance. p_add('$') if p.is_vararg(): p_add("*") name = p.converter.signature_name or p.name p_add(name) if not p.is_vararg() and p.converter.is_optional(): p_add('=') value = p.converter.py_default if not value: value = repr(p.converter.default) p_add(value) if (p != last_p) or need_a_trailing_slash: p_add(',') add_parameter(p_output()) add(fix_right_bracket_count(0)) if need_a_trailing_slash: add_parameter('/') add(')') # PEP 8 says: # # The Python standard library will not use function annotations # as that would result in a premature commitment to a particular # annotation style. Instead, the annotations are left for users # to discover and experiment with useful annotation styles. # # therefore this is commented out: # # if f.return_converter.py_default: # add(' -> ') # add(f.return_converter.py_default) if not f.docstring_only: add("\n" + sig_end_marker + "\n") signature_line = output() # now fix up the places where the brackets look wrong return signature_line.replace(', ]', ',] ') @staticmethod def format_docstring_parameters(params: list[Parameter]) -> str: """Create substitution text for {parameters}""" add, output = text_accumulator() for p in params: if p.docstring: add(p.render_docstring()) add('\n') return output() def format_docstring(self) -> str: assert self.function is not None f = self.function if f.kind.new_or_init and not f.docstring: # don't render a docstring at all, no signature, nothing. return f.docstring # Enforce the summary line! # The first line of a docstring should be a summary of the function. # It should fit on one line (80 columns? 79 maybe?) and be a paragraph # by itself. # # Argument Clinic enforces the following rule: # * either the docstring is empty, # * or it must have a summary line. # # Guido said Clinic should enforce this: # http://mail.python.org/pipermail/python-dev/2013-June/127110.html lines = f.docstring.split('\n') if len(lines) >= 2: if lines[1]: fail(f"Docstring for {f.full_name!r} does not have a summary line!\n" "Every non-blank function docstring must start with " "a single line summary followed by an empty line.") elif len(lines) == 1: # the docstring is only one line right now--the summary line. # add an empty line after the summary line so we have space # between it and the {parameters} we're about to add. lines.append('') parameters_marker_count = len(f.docstring.split('{parameters}')) - 1 if parameters_marker_count > 1: fail('You may not specify {parameters} more than once in a docstring!') # insert signature at front and params after the summary line if not parameters_marker_count: lines.insert(2, '{parameters}') lines.insert(0, '{signature}') # finalize docstring params = f.render_parameters parameters = self.format_docstring_parameters(params) signature = self.format_docstring_signature(f, params) docstring = "\n".join(lines) return linear_format(docstring, signature=signature, parameters=parameters).rstrip() def check_remaining_star(self, lineno: int | None = None) -> None: assert isinstance(self.function, Function) if self.keyword_only: symbol = '*' elif self.deprecated_positional: symbol = '* [from ...]' else: return for p in reversed(self.function.parameters.values()): if self.keyword_only: if p.kind == inspect.Parameter.KEYWORD_ONLY: return elif self.deprecated_positional: if p.deprecated_positional == self.deprecated_positional: return break fail(f"Function {self.function.name!r} specifies {symbol!r} " f"without following parameters.", line_number=lineno) def check_previous_star(self, lineno: int | None = None) -> None: assert isinstance(self.function, Function) for p in self.function.parameters.values(): if p.kind == inspect.Parameter.VAR_POSITIONAL: fail(f"Function {self.function.name!r} uses '*' more than once.") def do_post_block_processing_cleanup(self, lineno: int) -> None: """ Called when processing the block is done. """ if not self.function: return self.check_remaining_star(lineno) self.function.docstring = self.format_docstring() # maps strings to callables. # the callable should return an object # that implements the clinic parser # interface (__init__ and parse). # # example parsers: # "clinic", handles the Clinic DSL # "python", handles running Python code # parsers: dict[str, Callable[[Clinic], Parser]] = { 'clinic': DSLParser, 'python': PythonParser, } def create_cli() -> argparse.ArgumentParser: cmdline = argparse.ArgumentParser( prog="clinic.py", description="""Preprocessor for CPython C files. The purpose of the Argument Clinic is automating all the boilerplate involved with writing argument parsing code for builtins and providing introspection signatures ("docstrings") for CPython builtins. For more information see https://docs.python.org/3/howto/clinic.html""") cmdline.add_argument("-f", "--force", action='store_true', help="force output regeneration") cmdline.add_argument("-o", "--output", type=str, help="redirect file output to OUTPUT") cmdline.add_argument("-v", "--verbose", action='store_true', help="enable verbose mode") cmdline.add_argument("--converters", action='store_true', help=("print a list of all supported converters " "and return converters")) cmdline.add_argument("--make", action='store_true', help="walk --srcdir to run over all relevant files") cmdline.add_argument("--srcdir", type=str, default=os.curdir, help="the directory tree to walk in --make mode") cmdline.add_argument("--exclude", type=str, action="append", help=("a file to exclude in --make mode; " "can be given multiple times")) cmdline.add_argument("--limited", dest="limited_capi", action='store_true', help="use the Limited C API") cmdline.add_argument("filename", metavar="FILE", type=str, nargs="*", help="the list of files to process") return cmdline def run_clinic(parser: argparse.ArgumentParser, ns: argparse.Namespace) -> None: if ns.converters: if ns.filename: parser.error( "can't specify --converters and a filename at the same time" ) converters: list[tuple[str, str]] = [] return_converters: list[tuple[str, str]] = [] ignored = set(""" add_c_converter add_c_return_converter add_default_legacy_c_converter add_legacy_c_converter """.strip().split()) module = globals() for name in module: for suffix, ids in ( ("_return_converter", return_converters), ("_converter", converters), ): if name in ignored: continue if name.endswith(suffix): ids.append((name, name.removesuffix(suffix))) break print() print("Legacy converters:") legacy = sorted(legacy_converters) print(' ' + ' '.join(c for c in legacy if c[0].isupper())) print(' ' + ' '.join(c for c in legacy if c[0].islower())) print() for title, attribute, ids in ( ("Converters", 'converter_init', converters), ("Return converters", 'return_converter_init', return_converters), ): print(title + ":") longest = -1 for name, short_name in ids: longest = max(longest, len(short_name)) for name, short_name in sorted(ids, key=lambda x: x[1].lower()): cls = module[name] callable = getattr(cls, attribute, None) if not callable: continue signature = inspect.signature(callable) parameters = [] for parameter_name, parameter in signature.parameters.items(): if parameter.kind == inspect.Parameter.KEYWORD_ONLY: if parameter.default != inspect.Parameter.empty: s = f'{parameter_name}={parameter.default!r}' else: s = parameter_name parameters.append(s) print(' {}({})'.format(short_name, ', '.join(parameters))) print() print("All converters also accept (c_default=None, py_default=None, annotation=None).") print("All return converters also accept (py_default=None).") return if ns.make: if ns.output or ns.filename: parser.error("can't use -o or filenames with --make") if not ns.srcdir: parser.error("--srcdir must not be empty with --make") if ns.exclude: excludes = [os.path.join(ns.srcdir, f) for f in ns.exclude] excludes = [os.path.normpath(f) for f in excludes] else: excludes = [] for root, dirs, files in os.walk(ns.srcdir): for rcs_dir in ('.svn', '.git', '.hg', 'build', 'externals'): if rcs_dir in dirs: dirs.remove(rcs_dir) for filename in files: # handle .c, .cpp and .h files if not filename.endswith(('.c', '.cpp', '.h')): continue path = os.path.join(root, filename) path = os.path.normpath(path) if path in excludes: continue if ns.verbose: print(path) parse_file(path, verify=not ns.force, limited_capi=ns.limited_capi) return if not ns.filename: parser.error("no input files") if ns.output and len(ns.filename) > 1: parser.error("can't use -o with multiple filenames") for filename in ns.filename: if ns.verbose: print(filename) parse_file(filename, output=ns.output, verify=not ns.force, limited_capi=ns.limited_capi) def main(argv: list[str] | None = None) -> NoReturn: parser = create_cli() args = parser.parse_args(argv) try: run_clinic(parser, args) except ClinicError as exc: sys.stderr.write(exc.report()) sys.exit(1) else: sys.exit(0) if __name__ == "__main__": main()