"""Print a summary of specialization stats for all files in the default stats folders. """ import collections import os.path import opcode from datetime import date import itertools import argparse import sys if os.name == "nt": DEFAULT_DIR = "c:\\temp\\py_stats\\" else: DEFAULT_DIR = "/tmp/py_stats/" #Create list of all instruction names specialized = iter(opcode._specialized_instructions) opname = ["<0>"] for name in opcode.opname[1:]: if name.startswith("<"): try: name = next(specialized) except StopIteration: pass opname.append(name) # opcode_name --> opcode # Sort alphabetically. opmap = {name: i for i, name in enumerate(opname)} opmap = dict(sorted(opmap.items())) TOTAL = "specialization.deferred", "specialization.hit", "specialization.miss", "execution_count" def print_specialization_stats(name, family_stats, defines): if "specializable" not in family_stats: return total = sum(family_stats.get(kind, 0) for kind in TOTAL) if total == 0: return with Section(name, 3, f"specialization stats for {name} family"): rows = [] for key in sorted(family_stats): if key.startswith("specialization.failure_kinds"): continue if key in ("specialization.hit", "specialization.miss"): label = key[len("specialization."):] elif key == "execution_count": label = "unquickened" elif key in ("specialization.success", "specialization.failure", "specializable"): continue elif key.startswith("pair"): continue else: label = key rows.append((f"{label:>12}", f"{family_stats[key]:>12}", f"{100*family_stats[key]/total:0.1f}%")) emit_table(("Kind", "Count", "Ratio"), rows) print_title("Specialization attempts", 4) total_attempts = 0 for key in ("specialization.success", "specialization.failure"): total_attempts += family_stats.get(key, 0) rows = [] for key in ("specialization.success", "specialization.failure"): label = key[len("specialization."):] label = label[0].upper() + label[1:] val = family_stats.get(key, 0) rows.append((label, val, f"{100*val/total_attempts:0.1f}%")) emit_table(("", "Count:", "Ratio:"), rows) total_failures = family_stats.get("specialization.failure", 0) failure_kinds = [ 0 ] * 30 for key in family_stats: if not key.startswith("specialization.failure_kind"): continue _, index = key[:-1].split("[") index = int(index) failure_kinds[index] = family_stats[key] failures = [(value, index) for (index, value) in enumerate(failure_kinds)] failures.sort(reverse=True) rows = [] for value, index in failures: if not value: continue rows.append((kind_to_text(index, defines, name), value, f"{100*value/total_failures:0.1f}%")) emit_table(("Failure kind", "Count:", "Ratio:"), rows) def gather_stats(): stats = collections.Counter() for filename in os.listdir(DEFAULT_DIR): with open(os.path.join(DEFAULT_DIR, filename)) as fd: for line in fd: try: key, value = line.split(":") except ValueError: print (f"Unparsable line: '{line.strip()}' in {filename}", file=sys.stderr) continue key = key.strip() value = int(value) stats[key] += value return stats def extract_opcode_stats(stats): opcode_stats = [ {} for _ in range(256) ] for key, value in stats.items(): if not key.startswith("opcode"): continue n, _, rest = key[7:].partition("]") opcode_stats[int(n)][rest.strip(".")] = value return opcode_stats def parse_kinds(spec_src, prefix="SPEC_FAIL"): defines = collections.defaultdict(list) start = "#define " + prefix + "_" for line in spec_src: line = line.strip() if not line.startswith(start): continue line = line[len(start):] name, val = line.split() defines[int(val.strip())].append(name.strip()) return defines def pretty(defname): return defname.replace("_", " ").lower() def kind_to_text(kind, defines, opname): if kind < 7: return pretty(defines[kind][0]) if opname.endswith("ATTR"): opname = "ATTR" if opname.endswith("SUBSCR"): opname = "SUBSCR" for name in defines[kind]: if name.startswith(opname): return pretty(name[len(opname)+1:]) return "kind " + str(kind) def categorized_counts(opcode_stats): basic = 0 specialized = 0 not_specialized = 0 specialized_instructions = { op for op in opcode._specialized_instructions if "__" not in op and "ADAPTIVE" not in op} adaptive_instructions = { op for op in opcode._specialized_instructions if "ADAPTIVE" in op} for i, opcode_stat in enumerate(opcode_stats): if "execution_count" not in opcode_stat: continue count = opcode_stat['execution_count'] name = opname[i] if "specializable" in opcode_stat: not_specialized += count elif name in adaptive_instructions: not_specialized += count elif name in specialized_instructions: miss = opcode_stat.get("specialization.miss", 0) not_specialized += miss specialized += count - miss else: basic += count return basic, not_specialized, specialized def print_title(name, level=2): print("#"*level, name) print() class Section: def __init__(self, title, level=2, summary=None): self.title = title self.level = level if summary is None: self.summary = title.lower() else: self.summary = summary def __enter__(self): print_title(self.title, self.level) print("
") print("", self.summary, "") print() return self def __exit__(*args): print() print("
") print() def to_str(x): if isinstance(x, int): return format(x, ",d") else: return str(x) def emit_table(header, rows): width = len(header) header_line = "|" under_line = "|" for item in header: under = "---" if item.endswith(":"): item = item[:-1] under += ":" header_line += item + " | " under_line += under + "|" print(header_line) print(under_line) for row in rows: if width is not None and len(row) != width: raise ValueError("Wrong number of elements in row '" + str(row) + "'") print("|", " | ".join(to_str(i) for i in row), "|") print() def emit_execution_counts(opcode_stats, total): with Section("Execution counts", summary="execution counts for all instructions"): counts = [] for i, opcode_stat in enumerate(opcode_stats): if "execution_count" in opcode_stat: count = opcode_stat['execution_count'] miss = 0 if "specializable" not in opcode_stat: miss = opcode_stat.get("specialization.miss") counts.append((count, opname[i], miss)) counts.sort(reverse=True) cumulative = 0 rows = [] for (count, name, miss) in counts: cumulative += count if miss: miss = f"{100*miss/count:0.1f}%" else: miss = "" rows.append((name, count, f"{100*count/total:0.1f}%", f"{100*cumulative/total:0.1f}%", miss)) emit_table( ("Name", "Count:", "Self:", "Cumulative:", "Miss ratio:"), rows ) def emit_specialization_stats(opcode_stats): spec_path = os.path.join(os.path.dirname(__file__), "../../Python/specialize.c") with open(spec_path) as spec_src: defines = parse_kinds(spec_src) with Section("Specialization stats", summary="specialization stats by family"): for i, opcode_stat in enumerate(opcode_stats): name = opname[i] print_specialization_stats(name, opcode_stat, defines) def emit_specialization_overview(opcode_stats, total): basic, not_specialized, specialized = categorized_counts(opcode_stats) with Section("Specialization effectiveness"): emit_table(("Instructions", "Count:", "Ratio:"), ( ("Basic", basic, f"{basic*100/total:0.1f}%"), ("Not specialized", not_specialized, f"{not_specialized*100/total:0.1f}%"), ("Specialized", specialized, f"{specialized*100/total:0.1f}%"), )) for title, field in (("Deferred", "specialization.deferred"), ("Misses", "specialization.miss")): total = 0 counts = [] for i, opcode_stat in enumerate(opcode_stats): value = opcode_stat.get(field, 0) counts.append((value, opname[i])) total += value counts.sort(reverse=True) if total: with Section(f"{title} by instruction", 3): rows = [ (name, count, f"{100*count/total:0.1f}%") for (count, name) in counts[:10] ] emit_table(("Name", "Count:", "Ratio:"), rows) def emit_call_stats(stats): stats_path = os.path.join(os.path.dirname(__file__), "../../Include/pystats.h") with open(stats_path) as stats_src: defines = parse_kinds(stats_src, prefix="EVAL_CALL") with Section("Call stats", summary="Inlined calls and frame stats"): total = 0 for key, value in stats.items(): if "Calls to" in key: total += value rows = [] for key, value in stats.items(): if "Calls to" in key: rows.append((key, value, f"{100*value/total:0.1f}%")) elif key.startswith("Calls "): name, index = key[:-1].split("[") index = int(index) label = name + " (" + pretty(defines[index][0]) + ")" rows.append((label, value, f"{100*value/total:0.1f}%")) for key, value in stats.items(): if key.startswith("Frame"): rows.append((key, value, f"{100*value/total:0.1f}%")) emit_table(("", "Count:", "Ratio:"), rows) def emit_object_stats(stats): with Section("Object stats", summary="allocations, frees and dict materializatons"): total_materializations = stats.get("Object new values") total_allocations = stats.get("Object allocations") + stats.get("Object allocations from freelist") total_increfs = stats.get("Object interpreter increfs") + stats.get("Object increfs") total_decrefs = stats.get("Object interpreter decrefs") + stats.get("Object decrefs") rows = [] for key, value in stats.items(): if key.startswith("Object"): if "materialize" in key: ratio = f"{100*value/total_materializations:0.1f}%" elif "allocations" in key: ratio = f"{100*value/total_allocations:0.1f}%" elif "increfs" in key: ratio = f"{100*value/total_increfs:0.1f}%" elif "decrefs" in key: ratio = f"{100*value/total_decrefs:0.1f}%" else: ratio = "" label = key[6:].strip() label = label[0].upper() + label[1:] rows.append((label, value, ratio)) emit_table(("", "Count:", "Ratio:"), rows) def get_total(opcode_stats): total = 0 for opcode_stat in opcode_stats: if "execution_count" in opcode_stat: total += opcode_stat['execution_count'] return total def emit_pair_counts(opcode_stats, total): pair_counts = [] for i, opcode_stat in enumerate(opcode_stats): if i == 0: continue for key, value in opcode_stat.items(): if key.startswith("pair_count"): x, _, _ = key[11:].partition("]") if value: pair_counts.append((value, (i, int(x)))) with Section("Pair counts", summary="Pair counts for top 100 pairs"): pair_counts.sort(reverse=True) cumulative = 0 rows = [] for (count, pair) in itertools.islice(pair_counts, 100): i, j = pair cumulative += count rows.append((opname[i] + " " + opname[j], count, f"{100*count/total:0.1f}%", f"{100*cumulative/total:0.1f}%")) emit_table(("Pair", "Count:", "Self:", "Cumulative:"), rows ) with Section("Predecessor/Successor Pairs", summary="Top 5 predecessors and successors of each opcode"): predecessors = collections.defaultdict(collections.Counter) successors = collections.defaultdict(collections.Counter) total_predecessors = collections.Counter() total_successors = collections.Counter() for count, (first, second) in pair_counts: if count: predecessors[second][first] = count successors[first][second] = count total_predecessors[second] += count total_successors[first] += count for name, i in opmap.items(): total1 = total_predecessors[i] total2 = total_successors[i] if total1 == 0 and total2 == 0: continue pred_rows = succ_rows = () if total1: pred_rows = [(opname[pred], count, f"{count/total1:.1%}") for (pred, count) in predecessors[i].most_common(5)] if total2: succ_rows = [(opname[succ], count, f"{count/total2:.1%}") for (succ, count) in successors[i].most_common(5)] with Section(name, 3, f"Successors and predecessors for {name}"): emit_table(("Predecessors", "Count:", "Percentage:"), pred_rows ) emit_table(("Successors", "Count:", "Percentage:"), succ_rows ) def main(): stats = gather_stats() opcode_stats = extract_opcode_stats(stats) total = get_total(opcode_stats) emit_execution_counts(opcode_stats, total) emit_pair_counts(opcode_stats, total) emit_specialization_stats(opcode_stats) emit_specialization_overview(opcode_stats, total) emit_call_stats(stats) emit_object_stats(stats) print("---") print("Stats gathered on:", date.today()) if __name__ == "__main__": main()