1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
|
\documentclass{manual}
\title{Python/C API Reference Manual}
\input{boilerplate}
\makeindex % tell \index to actually write the .idx file
\begin{document}
\maketitle
\ifhtml
\chapter*{Front Matter\label{front}}
\fi
\input{copyright}
\begin{abstract}
\noindent
This manual documents the API used by C and \Cpp{} programmers who
want to write extension modules or embed Python. It is a companion to
\citetitle[../ext/ext.html]{Extending and Embedding the Python
Interpreter}, which describes the general principles of extension
writing but does not document the API functions in detail.
\strong{Warning:} The current version of this document is incomplete.
I hope that it is nevertheless useful. I will continue to work on it,
and release new versions from time to time, independent from Python
source code releases.
\end{abstract}
\tableofcontents
% XXX Consider moving all this back to ext.tex and giving api.tex
% XXX a *really* short intro only.
\chapter{Introduction \label{intro}}
The Application Programmer's Interface to Python gives C and
\Cpp{} programmers access to the Python interpreter at a variety of
levels. The API is equally usable from \Cpp{}, but for brevity it is
generally referred to as the Python/C API. There are two
fundamentally different reasons for using the Python/C API. The first
reason is to write \emph{extension modules} for specific purposes;
these are C modules that extend the Python interpreter. This is
probably the most common use. The second reason is to use Python as a
component in a larger application; this technique is generally
referred to as \dfn{embedding} Python in an application.
Writing an extension module is a relatively well-understood process,
where a ``cookbook'' approach works well. There are several tools
that automate the process to some extent. While people have embedded
Python in other applications since its early existence, the process of
embedding Python is less straightforward that writing an extension.
Many API functions are useful independent of whether you're embedding
or extending Python; moreover, most applications that embed Python
will need to provide a custom extension as well, so it's probably a
good idea to become familiar with writing an extension before
attempting to embed Python in a real application.
\section{Include Files \label{includes}}
All function, type and macro definitions needed to use the Python/C
API are included in your code by the following line:
\begin{verbatim}
#include "Python.h"
\end{verbatim}
This implies inclusion of the following standard headers:
\code{<stdio.h>}, \code{<string.h>}, \code{<errno.h>},
\code{<limits.h>}, and \code{<stdlib.h>} (if available).
All user visible names defined by Python.h (except those defined by
the included standard headers) have one of the prefixes \samp{Py} or
\samp{_Py}. Names beginning with \samp{_Py} are for internal use by
the Python implementation and should not be used by extension writers.
Structure member names do not have a reserved prefix.
\strong{Important:} user code should never define names that begin
with \samp{Py} or \samp{_Py}. This confuses the reader, and
jeopardizes the portability of the user code to future Python
versions, which may define additional names beginning with one of
these prefixes.
The header files are typically installed with Python. On \UNIX, these
are located in the directories
\file{\envvar{prefix}/include/python\var{version}/} and
\file{\envvar{exec_prefix}/include/python\var{version}/}, where
\envvar{prefix} and \envvar{exec_prefix} are defined by the
corresponding parameters to Python's \program{configure} script and
\var{version} is \code{sys.version[:3]}. On Windows, the headers are
installed in \file{\envvar{prefix}/include}, where \envvar{prefix} is
the installation directory specified to the installer.
To include the headers, place both directories (if different) on your
compiler's search path for includes. Do \emph{not} place the parent
directories on the search path and then use
\samp{\#include <python\shortversion/Python.h>}; this will break on
multi-platform builds since the platform independent headers under
\envvar{prefix} include the platform specific headers from
\envvar{exec_prefix}.
\section{Objects, Types and Reference Counts \label{objects}}
Most Python/C API functions have one or more arguments as well as a
return value of type \ctype{PyObject*}. This type is a pointer
to an opaque data type representing an arbitrary Python
object. Since all Python object types are treated the same way by the
Python language in most situations (e.g., assignments, scope rules,
and argument passing), it is only fitting that they should be
represented by a single C type. Almost all Python objects live on the
heap: you never declare an automatic or static variable of type
\ctype{PyObject}, only pointer variables of type \ctype{PyObject*} can
be declared. The sole exception are the type objects\obindex{type};
since these must never be deallocated, they are typically static
\ctype{PyTypeObject} objects.
All Python objects (even Python integers) have a \dfn{type} and a
\dfn{reference count}. An object's type determines what kind of object
it is (e.g., an integer, a list, or a user-defined function; there are
many more as explained in the \citetitle[../ref/ref.html]{Python
Reference Manual}). For each of the well-known types there is a macro
to check whether an object is of that type; for instance,
\samp{PyList_Check(\var{a})} is true if (and only if) the object
pointed to by \var{a} is a Python list.
\subsection{Reference Counts \label{refcounts}}
The reference count is important because today's computers have a
finite (and often severely limited) memory size; it counts how many
different places there are that have a reference to an object. Such a
place could be another object, or a global (or static) C variable, or
a local variable in some C function. When an object's reference count
becomes zero, the object is deallocated. If it contains references to
other objects, their reference count is decremented. Those other
objects may be deallocated in turn, if this decrement makes their
reference count become zero, and so on. (There's an obvious problem
with objects that reference each other here; for now, the solution is
``don't do that.'')
Reference counts are always manipulated explicitly. The normal way is
to use the macro \cfunction{Py_INCREF()}\ttindex{Py_INCREF()} to
increment an object's reference count by one, and
\cfunction{Py_DECREF()}\ttindex{Py_DECREF()} to decrement it by
one. The \cfunction{Py_DECREF()} macro is considerably more complex
than the incref one, since it must check whether the reference count
becomes zero and then cause the object's deallocator to be called.
The deallocator is a function pointer contained in the object's type
structure. The type-specific deallocator takes care of decrementing
the reference counts for other objects contained in the object if this
is a compound object type, such as a list, as well as performing any
additional finalization that's needed. There's no chance that the
reference count can overflow; at least as many bits are used to hold
the reference count as there are distinct memory locations in virtual
memory (assuming \code{sizeof(long) >= sizeof(char*)}). Thus, the
reference count increment is a simple operation.
It is not necessary to increment an object's reference count for every
local variable that contains a pointer to an object. In theory, the
object's reference count goes up by one when the variable is made to
point to it and it goes down by one when the variable goes out of
scope. However, these two cancel each other out, so at the end the
reference count hasn't changed. The only real reason to use the
reference count is to prevent the object from being deallocated as
long as our variable is pointing to it. If we know that there is at
least one other reference to the object that lives at least as long as
our variable, there is no need to increment the reference count
temporarily. An important situation where this arises is in objects
that are passed as arguments to C functions in an extension module
that are called from Python; the call mechanism guarantees to hold a
reference to every argument for the duration of the call.
However, a common pitfall is to extract an object from a list and
hold on to it for a while without incrementing its reference count.
Some other operation might conceivably remove the object from the
list, decrementing its reference count and possible deallocating it.
The real danger is that innocent-looking operations may invoke
arbitrary Python code which could do this; there is a code path which
allows control to flow back to the user from a \cfunction{Py_DECREF()},
so almost any operation is potentially dangerous.
A safe approach is to always use the generic operations (functions
whose name begins with \samp{PyObject_}, \samp{PyNumber_},
\samp{PySequence_} or \samp{PyMapping_}). These operations always
increment the reference count of the object they return. This leaves
the caller with the responsibility to call
\cfunction{Py_DECREF()} when they are done with the result; this soon
becomes second nature.
\subsubsection{Reference Count Details \label{refcountDetails}}
The reference count behavior of functions in the Python/C API is best
explained in terms of \emph{ownership of references}. Note that we
talk of owning references, never of owning objects; objects are always
shared! When a function owns a reference, it has to dispose of it
properly --- either by passing ownership on (usually to its caller) or
by calling \cfunction{Py_DECREF()} or \cfunction{Py_XDECREF()}. When
a function passes ownership of a reference on to its caller, the
caller is said to receive a \emph{new} reference. When no ownership
is transferred, the caller is said to \emph{borrow} the reference.
Nothing needs to be done for a borrowed reference.
Conversely, when a calling function passes it a reference to an
object, there are two possibilities: the function \emph{steals} a
reference to the object, or it does not. Few functions steal
references; the two notable exceptions are
\cfunction{PyList_SetItem()}\ttindex{PyList_SetItem()} and
\cfunction{PyTuple_SetItem()}\ttindex{PyTuple_SetItem()}, which
steal a reference to the item (but not to the tuple or list into which
the item is put!). These functions were designed to steal a reference
because of a common idiom for populating a tuple or list with newly
created objects; for example, the code to create the tuple \code{(1,
2, "three")} could look like this (forgetting about error handling for
the moment; a better way to code this is shown below):
\begin{verbatim}
PyObject *t;
t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyInt_FromLong(1L));
PyTuple_SetItem(t, 1, PyInt_FromLong(2L));
PyTuple_SetItem(t, 2, PyString_FromString("three"));
\end{verbatim}
Incidentally, \cfunction{PyTuple_SetItem()} is the \emph{only} way to
set tuple items; \cfunction{PySequence_SetItem()} and
\cfunction{PyObject_SetItem()} refuse to do this since tuples are an
immutable data type. You should only use
\cfunction{PyTuple_SetItem()} for tuples that you are creating
yourself.
Equivalent code for populating a list can be written using
\cfunction{PyList_New()} and \cfunction{PyList_SetItem()}. Such code
can also use \cfunction{PySequence_SetItem()}; this illustrates the
difference between the two (the extra \cfunction{Py_DECREF()} calls):
\begin{verbatim}
PyObject *l, *x;
l = PyList_New(3);
x = PyInt_FromLong(1L);
PySequence_SetItem(l, 0, x); Py_DECREF(x);
x = PyInt_FromLong(2L);
PySequence_SetItem(l, 1, x); Py_DECREF(x);
x = PyString_FromString("three");
PySequence_SetItem(l, 2, x); Py_DECREF(x);
\end{verbatim}
You might find it strange that the ``recommended'' approach takes more
code. However, in practice, you will rarely use these ways of
creating and populating a tuple or list. There's a generic function,
\cfunction{Py_BuildValue()}, that can create most common objects from
C values, directed by a \dfn{format string}. For example, the
above two blocks of code could be replaced by the following (which
also takes care of the error checking):
\begin{verbatim}
PyObject *t, *l;
t = Py_BuildValue("(iis)", 1, 2, "three");
l = Py_BuildValue("[iis]", 1, 2, "three");
\end{verbatim}
It is much more common to use \cfunction{PyObject_SetItem()} and
friends with items whose references you are only borrowing, like
arguments that were passed in to the function you are writing. In
that case, their behaviour regarding reference counts is much saner,
since you don't have to increment a reference count so you can give a
reference away (``have it be stolen''). For example, this function
sets all items of a list (actually, any mutable sequence) to a given
item:
\begin{verbatim}
int set_all(PyObject *target, PyObject *item)
{
int i, n;
n = PyObject_Length(target);
if (n < 0)
return -1;
for (i = 0; i < n; i++) {
if (PyObject_SetItem(target, i, item) < 0)
return -1;
}
return 0;
}
\end{verbatim}
\ttindex{set_all()}
The situation is slightly different for function return values.
While passing a reference to most functions does not change your
ownership responsibilities for that reference, many functions that
return a referece to an object give you ownership of the reference.
The reason is simple: in many cases, the returned object is created
on the fly, and the reference you get is the only reference to the
object. Therefore, the generic functions that return object
references, like \cfunction{PyObject_GetItem()} and
\cfunction{PySequence_GetItem()}, always return a new reference (i.e.,
the caller becomes the owner of the reference).
It is important to realize that whether you own a reference returned
by a function depends on which function you call only --- \emph{the
plumage} (i.e., the type of the type of the object passed as an
argument to the function) \emph{doesn't enter into it!} Thus, if you
extract an item from a list using \cfunction{PyList_GetItem()}, you
don't own the reference --- but if you obtain the same item from the
same list using \cfunction{PySequence_GetItem()} (which happens to
take exactly the same arguments), you do own a reference to the
returned object.
Here is an example of how you could write a function that computes the
sum of the items in a list of integers; once using
\cfunction{PyList_GetItem()}\ttindex{PyList_GetItem()}, and once using
\cfunction{PySequence_GetItem()}\ttindex{PySequence_GetItem()}.
\begin{verbatim}
long sum_list(PyObject *list)
{
int i, n;
long total = 0;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, i); /* Can't fail */
if (!PyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);
}
return total;
}
\end{verbatim}
\ttindex{sum_list()}
\begin{verbatim}
long sum_sequence(PyObject *sequence)
{
int i, n;
long total = 0;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))
total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */
}
return total;
}
\end{verbatim}
\ttindex{sum_sequence()}
\subsection{Types \label{types}}
There are few other data types that play a significant role in
the Python/C API; most are simple C types such as \ctype{int},
\ctype{long}, \ctype{double} and \ctype{char*}. A few structure types
are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another
is used to describe the value of a complex number. These will
be discussed together with the functions that use them.
\section{Exceptions \label{exceptions}}
The Python programmer only needs to deal with exceptions if specific
error handling is required; unhandled exceptions are automatically
propagated to the caller, then to the caller's caller, and so on, until
they reach the top-level interpreter, where they are reported to the
user accompanied by a stack traceback.
For C programmers, however, error checking always has to be explicit.
All functions in the Python/C API can raise exceptions, unless an
explicit claim is made otherwise in a function's documentation. In
general, when a function encounters an error, it sets an exception,
discards any object references that it owns, and returns an
error indicator --- usually \NULL{} or \code{-1}. A few functions
return a Boolean true/false result, with false indicating an error.
Very few functions return no explicit error indicator or have an
ambiguous return value, and require explicit testing for errors with
\cfunction{PyErr_Occurred()}\ttindex{PyErr_Occurred()}.
Exception state is maintained in per-thread storage (this is
equivalent to using global storage in an unthreaded application). A
thread can be in one of two states: an exception has occurred, or not.
The function \cfunction{PyErr_Occurred()} can be used to check for
this: it returns a borrowed reference to the exception type object
when an exception has occurred, and \NULL{} otherwise. There are a
number of functions to set the exception state:
\cfunction{PyErr_SetString()}\ttindex{PyErr_SetString()} is the most
common (though not the most general) function to set the exception
state, and \cfunction{PyErr_Clear()}\ttindex{PyErr_Clear()} clears the
exception state.
The full exception state consists of three objects (all of which can
be \NULL{}): the exception type, the corresponding exception
value, and the traceback. These have the same meanings as the Python
\withsubitem{(in module sys)}{
\ttindex{exc_type}\ttindex{exc_value}\ttindex{exc_traceback}}
objects \code{sys.exc_type}, \code{sys.exc_value}, and
\code{sys.exc_traceback}; however, they are not the same: the Python
objects represent the last exception being handled by a Python
\keyword{try} \ldots\ \keyword{except} statement, while the C level
exception state only exists while an exception is being passed on
between C functions until it reaches the Python bytecode interpreter's
main loop, which takes care of transferring it to \code{sys.exc_type}
and friends.
Note that starting with Python 1.5, the preferred, thread-safe way to
access the exception state from Python code is to call the function
\withsubitem{(in module sys)}{\ttindex{exc_info()}}
\function{sys.exc_info()}, which returns the per-thread exception state
for Python code. Also, the semantics of both ways to access the
exception state have changed so that a function which catches an
exception will save and restore its thread's exception state so as to
preserve the exception state of its caller. This prevents common bugs
in exception handling code caused by an innocent-looking function
overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the
stack frames in the traceback.
As a general principle, a function that calls another function to
perform some task should check whether the called function raised an
exception, and if so, pass the exception state on to its caller. It
should discard any object references that it owns, and return an
error indicator, but it should \emph{not} set another exception ---
that would overwrite the exception that was just raised, and lose
important information about the exact cause of the error.
A simple example of detecting exceptions and passing them on is shown
in the \cfunction{sum_sequence()}\ttindex{sum_sequence()} example
above. It so happens that that example doesn't need to clean up any
owned references when it detects an error. The following example
function shows some error cleanup. First, to remind you why you like
Python, we show the equivalent Python code:
\begin{verbatim}
def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1
\end{verbatim}
\ttindex{incr_item()}
Here is the corresponding C code, in all its glory:
\begin{verbatim}
int incr_item(PyObject *dict, PyObject *key)
{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */
item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError))
goto error;
/* Clear the error and use zero: */
PyErr_Clear();
item = PyInt_FromLong(0L);
if (item == NULL)
goto error;
}
const_one = PyInt_FromLong(1L);
if (const_one == NULL)
goto error;
incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;
if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;
rv = 0; /* Success */
/* Continue with cleanup code */
error:
/* Cleanup code, shared by success and failure path */
/* Use Py_XDECREF() to ignore NULL references */
Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);
return rv; /* -1 for error, 0 for success */
}
\end{verbatim}
\ttindex{incr_item()}
This example represents an endorsed use of the \keyword{goto} statement
in C! It illustrates the use of
\cfunction{PyErr_ExceptionMatches()}\ttindex{PyErr_ExceptionMatches()} and
\cfunction{PyErr_Clear()}\ttindex{PyErr_Clear()} to
handle specific exceptions, and the use of
\cfunction{Py_XDECREF()}\ttindex{Py_XDECREF()} to
dispose of owned references that may be \NULL{} (note the
\character{X} in the name; \cfunction{Py_DECREF()} would crash when
confronted with a \NULL{} reference). It is important that the
variables used to hold owned references are initialized to \NULL{} for
this to work; likewise, the proposed return value is initialized to
\code{-1} (failure) and only set to success after the final call made
is successful.
\section{Embedding Python \label{embedding}}
The one important task that only embedders (as opposed to extension
writers) of the Python interpreter have to worry about is the
initialization, and possibly the finalization, of the Python
interpreter. Most functionality of the interpreter can only be used
after the interpreter has been initialized.
The basic initialization function is
\cfunction{Py_Initialize()}\ttindex{Py_Initialize()}.
This initializes the table of loaded modules, and creates the
fundamental modules \module{__builtin__}\refbimodindex{__builtin__},
\module{__main__}\refbimodindex{__main__} and
\module{sys}\refbimodindex{sys}. It also initializes the module
search path (\code{sys.path}).%
\indexiii{module}{search}{path}
\withsubitem{(in module sys)}{\ttindex{path}}
\cfunction{Py_Initialize()} does not set the ``script argument list''
(\code{sys.argv}). If this variable is needed by Python code that
will be executed later, it must be set explicitly with a call to
\code{PySys_SetArgv(\var{argc},
\var{argv})}\ttindex{PySys_SetArgv()} subsequent to the call to
\cfunction{Py_Initialize()}.
On most systems (in particular, on \UNIX{} and Windows, although the
details are slightly different),
\cfunction{Py_Initialize()} calculates the module search path based
upon its best guess for the location of the standard Python
interpreter executable, assuming that the Python library is found in a
fixed location relative to the Python interpreter executable. In
particular, it looks for a directory named
\file{lib/python\shortversion} relative to the parent directory where
the executable named \file{python} is found on the shell command
search path (the environment variable \envvar{PATH}).
For instance, if the Python executable is found in
\file{/usr/local/bin/python}, it will assume that the libraries are in
\file{/usr/local/lib/python\shortversion}. (In fact, this particular path
is also the ``fallback'' location, used when no executable file named
\file{python} is found along \envvar{PATH}.) The user can override
this behavior by setting the environment variable \envvar{PYTHONHOME},
or insert additional directories in front of the standard path by
setting \envvar{PYTHONPATH}.
The embedding application can steer the search by calling
\code{Py_SetProgramName(\var{file})}\ttindex{Py_SetProgramName()} \emph{before} calling
\cfunction{Py_Initialize()}. Note that \envvar{PYTHONHOME} still
overrides this and \envvar{PYTHONPATH} is still inserted in front of
the standard path. An application that requires total control has to
provide its own implementation of
\cfunction{Py_GetPath()}\ttindex{Py_GetPath()},
\cfunction{Py_GetPrefix()}\ttindex{Py_GetPrefix()},
\cfunction{Py_GetExecPrefix()}\ttindex{Py_GetExecPrefix()}, and
\cfunction{Py_GetProgramFullPath()}\ttindex{Py_GetProgramFullPath()} (all
defined in \file{Modules/getpath.c}).
Sometimes, it is desirable to ``uninitialize'' Python. For instance,
the application may want to start over (make another call to
\cfunction{Py_Initialize()}) or the application is simply done with its
use of Python and wants to free all memory allocated by Python. This
can be accomplished by calling \cfunction{Py_Finalize()}. The function
\cfunction{Py_IsInitialized()}\ttindex{Py_IsInitialized()} returns
true if Python is currently in the initialized state. More
information about these functions is given in a later chapter.
\chapter{The Very High Level Layer \label{veryhigh}}
The functions in this chapter will let you execute Python source code
given in a file or a buffer, but they will not let you interact in a
more detailed way with the interpreter.
Several of these functions accept a start symbol from the grammar as a
parameter. The available start symbols are \constant{Py_eval_input},
\constant{Py_file_input}, and \constant{Py_single_input}. These are
described following the functions which accept them as parameters.
Note also that several of these functions take \ctype{FILE*}
parameters. On particular issue which needs to be handled carefully
is that the \ctype{FILE} structure for different C libraries can be
different and incompatible. Under Windows (at least), it is possible
for dynamically linked extensions to actually use different libraries,
so care should be taken that \ctype{FILE*} parameters are only passed
to these functions if it is certain that they were created by the same
library that the Python runtime is using.
\begin{cfuncdesc}{int}{PyRun_AnyFile}{FILE *fp, char *filename}
If \var{fp} refers to a file associated with an interactive device
(console or terminal input or \UNIX{} pseudo-terminal), return the
value of \cfunction{PyRun_InteractiveLoop()}, otherwise return the
result of \cfunction{PyRun_SimpleFile()}. If \var{filename} is
\NULL{}, this function uses \code{"???"} as the filename.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_SimpleString}{char *command}
Executes the Python source code from \var{command} in the
\module{__main__} module. If \module{__main__} does not already
exist, it is created. Returns \code{0} on success or \code{-1} if
an exception was raised. If there was an error, there is no way to
get the exception information.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_SimpleFile}{FILE *fp, char *filename}
Similar to \cfunction{PyRun_SimpleString()}, but the Python source
code is read from \var{fp} instead of an in-memory string.
\var{filename} should be the name of the file.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_InteractiveOne}{FILE *fp, char *filename}
Read and execute a single statement from a file associated with an
interactive device. If \var{filename} is \NULL, \code{"???"} is
used instead. The user will be prompted using \code{sys.ps1} and
\code{sys.ps2}. Returns \code{0} when the input was executed
successfully, \code{-1} if there was an exception, or an error code
from the \file{errcode.h} include file distributed as part of Python
in case of a parse error. (Note that \file{errcode.h} is not
included by \file{Python.h}, so must be included specifically if
needed.)
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_InteractiveLoop}{FILE *fp, char *filename}
Read and execute statements from a file associated with an
interactive device until \EOF{} is reached. If \var{filename} is
\NULL, \code{"???"} is used instead. The user will be prompted
using \code{sys.ps1} and \code{sys.ps2}. Returns \code{0} at \EOF.
\end{cfuncdesc}
\begin{cfuncdesc}{struct _node*}{PyParser_SimpleParseString}{char *str,
int start}
Parse Python source code from \var{str} using the start token
\var{start}. The result can be used to create a code object which
can be evaluated efficiently. This is useful if a code fragment
must be evaluated many times.
\end{cfuncdesc}
\begin{cfuncdesc}{struct _node*}{PyParser_SimpleParseFile}{FILE *fp,
char *filename, int start}
Similar to \cfunction{PyParser_SimpleParseString()}, but the Python
source code is read from \var{fp} instead of an in-memory string.
\var{filename} should be the name of the file.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyRun_String}{char *str, int start,
PyObject *globals,
PyObject *locals}
Execute Python source code from \var{str} in the context specified
by the dictionaries \var{globals} and \var{locals}. The parameter
\var{start} specifies the start token that should be used to parse
the source code.
Returns the result of executing the code as a Python object, or
\NULL{} if an exception was raised.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyRun_File}{FILE *fp, char *filename,
int start, PyObject *globals,
PyObject *locals}
Similar to \cfunction{PyRun_String()}, but the Python source code is
read from \var{fp} instead of an in-memory string.
\var{filename} should be the name of the file.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{Py_CompileString}{char *str, char *filename,
int start}
Parse and compile the Python source code in \var{str}, returning the
resulting code object. The start token is given by \var{start};
this can be used to constrain the code which can be compiled and should
be \constant{Py_eval_input}, \constant{Py_file_input}, or
\constant{Py_single_input}. The filename specified by
\var{filename} is used to construct the code object and may appear
in tracebacks or \exception{SyntaxError} exception messages. This
returns \NULL{} if the code cannot be parsed or compiled.
\end{cfuncdesc}
\begin{cvardesc}{int}{Py_eval_input}
The start symbol from the Python grammar for isolated expressions;
for use with \cfunction{Py_CompileString()}\ttindex{Py_CompileString()}.
\end{cvardesc}
\begin{cvardesc}{int}{Py_file_input}
The start symbol from the Python grammar for sequences of statements
as read from a file or other source; for use with
\cfunction{Py_CompileString()}\ttindex{Py_CompileString()}. This is
the symbol to use when compiling arbitrarily long Python source code.
\end{cvardesc}
\begin{cvardesc}{int}{Py_single_input}
The start symbol from the Python grammar for a single statement; for
use with \cfunction{Py_CompileString()}\ttindex{Py_CompileString()}.
This is the symbol used for the interactive interpreter loop.
\end{cvardesc}
\chapter{Reference Counting \label{countingRefs}}
The macros in this section are used for managing reference counts
of Python objects.
\begin{cfuncdesc}{void}{Py_INCREF}{PyObject *o}
Increment the reference count for object \var{o}. The object must
not be \NULL{}; if you aren't sure that it isn't \NULL{}, use
\cfunction{Py_XINCREF()}.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{Py_XINCREF}{PyObject *o}
Increment the reference count for object \var{o}. The object may be
\NULL{}, in which case the macro has no effect.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{Py_DECREF}{PyObject *o}
Decrement the reference count for object \var{o}. The object must
not be \NULL{}; if you aren't sure that it isn't \NULL{}, use
\cfunction{Py_XDECREF()}. If the reference count reaches zero, the
object's type's deallocation function (which must not be \NULL{}) is
invoked.
\strong{Warning:} The deallocation function can cause arbitrary Python
code to be invoked (e.g. when a class instance with a
\method{__del__()} method is deallocated). While exceptions in such
code are not propagated, the executed code has free access to all
Python global variables. This means that any object that is reachable
from a global variable should be in a consistent state before
\cfunction{Py_DECREF()} is invoked. For example, code to delete an
object from a list should copy a reference to the deleted object in a
temporary variable, update the list data structure, and then call
\cfunction{Py_DECREF()} for the temporary variable.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{Py_XDECREF}{PyObject *o}
Decrement the reference count for object \var{o}. The object may be
\NULL{}, in which case the macro has no effect; otherwise the effect
is the same as for \cfunction{Py_DECREF()}, and the same warning
applies.
\end{cfuncdesc}
The following functions or macros are only for use within the
interpreter core: \cfunction{_Py_Dealloc()},
\cfunction{_Py_ForgetReference()}, \cfunction{_Py_NewReference()}, as
well as the global variable \cdata{_Py_RefTotal}.
\chapter{Exception Handling \label{exceptionHandling}}
The functions described in this chapter will let you handle and raise Python
exceptions. It is important to understand some of the basics of
Python exception handling. It works somewhat like the
\UNIX{} \cdata{errno} variable: there is a global indicator (per
thread) of the last error that occurred. Most functions don't clear
this on success, but will set it to indicate the cause of the error on
failure. Most functions also return an error indicator, usually
\NULL{} if they are supposed to return a pointer, or \code{-1} if they
return an integer (exception: the \cfunction{PyArg_Parse*()} functions
return \code{1} for success and \code{0} for failure). When a
function must fail because some function it called failed, it
generally doesn't set the error indicator; the function it called
already set it.
The error indicator consists of three Python objects corresponding to
\withsubitem{(in module sys)}{
\ttindex{exc_type}\ttindex{exc_value}\ttindex{exc_traceback}}
the Python variables \code{sys.exc_type}, \code{sys.exc_value} and
\code{sys.exc_traceback}. API functions exist to interact with the
error indicator in various ways. There is a separate error indicator
for each thread.
% XXX Order of these should be more thoughtful.
% Either alphabetical or some kind of structure.
\begin{cfuncdesc}{void}{PyErr_Print}{}
Print a standard traceback to \code{sys.stderr} and clear the error
indicator. Call this function only when the error indicator is set.
(Otherwise it will cause a fatal error!)
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyErr_Occurred}{}
Test whether the error indicator is set. If set, return the exception
\emph{type} (the first argument to the last call to one of the
\cfunction{PyErr_Set*()} functions or to \cfunction{PyErr_Restore()}). If
not set, return \NULL{}. You do not own a reference to the return
value, so you do not need to \cfunction{Py_DECREF()} it.
\strong{Note:} Do not compare the return value to a specific
exception; use \cfunction{PyErr_ExceptionMatches()} instead, shown
below. (The comparison could easily fail since the exception may be
an instance instead of a class, in the case of a class exception, or
it may the a subclass of the expected exception.)
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyErr_ExceptionMatches}{PyObject *exc}
Equivalent to
\samp{PyErr_GivenExceptionMatches(PyErr_Occurred(), \var{exc})}.
This should only be called when an exception is actually set; a memory
access violation will occur if no exception has been raised.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyErr_GivenExceptionMatches}{PyObject *given, PyObject *exc}
Return true if the \var{given} exception matches the exception in
\var{exc}. If \var{exc} is a class object, this also returns true
when \var{given} is an instance of a subclass. If \var{exc} is a tuple, all
exceptions in the tuple (and recursively in subtuples) are searched
for a match. If \var{given} is \NULL, a memory access violation will
occur.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_NormalizeException}{PyObject**exc, PyObject**val, PyObject**tb}
Under certain circumstances, the values returned by
\cfunction{PyErr_Fetch()} below can be ``unnormalized'', meaning that
\code{*\var{exc}} is a class object but \code{*\var{val}} is not an
instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing
happens. The delayed normalization is implemented to improve
performance.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_Clear}{}
Clear the error indicator. If the error indicator is not set, there
is no effect.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_Fetch}{PyObject **ptype, PyObject **pvalue,
PyObject **ptraceback}
Retrieve the error indicator into three variables whose addresses are
passed. If the error indicator is not set, set all three variables to
\NULL{}. If it is set, it will be cleared and you own a reference to
each object retrieved. The value and traceback object may be
\NULL{} even when the type object is not. \strong{Note:} This
function is normally only used by code that needs to handle exceptions
or by code that needs to save and restore the error indicator
temporarily.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_Restore}{PyObject *type, PyObject *value,
PyObject *traceback}
Set the error indicator from the three objects. If the error
indicator is already set, it is cleared first. If the objects are
\NULL{}, the error indicator is cleared. Do not pass a \NULL{} type
and non-\NULL{} value or traceback. The exception type should be a
string or class; if it is a class, the value should be an instance of
that class. Do not pass an invalid exception type or value.
(Violating these rules will cause subtle problems later.) This call
takes away a reference to each object, i.e.\ you must own a reference
to each object before the call and after the call you no longer own
these references. (If you don't understand this, don't use this
function. I warned you.) \strong{Note:} This function is normally
only used by code that needs to save and restore the error indicator
temporarily.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetString}{PyObject *type, char *message}
This is the most common way to set the error indicator. The first
argument specifies the exception type; it is normally one of the
standard exceptions, e.g. \cdata{PyExc_RuntimeError}. You need not
increment its reference count. The second argument is an error
message; it is converted to a string object.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetObject}{PyObject *type, PyObject *value}
This function is similar to \cfunction{PyErr_SetString()} but lets you
specify an arbitrary Python object for the ``value'' of the exception.
You need not increment its reference count.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyErr_Format}{PyObject *exception,
const char *format, \moreargs}
This function sets the error indicator. \var{exception} should be a
Python exception (string or class, not an instance).
\var{format} should be a string, containing format codes, similar to
\cfunction{printf}. The \code{width.precision} before a format code
is parsed, but the width part is ignored.
\begin{tableii}{c|l}{character}{Character}{Meaning}
\lineii{c}{Character, as an \ctype{int} parameter}
\lineii{d}{Number in decimal, as an \ctype{int} parameter}
\lineii{x}{Number in hexadecimal, as an \ctype{int} parameter}
\lineii{x}{A string, as a \ctype{char *} parameter}
\end{tableii}
An unrecognized format character causes all the rest of
the format string to be copied as-is to the result string,
and any extra arguments discarded.
A new reference is returned, which is owned by the caller.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetNone}{PyObject *type}
This is a shorthand for \samp{PyErr_SetObject(\var{type}, Py_None)}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyErr_BadArgument}{}
This is a shorthand for \samp{PyErr_SetString(PyExc_TypeError,
\var{message})}, where \var{message} indicates that a built-in operation
was invoked with an illegal argument. It is mostly for internal use.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyErr_NoMemory}{}
This is a shorthand for \samp{PyErr_SetNone(PyExc_MemoryError)}; it
returns \NULL{} so an object allocation function can write
\samp{return PyErr_NoMemory();} when it runs out of memory.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyErr_SetFromErrno}{PyObject *type}
This is a convenience function to raise an exception when a C library
function has returned an error and set the C variable \cdata{errno}.
It constructs a tuple object whose first item is the integer
\cdata{errno} value and whose second item is the corresponding error
message (gotten from \cfunction{strerror()}\ttindex{strerror()}), and
then calls
\samp{PyErr_SetObject(\var{type}, \var{object})}. On \UNIX{}, when
the \cdata{errno} value is \constant{EINTR}, indicating an interrupted
system call, this calls \cfunction{PyErr_CheckSignals()}, and if that set
the error indicator, leaves it set to that. The function always
returns \NULL{}, so a wrapper function around a system call can write
\samp{return PyErr_SetFromErrno();} when the system call returns an
error.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_BadInternalCall}{}
This is a shorthand for \samp{PyErr_SetString(PyExc_TypeError,
\var{message})}, where \var{message} indicates that an internal
operation (e.g. a Python/C API function) was invoked with an illegal
argument. It is mostly for internal use.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyErr_Warn}{PyObject *category, char *message}
Issue a warning message. The \var{category} argument is a warning
category (see below) or \NULL; the \var{message} argument is a message
string.
This function normally prints a warning message to \var{sys.stderr};
however, it is also possible that the user has specified that warnings
are to be turned into errors, and in that case this will raise an
exception. It is also possible that the function raises an exception
because of a problem with the warning machinery (the implementation
imports the \module{warnings} module to do the heavy lifting). The
return value is \code{0} if no exception is raised, or \code{-1} if
an exception is raised. (It is not possible to determine whether a
warning message is actually printed, nor what the reason is for the
exception; this is intentional.) If an exception is raised, the
caller should do its normal exception handling
(e.g. \cfunction{Py_DECREF()} owned references and return an error
value).
Warning categories must be subclasses of \cdata{Warning}; the default
warning category is \cdata{RuntimeWarning}. The standard Python
warning categories are available as global variables whose names are
\samp{PyExc_} followed by the Python exception name. These have the
type \ctype{PyObject*}; they are all class objects. Their names are
\cdata{PyExc_Warning}, \cdata{PyExc_UserWarning},
\cdata{PyExc_DeprecationWarning}, \cdata{PyExc_SyntaxWarning}, and
\cdata{PyExc_RuntimeWarning}. \cdata{PyExc_Warning} is a subclass of
\cdata{PyExc_Exception}; the other warning categories are subclasses
of \cdata{PyExc_Warning}.
For information about warning control, see the documentation for the
\module{warnings} module and the \programopt{-W} option in the command
line documentation. There is no C API for warning control.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyErr_CheckSignals}{}
This function interacts with Python's signal handling. It checks
whether a signal has been sent to the processes and if so, invokes the
corresponding signal handler. If the
\module{signal}\refbimodindex{signal} module is supported, this can
invoke a signal handler written in Python. In all cases, the default
effect for \constant{SIGINT}\ttindex{SIGINT} is to raise the
\withsubitem{(built-in exception)}{\ttindex{KeyboardInterrupt}}
\exception{KeyboardInterrupt} exception. If an exception is raised the
error indicator is set and the function returns \code{1}; otherwise
the function returns \code{0}. The error indicator may or may not be
cleared if it was previously set.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetInterrupt}{}
This function is obsolete. It simulates the effect of a
\constant{SIGINT}\ttindex{SIGINT} signal arriving --- the next time
\cfunction{PyErr_CheckSignals()} is called,
\withsubitem{(built-in exception)}{\ttindex{KeyboardInterrupt}}
\exception{KeyboardInterrupt} will be raised.
It may be called without holding the interpreter lock.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyErr_NewException}{char *name,
PyObject *base,
PyObject *dict}
This utility function creates and returns a new exception object. The
\var{name} argument must be the name of the new exception, a C string
of the form \code{module.class}. The \var{base} and
\var{dict} arguments are normally \NULL{}. This creates a
class object derived from the root for all exceptions, the built-in
name \exception{Exception} (accessible in C as
\cdata{PyExc_Exception}). The \member{__module__} attribute of the
new class is set to the first part (up to the last dot) of the
\var{name} argument, and the class name is set to the last part (after
the last dot). The \var{base} argument can be used to specify an
alternate base class. The \var{dict} argument can be used to specify
a dictionary of class variables and methods.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_WriteUnraisable}{PyObject *obj}
This utility function prints a warning message to \var{sys.stderr}
when an exception has been set but it is impossible for the
interpreter to actually raise the exception. It is used, for example,
when an exception occurs in an \member{__del__} method.
The function is called with a single argument \var{obj} that
identifies where the context in which the unraisable exception
occurred. The repr of \var{obj} will be printed in the warning
message.
\end{cfuncdesc}
\section{Standard Exceptions \label{standardExceptions}}
All standard Python exceptions are available as global variables whose
names are \samp{PyExc_} followed by the Python exception name. These
have the type \ctype{PyObject*}; they are all class objects. For
completeness, here are all the variables:
\begin{tableiii}{l|l|c}{cdata}{C Name}{Python Name}{Notes}
\lineiii{PyExc_Exception}{\exception{Exception}}{(1)}
\lineiii{PyExc_StandardError}{\exception{StandardError}}{(1)}
\lineiii{PyExc_ArithmeticError}{\exception{ArithmeticError}}{(1)}
\lineiii{PyExc_LookupError}{\exception{LookupError}}{(1)}
\lineiii{PyExc_AssertionError}{\exception{AssertionError}}{}
\lineiii{PyExc_AttributeError}{\exception{AttributeError}}{}
\lineiii{PyExc_EOFError}{\exception{EOFError}}{}
\lineiii{PyExc_EnvironmentError}{\exception{EnvironmentError}}{(1)}
\lineiii{PyExc_FloatingPointError}{\exception{FloatingPointError}}{}
\lineiii{PyExc_IOError}{\exception{IOError}}{}
\lineiii{PyExc_ImportError}{\exception{ImportError}}{}
\lineiii{PyExc_IndexError}{\exception{IndexError}}{}
\lineiii{PyExc_KeyError}{\exception{KeyError}}{}
\lineiii{PyExc_KeyboardInterrupt}{\exception{KeyboardInterrupt}}{}
\lineiii{PyExc_MemoryError}{\exception{MemoryError}}{}
\lineiii{PyExc_NameError}{\exception{NameError}}{}
\lineiii{PyExc_NotImplementedError}{\exception{NotImplementedError}}{}
\lineiii{PyExc_OSError}{\exception{OSError}}{}
\lineiii{PyExc_OverflowError}{\exception{OverflowError}}{}
\lineiii{PyExc_RuntimeError}{\exception{RuntimeError}}{}
\lineiii{PyExc_SyntaxError}{\exception{SyntaxError}}{}
\lineiii{PyExc_SystemError}{\exception{SystemError}}{}
\lineiii{PyExc_SystemExit}{\exception{SystemExit}}{}
\lineiii{PyExc_TypeError}{\exception{TypeError}}{}
\lineiii{PyExc_ValueError}{\exception{ValueError}}{}
\lineiii{PyExc_WindowsError}{\exception{WindowsError}}{(2)}
\lineiii{PyExc_ZeroDivisionError}{\exception{ZeroDivisionError}}{}
\end{tableiii}
\noindent
Notes:
\begin{description}
\item[(1)]
This is a base class for other standard exceptions.
\item[(2)]
Only defined on Windows; protect code that uses this by testing that
the preprocessor macro \code{MS_WINDOWS} is defined.
\end{description}
\section{Deprecation of String Exceptions}
All exceptions built into Python or provided in the standard library
are derived from \exception{Exception}.
\withsubitem{(built-in exception)}{\ttindex{Exception}}
String exceptions are still supported in the interpreter to allow
existing code to run unmodified, but this will also change in a future
release.
\chapter{Utilities \label{utilities}}
The functions in this chapter perform various utility tasks, such as
parsing function arguments and constructing Python values from C
values.
\section{OS Utilities \label{os}}
\begin{cfuncdesc}{int}{Py_FdIsInteractive}{FILE *fp, char *filename}
Return true (nonzero) if the standard I/O file \var{fp} with name
\var{filename} is deemed interactive. This is the case for files for
which \samp{isatty(fileno(\var{fp}))} is true. If the global flag
\cdata{Py_InteractiveFlag} is true, this function also returns true if
the \var{filename} pointer is \NULL{} or if the name is equal to one of
the strings \code{'<stdin>'} or \code{'???'}.
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyOS_GetLastModificationTime}{char *filename}
Return the time of last modification of the file \var{filename}.
The result is encoded in the same way as the timestamp returned by
the standard C library function \cfunction{time()}.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyOS_AfterFork}{}
Function to update some internal state after a process fork; this
should be called in the new process if the Python interpreter will
continue to be used. If a new executable is loaded into the new
process, this function does not need to be called.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyOS_CheckStack}{}
Return true when the interpreter runs out of stack space. This is a
reliable check, but is only available when \code{USE_STACKCHECK} is
defined (currently on Windows using the Microsoft Visual C++ compiler
and on the Macintosh). \code{USE_CHECKSTACK} will be defined
automatically; you should never change the definition in your own
code.
\end{cfuncdesc}
\begin{cfuncdesc}{PyOS_sighandler_t}{PyOS_getsig}{int i}
Return the current signal handler for signal \var{i}.
This is a thin wrapper around either \cfunction{sigaction} or
\cfunction{signal}. Do not call those functions directly!
\ctype{PyOS_sighandler_t} is a typedef alias for \ctype{void (*)(int)}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyOS_sighandler_t}{PyOS_setsig}{int i, PyOS_sighandler_t h}
Set the signal handler for signal \var{i} to be \var{h};
return the old signal handler.
This is a thin wrapper around either \cfunction{sigaction} or
\cfunction{signal}. Do not call those functions directly!
\ctype{PyOS_sighandler_t} is a typedef alias for \ctype{void (*)(int)}.
\end{cfuncdesc}
\section{Process Control \label{processControl}}
\begin{cfuncdesc}{void}{Py_FatalError}{char *message}
Print a fatal error message and kill the process. No cleanup is
performed. This function should only be invoked when a condition is
detected that would make it dangerous to continue using the Python
interpreter; e.g., when the object administration appears to be
corrupted. On \UNIX{}, the standard C library function
\cfunction{abort()}\ttindex{abort()} is called which will attempt to
produce a \file{core} file.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{Py_Exit}{int status}
Exit the current process. This calls
\cfunction{Py_Finalize()}\ttindex{Py_Finalize()} and
then calls the standard C library function
\code{exit(\var{status})}\ttindex{exit()}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_AtExit}{void (*func) ()}
Register a cleanup function to be called by
\cfunction{Py_Finalize()}\ttindex{Py_Finalize()}.
The cleanup function will be called with no arguments and should
return no value. At most 32 \index{cleanup functions}cleanup
functions can be registered.
When the registration is successful, \cfunction{Py_AtExit()} returns
\code{0}; on failure, it returns \code{-1}. The cleanup function
registered last is called first. Each cleanup function will be called
at most once. Since Python's internal finallization will have
completed before the cleanup function, no Python APIs should be called
by \var{func}.
\end{cfuncdesc}
\section{Importing Modules \label{importing}}
\begin{cfuncdesc}{PyObject*}{PyImport_ImportModule}{char *name}
This is a simplified interface to
\cfunction{PyImport_ImportModuleEx()} below, leaving the
\var{globals} and \var{locals} arguments set to \NULL{}. When the
\var{name} argument contains a dot (i.e., when it specifies a
submodule of a package), the \var{fromlist} argument is set to the
list \code{['*']} so that the return value is the named module rather
than the top-level package containing it as would otherwise be the
case. (Unfortunately, this has an additional side effect when
\var{name} in fact specifies a subpackage instead of a submodule: the
submodules specified in the package's \code{__all__} variable are
\index{package variable!\code{__all__}}
\withsubitem{(package variable)}{\ttindex{__all__}}loaded.) Return a
new reference to the imported module, or
\NULL{} with an exception set on failure (the module may still be
created in this case --- examine \code{sys.modules} to find out).
\withsubitem{(in module sys)}{\ttindex{modules}}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyImport_ImportModuleEx}{char *name, PyObject *globals, PyObject *locals, PyObject *fromlist}
Import a module. This is best described by referring to the built-in
Python function \function{__import__()}\bifuncindex{__import__}, as
the standard \function{__import__()} function calls this function
directly.
The return value is a new reference to the imported module or
top-level package, or \NULL{} with an exception set on failure
(the module may still be created in this case). Like for
\function{__import__()}, the return value when a submodule of a
package was requested is normally the top-level package, unless a
non-empty \var{fromlist} was given.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyImport_Import}{PyObject *name}
This is a higher-level interface that calls the current ``import hook
function''. It invokes the \function{__import__()} function from the
\code{__builtins__} of the current globals. This means that the
import is done using whatever import hooks are installed in the
current environment, e.g. by \module{rexec}\refstmodindex{rexec} or
\module{ihooks}\refstmodindex{ihooks}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyImport_ReloadModule}{PyObject *m}
Reload a module. This is best described by referring to the built-in
Python function \function{reload()}\bifuncindex{reload}, as the standard
\function{reload()} function calls this function directly. Return a
new reference to the reloaded module, or \NULL{} with an exception set
on failure (the module still exists in this case).
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyImport_AddModule}{char *name}
Return the module object corresponding to a module name. The
\var{name} argument may be of the form \code{package.module}). First
check the modules dictionary if there's one there, and if not, create
a new one and insert in in the modules dictionary.
Warning: this function does not load or import the module; if the
module wasn't already loaded, you will get an empty module object.
Use \cfunction{PyImport_ImportModule()} or one of its variants to
import a module.
Return \NULL{} with an exception set on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyImport_ExecCodeModule}{char *name, PyObject *co}
Given a module name (possibly of the form \code{package.module}) and a
code object read from a Python bytecode file or obtained from the
built-in function \function{compile()}\bifuncindex{compile}, load the
module. Return a new reference to the module object, or \NULL{} with
an exception set if an error occurred (the module may still be created
in this case). (This function would reload the module if it was
already imported.)
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyImport_GetMagicNumber}{}
Return the magic number for Python bytecode files (a.k.a.
\file{.pyc} and \file{.pyo} files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian
byte order.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyImport_GetModuleDict}{}
Return the dictionary used for the module administration
(a.k.a. \code{sys.modules}). Note that this is a per-interpreter
variable.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{_PyImport_Init}{}
Initialize the import mechanism. For internal use only.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyImport_Cleanup}{}
Empty the module table. For internal use only.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{_PyImport_Fini}{}
Finalize the import mechanism. For internal use only.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{_PyImport_FindExtension}{char *, char *}
For internal use only.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{_PyImport_FixupExtension}{char *, char *}
For internal use only.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyImport_ImportFrozenModule}{char *name}
Load a frozen module named \var{name}. Return \code{1} for success,
\code{0} if the module is not found, and \code{-1} with an exception
set if the initialization failed. To access the imported module on a
successful load, use \cfunction{PyImport_ImportModule()}.
(Note the misnomer --- this function would reload the module if it was
already imported.)
\end{cfuncdesc}
\begin{ctypedesc}[_frozen]{struct _frozen}
This is the structure type definition for frozen module descriptors,
as generated by the \program{freeze}\index{freeze utility} utility
(see \file{Tools/freeze/} in the Python source distribution). Its
definition, found in \file{Include/import.h}, is:
\begin{verbatim}
struct _frozen {
char *name;
unsigned char *code;
int size;
};
\end{verbatim}
\end{ctypedesc}
\begin{cvardesc}{struct _frozen*}{PyImport_FrozenModules}
This pointer is initialized to point to an array of \ctype{struct
_frozen} records, terminated by one whose members are all
\NULL{} or zero. When a frozen module is imported, it is searched in
this table. Third-party code could play tricks with this to provide a
dynamically created collection of frozen modules.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyImport_AppendInittab}{char *name,
void (*initfunc)(void)}
Add a single module to the existing table of built-in modules. This
is a convenience wrapper around \cfunction{PyImport_ExtendInittab()},
returning \code{-1} if the table could not be extended. The new
module can be imported by the name \var{name}, and uses the function
\var{initfunc} as the initialization function called on the first
attempted import. This should be called before
\cfunction{Py_Initialize()}.
\end{cfuncdesc}
\begin{ctypedesc}[_inittab]{struct _inittab}
Structure describing a single entry in the list of built-in modules.
Each of these structures gives the name and initialization function
for a module built into the interpreter. Programs which embed Python
may use an array of these structures in conjunction with
\cfunction{PyImport_ExtendInittab()} to provide additional built-in
modules. The structure is defined in \file{Include/import.h} as:
\begin{verbatim}
struct _inittab {
char *name;
void (*initfunc)(void);
};
\end{verbatim}
\end{ctypedesc}
\begin{cfuncdesc}{int}{PyImport_ExtendInittab}{struct _inittab *newtab}
Add a collection of modules to the table of built-in modules. The
\var{newtab} array must end with a sentinel entry which contains
\NULL{} for the \member{name} field; failure to provide the sentinel
value can result in a memory fault. Returns \code{0} on success or
\code{-1} if insufficient memory could be allocated to extend the
internal table. In the event of failure, no modules are added to the
internal table. This should be called before
\cfunction{Py_Initialize()}.
\end{cfuncdesc}
\chapter{Abstract Objects Layer \label{abstract}}
The functions in this chapter interact with Python objects regardless
of their type, or with wide classes of object types (e.g. all
numerical types, or all sequence types). When used on object types
for which they do not apply, they will raise a Python exception.
\section{Object Protocol \label{object}}
\begin{cfuncdesc}{int}{PyObject_Print}{PyObject *o, FILE *fp, int flags}
Print an object \var{o}, on file \var{fp}. Returns \code{-1} on error.
The flags argument is used to enable certain printing options. The
only option currently supported is \constant{Py_PRINT_RAW}; if given,
the \function{str()} of the object is written instead of the
\function{repr()}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_HasAttrString}{PyObject *o, char *attr_name}
Returns \code{1} if \var{o} has the attribute \var{attr_name}, and
\code{0} otherwise. This is equivalent to the Python expression
\samp{hasattr(\var{o}, \var{attr_name})}.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_GetAttrString}{PyObject *o,
char *attr_name}
Retrieve an attribute named \var{attr_name} from object \var{o}.
Returns the attribute value on success, or \NULL{} on failure.
This is the equivalent of the Python expression
\samp{\var{o}.\var{attr_name}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_HasAttr}{PyObject *o, PyObject *attr_name}
Returns \code{1} if \var{o} has the attribute \var{attr_name}, and
\code{0} otherwise. This is equivalent to the Python expression
\samp{hasattr(\var{o}, \var{attr_name})}.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_GetAttr}{PyObject *o,
PyObject *attr_name}
Retrieve an attribute named \var{attr_name} from object \var{o}.
Returns the attribute value on success, or \NULL{} on failure.
This is the equivalent of the Python expression
\samp{\var{o}.\var{attr_name}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_SetAttrString}{PyObject *o, char *attr_name, PyObject *v}
Set the value of the attribute named \var{attr_name}, for object
\var{o}, to the value \var{v}. Returns \code{-1} on failure. This is
the equivalent of the Python statement \samp{\var{o}.\var{attr_name} =
\var{v}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_SetAttr}{PyObject *o, PyObject *attr_name, PyObject *v}
Set the value of the attribute named \var{attr_name}, for
object \var{o},
to the value \var{v}. Returns \code{-1} on failure. This is
the equivalent of the Python statement \samp{\var{o}.\var{attr_name} =
\var{v}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_DelAttrString}{PyObject *o, char *attr_name}
Delete attribute named \var{attr_name}, for object \var{o}. Returns
\code{-1} on failure. This is the equivalent of the Python
statement: \samp{del \var{o}.\var{attr_name}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_DelAttr}{PyObject *o, PyObject *attr_name}
Delete attribute named \var{attr_name}, for object \var{o}. Returns
\code{-1} on failure. This is the equivalent of the Python
statement \samp{del \var{o}.\var{attr_name}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_Cmp}{PyObject *o1, PyObject *o2, int *result}
Compare the values of \var{o1} and \var{o2} using a routine provided
by \var{o1}, if one exists, otherwise with a routine provided by
\var{o2}. The result of the comparison is returned in \var{result}.
Returns \code{-1} on failure. This is the equivalent of the Python
statement\bifuncindex{cmp} \samp{\var{result} = cmp(\var{o1}, \var{o2})}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_Compare}{PyObject *o1, PyObject *o2}
Compare the values of \var{o1} and \var{o2} using a routine provided
by \var{o1}, if one exists, otherwise with a routine provided by
\var{o2}. Returns the result of the comparison on success. On error,
the value returned is undefined; use \cfunction{PyErr_Occurred()} to
detect an error. This is equivalent to the Python
expression\bifuncindex{cmp} \samp{cmp(\var{o1}, \var{o2})}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_Repr}{PyObject *o}
Compute a string representation of object \var{o}. Returns the
string representation on success, \NULL{} on failure. This is
the equivalent of the Python expression \samp{repr(\var{o})}.
Called by the \function{repr()}\bifuncindex{repr} built-in function
and by reverse quotes.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_Str}{PyObject *o}
Compute a string representation of object \var{o}. Returns the
string representation on success, \NULL{} on failure. This is
the equivalent of the Python expression \samp{str(\var{o})}.
Called by the \function{str()}\bifuncindex{str} built-in function and
by the \keyword{print} statement.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_Unicode}{PyObject *o}
Compute a Unicode string representation of object \var{o}. Returns the
Unicode string representation on success, \NULL{} on failure. This is
the equivalent of the Python expression \samp{unistr(\var{o})}.
Called by the \function{unistr()}\bifuncindex{unistr} built-in function.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyCallable_Check}{PyObject *o}
Determine if the object \var{o} is callable. Return \code{1} if the
object is callable and \code{0} otherwise.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_CallObject}{PyObject *callable_object,
PyObject *args}
Call a callable Python object \var{callable_object}, with
arguments given by the tuple \var{args}. If no arguments are
needed, then \var{args} may be \NULL{}. Returns the result of the
call on success, or \NULL{} on failure. This is the equivalent
of the Python expression \samp{apply(\var{callable_object}, \var{args})}.
\bifuncindex{apply}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_CallFunction}{PyObject *callable_object,
char *format, ...}
Call a callable Python object \var{callable_object}, with a
variable number of C arguments. The C arguments are described
using a \cfunction{Py_BuildValue()} style format string. The format may
be \NULL{}, indicating that no arguments are provided. Returns the
result of the call on success, or \NULL{} on failure. This is
the equivalent of the Python expression \samp{apply(\var{callable_object},
\var{args})}.\bifuncindex{apply}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_CallMethod}{PyObject *o,
char *method, char *format, ...}
Call the method named \var{m} of object \var{o} with a variable number
of C arguments. The C arguments are described by a
\cfunction{Py_BuildValue()} format string. The format may be \NULL{},
indicating that no arguments are provided. Returns the result of the
call on success, or \NULL{} on failure. This is the equivalent of the
Python expression \samp{\var{o}.\var{method}(\var{args})}.
Note that special method names, such as \method{__add__()},
\method{__getitem__()}, and so on are not supported. The specific
abstract-object routines for these must be used.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_Hash}{PyObject *o}
Compute and return the hash value of an object \var{o}. On
failure, return \code{-1}. This is the equivalent of the Python
expression \samp{hash(\var{o})}.\bifuncindex{hash}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_IsTrue}{PyObject *o}
Returns \code{1} if the object \var{o} is considered to be true, and
\code{0} otherwise. This is equivalent to the Python expression
\samp{not not \var{o}}.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_Type}{PyObject *o}
On success, returns a type object corresponding to the object
type of object \var{o}. On failure, returns \NULL{}. This is
equivalent to the Python expression \samp{type(\var{o})}.
\bifuncindex{type}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_Length}{PyObject *o}
Return the length of object \var{o}. If the object \var{o} provides
both sequence and mapping protocols, the sequence length is
returned. On error, \code{-1} is returned. This is the equivalent
to the Python expression \samp{len(\var{o})}.\bifuncindex{len}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_GetItem}{PyObject *o, PyObject *key}
Return element of \var{o} corresponding to the object \var{key} or
\NULL{} on failure. This is the equivalent of the Python expression
\samp{\var{o}[\var{key}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_SetItem}{PyObject *o, PyObject *key, PyObject *v}
Map the object \var{key} to the value \var{v}.
Returns \code{-1} on failure. This is the equivalent
of the Python statement \samp{\var{o}[\var{key}] = \var{v}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_DelItem}{PyObject *o, PyObject *key}
Delete the mapping for \var{key} from \var{o}. Returns \code{-1} on
failure. This is the equivalent of the Python statement \samp{del
\var{o}[\var{key}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_AsFileDescriptor}{PyObject *o}
Derives a file-descriptor from a Python object. If the object
is an integer or long integer, its value is returned. If not, the
object's \method{fileno()} method is called if it exists; the method
must return an integer or long integer, which is returned as the file
descriptor value. Returns \code{-1} on failure.
\end{cfuncdesc}
\section{Number Protocol \label{number}}
\begin{cfuncdesc}{int}{PyNumber_Check}{PyObject *o}
Returns \code{1} if the object \var{o} provides numeric protocols, and
false otherwise.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Add}{PyObject *o1, PyObject *o2}
Returns the result of adding \var{o1} and \var{o2}, or \NULL{} on
failure. This is the equivalent of the Python expression
\samp{\var{o1} + \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Subtract}{PyObject *o1, PyObject *o2}
Returns the result of subtracting \var{o2} from \var{o1}, or
\NULL{} on failure. This is the equivalent of the Python expression
\samp{\var{o1} - \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Multiply}{PyObject *o1, PyObject *o2}
Returns the result of multiplying \var{o1} and \var{o2}, or \NULL{} on
failure. This is the equivalent of the Python expression
\samp{\var{o1} * \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Divide}{PyObject *o1, PyObject *o2}
Returns the result of dividing \var{o1} by \var{o2}, or \NULL{} on
failure.
This is the equivalent of the Python expression \samp{\var{o1} /
\var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Remainder}{PyObject *o1, PyObject *o2}
Returns the remainder of dividing \var{o1} by \var{o2}, or \NULL{} on
failure. This is the equivalent of the Python expression
\samp{\var{o1} \%\ \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Divmod}{PyObject *o1, PyObject *o2}
See the built-in function \function{divmod()}\bifuncindex{divmod}.
Returns \NULL{} on failure. This is the equivalent of the Python
expression \samp{divmod(\var{o1}, \var{o2})}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Power}{PyObject *o1, PyObject *o2, PyObject *o3}
See the built-in function \function{pow()}\bifuncindex{pow}. Returns
\NULL{} on failure. This is the equivalent of the Python expression
\samp{pow(\var{o1}, \var{o2}, \var{o3})}, where \var{o3} is optional.
If \var{o3} is to be ignored, pass \cdata{Py_None} in its place
(passing \NULL{} for \var{o3} would cause an illegal memory access).
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Negative}{PyObject *o}
Returns the negation of \var{o} on success, or \NULL{} on failure.
This is the equivalent of the Python expression \samp{-\var{o}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Positive}{PyObject *o}
Returns \var{o} on success, or \NULL{} on failure.
This is the equivalent of the Python expression \samp{+\var{o}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Absolute}{PyObject *o}
Returns the absolute value of \var{o}, or \NULL{} on failure. This is
the equivalent of the Python expression \samp{abs(\var{o})}.
\bifuncindex{abs}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Invert}{PyObject *o}
Returns the bitwise negation of \var{o} on success, or \NULL{} on
failure. This is the equivalent of the Python expression
\samp{\~\var{o}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Lshift}{PyObject *o1, PyObject *o2}
Returns the result of left shifting \var{o1} by \var{o2} on success,
or \NULL{} on failure. This is the equivalent of the Python
expression \samp{\var{o1} << \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Rshift}{PyObject *o1, PyObject *o2}
Returns the result of right shifting \var{o1} by \var{o2} on success,
or \NULL{} on failure. This is the equivalent of the Python
expression \samp{\var{o1} >> \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_And}{PyObject *o1, PyObject *o2}
Returns the ``bitwise and'' of \var{o2} and \var{o2} on success and
\NULL{} on failure. This is the equivalent of the Python expression
\samp{\var{o1} \&\ \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Xor}{PyObject *o1, PyObject *o2}
Returns the ``bitwise exclusive or'' of \var{o1} by \var{o2} on success,
or \NULL{} on failure. This is the equivalent of the Python
expression \samp{\var{o1} \^{ }\var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Or}{PyObject *o1, PyObject *o2}
Returns the ``bitwise or'' of \var{o1} and \var{o2} on success, or
\NULL{} on failure. This is the equivalent of the Python expression
\samp{\var{o1} | \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceAdd}{PyObject *o1, PyObject *o2}
Returns the result of adding \var{o1} and \var{o2}, or \NULL{} on failure.
The operation is done \emph{in-place} when \var{o1} supports it. This is the
equivalent of the Python expression \samp{\var{o1} += \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceSubtract}{PyObject *o1, PyObject *o2}
Returns the result of subtracting \var{o2} from \var{o1}, or
\NULL{} on failure. The operation is done \emph{in-place} when \var{o1}
supports it. This is the equivalent of the Python expression \samp{\var{o1}
-= \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceMultiply}{PyObject *o1, PyObject *o2}
Returns the result of multiplying \var{o1} and \var{o2}, or \NULL{} on
failure. The operation is done \emph{in-place} when \var{o1} supports it.
This is the equivalent of the Python expression \samp{\var{o1} *= \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceDivide}{PyObject *o1, PyObject *o2}
Returns the result of dividing \var{o1} by \var{o2}, or \NULL{} on failure.
The operation is done \emph{in-place} when \var{o1} supports it. This is the
equivalent of the Python expression \samp{\var{o1} /= \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceRemainder}{PyObject *o1, PyObject *o2}
Returns the remainder of dividing \var{o1} by \var{o2}, or \NULL{} on
failure. The operation is done \emph{in-place} when \var{o1} supports it.
This is the equivalent of the Python expression \samp{\var{o1} \%= \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_InPlacePower}{PyObject *o1, PyObject *o2, PyObject *o3}
See the built-in function \function{pow()}\bifuncindex{pow}. Returns
\NULL{} on failure. The operation is done \emph{in-place} when \var{o1}
supports it. This is the equivalent of the Python expression \samp{\var{o1}
**= \var{o2}} when o3 is \cdata{Py_None}, or an in-place variant of
\samp{pow(\var{o1}, \var{o2}, \var{o3})} otherwise. If \var{o3} is to be
ignored, pass \cdata{Py_None} in its place (passing \NULL{} for \var{o3}
would cause an illegal memory access).
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceLshift}{PyObject *o1, PyObject *o2}
Returns the result of left shifting \var{o1} by \var{o2} on success, or
\NULL{} on failure. The operation is done \emph{in-place} when \var{o1}
supports it. This is the equivalent of the Python expression \samp{\var{o1}
<<= \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceRshift}{PyObject *o1, PyObject *o2}
Returns the result of right shifting \var{o1} by \var{o2} on success, or
\NULL{} on failure. The operation is done \emph{in-place} when \var{o1}
supports it. This is the equivalent of the Python expression \samp{\var{o1}
>>= \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceAnd}{PyObject *o1, PyObject *o2}
Returns the ``bitwise and'' of \var{o1} and \var{o2} on success
and \NULL{} on failure. The operation is done \emph{in-place} when
\var{o1} supports it. This is the equivalent of the Python expression
\samp{\var{o1} \&= \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceXor}{PyObject *o1, PyObject *o2}
Returns the ``bitwise exclusive or'' of \var{o1} by \var{o2} on success, or
\NULL{} on failure. The operation is done \emph{in-place} when \var{o1}
supports it. This is the equivalent of the Python expression \samp{\var{o1}
\^= \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceOr}{PyObject *o1, PyObject *o2}
Returns the ``bitwise or'' of \var{o1} and \var{o2} on success, or \NULL{}
on failure. The operation is done \emph{in-place} when \var{o1} supports
it. This is the equivalent of the Python expression \samp{\var{o1} |=
\var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyNumber_Coerce}{PyObject **p1, PyObject **p2}
This function takes the addresses of two variables of type
\ctype{PyObject*}. If the objects pointed to by \code{*\var{p1}} and
\code{*\var{p2}} have the same type, increment their reference count
and return \code{0} (success). If the objects can be converted to a
common numeric type, replace \code{*p1} and \code{*p2} by their
converted value (with 'new' reference counts), and return \code{0}.
If no conversion is possible, or if some other error occurs, return
\code{-1} (failure) and don't increment the reference counts. The
call \code{PyNumber_Coerce(\&o1, \&o2)} is equivalent to the Python
statement \samp{\var{o1}, \var{o2} = coerce(\var{o1}, \var{o2})}.
\bifuncindex{coerce}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Int}{PyObject *o}
Returns the \var{o} converted to an integer object on success, or
\NULL{} on failure. This is the equivalent of the Python
expression \samp{int(\var{o})}.\bifuncindex{int}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Long}{PyObject *o}
Returns the \var{o} converted to a long integer object on success,
or \NULL{} on failure. This is the equivalent of the Python
expression \samp{long(\var{o})}.\bifuncindex{long}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Float}{PyObject *o}
Returns the \var{o} converted to a float object on success, or
\NULL{} on failure. This is the equivalent of the Python expression
\samp{float(\var{o})}.\bifuncindex{float}
\end{cfuncdesc}
\section{Sequence Protocol \label{sequence}}
\begin{cfuncdesc}{int}{PySequence_Check}{PyObject *o}
Return \code{1} if the object provides sequence protocol, and
\code{0} otherwise. This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySequence_Length}{PyObject *o}
Returns the number of objects in sequence \var{o} on success, and
\code{-1} on failure. For objects that do not provide sequence
protocol, this is equivalent to the Python expression
\samp{len(\var{o})}.\bifuncindex{len}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_Concat}{PyObject *o1, PyObject *o2}
Return the concatenation of \var{o1} and \var{o2} on success, and \NULL{} on
failure. This is the equivalent of the Python
expression \samp{\var{o1} + \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_Repeat}{PyObject *o, int count}
Return the result of repeating sequence object
\var{o} \var{count} times, or \NULL{} on failure. This is the
equivalent of the Python expression \samp{\var{o} * \var{count}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_InPlaceConcat}{PyObject *o1, PyObject *o2}
Return the concatenation of \var{o1} and \var{o2} on success, and \NULL{} on
failure. The operation is done \emph{in-place} when \var{o1} supports it.
This is the equivalent of the Python expression \samp{\var{o1} += \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_InPlaceRepeat}{PyObject *o, int count}
Return the result of repeating sequence object \var{o} \var{count} times, or
\NULL{} on failure. The operation is done \emph{in-place} when \var{o}
supports it. This is the equivalent of the Python expression \samp{\var{o}
*= \var{count}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_GetItem}{PyObject *o, int i}
Return the \var{i}th element of \var{o}, or \NULL{} on failure. This
is the equivalent of the Python expression \samp{\var{o}[\var{i}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_GetSlice}{PyObject *o, int i1, int i2}
Return the slice of sequence object \var{o} between \var{i1} and
\var{i2}, or \NULL{} on failure. This is the equivalent of the Python
expression \samp{\var{o}[\var{i1}:\var{i2}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySequence_SetItem}{PyObject *o, int i, PyObject *v}
Assign object \var{v} to the \var{i}th element of \var{o}.
Returns \code{-1} on failure. This is the equivalent of the Python
statement \samp{\var{o}[\var{i}] = \var{v}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySequence_DelItem}{PyObject *o, int i}
Delete the \var{i}th element of object \var{o}. Returns
\code{-1} on failure. This is the equivalent of the Python
statement \samp{del \var{o}[\var{i}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySequence_SetSlice}{PyObject *o, int i1,
int i2, PyObject *v}
Assign the sequence object \var{v} to the slice in sequence
object \var{o} from \var{i1} to \var{i2}. This is the equivalent of
the Python statement \samp{\var{o}[\var{i1}:\var{i2}] = \var{v}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySequence_DelSlice}{PyObject *o, int i1, int i2}
Delete the slice in sequence object \var{o} from \var{i1} to \var{i2}.
Returns \code{-1} on failure. This is the equivalent of the Python
statement \samp{del \var{o}[\var{i1}:\var{i2}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_Tuple}{PyObject *o}
Returns the \var{o} as a tuple on success, and \NULL{} on failure.
This is equivalent to the Python expression \samp{tuple(\var{o})}.
\bifuncindex{tuple}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySequence_Count}{PyObject *o, PyObject *value}
Return the number of occurrences of \var{value} in \var{o}, that is,
return the number of keys for which \code{\var{o}[\var{key}] ==
\var{value}}. On failure, return \code{-1}. This is equivalent to
the Python expression \samp{\var{o}.count(\var{value})}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySequence_Contains}{PyObject *o, PyObject *value}
Determine if \var{o} contains \var{value}. If an item in \var{o} is
equal to \var{value}, return \code{1}, otherwise return \code{0}. On
error, return \code{-1}. This is equivalent to the Python expression
\samp{\var{value} in \var{o}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySequence_Index}{PyObject *o, PyObject *value}
Return the first index \var{i} for which \code{\var{o}[\var{i}] ==
\var{value}}. On error, return \code{-1}. This is equivalent to
the Python expression \samp{\var{o}.index(\var{value})}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_List}{PyObject *o}
Return a list object with the same contents as the arbitrary sequence
\var{o}. The returned list is guaranteed to be new.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_Tuple}{PyObject *o}
Return a tuple object with the same contents as the arbitrary sequence
\var{o}. If \var{o} is a tuple, a new reference will be returned,
otherwise a tuple will be constructed with the appropriate contents.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_Fast}{PyObject *o, const char *m}
Returns the sequence \var{o} as a tuple, unless it is already a
tuple or list, in which case \var{o} is returned. Use
\cfunction{PySequence_Fast_GET_ITEM()} to access the members of the
result. Returns \NULL{} on failure. If the object is not a sequence,
raises \exception{TypeError} with \var{m} as the message text.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_Fast_GET_ITEM}{PyObject *o, int i}
Return the \var{i}th element of \var{o}, assuming that \var{o} was
returned by \cfunction{PySequence_Fast()}, and that \var{i} is within
bounds. The caller is expected to get the length of the sequence by
calling \cfunction{PyObject_Size()} on \var{o}, since lists and tuples
are guaranteed to always return their true length.
\end{cfuncdesc}
\section{Mapping Protocol \label{mapping}}
\begin{cfuncdesc}{int}{PyMapping_Check}{PyObject *o}
Return \code{1} if the object provides mapping protocol, and
\code{0} otherwise. This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyMapping_Length}{PyObject *o}
Returns the number of keys in object \var{o} on success, and
\code{-1} on failure. For objects that do not provide mapping
protocol, this is equivalent to the Python expression
\samp{len(\var{o})}.\bifuncindex{len}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyMapping_DelItemString}{PyObject *o, char *key}
Remove the mapping for object \var{key} from the object \var{o}.
Return \code{-1} on failure. This is equivalent to
the Python statement \samp{del \var{o}[\var{key}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyMapping_DelItem}{PyObject *o, PyObject *key}
Remove the mapping for object \var{key} from the object \var{o}.
Return \code{-1} on failure. This is equivalent to
the Python statement \samp{del \var{o}[\var{key}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyMapping_HasKeyString}{PyObject *o, char *key}
On success, return \code{1} if the mapping object has the key
\var{key} and \code{0} otherwise. This is equivalent to the Python
expression \samp{\var{o}.has_key(\var{key})}.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyMapping_HasKey}{PyObject *o, PyObject *key}
Return \code{1} if the mapping object has the key \var{key} and
\code{0} otherwise. This is equivalent to the Python expression
\samp{\var{o}.has_key(\var{key})}.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyMapping_Keys}{PyObject *o}
On success, return a list of the keys in object \var{o}. On
failure, return \NULL{}. This is equivalent to the Python
expression \samp{\var{o}.keys()}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyMapping_Values}{PyObject *o}
On success, return a list of the values in object \var{o}. On
failure, return \NULL{}. This is equivalent to the Python
expression \samp{\var{o}.values()}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyMapping_Items}{PyObject *o}
On success, return a list of the items in object \var{o}, where
each item is a tuple containing a key-value pair. On
failure, return \NULL{}. This is equivalent to the Python
expression \samp{\var{o}.items()}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyMapping_GetItemString}{PyObject *o, char *key}
Return element of \var{o} corresponding to the object \var{key} or
\NULL{} on failure. This is the equivalent of the Python expression
\samp{\var{o}[\var{key}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyMapping_SetItemString}{PyObject *o, char *key, PyObject *v}
Map the object \var{key} to the value \var{v} in object \var{o}.
Returns \code{-1} on failure. This is the equivalent of the Python
statement \samp{\var{o}[\var{key}] = \var{v}}.
\end{cfuncdesc}
\chapter{Concrete Objects Layer \label{concrete}}
The functions in this chapter are specific to certain Python object
types. Passing them an object of the wrong type is not a good idea;
if you receive an object from a Python program and you are not sure
that it has the right type, you must perform a type check first;
for example, to check that an object is a dictionary, use
\cfunction{PyDict_Check()}. The chapter is structured like the
``family tree'' of Python object types.
\strong{Warning:}
While the functions described in this chapter carefully check the type
of the objects which are passed in, many of them do not check for
\NULL{} being passed instead of a valid object. Allowing \NULL{} to
be passed in can cause memory access violations and immediate
termination of the interpreter.
\section{Fundamental Objects \label{fundamental}}
This section describes Python type objects and the singleton object
\code{None}.
\subsection{Type Objects \label{typeObjects}}
\obindex{type}
\begin{ctypedesc}{PyTypeObject}
The C structure of the objects used to describe built-in types.
\end{ctypedesc}
\begin{cvardesc}{PyObject*}{PyType_Type}
This is the type object for type objects; it is the same object as
\code{types.TypeType} in the Python layer.
\withsubitem{(in module types)}{\ttindex{TypeType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyType_Check}{PyObject *o}
Returns true is the object \var{o} is a type object.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyType_HasFeature}{PyObject *o, int feature}
Returns true if the type object \var{o} sets the feature
\var{feature}. Type features are denoted by single bit flags. The
only defined feature flag is \constant{Py_TPFLAGS_HAVE_GETCHARBUFFER},
described in section \ref{buffer-structs}.
\end{cfuncdesc}
\subsection{The None Object \label{noneObject}}
\obindex{None@\texttt{None}}
Note that the \ctype{PyTypeObject} for \code{None} is not directly
exposed in the Python/C API. Since \code{None} is a singleton,
testing for object identity (using \samp{==} in C) is sufficient.
There is no \cfunction{PyNone_Check()} function for the same reason.
\begin{cvardesc}{PyObject*}{Py_None}
The Python \code{None} object, denoting lack of value. This object has
no methods.
\end{cvardesc}
\section{Sequence Objects \label{sequenceObjects}}
\obindex{sequence}
Generic operations on sequence objects were discussed in the previous
chapter; this section deals with the specific kinds of sequence
objects that are intrinsic to the Python language.
\subsection{String Objects \label{stringObjects}}
These functions raise \exception{TypeError} when expecting a string
parameter and are called with a non-string parameter.
\obindex{string}
\begin{ctypedesc}{PyStringObject}
This subtype of \ctype{PyObject} represents a Python string object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyString_Type}
This instance of \ctype{PyTypeObject} represents the Python string
type; it is the same object as \code{types.TypeType} in the Python
layer.\withsubitem{(in module types)}{\ttindex{StringType}}.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyString_Check}{PyObject *o}
Returns true if the object \var{o} is a string object.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_FromString}{const char *v}
Returns a new string object with the value \var{v} on success, and
\NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_FromStringAndSize}{const char *v,
int len}
Returns a new string object with the value \var{v} and length
\var{len} on success, and \NULL{} on failure. If \var{v} is \NULL{},
the contents of the string are uninitialized.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyString_Size}{PyObject *string}
Returns the length of the string in string object \var{string}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyString_GET_SIZE}{PyObject *string}
Macro form of \cfunction{PyString_Size()} but without error
checking.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{PyString_AsString}{PyObject *string}
Returns a null-terminated representation of the contents of
\var{string}. The pointer refers to the internal buffer of
\var{string}, not a copy. The data must not be modified in any way,
unless the string was just created using
\code{PyString_FromStringAndSize(NULL, \var{size})}.
It must not be deallocated.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{PyString_AS_STRING}{PyObject *string}
Macro form of \cfunction{PyString_AsString()} but without error
checking.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyString_AsStringAndSize}{PyObject *obj,
char **buffer,
int *length}
Returns a null-terminated representation of the contents of the object
\var{obj} through the output variables \var{buffer} and \var{length}.
The function accepts both string and Unicode objects as input. For
Unicode objects it returns the default encoded version of the object.
If \var{length} is set to \NULL{}, the resulting buffer may not contain
null characters; if it does, the function returns -1 and a
TypeError is raised.
The buffer refers to an internal string buffer of \var{obj}, not a
copy. The data must not be modified in any way, unless the string was
just created using \code{PyString_FromStringAndSize(NULL,
\var{size})}. It must not be deallocated.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyString_Concat}{PyObject **string,
PyObject *newpart}
Creates a new string object in \var{*string} containing the
contents of \var{newpart} appended to \var{string}; the caller will
own the new reference. The reference to the old value of \var{string}
will be stolen. If the new string
cannot be created, the old reference to \var{string} will still be
discarded and the value of \var{*string} will be set to
\NULL{}; the appropriate exception will be set.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyString_ConcatAndDel}{PyObject **string,
PyObject *newpart}
Creates a new string object in \var{*string} containing the contents
of \var{newpart} appended to \var{string}. This version decrements
the reference count of \var{newpart}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{_PyString_Resize}{PyObject **string, int newsize}
A way to resize a string object even though it is ``immutable''.
Only use this to build up a brand new string object; don't use this if
the string may already be known in other parts of the code.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_Format}{PyObject *format,
PyObject *args}
Returns a new string object from \var{format} and \var{args}. Analogous
to \code{\var{format} \%\ \var{args}}. The \var{args} argument must be
a tuple.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyString_InternInPlace}{PyObject **string}
Intern the argument \var{*string} in place. The argument must be the
address of a pointer variable pointing to a Python string object.
If there is an existing interned string that is the same as
\var{*string}, it sets \var{*string} to it (decrementing the reference
count of the old string object and incrementing the reference count of
the interned string object), otherwise it leaves \var{*string} alone
and interns it (incrementing its reference count). (Clarification:
even though there is a lot of talk about reference counts, think of
this function as reference-count-neutral; you own the object after
the call if and only if you owned it before the call.)
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_InternFromString}{const char *v}
A combination of \cfunction{PyString_FromString()} and
\cfunction{PyString_InternInPlace()}, returning either a new string object
that has been interned, or a new (``owned'') reference to an earlier
interned string object with the same value.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_Decode}{const char *s,
int size,
const char *encoding,
const char *errors}
Create a string object by decoding \var{size} bytes of the encoded
buffer \var{s}. \var{encoding} and \var{errors} have the same meaning
as the parameters of the same name in the unicode() builtin
function. The codec to be used is looked up using the Python codec
registry. Returns \NULL{} in case an exception was raised by the
codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_Encode}{const Py_UNICODE *s,
int size,
const char *encoding,
const char *errors}
Encodes the \ctype{Py_UNICODE} buffer of the given size and returns a
Python string object. \var{encoding} and \var{errors} have the same
meaning as the parameters of the same name in the string .encode()
method. The codec to be used is looked up using the Python codec
registry. Returns \NULL{} in case an exception was raised by the
codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_AsEncodedString}{PyObject *unicode,
const char *encoding,
const char *errors}
Encodes a string object and returns the result as Python string
object. \var{encoding} and \var{errors} have the same meaning as the
parameters of the same name in the string .encode() method. The codec
to be used is looked up using the Python codec registry. Returns
\NULL{} in case an exception was raised by the codec.
\end{cfuncdesc}
\subsection{Unicode Objects \label{unicodeObjects}}
\sectionauthor{Marc-Andre Lemburg}{mal@lemburg.com}
%--- Unicode Type -------------------------------------------------------
These are the basic Unicode object types used for the Unicode
implementation in Python:
\begin{ctypedesc}{Py_UNICODE}
This type represents a 16-bit unsigned storage type which is used by
Python internally as basis for holding Unicode ordinals. On platforms
where \ctype{wchar_t} is available and also has 16-bits,
\ctype{Py_UNICODE} is a typedef alias for \ctype{wchar_t} to enhance
native platform compatibility. On all other platforms,
\ctype{Py_UNICODE} is a typedef alias for \ctype{unsigned short}.
\end{ctypedesc}
\begin{ctypedesc}{PyUnicodeObject}
This subtype of \ctype{PyObject} represents a Python Unicode object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyUnicode_Type}
This instance of \ctype{PyTypeObject} represents the Python Unicode type.
\end{cvardesc}
%--- These are really C macros... is there a macrodesc TeX macro ?
The following APIs are really C macros and can be used to do fast
checks and to access internal read-only data of Unicode objects:
\begin{cfuncdesc}{int}{PyUnicode_Check}{PyObject *o}
Returns true if the object \var{o} is a Unicode object.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyUnicode_GET_SIZE}{PyObject *o}
Returns the size of the object. o has to be a
PyUnicodeObject (not checked).
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyUnicode_GET_DATA_SIZE}{PyObject *o}
Returns the size of the object's internal buffer in bytes. o has to be
a PyUnicodeObject (not checked).
\end{cfuncdesc}
\begin{cfuncdesc}{Py_UNICODE*}{PyUnicode_AS_UNICODE}{PyObject *o}
Returns a pointer to the internal Py_UNICODE buffer of the object. o
has to be a PyUnicodeObject (not checked).
\end{cfuncdesc}
\begin{cfuncdesc}{const char*}{PyUnicode_AS_DATA}{PyObject *o}
Returns a (const char *) pointer to the internal buffer of the object.
o has to be a PyUnicodeObject (not checked).
\end{cfuncdesc}
% --- Unicode character properties ---------------------------------------
Unicode provides many different character properties. The most often
needed ones are available through these macros which are mapped to C
functions depending on the Python configuration.
\begin{cfuncdesc}{int}{Py_UNICODE_ISSPACE}{Py_UNICODE ch}
Returns 1/0 depending on whether \var{ch} is a whitespace character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISLOWER}{Py_UNICODE ch}
Returns 1/0 depending on whether \var{ch} is a lowercase character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISUPPER}{Py_UNICODE ch}
Returns 1/0 depending on whether \var{ch} is an uppercase character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISTITLE}{Py_UNICODE ch}
Returns 1/0 depending on whether \var{ch} is a titlecase character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISLINEBREAK}{Py_UNICODE ch}
Returns 1/0 depending on whether \var{ch} is a linebreak character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISDECIMAL}{Py_UNICODE ch}
Returns 1/0 depending on whether \var{ch} is a decimal character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISDIGIT}{Py_UNICODE ch}
Returns 1/0 depending on whether \var{ch} is a digit character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISNUMERIC}{Py_UNICODE ch}
Returns 1/0 depending on whether \var{ch} is a numeric character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISALPHA}{Py_UNICODE ch}
Returns 1/0 depending on whether \var{ch} is an alphabetic character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISALNUM}{Py_UNICODE ch}
Returns 1/0 depending on whether \var{ch} is an alphanumeric character.
\end{cfuncdesc}
These APIs can be used for fast direct character conversions:
\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOLOWER}{Py_UNICODE ch}
Returns the character \var{ch} converted to lower case.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOUPPER}{Py_UNICODE ch}
Returns the character \var{ch} converted to upper case.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOTITLE}{Py_UNICODE ch}
Returns the character \var{ch} converted to title case.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_TODECIMAL}{Py_UNICODE ch}
Returns the character \var{ch} converted to a decimal positive integer.
Returns -1 in case this is not possible. Does not raise exceptions.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_TODIGIT}{Py_UNICODE ch}
Returns the character \var{ch} converted to a single digit integer.
Returns -1 in case this is not possible. Does not raise exceptions.
\end{cfuncdesc}
\begin{cfuncdesc}{double}{Py_UNICODE_TONUMERIC}{Py_UNICODE ch}
Returns the character \var{ch} converted to a (positive) double.
Returns -1.0 in case this is not possible. Does not raise exceptions.
\end{cfuncdesc}
% --- Plain Py_UNICODE ---------------------------------------------------
To create Unicode objects and access their basic sequence properties,
use these APIs:
\begin{cfuncdesc}{PyObject*}{PyUnicode_FromUnicode}{const Py_UNICODE *u,
int size}
Create a Unicode Object from the Py_UNICODE buffer \var{u} of the
given size. \var{u} may be \NULL{} which causes the contents to be
undefined. It is the user's responsibility to fill in the needed data.
The buffer is copied into the new object.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_UNICODE*}{PyUnicode_AsUnicode}{PyObject *unicode}
Return a read-only pointer to the Unicode object's internal
\ctype{Py_UNICODE} buffer.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyUnicode_GetSize}{PyObject *unicode}
Return the length of the Unicode object.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_FromEncodedObject}{PyObject *obj,
const char *encoding,
const char *errors}
Coerce an encoded object obj to an Unicode object and return a
reference with incremented refcount.
Coercion is done in the following way:
\begin{enumerate}
\item Unicode objects are passed back as-is with incremented
refcount. Note: these cannot be decoded; passing a non-NULL
value for encoding will result in a TypeError.
\item String and other char buffer compatible objects are decoded
according to the given encoding and using the error handling
defined by errors. Both can be NULL to have the interface use
the default values (see the next section for details).
\item All other objects cause an exception.
\end{enumerate}
The API returns NULL in case of an error. The caller is responsible
for decref'ing the returned objects.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_FromObject}{PyObject *obj}
Shortcut for PyUnicode_FromEncodedObject(obj, NULL, ``strict'')
which is used throughout the interpreter whenever coercion to
Unicode is needed.
\end{cfuncdesc}
% --- wchar_t support for platforms which support it ---------------------
If the platform supports \ctype{wchar_t} and provides a header file
wchar.h, Python can interface directly to this type using the
following functions. Support is optimized if Python's own
\ctype{Py_UNICODE} type is identical to the system's \ctype{wchar_t}.
\begin{cfuncdesc}{PyObject*}{PyUnicode_FromWideChar}{const wchar_t *w,
int size}
Create a Unicode Object from the \ctype{whcar_t} buffer \var{w} of the
given size. Returns \NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyUnicode_AsWideChar}{PyUnicodeObject *unicode,
wchar_t *w,
int size}
Copies the Unicode Object contents into the \ctype{whcar_t} buffer
\var{w}. At most \var{size} \ctype{whcar_t} characters are copied.
Returns the number of \ctype{whcar_t} characters copied or -1 in case
of an error.
\end{cfuncdesc}
\subsubsection{Builtin Codecs \label{builtinCodecs}}
Python provides a set of builtin codecs which are written in C
for speed. All of these codecs are directly usable via the
following functions.
Many of the following APIs take two arguments encoding and
errors. These parameters encoding and errors have the same semantics
as the ones of the builtin unicode() Unicode object constructor.
Setting encoding to NULL causes the default encoding to be used which
is UTF-8.
Error handling is set by errors which may also be set to NULL meaning
to use the default handling defined for the codec. Default error
handling for all builtin codecs is ``strict'' (ValueErrors are raised).
The codecs all use a similar interface. Only deviation from the
following generic ones are documented for simplicity.
% --- Generic Codecs -----------------------------------------------------
These are the generic codec APIs:
\begin{cfuncdesc}{PyObject*}{PyUnicode_Decode}{const char *s,
int size,
const char *encoding,
const char *errors}
Create a Unicode object by decoding \var{size} bytes of the encoded
string \var{s}. \var{encoding} and \var{errors} have the same meaning
as the parameters of the same name in the unicode() builtin
function. The codec to be used is looked up using the Python codec
registry. Returns \NULL{} in case an exception was raised by the
codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Encode}{const Py_UNICODE *s,
int size,
const char *encoding,
const char *errors}
Encodes the \ctype{Py_UNICODE} buffer of the given size and returns a
Python string object. \var{encoding} and \var{errors} have the same
meaning as the parameters of the same name in the Unicode .encode()
method. The codec to be used is looked up using the Python codec
registry. Returns \NULL{} in case an exception was raised by the
codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsEncodedString}{PyObject *unicode,
const char *encoding,
const char *errors}
Encodes a Unicode object and returns the result as Python string
object. \var{encoding} and \var{errors} have the same meaning as the
parameters of the same name in the Unicode .encode() method. The codec
to be used is looked up using the Python codec registry. Returns
\NULL{} in case an exception was raised by the codec.
\end{cfuncdesc}
% --- UTF-8 Codecs -------------------------------------------------------
These are the UTF-8 codec APIs:
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF8}{const char *s,
int size,
const char *errors}
Creates a Unicode object by decoding \var{size} bytes of the UTF-8
encoded string \var{s}. Returns \NULL{} in case an exception was
raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUTF8}{const Py_UNICODE *s,
int size,
const char *errors}
Encodes the \ctype{Py_UNICODE} buffer of the given size using UTF-8
and returns a Python string object. Returns \NULL{} in case an
exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUTF8String}{PyObject *unicode}
Encodes a Unicode objects using UTF-8 and returns the result as Python
string object. Error handling is ``strict''. Returns
\NULL{} in case an exception was raised by the codec.
\end{cfuncdesc}
% --- UTF-16 Codecs ------------------------------------------------------ */
These are the UTF-16 codec APIs:
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF16}{const char *s,
int size,
const char *errors,
int *byteorder}
Decodes \var{length} bytes from a UTF-16 encoded buffer string and
returns the corresponding Unicode object.
\var{errors} (if non-NULL) defines the error handling. It defaults
to ``strict''.
If \var{byteorder} is non-\NULL{}, the decoder starts decoding using
the given byte order:
\begin{verbatim}
*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian
\end{verbatim}
and then switches according to all byte order marks (BOM) it finds in
the input data. BOM marks are not copied into the resulting Unicode
string. After completion, \var{*byteorder} is set to the current byte
order at the end of input data.
If \var{byteorder} is \NULL{}, the codec starts in native order mode.
Returns \NULL{} in case an exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUTF16}{const Py_UNICODE *s,
int size,
const char *errors,
int byteorder}
Returns a Python string object holding the UTF-16 encoded value of the
Unicode data in \var{s}.
If \var{byteorder} is not \code{0}, output is written according to the
following byte order:
\begin{verbatim}
byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian
\end{verbatim}
If byteorder is \code{0}, the output string will always start with the
Unicode BOM mark (U+FEFF). In the other two modes, no BOM mark is
prepended.
Note that \ctype{Py_UNICODE} data is being interpreted as UTF-16
reduced to UCS-2. This trick makes it possible to add full UTF-16
capabilities at a later point without comprimising the APIs.
Returns \NULL{} in case an exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUTF16String}{PyObject *unicode}
Returns a Python string using the UTF-16 encoding in native byte
order. The string always starts with a BOM mark. Error handling is
``strict''. Returns \NULL{} in case an exception was raised by the
codec.
\end{cfuncdesc}
% --- Unicode-Escape Codecs ----------------------------------------------
These are the ``Unicode Esacpe'' codec APIs:
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUnicodeEscape}{const char *s,
int size,
const char *errors}
Creates a Unicode object by decoding \var{size} bytes of the Unicode-Esacpe
encoded string \var{s}. Returns \NULL{} in case an exception was
raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUnicodeEscape}{const Py_UNICODE *s,
int size,
const char *errors}
Encodes the \ctype{Py_UNICODE} buffer of the given size using Unicode-Escape
and returns a Python string object. Returns \NULL{} in case an
exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUnicodeEscapeString}{PyObject *unicode}
Encodes a Unicode objects using Unicode-Escape and returns the result
as Python string object. Error handling is ``strict''. Returns
\NULL{} in case an exception was raised by the codec.
\end{cfuncdesc}
% --- Raw-Unicode-Escape Codecs ------------------------------------------
These are the ``Raw Unicode Esacpe'' codec APIs:
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeRawUnicodeEscape}{const char *s,
int size,
const char *errors}
Creates a Unicode object by decoding \var{size} bytes of the Raw-Unicode-Esacpe
encoded string \var{s}. Returns \NULL{} in case an exception was
raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeRawUnicodeEscape}{const Py_UNICODE *s,
int size,
const char *errors}
Encodes the \ctype{Py_UNICODE} buffer of the given size using Raw-Unicode-Escape
and returns a Python string object. Returns \NULL{} in case an
exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsRawUnicodeEscapeString}{PyObject *unicode}
Encodes a Unicode objects using Raw-Unicode-Escape and returns the result
as Python string object. Error handling is ``strict''. Returns
\NULL{} in case an exception was raised by the codec.
\end{cfuncdesc}
% --- Latin-1 Codecs -----------------------------------------------------
These are the Latin-1 codec APIs:
Latin-1 corresponds to the first 256 Unicode ordinals and only these
are accepted by the codecs during encoding.
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeLatin1}{const char *s,
int size,
const char *errors}
Creates a Unicode object by decoding \var{size} bytes of the Latin-1
encoded string \var{s}. Returns \NULL{} in case an exception was
raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeLatin1}{const Py_UNICODE *s,
int size,
const char *errors}
Encodes the \ctype{Py_UNICODE} buffer of the given size using Latin-1
and returns a Python string object. Returns \NULL{} in case an
exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsLatin1String}{PyObject *unicode}
Encodes a Unicode objects using Latin-1 and returns the result as
Python string object. Error handling is ``strict''. Returns
\NULL{} in case an exception was raised by the codec.
\end{cfuncdesc}
% --- ASCII Codecs -------------------------------------------------------
These are the \ASCII{} codec APIs. Only 7-bit \ASCII{} data is
accepted. All other codes generate errors.
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeASCII}{const char *s,
int size,
const char *errors}
Creates a Unicode object by decoding \var{size} bytes of the
\ASCII{} encoded string \var{s}. Returns \NULL{} in case an exception
was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeASCII}{const Py_UNICODE *s,
int size,
const char *errors}
Encodes the \ctype{Py_UNICODE} buffer of the given size using
\ASCII{} and returns a Python string object. Returns \NULL{} in case
an exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsASCIIString}{PyObject *unicode}
Encodes a Unicode objects using \ASCII{} and returns the result as Python
string object. Error handling is ``strict''. Returns
\NULL{} in case an exception was raised by the codec.
\end{cfuncdesc}
% --- Character Map Codecs -----------------------------------------------
These are the mapping codec APIs:
This codec is special in that it can be used to implement many
different codecs (and this is in fact what was done to obtain most of
the standard codecs included in the \module{encodings} package). The
codec uses mapping to encode and decode characters.
Decoding mappings must map single string characters to single Unicode
characters, integers (which are then interpreted as Unicode ordinals)
or None (meaning "undefined mapping" and causing an error).
Encoding mappings must map single Unicode characters to single string
characters, integers (which are then interpreted as Latin-1 ordinals)
or None (meaning "undefined mapping" and causing an error).
The mapping objects provided must only support the __getitem__ mapping
interface.
If a character lookup fails with a LookupError, the character is
copied as-is meaning that its ordinal value will be interpreted as
Unicode or Latin-1 ordinal resp. Because of this, mappings only need
to contain those mappings which map characters to different code
points.
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeCharmap}{const char *s,
int size,
PyObject *mapping,
const char *errors}
Creates a Unicode object by decoding \var{size} bytes of the encoded
string \var{s} using the given \var{mapping} object. Returns \NULL{}
in case an exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeCharmap}{const Py_UNICODE *s,
int size,
PyObject *mapping,
const char *errors}
Encodes the \ctype{Py_UNICODE} buffer of the given size using the
given \var{mapping} object and returns a Python string object.
Returns \NULL{} in case an exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsCharmapString}{PyObject *unicode,
PyObject *mapping}
Encodes a Unicode objects using the given \var{mapping} object and
returns the result as Python string object. Error handling is
``strict''. Returns \NULL{} in case an exception was raised by the
codec.
\end{cfuncdesc}
The following codec API is special in that maps Unicode to Unicode.
\begin{cfuncdesc}{PyObject*}{PyUnicode_TranslateCharmap}{const Py_UNICODE *s,
int size,
PyObject *table,
const char *errors}
Translates a \ctype{Py_UNICODE} buffer of the given length by applying
a character mapping \var{table} to it and returns the resulting
Unicode object. Returns \NULL{} when an exception was raised by the
codec.
The \var{mapping} table must map Unicode ordinal integers to Unicode
ordinal integers or None (causing deletion of the character).
Mapping tables must only provide the __getitem__ interface,
e.g. dictionaries or sequences. Unmapped character ordinals (ones
which cause a LookupError) are left untouched and are copied as-is.
\end{cfuncdesc}
% --- MBCS codecs for Windows --------------------------------------------
These are the MBCS codec APIs. They are currently only available on
Windows and use the Win32 MBCS converters to implement the
conversions. Note that MBCS (or DBCS) is a class of encodings, not
just one. The target encoding is defined by the user settings on the
machine running the codec.
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeMBCS}{const char *s,
int size,
const char *errors}
Creates a Unicode object by decoding \var{size} bytes of the MBCS
encoded string \var{s}. Returns \NULL{} in case an exception was
raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeMBCS}{const Py_UNICODE *s,
int size,
const char *errors}
Encodes the \ctype{Py_UNICODE} buffer of the given size using MBCS
and returns a Python string object. Returns \NULL{} in case an
exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsMBCSString}{PyObject *unicode}
Encodes a Unicode objects using MBCS and returns the result as Python
string object. Error handling is ``strict''. Returns \NULL{} in case
an exception was raised by the codec.
\end{cfuncdesc}
% --- Methods & Slots ----------------------------------------------------
\subsubsection{Methods and Slot Functions \label{unicodeMethodsAndSlots}}
The following APIs are capable of handling Unicode objects and strings
on input (we refer to them as strings in the descriptions) and return
Unicode objects or integers as apporpriate.
They all return \NULL{} or -1 in case an exception occurrs.
\begin{cfuncdesc}{PyObject*}{PyUnicode_Concat}{PyObject *left,
PyObject *right}
Concat two strings giving a new Unicode string.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Split}{PyObject *s,
PyObject *sep,
int maxsplit}
Split a string giving a list of Unicode strings.
If sep is NULL, splitting will be done at all whitespace
substrings. Otherwise, splits occur at the given separator.
At most maxsplit splits will be done. If negative, no limit is set.
Separators are not included in the resulting list.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Splitlines}{PyObject *s,
int maxsplit}
Split a Unicode string at line breaks, returning a list of Unicode
strings. CRLF is considered to be one line break. The Line break
characters are not included in the resulting strings.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Translate}{PyObject *str,
PyObject *table,
const char *errors}
Translate a string by applying a character mapping table to it and
return the resulting Unicode object.
The mapping table must map Unicode ordinal integers to Unicode ordinal
integers or None (causing deletion of the character).
Mapping tables must only provide the __getitem__ interface,
e.g. dictionaries or sequences. Unmapped character ordinals (ones
which cause a LookupError) are left untouched and are copied as-is.
\var{errors} has the usual meaning for codecs. It may be \NULL{}
which indicates to use the default error handling.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Join}{PyObject *separator,
PyObject *seq}
Join a sequence of strings using the given separator and return
the resulting Unicode string.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Tailmatch}{PyObject *str,
PyObject *substr,
int start,
int end,
int direction}
Return 1 if \var{substr} matches \var{str}[\var{start}:\var{end}] at
the given tail end (\var{direction} == -1 means to do a prefix match,
\var{direction} == 1 a suffix match), 0 otherwise.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Find}{PyObject *str,
PyObject *substr,
int start,
int end,
int direction}
Return the first position of \var{substr} in
\var{str}[\var{start}:\var{end}] using the given \var{direction}
(\var{direction} == 1 means to do a forward search,
\var{direction} == -1 a backward search), 0 otherwise.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Count}{PyObject *str,
PyObject *substr,
int start,
int end}
Count the number of occurrences of \var{substr} in
\var{str}[\var{start}:\var{end}]
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Replace}{PyObject *str,
PyObject *substr,
PyObject *replstr,
int maxcount}
Replace at most \var{maxcount} occurrences of \var{substr} in
\var{str} with \var{replstr} and return the resulting Unicode object.
\var{maxcount} == -1 means: replace all occurrences.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyUnicode_Compare}{PyObject *left, PyObject *right}
Compare two strings and return -1, 0, 1 for less than, equal,
greater than resp.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Format}{PyObject *format,
PyObject *args}
Returns a new string object from \var{format} and \var{args}; this is
analogous to \code{\var{format} \%\ \var{args}}. The
\var{args} argument must be a tuple.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyUnicode_Contains}{PyObject *container,
PyObject *element}
Checks whether \var{element} is contained in \var{container} and
returns true or false accordingly.
\var{element} has to coerce to a one element Unicode string. \code{-1} is
returned in case of an error.
\end{cfuncdesc}
\subsection{Buffer Objects \label{bufferObjects}}
\sectionauthor{Greg Stein}{gstein@lyra.org}
\obindex{buffer}
Python objects implemented in C can export a group of functions called
the ``buffer\index{buffer interface} interface.'' These functions can
be used by an object to expose its data in a raw, byte-oriented
format. Clients of the object can use the buffer interface to access
the object data directly, without needing to copy it first.
Two examples of objects that support
the buffer interface are strings and arrays. The string object exposes
the character contents in the buffer interface's byte-oriented
form. An array can also expose its contents, but it should be noted
that array elements may be multi-byte values.
An example user of the buffer interface is the file object's
\method{write()} method. Any object that can export a series of bytes
through the buffer interface can be written to a file. There are a
number of format codes to \cfunction{PyArgs_ParseTuple()} that operate
against an object's buffer interface, returning data from the target
object.
More information on the buffer interface is provided in the section
``Buffer Object Structures'' (section \ref{buffer-structs}), under
the description for \ctype{PyBufferProcs}\ttindex{PyBufferProcs}.
A ``buffer object'' is defined in the \file{bufferobject.h} header
(included by \file{Python.h}). These objects look very similar to
string objects at the Python programming level: they support slicing,
indexing, concatenation, and some other standard string
operations. However, their data can come from one of two sources: from
a block of memory, or from another object which exports the buffer
interface.
Buffer objects are useful as a way to expose the data from another
object's buffer interface to the Python programmer. They can also be
used as a zero-copy slicing mechanism. Using their ability to
reference a block of memory, it is possible to expose any data to the
Python programmer quite easily. The memory could be a large, constant
array in a C extension, it could be a raw block of memory for
manipulation before passing to an operating system library, or it
could be used to pass around structured data in its native, in-memory
format.
\begin{ctypedesc}{PyBufferObject}
This subtype of \ctype{PyObject} represents a buffer object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyBuffer_Type}
The instance of \ctype{PyTypeObject} which represents the Python
buffer type; it is the same object as \code{types.BufferType} in the
Python layer.\withsubitem{(in module types)}{\ttindex{BufferType}}.
\end{cvardesc}
\begin{cvardesc}{int}{Py_END_OF_BUFFER}
This constant may be passed as the \var{size} parameter to
\cfunction{PyBuffer_FromObject()} or
\cfunction{PyBuffer_FromReadWriteObject()}. It indicates that the new
\ctype{PyBufferObject} should refer to \var{base} object from the
specified \var{offset} to the end of its exported buffer. Using this
enables the caller to avoid querying the \var{base} object for its
length.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyBuffer_Check}{PyObject *p}
Return true if the argument has type \cdata{PyBuffer_Type}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyBuffer_FromObject}{PyObject *base,
int offset, int size}
Return a new read-only buffer object. This raises
\exception{TypeError} if \var{base} doesn't support the read-only
buffer protocol or doesn't provide exactly one buffer segment, or it
raises \exception{ValueError} if \var{offset} is less than zero. The
buffer will hold a reference to the \var{base} object, and the
buffer's contents will refer to the \var{base} object's buffer
interface, starting as position \var{offset} and extending for
\var{size} bytes. If \var{size} is \constant{Py_END_OF_BUFFER}, then
the new buffer's contents extend to the length of the
\var{base} object's exported buffer data.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyBuffer_FromReadWriteObject}{PyObject *base,
int offset,
int size}
Return a new writable buffer object. Parameters and exceptions are
similar to those for \cfunction{PyBuffer_FromObject()}.
If the \var{base} object does not export the writeable buffer
protocol, then \exception{TypeError} is raised.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyBuffer_FromMemory}{void *ptr, int size}
Return a new read-only buffer object that reads from a specified
location in memory, with a specified size.
The caller is responsible for ensuring that the memory buffer, passed
in as \var{ptr}, is not deallocated while the returned buffer object
exists. Raises \exception{ValueError} if \var{size} is less than
zero. Note that \constant{Py_END_OF_BUFFER} may \emph{not} be passed
for the \var{size} parameter; \exception{ValueError} will be raised in
that case.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyBuffer_FromReadWriteMemory}{void *ptr, int size}
Similar to \cfunction{PyBuffer_FromMemory()}, but the returned buffer
is writable.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyBuffer_New}{int size}
Returns a new writable buffer object that maintains its own memory
buffer of \var{size} bytes. \exception{ValueError} is returned if
\var{size} is not zero or positive.
\end{cfuncdesc}
\subsection{Tuple Objects \label{tupleObjects}}
\obindex{tuple}
\begin{ctypedesc}{PyTupleObject}
This subtype of \ctype{PyObject} represents a Python tuple object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyTuple_Type}
This instance of \ctype{PyTypeObject} represents the Python tuple
type; it is the same object as \code{types.TupleType} in the Python
layer.\withsubitem{(in module types)}{\ttindex{TupleType}}.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyTuple_Check}{PyObject *p}
Return true if the argument is a tuple object.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyTuple_New}{int len}
Return a new tuple object of size \var{len}, or \NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTuple_Size}{PyTupleObject *p}
Takes a pointer to a tuple object, and returns the size
of that tuple.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyTuple_GetItem}{PyTupleObject *p, int pos}
Returns the object at position \var{pos} in the tuple pointed
to by \var{p}. If \var{pos} is out of bounds, returns \NULL{} and
sets an \exception{IndexError} exception.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyTuple_GET_ITEM}{PyTupleObject *p, int pos}
Does the same, but does no checking of its arguments.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyTuple_GetSlice}{PyTupleObject *p,
int low,
int high}
Takes a slice of the tuple pointed to by \var{p} from
\var{low} to \var{high} and returns it as a new tuple.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTuple_SetItem}{PyObject *p,
int pos, PyObject *o}
Inserts a reference to object \var{o} at position \var{pos} of
the tuple pointed to by \var{p}. It returns \code{0} on success.
\strong{Note:} This function ``steals'' a reference to \var{o}.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyTuple_SET_ITEM}{PyObject *p,
int pos, PyObject *o}
Does the same, but does no error checking, and
should \emph{only} be used to fill in brand new tuples.
\strong{Note:} This function ``steals'' a reference to \var{o}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{_PyTuple_Resize}{PyTupleObject *p,
int newsize, int last_is_sticky}
Can be used to resize a tuple. \var{newsize} will be the new length
of the tuple. Because tuples are \emph{supposed} to be immutable,
this should only be used if there is only one reference to the object.
Do \emph{not} use this if the tuple may already be known to some other
part of the code. The tuple will always grow or shrink at the end. The
\var{last_is_sticky} flag is not used and should always be false. Think
of this as destroying the old tuple and creating a new one, only more
efficiently. Returns \code{0} on success and \code{-1} on failure (in
which case a \exception{MemoryError} or \exception{SystemError} will be
raised).
\end{cfuncdesc}
\subsection{List Objects \label{listObjects}}
\obindex{list}
\begin{ctypedesc}{PyListObject}
This subtype of \ctype{PyObject} represents a Python list object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyList_Type}
This instance of \ctype{PyTypeObject} represents the Python list
type. This is the same object as \code{types.ListType}.
\withsubitem{(in module types)}{\ttindex{ListType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyList_Check}{PyObject *p}
Returns true if its argument is a \ctype{PyListObject}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_New}{int len}
Returns a new list of length \var{len} on success, or \NULL{} on
failure.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Size}{PyObject *list}
Returns the length of the list object in \var{list}; this is
equivalent to \samp{len(\var{list})} on a list object.
\bifuncindex{len}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_GET_SIZE}{PyObject *list}
Macro form of \cfunction{PyList_Size()} without error checking.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_GetItem}{PyObject *list, int index}
Returns the object at position \var{pos} in the list pointed
to by \var{p}. If \var{pos} is out of bounds, returns \NULL{} and
sets an \exception{IndexError} exception.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_GET_ITEM}{PyObject *list, int i}
Macro form of \cfunction{PyList_GetItem()} without error checking.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_SetItem}{PyObject *list, int index,
PyObject *item}
Sets the item at index \var{index} in list to \var{item}.
\strong{Note:} This function ``steals'' a reference to \var{item}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_SET_ITEM}{PyObject *list, int i,
PyObject *o}
Macro form of \cfunction{PyList_SetItem()} without error checking.
\strong{Note:} This function ``steals'' a reference to \var{item}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Insert}{PyObject *list, int index,
PyObject *item}
Inserts the item \var{item} into list \var{list} in front of index
\var{index}. Returns \code{0} if successful; returns \code{-1} and
raises an exception if unsuccessful. Analogous to
\code{\var{list}.insert(\var{index}, \var{item})}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Append}{PyObject *list, PyObject *item}
Appends the object \var{item} at the end of list \var{list}. Returns
\code{0} if successful; returns \code{-1} and sets an exception if
unsuccessful. Analogous to \code{\var{list}.append(\var{item})}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_GetSlice}{PyObject *list,
int low, int high}
Returns a list of the objects in \var{list} containing the objects
\emph{between} \var{low} and \var{high}. Returns NULL and sets an
exception if unsuccessful.
Analogous to \code{\var{list}[\var{low}:\var{high}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_SetSlice}{PyObject *list,
int low, int high,
PyObject *itemlist}
Sets the slice of \var{list} between \var{low} and \var{high} to the
contents of \var{itemlist}. Analogous to
\code{\var{list}[\var{low}:\var{high}] = \var{itemlist}}. Returns
\code{0} on success, \code{-1} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Sort}{PyObject *list}
Sorts the items of \var{list} in place. Returns \code{0} on success,
\code{-1} on failure. This is equivalent to
\samp{\var{list}.sort()}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Reverse}{PyObject *list}
Reverses the items of \var{list} in place. Returns \code{0} on
success, \code{-1} on failure. This is the equivalent of
\samp{\var{list}.reverse()}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_AsTuple}{PyObject *list}
Returns a new tuple object containing the contents of \var{list};
equivalent to \samp{tuple(\var{list})}.\bifuncindex{tuple}
\end{cfuncdesc}
\section{Mapping Objects \label{mapObjects}}
\obindex{mapping}
\subsection{Dictionary Objects \label{dictObjects}}
\obindex{dictionary}
\begin{ctypedesc}{PyDictObject}
This subtype of \ctype{PyObject} represents a Python dictionary object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyDict_Type}
This instance of \ctype{PyTypeObject} represents the Python dictionary
type. This is exposed to Python programs as \code{types.DictType} and
\code{types.DictionaryType}.
\withsubitem{(in module types)}{\ttindex{DictType}\ttindex{DictionaryType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyDict_Check}{PyObject *p}
Returns true if its argument is a \ctype{PyDictObject}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_New}{}
Returns a new empty dictionary, or \NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyDict_Clear}{PyObject *p}
Empties an existing dictionary of all key-value pairs.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_Copy}{PyObject *p}
Returns a new dictionary that contains the same key-value pairs as p.
Empties an existing dictionary of all key-value pairs.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_SetItem}{PyObject *p, PyObject *key,
PyObject *val}
Inserts \var{value} into the dictionary with a key of \var{key}.
\var{key} must be hashable; if it isn't, \exception{TypeError} will be
raised.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_SetItemString}{PyDictObject *p,
char *key,
PyObject *val}
Inserts \var{value} into the dictionary using \var{key}
as a key. \var{key} should be a \ctype{char*}. The key object is
created using \code{PyString_FromString(\var{key})}.
\ttindex{PyString_FromString()}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_DelItem}{PyObject *p, PyObject *key}
Removes the entry in dictionary \var{p} with key \var{key}.
\var{key} must be hashable; if it isn't, \exception{TypeError} is
raised.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_DelItemString}{PyObject *p, char *key}
Removes the entry in dictionary \var{p} which has a key
specified by the string \var{key}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_GetItem}{PyObject *p, PyObject *key}
Returns the object from dictionary \var{p} which has a key
\var{key}. Returns \NULL{} if the key \var{key} is not present, but
\emph{without} setting an exception.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_GetItemString}{PyObject *p, char *key}
This is the same as \cfunction{PyDict_GetItem()}, but \var{key} is
specified as a \ctype{char*}, rather than a \ctype{PyObject*}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_Items}{PyObject *p}
Returns a \ctype{PyListObject} containing all the items
from the dictionary, as in the dictinoary method \method{items()} (see
the \citetitle[../lib/lib.html]{Python Library Reference}).
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_Keys}{PyObject *p}
Returns a \ctype{PyListObject} containing all the keys
from the dictionary, as in the dictionary method \method{keys()} (see the
\citetitle[../lib/lib.html]{Python Library Reference}).
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_Values}{PyObject *p}
Returns a \ctype{PyListObject} containing all the values
from the dictionary \var{p}, as in the dictionary method
\method{values()} (see the \citetitle[../lib/lib.html]{Python Library
Reference}).
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_Size}{PyObject *p}
Returns the number of items in the dictionary. This is equivalent to
\samp{len(\var{p})} on a dictionary.\bifuncindex{len}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_Next}{PyDictObject *p, int *ppos,
PyObject **pkey, PyObject **pvalue}
\end{cfuncdesc}
\section{Numeric Objects \label{numericObjects}}
\obindex{numeric}
\subsection{Plain Integer Objects \label{intObjects}}
\obindex{integer}
\begin{ctypedesc}{PyIntObject}
This subtype of \ctype{PyObject} represents a Python integer object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyInt_Type}
This instance of \ctype{PyTypeObject} represents the Python plain
integer type. This is the same object as \code{types.IntType}.
\withsubitem{(in modules types)}{\ttindex{IntType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyInt_Check}{PyObject* o}
Returns true if \var{o} is of type \cdata{PyInt_Type}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyInt_FromLong}{long ival}
Creates a new integer object with a value of \var{ival}.
The current implementation keeps an array of integer objects for all
integers between \code{-1} and \code{100}, when you create an int in
that range you actually just get back a reference to the existing
object. So it should be possible to change the value of \code{1}. I
suspect the behaviour of Python in this case is undefined. :-)
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyInt_AsLong}{PyObject *io}
Will first attempt to cast the object to a \ctype{PyIntObject}, if
it is not already one, and then return its value.
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyInt_AS_LONG}{PyObject *io}
Returns the value of the object \var{io}. No error checking is
performed.
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyInt_GetMax}{}
Returns the system's idea of the largest integer it can handle
(\constant{LONG_MAX}\ttindex{LONG_MAX}, as defined in the system
header files).
\end{cfuncdesc}
\subsection{Long Integer Objects \label{longObjects}}
\obindex{long integer}
\begin{ctypedesc}{PyLongObject}
This subtype of \ctype{PyObject} represents a Python long integer
object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyLong_Type}
This instance of \ctype{PyTypeObject} represents the Python long
integer type. This is the same object as \code{types.LongType}.
\withsubitem{(in modules types)}{\ttindex{LongType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyLong_Check}{PyObject *p}
Returns true if its argument is a \ctype{PyLongObject}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromLong}{long v}
Returns a new \ctype{PyLongObject} object from \var{v}, or \NULL{} on
failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromUnsignedLong}{unsigned long v}
Returns a new \ctype{PyLongObject} object from a C \ctype{unsigned
long}, or \NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromDouble}{double v}
Returns a new \ctype{PyLongObject} object from the integer part of
\var{v}, or \NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyLong_AsLong}{PyObject *pylong}
Returns a C \ctype{long} representation of the contents of
\var{pylong}. If \var{pylong} is greater than
\constant{LONG_MAX}\ttindex{LONG_MAX}, an \exception{OverflowError} is
raised.\withsubitem{(built-in exception)}{OverflowError}
\end{cfuncdesc}
\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLong}{PyObject *pylong}
Returns a C \ctype{unsigned long} representation of the contents of
\var{pylong}. If \var{pylong} is greater than
\constant{ULONG_MAX}\ttindex{ULONG_MAX}, an \exception{OverflowError}
is raised.\withsubitem{(built-in exception)}{OverflowError}
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyLong_AsDouble}{PyObject *pylong}
Returns a C \ctype{double} representation of the contents of \var{pylong}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromString}{char *str, char **pend,
int base}
Return a new \ctype{PyLongObject} based on the string value in
\var{str}, which is interpreted according to the radix in \var{base}.
If \var{pend} is non-\NULL, \code{*\var{pend}} will point to the first
character in \var{str} which follows the representation of the
number. If \var{base} is \code{0}, the radix will be determined base
on the leading characters of \var{str}: if \var{str} starts with
\code{'0x'} or \code{'0X'}, radix 16 will be used; if \var{str} starts
with \code{'0'}, radix 8 will be used; otherwise radix 10 will be
used. If \var{base} is not \code{0}, it must be between \code{2} and
\code{36}, inclusive. Leading spaces are ignored. If there are no
digits, \exception{ValueError} will be raised.
\end{cfuncdesc}
\subsection{Floating Point Objects \label{floatObjects}}
\obindex{floating point}
\begin{ctypedesc}{PyFloatObject}
This subtype of \ctype{PyObject} represents a Python floating point
object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyFloat_Type}
This instance of \ctype{PyTypeObject} represents the Python floating
point type. This is the same object as \code{types.FloatType}.
\withsubitem{(in modules types)}{\ttindex{FloatType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyFloat_Check}{PyObject *p}
Returns true if its argument is a \ctype{PyFloatObject}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFloat_FromDouble}{double v}
Creates a \ctype{PyFloatObject} object from \var{v}, or \NULL{} on
failure.
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyFloat_AsDouble}{PyObject *pyfloat}
Returns a C \ctype{double} representation of the contents of \var{pyfloat}.
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyFloat_AS_DOUBLE}{PyObject *pyfloat}
Returns a C \ctype{double} representation of the contents of
\var{pyfloat}, but without error checking.
\end{cfuncdesc}
\subsection{Complex Number Objects \label{complexObjects}}
\obindex{complex number}
Python's complex number objects are implemented as two distinct types
when viewed from the C API: one is the Python object exposed to
Python programs, and the other is a C structure which represents the
actual complex number value. The API provides functions for working
with both.
\subsubsection{Complex Numbers as C Structures}
Note that the functions which accept these structures as parameters
and return them as results do so \emph{by value} rather than
dereferencing them through pointers. This is consistent throughout
the API.
\begin{ctypedesc}{Py_complex}
The C structure which corresponds to the value portion of a Python
complex number object. Most of the functions for dealing with complex
number objects use structures of this type as input or output values,
as appropriate. It is defined as:
\begin{verbatim}
typedef struct {
double real;
double imag;
} Py_complex;
\end{verbatim}
\end{ctypedesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_sum}{Py_complex left, Py_complex right}
Return the sum of two complex numbers, using the C
\ctype{Py_complex} representation.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_diff}{Py_complex left, Py_complex right}
Return the difference between two complex numbers, using the C
\ctype{Py_complex} representation.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_neg}{Py_complex complex}
Return the negation of the complex number \var{complex}, using the C
\ctype{Py_complex} representation.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_prod}{Py_complex left, Py_complex right}
Return the product of two complex numbers, using the C
\ctype{Py_complex} representation.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_quot}{Py_complex dividend,
Py_complex divisor}
Return the quotient of two complex numbers, using the C
\ctype{Py_complex} representation.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_pow}{Py_complex num, Py_complex exp}
Return the exponentiation of \var{num} by \var{exp}, using the C
\ctype{Py_complex} representation.
\end{cfuncdesc}
\subsubsection{Complex Numbers as Python Objects}
\begin{ctypedesc}{PyComplexObject}
This subtype of \ctype{PyObject} represents a Python complex number object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyComplex_Type}
This instance of \ctype{PyTypeObject} represents the Python complex
number type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyComplex_Check}{PyObject *p}
Returns true if its argument is a \ctype{PyComplexObject}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyComplex_FromCComplex}{Py_complex v}
Create a new Python complex number object from a C
\ctype{Py_complex} value.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyComplex_FromDoubles}{double real, double imag}
Returns a new \ctype{PyComplexObject} object from \var{real} and \var{imag}.
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyComplex_RealAsDouble}{PyObject *op}
Returns the real part of \var{op} as a C \ctype{double}.
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyComplex_ImagAsDouble}{PyObject *op}
Returns the imaginary part of \var{op} as a C \ctype{double}.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{PyComplex_AsCComplex}{PyObject *op}
Returns the \ctype{Py_complex} value of the complex number \var{op}.
\end{cfuncdesc}
\section{Other Objects \label{otherObjects}}
\subsection{File Objects \label{fileObjects}}
\obindex{file}
Python's built-in file objects are implemented entirely on the
\ctype{FILE*} support from the C standard library. This is an
implementation detail and may change in future releases of Python.
\begin{ctypedesc}{PyFileObject}
This subtype of \ctype{PyObject} represents a Python file object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyFile_Type}
This instance of \ctype{PyTypeObject} represents the Python file
type. This is exposed to Python programs as \code{types.FileType}.
\withsubitem{(in module types)}{\ttindex{FileType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyFile_Check}{PyObject *p}
Returns true if its argument is a \ctype{PyFileObject}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFile_FromString}{char *filename, char *mode}
On success, returns a new file object that is opened on the
file given by \var{filename}, with a file mode given by \var{mode},
where \var{mode} has the same semantics as the standard C routine
\cfunction{fopen()}\ttindex{fopen()}. On failure, returns \NULL.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFile_FromFile}{FILE *fp,
char *name, char *mode,
int (*close)(FILE*)}
Creates a new \ctype{PyFileObject} from the already-open standard C
file pointer, \var{fp}. The function \var{close} will be called when
the file should be closed. Returns \NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{FILE*}{PyFile_AsFile}{PyFileObject *p}
Returns the file object associated with \var{p} as a \ctype{FILE*}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFile_GetLine}{PyObject *p, int n}
Equivalent to \code{\var{p}.readline(\optional{\var{n}})}, this
function reads one line from the object \var{p}. \var{p} may be a
file object or any object with a \method{readline()} method. If
\var{n} is \code{0}, exactly one line is read, regardless of the
length of the line. If \var{n} is greater than \code{0}, no more than
\var{n} bytes will be read from the file; a partial line can be
returned. In both cases, an empty string is returned if the end of
the file is reached immediately. If \var{n} is less than \code{0},
however, one line is read regardless of length, but
\exception{EOFError} is raised if the end of the file is reached
immediately.
\withsubitem{(built-in exception)}{\ttindex{EOFError}}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFile_Name}{PyObject *p}
Returns the name of the file specified by \var{p} as a string object.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyFile_SetBufSize}{PyFileObject *p, int n}
Available on systems with \cfunction{setvbuf()}\ttindex{setvbuf()}
only. This should only be called immediately after file object
creation.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_SoftSpace}{PyObject *p, int newflag}
This function exists for internal use by the interpreter.
Sets the \member{softspace} attribute of \var{p} to \var{newflag} and
\withsubitem{(file attribute)}{\ttindex{softspace}}returns the
previous value. \var{p} does not have to be a file object
for this function to work properly; any object is supported (thought
its only interesting if the \member{softspace} attribute can be set).
This function clears any errors, and will return \code{0} as the
previous value if the attribute either does not exist or if there were
errors in retrieving it. There is no way to detect errors from this
function, but doing so should not be needed.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_WriteObject}{PyObject *obj, PyFileObject *p,
int flags}
Writes object \var{obj} to file object \var{p}. The only supported
flag for \var{flags} is \constant{Py_PRINT_RAW}\ttindex{Py_PRINT_RAW};
if given, the \function{str()} of the object is written instead of the
\function{repr()}. Returns \code{0} on success or \code{-1} on
failure; the appropriate exception will be set.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_WriteString}{char *s, PyFileObject *p,
int flags}
Writes string \var{s} to file object \var{p}. Returns \code{0} on
success or \code{-1} on failure; the appropriate exception will be
set.
\end{cfuncdesc}
\subsection{Instance Objects \label{instanceObjects}}
\obindex{instance}
There are very few functions specific to instance objects.
\begin{cvardesc}{PyTypeObject}{PyInstance_Type}
Type object for class instances.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyInstance_Check}{PyObject *obj}
Returns true if \var{obj} is an instance.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyInstance_New}{PyObject *class,
PyObject *arg,
PyObject *kw}
Create a new instance of a specific class. The parameters \var{arg}
and \var{kw} are used as the positional and keyword parameters to
the object's constructor.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyInstance_NewRaw}{PyObject *class,
PyObject *dict}
Create a new instance of a specific class without calling it's
constructor. \var{class} is the class of new object. The
\var{dict} parameter will be used as the object's \member{__dict__};
if \NULL, a new dictionary will be created for the instance.
\end{cfuncdesc}
\subsection{Module Objects \label{moduleObjects}}
\obindex{module}
There are only a few functions special to module objects.
\begin{cvardesc}{PyTypeObject}{PyModule_Type}
This instance of \ctype{PyTypeObject} represents the Python module
type. This is exposed to Python programs as \code{types.ModuleType}.
\withsubitem{(in module types)}{\ttindex{ModuleType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyModule_Check}{PyObject *p}
Returns true if its argument is a module object.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyModule_New}{char *name}
Return a new module object with the \member{__name__} attribute set to
\var{name}. Only the module's \member{__doc__} and
\member{__name__} attributes are filled in; the caller is responsible
for providing a \member{__file__} attribute.
\withsubitem{(module attribute)}{
\ttindex{__name__}\ttindex{__doc__}\ttindex{__file__}}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyModule_GetDict}{PyObject *module}
Return the dictionary object that implements \var{module}'s namespace;
this object is the same as the \member{__dict__} attribute of the
module object. This function never fails.
\withsubitem{(module attribute)}{\ttindex{__dict__}}
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{PyModule_GetName}{PyObject *module}
Return \var{module}'s \member{__name__} value. If the module does not
provide one, or if it is not a string, \exception{SystemError} is
raised and \NULL{} is returned.
\withsubitem{(module attribute)}{\ttindex{__name__}}
\withsubitem{(built-in exception)}{\ttindex{SystemError}}
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{PyModule_GetFilename}{PyObject *module}
Return the name of the file from which \var{module} was loaded using
\var{module}'s \member{__file__} attribute. If this is not defined,
or if it is not a string, raise \exception{SystemError} and return
\NULL.
\withsubitem{(module attribute)}{\ttindex{__file__}}
\withsubitem{(built-in exception)}{\ttindex{SystemError}}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyModule_AddObject}{PyObject *module,
char *name, PyObject *value}
Add an object to \var{module} as \var{name}. This is a convenience
function which can be used from the module's initialization function.
This steals a reference to \var{value}. Returns \code{-1} on error,
\code{0} on success.
\versionadded{2.0}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyModule_AddIntConstant}{PyObject *module,
char *name, int value}
Add an integer constant to \var{module} as \var{name}. This convenience
function can be used from the module's initialization function.
Returns \code{-1} on error, \code{0} on success.
\versionadded{2.0}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyModule_AddStringConstant}{PyObject *module,
char *name, char *value}
Add a string constant to \var{module} as \var{name}. This convenience
function can be used from the module's initialization function. The
string \var{value} must be null-terminated. Returns \code{-1} on
error, \code{0} on success.
\versionadded{2.0}
\end{cfuncdesc}
\subsection{CObjects \label{cObjects}}
\obindex{CObject}
Refer to \emph{Extending and Embedding the Python Interpreter},
section 1.12 (``Providing a C API for an Extension Module''), for more
information on using these objects.
\begin{ctypedesc}{PyCObject}
This subtype of \ctype{PyObject} represents an opaque value, useful for
C extension modules who need to pass an opaque value (as a
\ctype{void*} pointer) through Python code to other C code. It is
often used to make a C function pointer defined in one module
available to other modules, so the regular import mechanism can be
used to access C APIs defined in dynamically loaded modules.
\end{ctypedesc}
\begin{cfuncdesc}{int}{PyCObject_Check}{PyObject *p}
Returns true if its argument is a \ctype{PyCObject}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyCObject_FromVoidPtr}{void* cobj,
void (*destr)(void *)}
Creates a \ctype{PyCObject} from the \code{void *}\var{cobj}. The
\var{destr} function will be called when the object is reclaimed, unless
it is \NULL.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyCObject_FromVoidPtrAndDesc}{void* cobj,
void* desc, void (*destr)(void *, void *) }
Creates a \ctype{PyCObject} from the \ctype{void *}\var{cobj}. The
\var{destr} function will be called when the object is reclaimed. The
\var{desc} argument can be used to pass extra callback data for the
destructor function.
\end{cfuncdesc}
\begin{cfuncdesc}{void*}{PyCObject_AsVoidPtr}{PyObject* self}
Returns the object \ctype{void *} that the
\ctype{PyCObject} \var{self} was created with.
\end{cfuncdesc}
\begin{cfuncdesc}{void*}{PyCObject_GetDesc}{PyObject* self}
Returns the description \ctype{void *} that the
\ctype{PyCObject} \var{self} was created with.
\end{cfuncdesc}
\chapter{Initialization, Finalization, and Threads
\label{initialization}}
\begin{cfuncdesc}{void}{Py_Initialize}{}
Initialize the Python interpreter. In an application embedding
Python, this should be called before using any other Python/C API
functions; with the exception of
\cfunction{Py_SetProgramName()}\ttindex{Py_SetProgramName()},
\cfunction{PyEval_InitThreads()}\ttindex{PyEval_InitThreads()},
\cfunction{PyEval_ReleaseLock()}\ttindex{PyEval_ReleaseLock()},
and \cfunction{PyEval_AcquireLock()}\ttindex{PyEval_AcquireLock()}.
This initializes the table of loaded modules (\code{sys.modules}), and
\withsubitem{(in module sys)}{\ttindex{modules}\ttindex{path}}creates the
fundamental modules \module{__builtin__}\refbimodindex{__builtin__},
\module{__main__}\refbimodindex{__main__} and
\module{sys}\refbimodindex{sys}. It also initializes the module
search\indexiii{module}{search}{path} path (\code{sys.path}).
It does not set \code{sys.argv}; use
\cfunction{PySys_SetArgv()}\ttindex{PySys_SetArgv()} for that. This
is a no-op when called for a second time (without calling
\cfunction{Py_Finalize()}\ttindex{Py_Finalize()} first). There is no
return value; it is a fatal error if the initialization fails.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_IsInitialized}{}
Return true (nonzero) when the Python interpreter has been
initialized, false (zero) if not. After \cfunction{Py_Finalize()} is
called, this returns false until \cfunction{Py_Initialize()} is called
again.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{Py_Finalize}{}
Undo all initializations made by \cfunction{Py_Initialize()} and
subsequent use of Python/C API functions, and destroy all
sub-interpreters (see \cfunction{Py_NewInterpreter()} below) that were
created and not yet destroyed since the last call to
\cfunction{Py_Initialize()}. Ideally, this frees all memory allocated
by the Python interpreter. This is a no-op when called for a second
time (without calling \cfunction{Py_Initialize()} again first). There
is no return value; errors during finalization are ignored.
This function is provided for a number of reasons. An embedding
application might want to restart Python without having to restart the
application itself. An application that has loaded the Python
interpreter from a dynamically loadable library (or DLL) might want to
free all memory allocated by Python before unloading the DLL. During a
hunt for memory leaks in an application a developer might want to free
all memory allocated by Python before exiting from the application.
\strong{Bugs and caveats:} The destruction of modules and objects in
modules is done in random order; this may cause destructors
(\method{__del__()} methods) to fail when they depend on other objects
(even functions) or modules. Dynamically loaded extension modules
loaded by Python are not unloaded. Small amounts of memory allocated
by the Python interpreter may not be freed (if you find a leak, please
report it). Memory tied up in circular references between objects is
not freed. Some memory allocated by extension modules may not be
freed. Some extension may not work properly if their initialization
routine is called more than once; this can happen if an applcation
calls \cfunction{Py_Initialize()} and \cfunction{Py_Finalize()} more
than once.
\end{cfuncdesc}
\begin{cfuncdesc}{PyThreadState*}{Py_NewInterpreter}{}
Create a new sub-interpreter. This is an (almost) totally separate
environment for the execution of Python code. In particular, the new
interpreter has separate, independent versions of all imported
modules, including the fundamental modules
\module{__builtin__}\refbimodindex{__builtin__},
\module{__main__}\refbimodindex{__main__} and
\module{sys}\refbimodindex{sys}. The table of loaded modules
(\code{sys.modules}) and the module search path (\code{sys.path}) are
also separate. The new environment has no \code{sys.argv} variable.
It has new standard I/O stream file objects \code{sys.stdin},
\code{sys.stdout} and \code{sys.stderr} (however these refer to the
same underlying \ctype{FILE} structures in the C library).
\withsubitem{(in module sys)}{
\ttindex{stdout}\ttindex{stderr}\ttindex{stdin}}
The return value points to the first thread state created in the new
sub-interpreter. This thread state is made the current thread state.
Note that no actual thread is created; see the discussion of thread
states below. If creation of the new interpreter is unsuccessful,
\NULL{} is returned; no exception is set since the exception state
is stored in the current thread state and there may not be a current
thread state. (Like all other Python/C API functions, the global
interpreter lock must be held before calling this function and is
still held when it returns; however, unlike most other Python/C API
functions, there needn't be a current thread state on entry.)
Extension modules are shared between (sub-)interpreters as follows:
the first time a particular extension is imported, it is initialized
normally, and a (shallow) copy of its module's dictionary is
squirreled away. When the same extension is imported by another
(sub-)interpreter, a new module is initialized and filled with the
contents of this copy; the extension's \code{init} function is not
called. Note that this is different from what happens when an
extension is imported after the interpreter has been completely
re-initialized by calling
\cfunction{Py_Finalize()}\ttindex{Py_Finalize()} and
\cfunction{Py_Initialize()}\ttindex{Py_Initialize()}; in that case,
the extension's \code{init\var{module}} function \emph{is} called
again.
\strong{Bugs and caveats:} Because sub-interpreters (and the main
interpreter) are part of the same process, the insulation between them
isn't perfect --- for example, using low-level file operations like
\withsubitem{(in module os)}{\ttindex{close()}}
\function{os.close()} they can (accidentally or maliciously) affect each
other's open files. Because of the way extensions are shared between
(sub-)interpreters, some extensions may not work properly; this is
especially likely when the extension makes use of (static) global
variables, or when the extension manipulates its module's dictionary
after its initialization. It is possible to insert objects created in
one sub-interpreter into a namespace of another sub-interpreter; this
should be done with great care to avoid sharing user-defined
functions, methods, instances or classes between sub-interpreters,
since import operations executed by such objects may affect the
wrong (sub-)interpreter's dictionary of loaded modules. (XXX This is
a hard-to-fix bug that will be addressed in a future release.)
\end{cfuncdesc}
\begin{cfuncdesc}{void}{Py_EndInterpreter}{PyThreadState *tstate}
Destroy the (sub-)interpreter represented by the given thread state.
The given thread state must be the current thread state. See the
discussion of thread states below. When the call returns, the current
thread state is \NULL{}. All thread states associated with this
interpreted are destroyed. (The global interpreter lock must be held
before calling this function and is still held when it returns.)
\cfunction{Py_Finalize()}\ttindex{Py_Finalize()} will destroy all
sub-interpreters that haven't been explicitly destroyed at that point.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{Py_SetProgramName}{char *name}
This function should be called before
\cfunction{Py_Initialize()}\ttindex{Py_Initialize()} is called
for the first time, if it is called at all. It tells the interpreter
the value of the \code{argv[0]} argument to the
\cfunction{main()}\ttindex{main()} function of the program. This is
used by \cfunction{Py_GetPath()}\ttindex{Py_GetPath()} and some other
functions below to find the Python run-time libraries relative to the
interpreter executable. The default value is \code{'python'}. The
argument should point to a zero-terminated character string in static
storage whose contents will not change for the duration of the
program's execution. No code in the Python interpreter will change
the contents of this storage.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{Py_GetProgramName}{}
Return the program name set with
\cfunction{Py_SetProgramName()}\ttindex{Py_SetProgramName()}, or the
default. The returned string points into static storage; the caller
should not modify its value.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{Py_GetPrefix}{}
Return the \emph{prefix} for installed platform-independent files. This
is derived through a number of complicated rules from the program name
set with \cfunction{Py_SetProgramName()} and some environment variables;
for example, if the program name is \code{'/usr/local/bin/python'},
the prefix is \code{'/usr/local'}. The returned string points into
static storage; the caller should not modify its value. This
corresponds to the \makevar{prefix} variable in the top-level
\file{Makefile} and the \longprogramopt{prefix} argument to the
\program{configure} script at build time. The value is available to
Python code as \code{sys.prefix}. It is only useful on \UNIX{}. See
also the next function.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{Py_GetExecPrefix}{}
Return the \emph{exec-prefix} for installed platform-\emph{de}pendent
files. This is derived through a number of complicated rules from the
program name set with \cfunction{Py_SetProgramName()} and some environment
variables; for example, if the program name is
\code{'/usr/local/bin/python'}, the exec-prefix is
\code{'/usr/local'}. The returned string points into static storage;
the caller should not modify its value. This corresponds to the
\makevar{exec_prefix} variable in the top-level \file{Makefile} and the
\longprogramopt{exec-prefix} argument to the
\program{configure} script at build time. The value is available to
Python code as \code{sys.exec_prefix}. It is only useful on \UNIX{}.
Background: The exec-prefix differs from the prefix when platform
dependent files (such as executables and shared libraries) are
installed in a different directory tree. In a typical installation,
platform dependent files may be installed in the
\file{/usr/local/plat} subtree while platform independent may be
installed in \file{/usr/local}.
Generally speaking, a platform is a combination of hardware and
software families, e.g. Sparc machines running the Solaris 2.x
operating system are considered the same platform, but Intel machines
running Solaris 2.x are another platform, and Intel machines running
Linux are yet another platform. Different major revisions of the same
operating system generally also form different platforms. Non-\UNIX{}
operating systems are a different story; the installation strategies
on those systems are so different that the prefix and exec-prefix are
meaningless, and set to the empty string. Note that compiled Python
bytecode files are platform independent (but not independent from the
Python version by which they were compiled!).
System administrators will know how to configure the \program{mount} or
\program{automount} programs to share \file{/usr/local} between platforms
while having \file{/usr/local/plat} be a different filesystem for each
platform.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{Py_GetProgramFullPath}{}
Return the full program name of the Python executable; this is
computed as a side-effect of deriving the default module search path
from the program name (set by
\cfunction{Py_SetProgramName()}\ttindex{Py_SetProgramName()} above).
The returned string points into static storage; the caller should not
modify its value. The value is available to Python code as
\code{sys.executable}.
\withsubitem{(in module sys)}{\ttindex{executable}}
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{Py_GetPath}{}
\indexiii{module}{search}{path}
Return the default module search path; this is computed from the
program name (set by \cfunction{Py_SetProgramName()} above) and some
environment variables. The returned string consists of a series of
directory names separated by a platform dependent delimiter character.
The delimiter character is \character{:} on \UNIX{}, \character{;} on
DOS/Windows, and \character{\e n} (the \ASCII{} newline character) on
Macintosh. The returned string points into static storage; the caller
should not modify its value. The value is available to Python code
as the list \code{sys.path}\withsubitem{(in module sys)}{\ttindex{path}},
which may be modified to change the future search path for loaded
modules.
% XXX should give the exact rules
\end{cfuncdesc}
\begin{cfuncdesc}{const char*}{Py_GetVersion}{}
Return the version of this Python interpreter. This is a string that
looks something like
\begin{verbatim}
"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]"
\end{verbatim}
The first word (up to the first space character) is the current Python
version; the first three characters are the major and minor version
separated by a period. The returned string points into static storage;
the caller should not modify its value. The value is available to
Python code as the list \code{sys.version}.
\withsubitem{(in module sys)}{\ttindex{version}}
\end{cfuncdesc}
\begin{cfuncdesc}{const char*}{Py_GetPlatform}{}
Return the platform identifier for the current platform. On \UNIX{},
this is formed from the ``official'' name of the operating system,
converted to lower case, followed by the major revision number; e.g.,
for Solaris 2.x, which is also known as SunOS 5.x, the value is
\code{'sunos5'}. On Macintosh, it is \code{'mac'}. On Windows, it
is \code{'win'}. The returned string points into static storage;
the caller should not modify its value. The value is available to
Python code as \code{sys.platform}.
\withsubitem{(in module sys)}{\ttindex{platform}}
\end{cfuncdesc}
\begin{cfuncdesc}{const char*}{Py_GetCopyright}{}
Return the official copyright string for the current Python version,
for example
\code{'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'}
The returned string points into static storage; the caller should not
modify its value. The value is available to Python code as the list
\code{sys.copyright}.
\withsubitem{(in module sys)}{\ttindex{copyright}}
\end{cfuncdesc}
\begin{cfuncdesc}{const char*}{Py_GetCompiler}{}
Return an indication of the compiler used to build the current Python
version, in square brackets, for example:
\begin{verbatim}
"[GCC 2.7.2.2]"
\end{verbatim}
The returned string points into static storage; the caller should not
modify its value. The value is available to Python code as part of
the variable \code{sys.version}.
\withsubitem{(in module sys)}{\ttindex{version}}
\end{cfuncdesc}
\begin{cfuncdesc}{const char*}{Py_GetBuildInfo}{}
Return information about the sequence number and build date and time
of the current Python interpreter instance, for example
\begin{verbatim}
"#67, Aug 1 1997, 22:34:28"
\end{verbatim}
The returned string points into static storage; the caller should not
modify its value. The value is available to Python code as part of
the variable \code{sys.version}.
\withsubitem{(in module sys)}{\ttindex{version}}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySys_SetArgv}{int argc, char **argv}
Set \code{sys.argv} based on \var{argc} and \var{argv}. These
parameters are similar to those passed to the program's
\cfunction{main()}\ttindex{main()} function with the difference that
the first entry should refer to the script file to be executed rather
than the executable hosting the Python interpreter. If there isn't a
script that will be run, the first entry in \var{argv} can be an empty
string. If this function fails to initialize \code{sys.argv}, a fatal
condition is signalled using
\cfunction{Py_FatalError()}\ttindex{Py_FatalError()}.
\withsubitem{(in module sys)}{\ttindex{argv}}
% XXX impl. doesn't seem consistent in allowing 0/NULL for the params;
% check w/ Guido.
\end{cfuncdesc}
% XXX Other PySys thingies (doesn't really belong in this chapter)
\section{Thread State and the Global Interpreter Lock
\label{threads}}
\index{global interpreter lock}
\index{interpreter lock}
\index{lock, interpreter}
The Python interpreter is not fully thread safe. In order to support
multi-threaded Python programs, there's a global lock that must be
held by the current thread before it can safely access Python objects.
Without the lock, even the simplest operations could cause problems in
a multi-threaded program: for example, when two threads simultaneously
increment the reference count of the same object, the reference count
could end up being incremented only once instead of twice.
Therefore, the rule exists that only the thread that has acquired the
global interpreter lock may operate on Python objects or call Python/C
API functions. In order to support multi-threaded Python programs,
the interpreter regularly releases and reacquires the lock --- by
default, every ten bytecode instructions (this can be changed with
\withsubitem{(in module sys)}{\ttindex{setcheckinterval()}}
\function{sys.setcheckinterval()}). The lock is also released and
reacquired around potentially blocking I/O operations like reading or
writing a file, so that other threads can run while the thread that
requests the I/O is waiting for the I/O operation to complete.
The Python interpreter needs to keep some bookkeeping information
separate per thread --- for this it uses a data structure called
\ctype{PyThreadState}\ttindex{PyThreadState}. This is new in Python
1.5; in earlier versions, such state was stored in global variables,
and switching threads could cause problems. In particular, exception
handling is now thread safe, when the application uses
\withsubitem{(in module sys)}{\ttindex{exc_info()}}
\function{sys.exc_info()} to access the exception last raised in the
current thread.
There's one global variable left, however: the pointer to the current
\ctype{PyThreadState}\ttindex{PyThreadState} structure. While most
thread packages have a way to store ``per-thread global data,''
Python's internal platform independent thread abstraction doesn't
support this yet. Therefore, the current thread state must be
manipulated explicitly.
This is easy enough in most cases. Most code manipulating the global
interpreter lock has the following simple structure:
\begin{verbatim}
Save the thread state in a local variable.
Release the interpreter lock.
...Do some blocking I/O operation...
Reacquire the interpreter lock.
Restore the thread state from the local variable.
\end{verbatim}
This is so common that a pair of macros exists to simplify it:
\begin{verbatim}
Py_BEGIN_ALLOW_THREADS
...Do some blocking I/O operation...
Py_END_ALLOW_THREADS
\end{verbatim}
The \code{Py_BEGIN_ALLOW_THREADS}\ttindex{Py_BEGIN_ALLOW_THREADS} macro
opens a new block and declares a hidden local variable; the
\code{Py_END_ALLOW_THREADS}\ttindex{Py_END_ALLOW_THREADS} macro closes
the block. Another advantage of using these two macros is that when
Python is compiled without thread support, they are defined empty,
thus saving the thread state and lock manipulations.
When thread support is enabled, the block above expands to the
following code:
\begin{verbatim}
PyThreadState *_save;
_save = PyEval_SaveThread();
...Do some blocking I/O operation...
PyEval_RestoreThread(_save);
\end{verbatim}
Using even lower level primitives, we can get roughly the same effect
as follows:
\begin{verbatim}
PyThreadState *_save;
_save = PyThreadState_Swap(NULL);
PyEval_ReleaseLock();
...Do some blocking I/O operation...
PyEval_AcquireLock();
PyThreadState_Swap(_save);
\end{verbatim}
There are some subtle differences; in particular,
\cfunction{PyEval_RestoreThread()}\ttindex{PyEval_RestoreThread()} saves
and restores the value of the global variable
\cdata{errno}\ttindex{errno}, since the lock manipulation does not
guarantee that \cdata{errno} is left alone. Also, when thread support
is disabled,
\cfunction{PyEval_SaveThread()}\ttindex{PyEval_SaveThread()} and
\cfunction{PyEval_RestoreThread()} don't manipulate the lock; in this
case, \cfunction{PyEval_ReleaseLock()}\ttindex{PyEval_ReleaseLock()} and
\cfunction{PyEval_AcquireLock()}\ttindex{PyEval_AcquireLock()} are not
available. This is done so that dynamically loaded extensions
compiled with thread support enabled can be loaded by an interpreter
that was compiled with disabled thread support.
The global interpreter lock is used to protect the pointer to the
current thread state. When releasing the lock and saving the thread
state, the current thread state pointer must be retrieved before the
lock is released (since another thread could immediately acquire the
lock and store its own thread state in the global variable).
Conversely, when acquiring the lock and restoring the thread state,
the lock must be acquired before storing the thread state pointer.
Why am I going on with so much detail about this? Because when
threads are created from C, they don't have the global interpreter
lock, nor is there a thread state data structure for them. Such
threads must bootstrap themselves into existence, by first creating a
thread state data structure, then acquiring the lock, and finally
storing their thread state pointer, before they can start using the
Python/C API. When they are done, they should reset the thread state
pointer, release the lock, and finally free their thread state data
structure.
When creating a thread data structure, you need to provide an
interpreter state data structure. The interpreter state data
structure hold global data that is shared by all threads in an
interpreter, for example the module administration
(\code{sys.modules}). Depending on your needs, you can either create
a new interpreter state data structure, or share the interpreter state
data structure used by the Python main thread (to access the latter,
you must obtain the thread state and access its \member{interp} member;
this must be done by a thread that is created by Python or by the main
thread after Python is initialized).
\begin{ctypedesc}{PyInterpreterState}
This data structure represents the state shared by a number of
cooperating threads. Threads belonging to the same interpreter
share their module administration and a few other internal items.
There are no public members in this structure.
Threads belonging to different interpreters initially share nothing,
except process state like available memory, open file descriptors and
such. The global interpreter lock is also shared by all threads,
regardless of to which interpreter they belong.
\end{ctypedesc}
\begin{ctypedesc}{PyThreadState}
This data structure represents the state of a single thread. The only
public data member is \ctype{PyInterpreterState *}\member{interp},
which points to this thread's interpreter state.
\end{ctypedesc}
\begin{cfuncdesc}{void}{PyEval_InitThreads}{}
Initialize and acquire the global interpreter lock. It should be
called in the main thread before creating a second thread or engaging
in any other thread operations such as
\cfunction{PyEval_ReleaseLock()}\ttindex{PyEval_ReleaseLock()} or
\code{PyEval_ReleaseThread(\var{tstate})}\ttindex{PyEval_ReleaseThread()}.
It is not needed before calling
\cfunction{PyEval_SaveThread()}\ttindex{PyEval_SaveThread()} or
\cfunction{PyEval_RestoreThread()}\ttindex{PyEval_RestoreThread()}.
This is a no-op when called for a second time. It is safe to call
this function before calling
\cfunction{Py_Initialize()}\ttindex{Py_Initialize()}.
When only the main thread exists, no lock operations are needed. This
is a common situation (most Python programs do not use threads), and
the lock operations slow the interpreter down a bit. Therefore, the
lock is not created initially. This situation is equivalent to having
acquired the lock: when there is only a single thread, all object
accesses are safe. Therefore, when this function initializes the
lock, it also acquires it. Before the Python
\module{thread}\refbimodindex{thread} module creates a new thread,
knowing that either it has the lock or the lock hasn't been created
yet, it calls \cfunction{PyEval_InitThreads()}. When this call
returns, it is guaranteed that the lock has been created and that it
has acquired it.
It is \strong{not} safe to call this function when it is unknown which
thread (if any) currently has the global interpreter lock.
This function is not available when thread support is disabled at
compile time.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyEval_AcquireLock}{}
Acquire the global interpreter lock. The lock must have been created
earlier. If this thread already has the lock, a deadlock ensues.
This function is not available when thread support is disabled at
compile time.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyEval_ReleaseLock}{}
Release the global interpreter lock. The lock must have been created
earlier. This function is not available when thread support is
disabled at compile time.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyEval_AcquireThread}{PyThreadState *tstate}
Acquire the global interpreter lock and then set the current thread
state to \var{tstate}, which should not be \NULL{}. The lock must
have been created earlier. If this thread already has the lock,
deadlock ensues. This function is not available when thread support
is disabled at compile time.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyEval_ReleaseThread}{PyThreadState *tstate}
Reset the current thread state to \NULL{} and release the global
interpreter lock. The lock must have been created earlier and must be
held by the current thread. The \var{tstate} argument, which must not
be \NULL{}, is only used to check that it represents the current
thread state --- if it isn't, a fatal error is reported. This
function is not available when thread support is disabled at compile
time.
\end{cfuncdesc}
\begin{cfuncdesc}{PyThreadState*}{PyEval_SaveThread}{}
Release the interpreter lock (if it has been created and thread
support is enabled) and reset the thread state to \NULL{},
returning the previous thread state (which is not \NULL{}). If
the lock has been created, the current thread must have acquired it.
(This function is available even when thread support is disabled at
compile time.)
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyEval_RestoreThread}{PyThreadState *tstate}
Acquire the interpreter lock (if it has been created and thread
support is enabled) and set the thread state to \var{tstate}, which
must not be \NULL{}. If the lock has been created, the current
thread must not have acquired it, otherwise deadlock ensues. (This
function is available even when thread support is disabled at compile
time.)
\end{cfuncdesc}
The following macros are normally used without a trailing semicolon;
look for example usage in the Python source distribution.
\begin{csimplemacrodesc}{Py_BEGIN_ALLOW_THREADS}
This macro expands to
\samp{\{ PyThreadState *_save; _save = PyEval_SaveThread();}.
Note that it contains an opening brace; it must be matched with a
following \code{Py_END_ALLOW_THREADS} macro. See above for further
discussion of this macro. It is a no-op when thread support is
disabled at compile time.
\end{csimplemacrodesc}
\begin{csimplemacrodesc}{Py_END_ALLOW_THREADS}
This macro expands to
\samp{PyEval_RestoreThread(_save); \}}.
Note that it contains a closing brace; it must be matched with an
earlier \code{Py_BEGIN_ALLOW_THREADS} macro. See above for further
discussion of this macro. It is a no-op when thread support is
disabled at compile time.
\end{csimplemacrodesc}
\begin{csimplemacrodesc}{Py_BEGIN_BLOCK_THREADS}
This macro expands to \samp{PyEval_RestoreThread(_save);} i.e. it
is equivalent to \code{Py_END_ALLOW_THREADS} without the closing
brace. It is a no-op when thread support is disabled at compile
time.
\end{csimplemacrodesc}
\begin{csimplemacrodesc}{Py_BEGIN_UNBLOCK_THREADS}
This macro expands to \samp{_save = PyEval_SaveThread();} i.e. it is
equivalent to \code{Py_BEGIN_ALLOW_THREADS} without the opening brace
and variable declaration. It is a no-op when thread support is
disabled at compile time.
\end{csimplemacrodesc}
All of the following functions are only available when thread support
is enabled at compile time, and must be called only when the
interpreter lock has been created.
\begin{cfuncdesc}{PyInterpreterState*}{PyInterpreterState_New}{}
Create a new interpreter state object. The interpreter lock need not
be held, but may be held if it is necessary to serialize calls to this
function.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyInterpreterState_Clear}{PyInterpreterState *interp}
Reset all information in an interpreter state object. The interpreter
lock must be held.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyInterpreterState_Delete}{PyInterpreterState *interp}
Destroy an interpreter state object. The interpreter lock need not be
held. The interpreter state must have been reset with a previous
call to \cfunction{PyInterpreterState_Clear()}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyThreadState*}{PyThreadState_New}{PyInterpreterState *interp}
Create a new thread state object belonging to the given interpreter
object. The interpreter lock need not be held, but may be held if it
is necessary to serialize calls to this function.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyThreadState_Clear}{PyThreadState *tstate}
Reset all information in a thread state object. The interpreter lock
must be held.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyThreadState_Delete}{PyThreadState *tstate}
Destroy a thread state object. The interpreter lock need not be
held. The thread state must have been reset with a previous
call to \cfunction{PyThreadState_Clear()}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyThreadState*}{PyThreadState_Get}{}
Return the current thread state. The interpreter lock must be held.
When the current thread state is \NULL{}, this issues a fatal
error (so that the caller needn't check for \NULL{}).
\end{cfuncdesc}
\begin{cfuncdesc}{PyThreadState*}{PyThreadState_Swap}{PyThreadState *tstate}
Swap the current thread state with the thread state given by the
argument \var{tstate}, which may be \NULL{}. The interpreter lock
must be held.
\end{cfuncdesc}
\chapter{Memory Management \label{memory}}
\sectionauthor{Vladimir Marangozov}{Vladimir.Marangozov@inrialpes.fr}
\section{Overview \label{memoryOverview}}
Memory management in Python involves a private heap containing all
Python objects and data structures. The management of this private
heap is ensured internally by the \emph{Python memory manager}. The
Python memory manager has different components which deal with various
dynamic storage management aspects, like sharing, segmentation,
preallocation or caching.
At the lowest level, a raw memory allocator ensures that there is
enough room in the private heap for storing all Python-related data
by interacting with the memory manager of the operating system. On top
of the raw memory allocator, several object-specific allocators
operate on the same heap and implement distinct memory management
policies adapted to the peculiarities of every object type. For
example, integer objects are managed differently within the heap than
strings, tuples or dictionaries because integers imply different
storage requirements and speed/space tradeoffs. The Python memory
manager thus delegates some of the work to the object-specific
allocators, but ensures that the latter operate within the bounds of
the private heap.
It is important to understand that the management of the Python heap
is performed by the interpreter itself and that the user has no
control on it, even if she regularly manipulates object pointers to
memory blocks inside that heap. The allocation of heap space for
Python objects and other internal buffers is performed on demand by
the Python memory manager through the Python/C API functions listed in
this document.
To avoid memory corruption, extension writers should never try to
operate on Python objects with the functions exported by the C
library: \cfunction{malloc()}\ttindex{malloc()},
\cfunction{calloc()}\ttindex{calloc()},
\cfunction{realloc()}\ttindex{realloc()} and
\cfunction{free()}\ttindex{free()}. This will result in
mixed calls between the C allocator and the Python memory manager
with fatal consequences, because they implement different algorithms
and operate on different heaps. However, one may safely allocate and
release memory blocks with the C library allocator for individual
purposes, as shown in the following example:
\begin{verbatim}
PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O */
if (buf == NULL)
return PyErr_NoMemory();
...Do some I/O operation involving buf...
res = PyString_FromString(buf);
free(buf); /* malloc'ed */
return res;
\end{verbatim}
In this example, the memory request for the I/O buffer is handled by
the C library allocator. The Python memory manager is involved only
in the allocation of the string object returned as a result.
In most situations, however, it is recommended to allocate memory from
the Python heap specifically because the latter is under control of
the Python memory manager. For example, this is required when the
interpreter is extended with new object types written in C. Another
reason for using the Python heap is the desire to \emph{inform} the
Python memory manager about the memory needs of the extension module.
Even when the requested memory is used exclusively for internal,
highly-specific purposes, delegating all memory requests to the Python
memory manager causes the interpreter to have a more accurate image of
its memory footprint as a whole. Consequently, under certain
circumstances, the Python memory manager may or may not trigger
appropriate actions, like garbage collection, memory compaction or
other preventive procedures. Note that by using the C library
allocator as shown in the previous example, the allocated memory for
the I/O buffer escapes completely the Python memory manager.
\section{Memory Interface \label{memoryInterface}}
The following function sets, modeled after the ANSI C standard, are
available for allocating and releasing memory from the Python heap:
\begin{cfuncdesc}{void*}{PyMem_Malloc}{size_t n}
Allocates \var{n} bytes and returns a pointer of type \ctype{void*} to
the allocated memory, or \NULL{} if the request fails. Requesting zero
bytes returns a non-\NULL{} pointer.
\end{cfuncdesc}
\begin{cfuncdesc}{void*}{PyMem_Realloc}{void *p, size_t n}
Resizes the memory block pointed to by \var{p} to \var{n} bytes. The
contents will be unchanged to the minimum of the old and the new
sizes. If \var{p} is \NULL{}, the call is equivalent to
\cfunction{PyMem_Malloc(\var{n})}; if \var{n} is equal to zero, the memory block
is resized but is not freed, and the returned pointer is non-\NULL{}.
Unless \var{p} is \NULL{}, it must have been returned by a previous
call to \cfunction{PyMem_Malloc()} or \cfunction{PyMem_Realloc()}.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyMem_Free}{void *p}
Frees the memory block pointed to by \var{p}, which must have been
returned by a previous call to \cfunction{PyMem_Malloc()} or
\cfunction{PyMem_Realloc()}. Otherwise, or if
\cfunction{PyMem_Free(p)} has been called before, undefined behaviour
occurs. If \var{p} is \NULL{}, no operation is performed.
\end{cfuncdesc}
The following type-oriented macros are provided for convenience. Note
that \var{TYPE} refers to any C type.
\begin{cfuncdesc}{\var{TYPE}*}{PyMem_New}{TYPE, size_t n}
Same as \cfunction{PyMem_Malloc()}, but allocates \code{(\var{n} *
sizeof(\var{TYPE}))} bytes of memory. Returns a pointer cast to
\ctype{\var{TYPE}*}.
\end{cfuncdesc}
\begin{cfuncdesc}{\var{TYPE}*}{PyMem_Resize}{void *p, TYPE, size_t n}
Same as \cfunction{PyMem_Realloc()}, but the memory block is resized
to \code{(\var{n} * sizeof(\var{TYPE}))} bytes. Returns a pointer
cast to \ctype{\var{TYPE}*}.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyMem_Del}{void *p}
Same as \cfunction{PyMem_Free()}.
\end{cfuncdesc}
In addition, the following macro sets are provided for calling the
Python memory allocator directly, without involving the C API functions
listed above. However, note that their use does not preserve binary
compatibility accross Python versions and is therefore deprecated in
extension modules.
\cfunction{PyMem_MALLOC()}, \cfunction{PyMem_REALLOC()}, \cfunction{PyMem_FREE()}.
\cfunction{PyMem_NEW()}, \cfunction{PyMem_RESIZE()}, \cfunction{PyMem_DEL()}.
\section{Examples \label{memoryExamples}}
Here is the example from section \ref{memoryOverview}, rewritten so
that the I/O buffer is allocated from the Python heap by using the
first function set:
\begin{verbatim}
PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */
if (buf == NULL)
return PyErr_NoMemory();
/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;
\end{verbatim}
The same code using the type-oriented function set:
\begin{verbatim}
PyObject *res;
char *buf = PyMem_New(char, BUFSIZ); /* for I/O */
if (buf == NULL)
return PyErr_NoMemory();
/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Del(buf); /* allocated with PyMem_New */
return res;
\end{verbatim}
Note that in the two examples above, the buffer is always
manipulated via functions belonging to the same set. Indeed, it
is required to use the same memory API family for a given
memory block, so that the risk of mixing different allocators is
reduced to a minimum. The following code sequence contains two errors,
one of which is labeled as \emph{fatal} because it mixes two different
allocators operating on different heaps.
\begin{verbatim}
char *buf1 = PyMem_New(char, BUFSIZ);
char *buf2 = (char *) malloc(BUFSIZ);
char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
...
PyMem_Del(buf3); /* Wrong -- should be PyMem_Free() */
free(buf2); /* Right -- allocated via malloc() */
free(buf1); /* Fatal -- should be PyMem_Del() */
\end{verbatim}
In addition to the functions aimed at handling raw memory blocks from
the Python heap, objects in Python are allocated and released with
\cfunction{PyObject_New()}, \cfunction{PyObject_NewVar()} and
\cfunction{PyObject_Del()}, or with their corresponding macros
\cfunction{PyObject_NEW()}, \cfunction{PyObject_NEW_VAR()} and
\cfunction{PyObject_DEL()}.
These will be explained in the next chapter on defining and
implementing new object types in C.
\chapter{Defining New Object Types \label{newTypes}}
\begin{cfuncdesc}{PyObject*}{_PyObject_New}{PyTypeObject *type}
\end{cfuncdesc}
\begin{cfuncdesc}{PyVarObject*}{_PyObject_NewVar}{PyTypeObject *type, int size}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{_PyObject_Del}{PyObject *op}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_Init}{PyObject *op,
PyTypeObject *type}
\end{cfuncdesc}
\begin{cfuncdesc}{PyVarObject*}{PyObject_InitVar}{PyVarObject *op,
PyTypeObject *type, int size}
\end{cfuncdesc}
\begin{cfuncdesc}{\var{TYPE}*}{PyObject_New}{TYPE, PyTypeObject *type}
\end{cfuncdesc}
\begin{cfuncdesc}{\var{TYPE}*}{PyObject_NewVar}{TYPE, PyTypeObject *type,
int size}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyObject_Del}{PyObject *op}
\end{cfuncdesc}
\begin{cfuncdesc}{\var{TYPE}*}{PyObject_NEW}{TYPE, PyTypeObject *type}
\end{cfuncdesc}
\begin{cfuncdesc}{\var{TYPE}*}{PyObject_NEW_VAR}{TYPE, PyTypeObject *type,
int size}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyObject_DEL}{PyObject *op}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{Py_InitModule}{char *name,
PyMethodDef *methods}
Create a new module object based on a name and table of functions,
returning the new module object.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{Py_InitModule3}{char *name,
PyMethodDef *methods,
char *doc}
Create a new module object based on a name and table of functions,
returning the new module object. If \var{doc} is non-\NULL, it will
be used to define the docstring for the module.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{Py_InitModule4}{char *name,
PyMethodDef *methods,
char *doc, PyObject *self,
int apiver}
Create a new module object based on a name and table of functions,
returning the new module object. If \var{doc} is non-\NULL, it will
be used to define the docstring for the module. If \var{self} is
non-\NULL, it will passed to the functions of the module as their
(otherwise \NULL) first parameter. (This was added as an
experimental feature, and there are no known uses in the current
version of Python.) For \var{apiver}, the only value which should
be passed is defined by the constant \constant{PYTHON_API_VERSION}.
\strong{Note:} Most uses of this function should probably be using
the \cfunction{Py_InitModule3()} instead; only use this if you are
sure you need it.
\end{cfuncdesc}
PyArg_ParseTupleAndKeywords, PyArg_ParseTuple, PyArg_Parse
Py_BuildValue
DL_IMPORT
_Py_NoneStruct
\section{Common Object Structures \label{common-structs}}
PyObject, PyVarObject
PyObject_HEAD, PyObject_HEAD_INIT, PyObject_VAR_HEAD
Typedefs:
unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc,
intintargfunc, intobjargproc, intintobjargproc, objobjargproc,
destructor, printfunc, getattrfunc, getattrofunc, setattrfunc,
setattrofunc, cmpfunc, reprfunc, hashfunc
\begin{ctypedesc}{PyCFunction}
Type of the functions used to implement most Python callables in C.
\end{ctypedesc}
\begin{ctypedesc}{PyMethodDef}
Structure used to describe a method of an extension type. This
structure has four fields:
\begin{tableiii}{l|l|l}{member}{Field}{C Type}{Meaning}
\lineiii{ml_name}{char *}{name of the method}
\lineiii{ml_meth}{PyCFunction}{pointer to the C implementation}
\lineiii{ml_flags}{int}{flag bits indicating how the call should be
constructed}
\lineiii{ml_doc}{char *}{points to the contents of the docstring}
\end{tableiii}
\end{ctypedesc}
\begin{cfuncdesc}{PyObject*}{Py_FindMethod}{PyMethodDef[] table,
PyObject *ob, char *name}
Return a bound method object for an extension type implemented in C.
This function also handles the special attribute \member{__methods__},
returning a list of all the method names defined in \var{table}.
\end{cfuncdesc}
\section{Mapping Object Structures \label{mapping-structs}}
\begin{ctypedesc}{PyMappingMethods}
Structure used to hold pointers to the functions used to implement the
mapping protocol for an extension type.
\end{ctypedesc}
\section{Number Object Structures \label{number-structs}}
\begin{ctypedesc}{PyNumberMethods}
Structure used to hold pointers to the functions an extension type
uses to implement the number protocol.
\end{ctypedesc}
\section{Sequence Object Structures \label{sequence-structs}}
\begin{ctypedesc}{PySequenceMethods}
Structure used to hold pointers to the functions which an object uses
to implement the sequence protocol.
\end{ctypedesc}
\section{Buffer Object Structures \label{buffer-structs}}
\sectionauthor{Greg J. Stein}{greg@lyra.org}
The buffer interface exports a model where an object can expose its
internal data as a set of chunks of data, where each chunk is
specified as a pointer/length pair. These chunks are called
\dfn{segments} and are presumed to be non-contiguous in memory.
If an object does not export the buffer interface, then its
\member{tp_as_buffer} member in the \ctype{PyTypeObject} structure
should be \NULL{}. Otherwise, the \member{tp_as_buffer} will point to
a \ctype{PyBufferProcs} structure.
\strong{Note:} It is very important that your
\ctype{PyTypeObject} structure uses \code{Py_TPFLAGS_DEFAULT} for the
value of the \member{tp_flags} member rather than \code{0}. This
tells the Python runtime that your \ctype{PyBufferProcs} structure
contains the \member{bf_getcharbuffer} slot. Older versions of Python
did not have this member, so a new Python interpreter using an old
extension needs to be able to test for its presence before using it.
\begin{ctypedesc}{PyBufferProcs}
Structure used to hold the function pointers which define an
implementation of the buffer protocol.
The first slot is \member{bf_getreadbuffer}, of type
\ctype{getreadbufferproc}. If this slot is \NULL{}, then the object
does not support reading from the internal data. This is
non-sensical, so implementors should fill this in, but callers should
test that the slot contains a non-\NULL{} value.
The next slot is \member{bf_getwritebuffer} having type
\ctype{getwritebufferproc}. This slot may be \NULL{} if the object
does not allow writing into its returned buffers.
The third slot is \member{bf_getsegcount}, with type
\ctype{getsegcountproc}. This slot must not be \NULL{} and is used to
inform the caller how many segments the object contains. Simple
objects such as \ctype{PyString_Type} and
\ctype{PyBuffer_Type} objects contain a single segment.
The last slot is \member{bf_getcharbuffer}, of type
\ctype{getcharbufferproc}. This slot will only be present if the
\code{Py_TPFLAGS_HAVE_GETCHARBUFFER} flag is present in the
\member{tp_flags} field of the object's \ctype{PyTypeObject}. Before using
this slot, the caller should test whether it is present by using the
\cfunction{PyType_HasFeature()}\ttindex{PyType_HasFeature()} function.
If present, it may be \NULL, indicating that the object's contents
cannot be used as \emph{8-bit characters}.
The slot function may also raise an error if the object's contents
cannot be interpreted as 8-bit characters. For example, if the object
is an array which is configured to hold floating point values, an
exception may be raised if a caller attempts to use
\member{bf_getcharbuffer} to fetch a sequence of 8-bit characters.
This notion of exporting the internal buffers as ``text'' is used to
distinguish between objects that are binary in nature, and those which
have character-based content.
\strong{Note:} The current policy seems to state that these characters
may be multi-byte characters. This implies that a buffer size of
\var{N} does not mean there are \var{N} characters present.
\end{ctypedesc}
\begin{datadesc}{Py_TPFLAGS_HAVE_GETCHARBUFFER}
Flag bit set in the type structure to indicate that the
\member{bf_getcharbuffer} slot is known. This being set does not
indicate that the object supports the buffer interface or that the
\member{bf_getcharbuffer} slot is non-\NULL.
\end{datadesc}
\begin{ctypedesc}[getreadbufferproc]{int (*getreadbufferproc)
(PyObject *self, int segment, void **ptrptr)}
Return a pointer to a readable segment of the buffer. This function
is allowed to raise an exception, in which case it must return
\code{-1}. The \var{segment} which is passed must be zero or
positive, and strictly less than the number of segments returned by
the \member{bf_getsegcount} slot function. On success, returns
\code{0} and sets \code{*\var{ptrptr}} to a pointer to the buffer
memory.
\end{ctypedesc}
\begin{ctypedesc}[getwritebufferproc]{int (*getwritebufferproc)
(PyObject *self, int segment, void **ptrptr)}
Return a pointer to a writable memory buffer in \code{*\var{ptrptr}};
the memory buffer must correspond to buffer segment \var{segment}.
Must return \code{-1} and set an exception on error.
\exception{TypeError} should be raised if the object only supports
read-only buffers, and \exception{SystemError} should be raised when
\var{segment} specifies a segment that doesn't exist.
% Why doesn't it raise ValueError for this one?
% GJS: because you shouldn't be calling it with an invalid
% segment. That indicates a blatant programming error in the C
% code.
\end{ctypedesc}
\begin{ctypedesc}[getsegcountproc]{int (*getsegcountproc)
(PyObject *self, int *lenp)}
Return the number of memory segments which comprise the buffer. If
\var{lenp} is not \NULL, the implementation must report the sum of the
sizes (in bytes) of all segments in \code{*\var{lenp}}.
The function cannot fail.
\end{ctypedesc}
\begin{ctypedesc}[getcharbufferproc]{int (*getcharbufferproc)
(PyObject *self, int segment, const char **ptrptr)}
\end{ctypedesc}
% \chapter{Debugging \label{debugging}}
%
% XXX Explain Py_DEBUG, Py_TRACE_REFS, Py_REF_DEBUG.
\appendix
\chapter{Reporting Bugs}
\input{reportingbugs}
\input{api.ind} % Index -- must be last
\end{document}
|