1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
# Complex numbers
# ---------------
# [Now that Python has a complex data type built-in, this is not very
# useful, but it's still a nice example class]
# This module represents complex numbers as instances of the class Complex.
# A Complex instance z has two data attribues, z.re (the real part) and z.im
# (the imaginary part). In fact, z.re and z.im can have any value -- all
# arithmetic operators work regardless of the type of z.re and z.im (as long
# as they support numerical operations).
#
# The following functions exist (Complex is actually a class):
# Complex([re [,im]) -> creates a complex number from a real and an imaginary part
# IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
# ToComplex(z) -> a complex number equal to z; z itself if IsComplex(z) is true
# if z is a tuple(re, im) it will also be converted
# PolarToComplex([r [,phi [,fullcircle]]]) ->
# the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
# (r and phi default to 0)
# exp(z) -> returns the complex exponential of z. Equivalent to pow(math.e,z).
#
# Complex numbers have the following methods:
# z.abs() -> absolute value of z
# z.radius() == z.abs()
# z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
# z.phi([fullcircle]) == z.angle(fullcircle)
#
# These standard functions and unary operators accept complex arguments:
# abs(z)
# -z
# +z
# not z
# repr(z) == `z`
# str(z)
# hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
# the result equals hash(z.re)
# Note that hex(z) and oct(z) are not defined.
#
# These conversions accept complex arguments only if their imaginary part is zero:
# int(z)
# long(z)
# float(z)
#
# The following operators accept two complex numbers, or one complex number
# and one real number (int, long or float):
# z1 + z2
# z1 - z2
# z1 * z2
# z1 / z2
# pow(z1, z2)
# cmp(z1, z2)
# Note that z1 % z2 and divmod(z1, z2) are not defined,
# nor are shift and mask operations.
#
# The standard module math does not support complex numbers.
# The cmath modules should be used instead.
#
# Idea:
# add a class Polar(r, phi) and mixed-mode arithmetic which
# chooses the most appropriate type for the result:
# Complex for +,-,cmp
# Polar for *,/,pow
import math
import sys
twopi = math.pi*2.0
halfpi = math.pi/2.0
def IsComplex(obj):
return hasattr(obj, 're') and hasattr(obj, 'im')
def ToComplex(obj):
if IsComplex(obj):
return obj
elif isinstance(obj, tuple):
return Complex(*obj)
else:
return Complex(obj)
def PolarToComplex(r = 0, phi = 0, fullcircle = twopi):
phi = phi * (twopi / fullcircle)
return Complex(math.cos(phi)*r, math.sin(phi)*r)
def Re(obj):
if IsComplex(obj):
return obj.re
return obj
def Im(obj):
if IsComplex(obj):
return obj.im
return 0
class Complex:
def __init__(self, re=0, im=0):
_re = 0
_im = 0
if IsComplex(re):
_re = re.re
_im = re.im
else:
_re = re
if IsComplex(im):
_re = _re - im.im
_im = _im + im.re
else:
_im = _im + im
# this class is immutable, so setting self.re directly is
# not possible.
self.__dict__['re'] = _re
self.__dict__['im'] = _im
def __setattr__(self, name, value):
raise TypeError('Complex numbers are immutable')
def __hash__(self):
if not self.im:
return hash(self.re)
return hash((self.re, self.im))
def __repr__(self):
if not self.im:
return 'Complex(%r)' % (self.re,)
else:
return 'Complex(%r, %r)' % (self.re, self.im)
def __str__(self):
if not self.im:
return repr(self.re)
else:
return 'Complex(%r, %r)' % (self.re, self.im)
def __neg__(self):
return Complex(-self.re, -self.im)
def __pos__(self):
return self
def __abs__(self):
return math.hypot(self.re, self.im)
def __int__(self):
if self.im:
raise ValueError("can't convert Complex with nonzero im to int")
return int(self.re)
def __long__(self):
if self.im:
raise ValueError("can't convert Complex with nonzero im to long")
return int(self.re)
def __float__(self):
if self.im:
raise ValueError("can't convert Complex with nonzero im to float")
return float(self.re)
def __cmp__(self, other):
other = ToComplex(other)
return cmp((self.re, self.im), (other.re, other.im))
def __rcmp__(self, other):
other = ToComplex(other)
return cmp(other, self)
def __bool__(self):
return not (self.re == self.im == 0)
abs = radius = __abs__
def angle(self, fullcircle = twopi):
return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
phi = angle
def __add__(self, other):
other = ToComplex(other)
return Complex(self.re + other.re, self.im + other.im)
__radd__ = __add__
def __sub__(self, other):
other = ToComplex(other)
return Complex(self.re - other.re, self.im - other.im)
def __rsub__(self, other):
other = ToComplex(other)
return other - self
def __mul__(self, other):
other = ToComplex(other)
return Complex(self.re*other.re - self.im*other.im,
self.re*other.im + self.im*other.re)
__rmul__ = __mul__
def __div__(self, other):
other = ToComplex(other)
d = float(other.re*other.re + other.im*other.im)
if not d: raise ZeroDivisionError('Complex division')
return Complex((self.re*other.re + self.im*other.im) / d,
(self.im*other.re - self.re*other.im) / d)
def __rdiv__(self, other):
other = ToComplex(other)
return other / self
def __pow__(self, n, z=None):
if z is not None:
raise TypeError('Complex does not support ternary pow()')
if IsComplex(n):
if n.im:
if self.im: raise TypeError('Complex to the Complex power')
else: return exp(math.log(self.re)*n)
n = n.re
r = pow(self.abs(), n)
phi = n*self.angle()
return Complex(math.cos(phi)*r, math.sin(phi)*r)
def __rpow__(self, base):
base = ToComplex(base)
return pow(base, self)
def exp(z):
r = math.exp(z.re)
return Complex(math.cos(z.im)*r,math.sin(z.im)*r)
def checkop(expr, a, b, value, fuzz = 1e-6):
print(' ', a, 'and', b, end=' ')
try:
result = eval(expr)
except:
result = sys.exc_info()[0]
print('->', result)
if isinstance(result, str) or isinstance(value, str):
ok = (result == value)
else:
ok = abs(result - value) <= fuzz
if not ok:
print('!!\t!!\t!! should be', value, 'diff', abs(result - value))
def test():
print('test constructors')
constructor_test = (
# "expect" is an array [re,im] "got" the Complex.
( (0,0), Complex() ),
( (0,0), Complex() ),
( (1,0), Complex(1) ),
( (0,1), Complex(0,1) ),
( (1,2), Complex(Complex(1,2)) ),
( (1,3), Complex(Complex(1,2),1) ),
( (0,0), Complex(0,Complex(0,0)) ),
( (3,4), Complex(3,Complex(4)) ),
( (-1,3), Complex(1,Complex(3,2)) ),
( (-7,6), Complex(Complex(1,2),Complex(4,8)) ) )
cnt = [0,0]
for t in constructor_test:
cnt[0] += 1
if ((t[0][0]!=t[1].re)or(t[0][1]!=t[1].im)):
print(" expected", t[0], "got", t[1])
cnt[1] += 1
print(" ", cnt[1], "of", cnt[0], "tests failed")
# test operators
testsuite = {
'a+b': [
(1, 10, 11),
(1, Complex(0,10), Complex(1,10)),
(Complex(0,10), 1, Complex(1,10)),
(Complex(0,10), Complex(1), Complex(1,10)),
(Complex(1), Complex(0,10), Complex(1,10)),
],
'a-b': [
(1, 10, -9),
(1, Complex(0,10), Complex(1,-10)),
(Complex(0,10), 1, Complex(-1,10)),
(Complex(0,10), Complex(1), Complex(-1,10)),
(Complex(1), Complex(0,10), Complex(1,-10)),
],
'a*b': [
(1, 10, 10),
(1, Complex(0,10), Complex(0, 10)),
(Complex(0,10), 1, Complex(0,10)),
(Complex(0,10), Complex(1), Complex(0,10)),
(Complex(1), Complex(0,10), Complex(0,10)),
],
'a/b': [
(1., 10, 0.1),
(1, Complex(0,10), Complex(0, -0.1)),
(Complex(0, 10), 1, Complex(0, 10)),
(Complex(0, 10), Complex(1), Complex(0, 10)),
(Complex(1), Complex(0,10), Complex(0, -0.1)),
],
'pow(a,b)': [
(1, 10, 1),
(1, Complex(0,10), 1),
(Complex(0,10), 1, Complex(0,10)),
(Complex(0,10), Complex(1), Complex(0,10)),
(Complex(1), Complex(0,10), 1),
(2, Complex(4,0), 16),
],
'cmp(a,b)': [
(1, 10, -1),
(1, Complex(0,10), 1),
(Complex(0,10), 1, -1),
(Complex(0,10), Complex(1), -1),
(Complex(1), Complex(0,10), 1),
],
}
for expr in sorted(testsuite):
print(expr + ':')
t = (expr,)
for item in testsuite[expr]:
checkop(*(t+item))
if __name__ == '__main__':
test()
|