1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
|
\documentclass{manual}
\title{Python/C API Reference Manual}
\input{boilerplate}
\makeindex % tell \index to actually write the .idx file
\begin{document}
\maketitle
\ifhtml
\chapter*{Front Matter\label{front}}
\fi
\input{copyright}
\begin{abstract}
\noindent
This manual documents the API used by \C{} (or \Cpp{}) programmers who
want to write extension modules or embed Python. It is a companion to
\emph{Extending and Embedding the Python Interpreter}, which describes
the general principles of extension writing but does not document the
API functions in detail.
\strong{Warning:} The current version of this document is incomplete.
I hope that it is nevertheless useful. I will continue to work on it,
and release new versions from time to time, independent from Python
source code releases.
\end{abstract}
\tableofcontents
% XXX Consider moving all this back to ext.tex and giving api.tex
% XXX a *really* short intro only.
\chapter{Introduction}
\label{intro}
The Application Programmer's Interface to Python gives \C{} and \Cpp{}
programmers access to the Python interpreter at a variety of levels.
The API is equally usable from \Cpp{}, but for brevity it is generally
referred to as the Python/\C{} API. There are two fundamentally
different reasons for using the Python/\C{} API. The first reason is
to write \emph{extension modules} for specific purposes; these are
\C{} modules that extend the Python interpreter. This is probably the
most common use. The second reason is to use Python as a component in
a larger application; this technique is generally referred to as
\dfn{embedding} Python in an application.
Writing an extension module is a relatively well-understood process,
where a ``cookbook'' approach works well. There are several tools
that automate the process to some extent. While people have embedded
Python in other applications since its early existence, the process of
embedding Python is less straightforward that writing an extension.
Python 1.5 introduces a number of new API functions as well as some
changes to the build process that make embedding much simpler.
This manual describes the \version\ state of affairs.
% XXX Eventually, take the historical notes out
Many API functions are useful independent of whether you're embedding
or extending Python; moreover, most applications that embed Python
will need to provide a custom extension as well, so it's probably a
good idea to become familiar with writing an extension before
attempting to embed Python in a real application.
\section{Include Files}
\label{includes}
All function, type and macro definitions needed to use the Python/C
API are included in your code by the following line:
\begin{verbatim}
#include "Python.h"
\end{verbatim}
This implies inclusion of the following standard headers:
\code{<stdio.h>}, \code{<string.h>}, \code{<errno.h>}, and
\code{<stdlib.h>} (if available).
All user visible names defined by Python.h (except those defined by
the included standard headers) have one of the prefixes \samp{Py} or
\samp{_Py}. Names beginning with \samp{_Py} are for internal use
only. Structure member names do not have a reserved prefix.
\strong{Important:} user code should never define names that begin
with \samp{Py} or \samp{_Py}. This confuses the reader, and
jeopardizes the portability of the user code to future Python
versions, which may define additional names beginning with one of
these prefixes.
\section{Objects, Types and Reference Counts}
\label{objects}
Most Python/C API functions have one or more arguments as well as a
return value of type \ctype{PyObject *}. This type is a pointer
to an opaque data type representing an arbitrary Python
object. Since all Python object types are treated the same way by the
Python language in most situations (e.g., assignments, scope rules,
and argument passing), it is only fitting that they should be
represented by a single \C{} type. All Python objects live on the heap:
you never declare an automatic or static variable of type
\ctype{PyObject}, only pointer variables of type \ctype{PyObject *} can
be declared.
All Python objects (even Python integers) have a \dfn{type} and a
\dfn{reference count}. An object's type determines what kind of object
it is (e.g., an integer, a list, or a user-defined function; there are
many more as explained in the \emph{Python Reference Manual}). For
each of the well-known types there is a macro to check whether an
object is of that type; for instance, \samp{PyList_Check(\var{a})} is
true iff the object pointed to by \var{a} is a Python list.
\subsection{Reference Counts}
\label{refcounts}
The reference count is important because today's computers have a
finite (and often severely limited) memory size; it counts how many
different places there are that have a reference to an object. Such a
place could be another object, or a global (or static) \C{} variable, or
a local variable in some \C{} function. When an object's reference count
becomes zero, the object is deallocated. If it contains references to
other objects, their reference count is decremented. Those other
objects may be deallocated in turn, if this decrement makes their
reference count become zero, and so on. (There's an obvious problem
with objects that reference each other here; for now, the solution is
``don't do that''.)
Reference counts are always manipulated explicitly. The normal way is
to use the macro \cfunction{Py_INCREF()} to increment an object's
reference count by one, and \cfunction{Py_DECREF()} to decrement it by
one. The decref macro is considerably more complex than the incref one,
since it must check whether the reference count becomes zero and then
cause the object's deallocator, which is a function pointer contained
in the object's type structure. The type-specific deallocator takes
care of decrementing the reference counts for other objects contained
in the object, and so on, if this is a compound object type such as a
list. There's no chance that the reference count can overflow; at
least as many bits are used to hold the reference count as there are
distinct memory locations in virtual memory (assuming
\code{sizeof(long) >= sizeof(char *)}). Thus, the reference count
increment is a simple operation.
It is not necessary to increment an object's reference count for every
local variable that contains a pointer to an object. In theory, the
object's reference count goes up by one when the variable is made to
point to it and it goes down by one when the variable goes out of
scope. However, these two cancel each other out, so at the end the
reference count hasn't changed. The only real reason to use the
reference count is to prevent the object from being deallocated as
long as our variable is pointing to it. If we know that there is at
least one other reference to the object that lives at least as long as
our variable, there is no need to increment the reference count
temporarily. An important situation where this arises is in objects
that are passed as arguments to \C{} functions in an extension module
that are called from Python; the call mechanism guarantees to hold a
reference to every argument for the duration of the call.
However, a common pitfall is to extract an object from a list and
hold on to it for a while without incrementing its reference count.
Some other operation might conceivably remove the object from the
list, decrementing its reference count and possible deallocating it.
The real danger is that innocent-looking operations may invoke
arbitrary Python code which could do this; there is a code path which
allows control to flow back to the user from a \cfunction{Py_DECREF()},
so almost any operation is potentially dangerous.
A safe approach is to always use the generic operations (functions
whose name begins with \samp{PyObject_}, \samp{PyNumber_},
\samp{PySequence_} or \samp{PyMapping_}). These operations always
increment the reference count of the object they return. This leaves
the caller with the responsibility to call \cfunction{Py_DECREF()}
when they are done with the result; this soon becomes second nature.
\subsubsection{Reference Count Details}
\label{refcountDetails}
The reference count behavior of functions in the Python/C API is best
expelained in terms of \emph{ownership of references}. Note that we
talk of owning references, never of owning objects; objects are always
shared! When a function owns a reference, it has to dispose of it
properly --- either by passing ownership on (usually to its caller) or
by calling \cfunction{Py_DECREF()} or \cfunction{Py_XDECREF()}. When
a function passes ownership of a reference on to its caller, the
caller is said to receive a \emph{new} reference. When no ownership
is transferred, the caller is said to \emph{borrow} the reference.
Nothing needs to be done for a borrowed reference.
Conversely, when calling a function passes it a reference to an
object, there are two possibilities: the function \emph{steals} a
reference to the object, or it does not. Few functions steal
references; the two notable exceptions are
\cfunction{PyList_SetItem()} and \cfunction{PyTuple_SetItem()}, which
steal a reference to the item (but not to the tuple or list into which
the item is put!). These functions were designed to steal a reference
because of a common idiom for populating a tuple or list with newly
created objects; for example, the code to create the tuple \code{(1,
2, "three")} could look like this (forgetting about error handling for
the moment; a better way to code this is shown below anyway):
\begin{verbatim}
PyObject *t;
t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyInt_FromLong(1L));
PyTuple_SetItem(t, 1, PyInt_FromLong(2L));
PyTuple_SetItem(t, 2, PyString_FromString("three"));
\end{verbatim}
Incidentally, \cfunction{PyTuple_SetItem()} is the \emph{only} way to
set tuple items; \cfunction{PySequence_SetItem()} and
\cfunction{PyObject_SetItem()} refuse to do this since tuples are an
immutable data type. You should only use
\cfunction{PyTuple_SetItem()} for tuples that you are creating
yourself.
Equivalent code for populating a list can be written using
\cfunction{PyList_New()} and \cfunction{PyList_SetItem()}. Such code
can also use \cfunction{PySequence_SetItem()}; this illustrates the
difference between the two (the extra \cfunction{Py_DECREF()} calls):
\begin{verbatim}
PyObject *l, *x;
l = PyList_New(3);
x = PyInt_FromLong(1L);
PySequence_SetItem(l, 0, x); Py_DECREF(x);
x = PyInt_FromLong(2L);
PySequence_SetItem(l, 1, x); Py_DECREF(x);
x = PyString_FromString("three");
PySequence_SetItem(l, 2, x); Py_DECREF(x);
\end{verbatim}
You might find it strange that the ``recommended'' approach takes more
code. However, in practice, you will rarely use these ways of
creating and populating a tuple or list. There's a generic function,
\cfunction{Py_BuildValue()}, that can create most common objects from
\C{} values, directed by a \dfn{format string}. For example, the
above two blocks of code could be replaced by the following (which
also takes care of the error checking):
\begin{verbatim}
PyObject *t, *l;
t = Py_BuildValue("(iis)", 1, 2, "three");
l = Py_BuildValue("[iis]", 1, 2, "three");
\end{verbatim}
It is much more common to use \cfunction{PyObject_SetItem()} and
friends with items whose references you are only borrowing, like
arguments that were passed in to the function you are writing. In
that case, their behaviour regarding reference counts is much saner,
since you don't have to increment a reference count so you can give a
reference away (``have it be stolen''). For example, this function
sets all items of a list (actually, any mutable sequence) to a given
item:
\begin{verbatim}
int set_all(PyObject *target, PyObject *item)
{
int i, n;
n = PyObject_Length(target);
if (n < 0)
return -1;
for (i = 0; i < n; i++) {
if (PyObject_SetItem(target, i, item) < 0)
return -1;
}
return 0;
}
\end{verbatim}
The situation is slightly different for function return values.
While passing a reference to most functions does not change your
ownership responsibilities for that reference, many functions that
return a referece to an object give you ownership of the reference.
The reason is simple: in many cases, the returned object is created
on the fly, and the reference you get is the only reference to the
object. Therefore, the generic functions that return object
references, like \cfunction{PyObject_GetItem()} and
\cfunction{PySequence_GetItem()}, always return a new reference (i.e.,
the caller becomes the owner of the reference).
It is important to realize that whether you own a reference returned
by a function depends on which function you call only --- \emph{the
plumage} (i.e., the type of the type of the object passed as an
argument to the function) \emph{doesn't enter into it!} Thus, if you
extract an item from a list using \cfunction{PyList_GetItem()}, you
don't own the reference --- but if you obtain the same item from the
same list using \cfunction{PySequence_GetItem()} (which happens to
take exactly the same arguments), you do own a reference to the
returned object.
Here is an example of how you could write a function that computes the
sum of the items in a list of integers; once using
\cfunction{PyList_GetItem()}, once using
\cfunction{PySequence_GetItem()}.
\begin{verbatim}
long sum_list(PyObject *list)
{
int i, n;
long total = 0;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, i); /* Can't fail */
if (!PyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);
}
return total;
}
\end{verbatim}
\begin{verbatim}
long sum_sequence(PyObject *sequence)
{
int i, n;
long total = 0;
PyObject *item;
n = PyObject_Size(list);
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_GetItem(list, i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))
total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */
}
return total;
}
\end{verbatim}
\subsection{Types}
\label{types}
There are few other data types that play a significant role in
the Python/C API; most are simple \C{} types such as \ctype{int},
\ctype{long}, \ctype{double} and \ctype{char *}. A few structure types
are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type. These will
be discussed together with the functions that use them.
\section{Exceptions}
\label{exceptions}
The Python programmer only needs to deal with exceptions if specific
error handling is required; unhandled exceptions are automatically
propagated to the caller, then to the caller's caller, and so on, till
they reach the top-level interpreter, where they are reported to the
user accompanied by a stack traceback.
For \C{} programmers, however, error checking always has to be explicit.
All functions in the Python/C API can raise exceptions, unless an
explicit claim is made otherwise in a function's documentation. In
general, when a function encounters an error, it sets an exception,
discards any object references that it owns, and returns an
error indicator --- usually \NULL{} or \code{-1}. A few functions
return a Boolean true/false result, with false indicating an error.
Very few functions return no explicit error indicator or have an
ambiguous return value, and require explicit testing for errors with
\cfunction{PyErr_Occurred()}.
Exception state is maintained in per-thread storage (this is
equivalent to using global storage in an unthreaded application). A
thread can be in one of two states: an exception has occurred, or not.
The function \cfunction{PyErr_Occurred()} can be used to check for
this: it returns a borrowed reference to the exception type object
when an exception has occurred, and \NULL{} otherwise. There are a
number of functions to set the exception state:
\cfunction{PyErr_SetString()} is the most common (though not the most
general) function to set the exception state, and
\cfunction{PyErr_Clear()} clears the exception state.
The full exception state consists of three objects (all of which can
be \NULL{}): the exception type, the corresponding exception
value, and the traceback. These have the same meanings as the Python
object \code{sys.exc_type}, \code{sys.exc_value},
\code{sys.exc_traceback}; however, they are not the same: the Python
objects represent the last exception being handled by a Python
\keyword{try} \ldots\ \keyword{except} statement, while the \C{} level
exception state only exists while an exception is being passed on
between \C{} functions until it reaches the Python interpreter, which
takes care of transferring it to \code{sys.exc_type} and friends.
Note that starting with Python 1.5, the preferred, thread-safe way to
access the exception state from Python code is to call the function
\function{sys.exc_info()}, which returns the per-thread exception state
for Python code. Also, the semantics of both ways to access the
exception state have changed so that a function which catches an
exception will save and restore its thread's exception state so as to
preserve the exception state of its caller. This prevents common bugs
in exception handling code caused by an innocent-looking function
overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the
stack frames in the traceback.
As a general principle, a function that calls another function to
perform some task should check whether the called function raised an
exception, and if so, pass the exception state on to its caller. It
should discard any object references that it owns, and returns an
error indicator, but it should \emph{not} set another exception ---
that would overwrite the exception that was just raised, and lose
important information about the exact cause of the error.
A simple example of detecting exceptions and passing them on is shown
in the \cfunction{sum_sequence()} example above. It so happens that
that example doesn't need to clean up any owned references when it
detects an error. The following example function shows some error
cleanup. First, to remind you why you like Python, we show the
equivalent Python code:
\begin{verbatim}
def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
return item + 1
\end{verbatim}
Here is the corresponding \C{} code, in all its glory:
\begin{verbatim}
int incr_item(PyObject *dict, PyObject *key)
{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */
item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError)) goto error;
/* Clear the error and use zero: */
PyErr_Clear();
item = PyInt_FromLong(0L);
if (item == NULL) goto error;
}
const_one = PyInt_FromLong(1L);
if (const_one == NULL) goto error;
incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL) goto error;
if (PyObject_SetItem(dict, key, incremented_item) < 0) goto error;
rv = 0; /* Success */
/* Continue with cleanup code */
error:
/* Cleanup code, shared by success and failure path */
/* Use Py_XDECREF() to ignore NULL references */
Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);
return rv; /* -1 for error, 0 for success */
}
\end{verbatim}
This example represents an endorsed use of the \keyword{goto} statement
in \C{}! It illustrates the use of
\cfunction{PyErr_ExceptionMatches()} and \cfunction{PyErr_Clear()} to
handle specific exceptions, and the use of \cfunction{Py_XDECREF()} to
dispose of owned references that may be \NULL{} (note the \samp{X} in
the name; \cfunction{Py_DECREF()} would crash when confronted with a
\NULL{} reference). It is important that the variables used to hold
owned references are initialized to \NULL{} for this to work;
likewise, the proposed return value is initialized to \code{-1}
(failure) and only set to success after the final call made is
successful.
\section{Embedding Python}
\label{embedding}
The one important task that only embedders (as opposed to extension
writers) of the Python interpreter have to worry about is the
initialization, and possibly the finalization, of the Python
interpreter. Most functionality of the interpreter can only be used
after the interpreter has been initialized.
The basic initialization function is \cfunction{Py_Initialize()}.
This initializes the table of loaded modules, and creates the
fundamental modules \module{__builtin__}\refbimodindex{__builtin__},
\module{__main__}\refbimodindex{__main__} and
\module{sys}\refbimodindex{sys}. It also initializes the module
search path (\code{sys.path}).%
\indexiii{module}{search}{path}
\cfunction{Py_Initialize()} does not set the ``script argument list''
(\code{sys.argv}). If this variable is needed by Python code that
will be executed later, it must be set explicitly with a call to
\code{PySys_SetArgv(\var{argc}, \var{argv})} subsequent to the call
to \cfunction{Py_Initialize()}.
On most systems (in particular, on \UNIX{} and Windows, although the
details are slightly different), \cfunction{Py_Initialize()}
calculates the module search path based upon its best guess for the
location of the standard Python interpreter executable, assuming that
the Python library is found in a fixed location relative to the Python
interpreter executable. In particular, it looks for a directory named
\file{lib/python1.5} (replacing \file{1.5} with the current
interpreter version) relative to the parent directory where the
executable named \file{python} is found on the shell command search
path (the environment variable \envvar{PATH}).
For instance, if the Python executable is found in
\file{/usr/local/bin/python}, it will assume that the libraries are in
\file{/usr/local/lib/python1.5}. (In fact, this particular path
is also the ``fallback'' location, used when no executable file named
\file{python} is found along \envvar{PATH}.) The user can override
this behavior by setting the environment variable \envvar{PYTHONHOME},
or insert additional directories in front of the standard path by
setting \envvar{PYTHONPATH}.
The embedding application can steer the search by calling
\code{Py_SetProgramName(\var{file})} \emph{before} calling
\cfunction{Py_Initialize()}. Note that \envvar{PYTHONHOME} still
overrides this and \envvar{PYTHONPATH} is still inserted in front of
the standard path. An application that requires total control has to
provide its own implementation of \cfunction{Py_GetPath()},
\cfunction{Py_GetPrefix()}, \cfunction{Py_GetExecPrefix()},
\cfunction{Py_GetProgramFullPath()} (all defined in
\file{Modules/getpath.c}).
Sometimes, it is desirable to ``uninitialize'' Python. For instance,
the application may want to start over (make another call to
\cfunction{Py_Initialize()}) or the application is simply done with its
use of Python and wants to free all memory allocated by Python. This
can be accomplished by calling \cfunction{Py_Finalize()}. The function
\cfunction{Py_IsInitialized()} returns true iff Python is currently in the
initialized state. More information about these functions is given in
a later chapter.
\chapter{The Very High Level Layer}
\label{veryhigh}
The functions in this chapter will let you execute Python source code
given in a file or a buffer, but they will not let you interact in a
more detailed way with the interpreter.
\begin{cfuncdesc}{int}{PyRun_AnyFile}{FILE *fp, char *filename}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_SimpleString}{char *command}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_SimpleFile}{FILE *fp, char *filename}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_InteractiveOne}{FILE *fp, char *filename}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_InteractiveLoop}{FILE *fp, char *filename}
\end{cfuncdesc}
\begin{cfuncdesc}{struct _node*}{PyParser_SimpleParseString}{char *str,
int start}
\end{cfuncdesc}
\begin{cfuncdesc}{struct _node*}{PyParser_SimpleParseFile}{FILE *fp,
char *filename, int start}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyRun_String}{char *str, int start,
PyObject *globals,
PyObject *locals}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyRun_File}{FILE *fp, char *filename,
int start, PyObject *globals,
PyObject *locals}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{Py_CompileString}{char *str, char *filename,
int start}
\end{cfuncdesc}
\chapter{Reference Counting}
\label{countingRefs}
The macros in this section are used for managing reference counts
of Python objects.
\begin{cfuncdesc}{void}{Py_INCREF}{PyObject *o}
Increment the reference count for object \var{o}. The object must
not be \NULL{}; if you aren't sure that it isn't \NULL{}, use
\cfunction{Py_XINCREF()}.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{Py_XINCREF}{PyObject *o}
Increment the reference count for object \var{o}. The object may be
\NULL{}, in which case the macro has no effect.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{Py_DECREF}{PyObject *o}
Decrement the reference count for object \var{o}. The object must
not be \NULL{}; if you aren't sure that it isn't \NULL{}, use
\cfunction{Py_XDECREF()}. If the reference count reaches zero, the
object's type's deallocation function (which must not be \NULL{}) is
invoked.
\strong{Warning:} The deallocation function can cause arbitrary Python
code to be invoked (e.g. when a class instance with a \method{__del__()}
method is deallocated). While exceptions in such code are not
propagated, the executed code has free access to all Python global
variables. This means that any object that is reachable from a global
variable should be in a consistent state before \cfunction{Py_DECREF()} is
invoked. For example, code to delete an object from a list should
copy a reference to the deleted object in a temporary variable, update
the list data structure, and then call \cfunction{Py_DECREF()} for the
temporary variable.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{Py_XDECREF}{PyObject *o}
Decrement the reference count for object \var{o}. The object may be
\NULL{}, in which case the macro has no effect; otherwise the effect
is the same as for \cfunction{Py_DECREF()}, and the same warning
applies.
\end{cfuncdesc}
The following functions or macros are only for internal use:
\cfunction{_Py_Dealloc()}, \cfunction{_Py_ForgetReference()},
\cfunction{_Py_NewReference()}, as well as the global variable
\cdata{_Py_RefTotal}.
XXX Should mention Py_Malloc(), Py_Realloc(), Py_Free(),
PyMem_Malloc(), PyMem_Realloc(), PyMem_Free(), PyMem_NEW(),
PyMem_RESIZE(), PyMem_DEL(), PyMem_XDEL().
\chapter{Exception Handling}
\label{exceptionHandling}
The functions in this chapter will let you handle and raise Python
exceptions. It is important to understand some of the basics of
Python exception handling. It works somewhat like the \UNIX{}
\cdata{errno} variable: there is a global indicator (per thread) of the
last error that occurred. Most functions don't clear this on success,
but will set it to indicate the cause of the error on failure. Most
functions also return an error indicator, usually \NULL{} if they are
supposed to return a pointer, or \code{-1} if they return an integer
(exception: the \cfunction{PyArg_Parse*()} functions return \code{1} for
success and \code{0} for failure). When a function must fail because
some function it called failed, it generally doesn't set the error
indicator; the function it called already set it.
The error indicator consists of three Python objects corresponding to
the Python variables \code{sys.exc_type}, \code{sys.exc_value} and
\code{sys.exc_traceback}. API functions exist to interact with the
error indicator in various ways. There is a separate error indicator
for each thread.
% XXX Order of these should be more thoughtful.
% Either alphabetical or some kind of structure.
\begin{cfuncdesc}{void}{PyErr_Print}{}
Print a standard traceback to \code{sys.stderr} and clear the error
indicator. Call this function only when the error indicator is set.
(Otherwise it will cause a fatal error!)
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyErr_Occurred}{}
Test whether the error indicator is set. If set, return the exception
\emph{type} (the first argument to the last call to one of the
\cfunction{PyErr_Set*()} functions or to \cfunction{PyErr_Restore()}). If
not set, return \NULL{}. You do not own a reference to the return
value, so you do not need to \cfunction{Py_DECREF()} it.
\strong{Note:} do not compare the return value to a specific
exception; use \cfunction{PyErr_ExceptionMatches()} instead, shown
below.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyErr_ExceptionMatches}{PyObject *exc}
Equivalent to
\samp{PyErr_GivenExceptionMatches(PyErr_Occurred(), \var{exc})}.
This should only be called when an exception is actually set.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyErr_GivenExceptionMatches}{PyObject *given, PyObject *exc}
Return true if the \var{given} exception matches the exception in
\var{exc}. If \var{exc} is a class object, this also returns true
when \var{given} is a subclass. If \var{exc} is a tuple, all
exceptions in the tuple (and recursively in subtuples) are searched
for a match. This should only be called when an exception is actually
set.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_NormalizeException}{PyObject**exc, PyObject**val, PyObject**tb}
Under certain circumstances, the values returned by
\cfunction{PyErr_Fetch()} below can be ``unnormalized'', meaning that
\code{*\var{exc}} is a class object but \code{*\var{val}} is not an
instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing
happens.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_Clear}{}
Clear the error indicator. If the error indicator is not set, there
is no effect.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_Fetch}{PyObject **ptype, PyObject **pvalue, PyObject **ptraceback}
Retrieve the error indicator into three variables whose addresses are
passed. If the error indicator is not set, set all three variables to
\NULL{}. If it is set, it will be cleared and you own a reference to
each object retrieved. The value and traceback object may be \NULL{}
even when the type object is not. \strong{Note:} this function is
normally only used by code that needs to handle exceptions or by code
that needs to save and restore the error indicator temporarily.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_Restore}{PyObject *type, PyObject *value, PyObject *traceback}
Set the error indicator from the three objects. If the error
indicator is already set, it is cleared first. If the objects are
\NULL{}, the error indicator is cleared. Do not pass a \NULL{} type
and non-\NULL{} value or traceback. The exception type should be a
string or class; if it is a class, the value should be an instance of
that class. Do not pass an invalid exception type or value.
(Violating these rules will cause subtle problems later.) This call
takes away a reference to each object, i.e. you must own a reference
to each object before the call and after the call you no longer own
these references. (If you don't understand this, don't use this
function. I warned you.) \strong{Note:} this function is normally
only used by code that needs to save and restore the error indicator
temporarily.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetString}{PyObject *type, char *message}
This is the most common way to set the error indicator. The first
argument specifies the exception type; it is normally one of the
standard exceptions, e.g. \cdata{PyExc_RuntimeError}. You need not
increment its reference count. The second argument is an error
message; it is converted to a string object.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetObject}{PyObject *type, PyObject *value}
This function is similar to \cfunction{PyErr_SetString()} but lets you
specify an arbitrary Python object for the ``value'' of the exception.
You need not increment its reference count.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetNone}{PyObject *type}
This is a shorthand for \samp{PyErr_SetObject(\var{type}, Py_None)}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyErr_BadArgument}{}
This is a shorthand for \samp{PyErr_SetString(PyExc_TypeError,
\var{message})}, where \var{message} indicates that a built-in operation
was invoked with an illegal argument. It is mostly for internal use.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyErr_NoMemory}{}
This is a shorthand for \samp{PyErr_SetNone(PyExc_MemoryError)}; it
returns \NULL{} so an object allocation function can write
\samp{return PyErr_NoMemory();} when it runs out of memory.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyErr_SetFromErrno}{PyObject *type}
This is a convenience function to raise an exception when a \C{} library
function has returned an error and set the \C{} variable \cdata{errno}.
It constructs a tuple object whose first item is the integer
\cdata{errno} value and whose second item is the corresponding error
message (gotten from \cfunction{strerror()}), and then calls
\samp{PyErr_SetObject(\var{type}, \var{object})}. On \UNIX{}, when
the \cdata{errno} value is \constant{EINTR}, indicating an interrupted
system call, this calls \cfunction{PyErr_CheckSignals()}, and if that set
the error indicator, leaves it set to that. The function always
returns \NULL{}, so a wrapper function around a system call can write
\samp{return PyErr_SetFromErrno();} when the system call returns an
error.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_BadInternalCall}{}
This is a shorthand for \samp{PyErr_SetString(PyExc_TypeError,
\var{message})}, where \var{message} indicates that an internal
operation (e.g. a Python/C API function) was invoked with an illegal
argument. It is mostly for internal use.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyErr_CheckSignals}{}
This function interacts with Python's signal handling. It checks
whether a signal has been sent to the processes and if so, invokes the
corresponding signal handler. If the
\module{signal}\refbimodindex{signal} module is supported, this can
invoke a signal handler written in Python. In all cases, the default
effect for \constant{SIGINT} is to raise the
\exception{KeyboadInterrupt} exception. If an exception is raised the
error indicator is set and the function returns \code{1}; otherwise
the function returns \code{0}. The error indicator may or may not be
cleared if it was previously set.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetInterrupt}{}
This function is obsolete (XXX or platform dependent?). It simulates
the effect of a \constant{SIGINT} signal arriving --- the next time
\cfunction{PyErr_CheckSignals()} is called,
\exception{KeyboadInterrupt} will be raised.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyErr_NewException}{char *name,
PyObject *base,
PyObject *dict}
This utility function creates and returns a new exception object. The
\var{name} argument must be the name of the new exception, a \C{} string
of the form \code{module.class}. The \var{base} and \var{dict}
arguments are normally \NULL{}. Normally, this creates a class
object derived from the root for all exceptions, the built-in name
\exception{Exception} (accessible in \C{} as \cdata{PyExc_Exception}).
In this case the \member{__module__} attribute of the new class is set to the
first part (up to the last dot) of the \var{name} argument, and the
class name is set to the last part (after the last dot). When the
user has specified the \code{-X} command line option to use string
exceptions, for backward compatibility, or when the \var{base}
argument is not a class object (and not \NULL{}), a string object
created from the entire \var{name} argument is returned. The
\var{base} argument can be used to specify an alternate base class.
The \var{dict} argument can be used to specify a dictionary of class
variables and methods.
\end{cfuncdesc}
\section{Standard Exceptions}
\label{standardExceptions}
All standard Python exceptions are available as global variables whose
names are \samp{PyExc_} followed by the Python exception name.
These have the type \ctype{PyObject *}; they are all either class
objects or string objects, depending on the use of the \code{-X}
option to the interpreter. For completeness, here are all the
variables:
\cdata{PyExc_Exception},
\cdata{PyExc_StandardError},
\cdata{PyExc_ArithmeticError},
\cdata{PyExc_LookupError},
\cdata{PyExc_AssertionError},
\cdata{PyExc_AttributeError},
\cdata{PyExc_EOFError},
\cdata{PyExc_FloatingPointError},
\cdata{PyExc_IOError},
\cdata{PyExc_ImportError},
\cdata{PyExc_IndexError},
\cdata{PyExc_KeyError},
\cdata{PyExc_KeyboardInterrupt},
\cdata{PyExc_MemoryError},
\cdata{PyExc_NameError},
\cdata{PyExc_OverflowError},
\cdata{PyExc_RuntimeError},
\cdata{PyExc_SyntaxError},
\cdata{PyExc_SystemError},
\cdata{PyExc_SystemExit},
\cdata{PyExc_TypeError},
\cdata{PyExc_ValueError},
\cdata{PyExc_ZeroDivisionError}.
\chapter{Utilities}
\label{utilities}
The functions in this chapter perform various utility tasks, such as
parsing function arguments and constructing Python values from \C{}
values.
\section{OS Utilities}
\label{os}
\begin{cfuncdesc}{int}{Py_FdIsInteractive}{FILE *fp, char *filename}
Return true (nonzero) if the standard I/O file \var{fp} with name
\var{filename} is deemed interactive. This is the case for files for
which \samp{isatty(fileno(\var{fp}))} is true. If the global flag
\cdata{Py_InteractiveFlag} is true, this function also returns true if
the \var{name} pointer is \NULL{} or if the name is equal to one of
the strings \code{"<stdin>"} or \code{"???"}.
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyOS_GetLastModificationTime}{char *filename}
Return the time of last modification of the file \var{filename}.
The result is encoded in the same way as the timestamp returned by
the standard \C{} library function \cfunction{time()}.
\end{cfuncdesc}
\section{Process Control}
\label{processControl}
\begin{cfuncdesc}{void}{Py_FatalError}{char *message}
Print a fatal error message and kill the process. No cleanup is
performed. This function should only be invoked when a condition is
detected that would make it dangerous to continue using the Python
interpreter; e.g., when the object administration appears to be
corrupted. On \UNIX{}, the standard \C{} library function
\cfunction{abort()} is called which will attempt to produce a
\file{core} file.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{Py_Exit}{int status}
Exit the current process. This calls \cfunction{Py_Finalize()} and
then calls the standard \C{} library function
\code{exit(\var{status})}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_AtExit}{void (*func) ()}
Register a cleanup function to be called by \cfunction{Py_Finalize()}.
The cleanup function will be called with no arguments and should
return no value. At most 32 cleanup functions can be registered.
When the registration is successful, \cfunction{Py_AtExit()} returns
\code{0}; on failure, it returns \code{-1}. The cleanup function
registered last is called first. Each cleanup function will be called
at most once. Since Python's internal finallization will have
completed before the cleanup function, no Python APIs should be called
by \var{func}.
\end{cfuncdesc}
\section{Importing Modules}
\label{importing}
\begin{cfuncdesc}{PyObject*}{PyImport_ImportModule}{char *name}
This is a simplified interface to \cfunction{PyImport_ImportModuleEx()}
below, leaving the \var{globals} and \var{locals} arguments set to
\NULL{}. When the \var{name} argument contains a dot (i.e., when
it specifies a submodule of a package), the \var{fromlist} argument is
set to the list \code{['*']} so that the return value is the named
module rather than the top-level package containing it as would
otherwise be the case. (Unfortunately, this has an additional side
effect when \var{name} in fact specifies a subpackage instead of a
submodule: the submodules specified in the package's \code{__all__}
variable are loaded.) Return a new reference to the imported module,
or \NULL{} with an exception set on failure (the module may still
be created in this case --- examine \code{sys.modules} to find out).
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyImport_ImportModuleEx}{char *name, PyObject *globals, PyObject *locals, PyObject *fromlist}
Import a module. This is best described by referring to the built-in
Python function \function{__import__()}\bifuncindex{__import__}, as
the standard \function{__import__()} function calls this function
directly.
The return value is a new reference to the imported module or
top-level package, or \NULL{} with an exception set on failure
(the module may still be created in this case). Like for
\function{__import__()}, the return value when a submodule of a
package was requested is normally the top-level package, unless a
non-empty \var{fromlist} was given.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyImport_Import}{PyObject *name}
This is a higher-level interface that calls the current ``import hook
function''. It invokes the \function{__import__()} function from the
\code{__builtins__} of the current globals. This means that the
import is done using whatever import hooks are installed in the
current environment, e.g. by \module{rexec}\refstmodindex{rexec} or
\module{ihooks}\refstmodindex{ihooks}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyImport_ReloadModule}{PyObject *m}
Reload a module. This is best described by referring to the built-in
Python function \function{reload()}\bifuncindex{reload}, as the standard
\function{reload()} function calls this function directly. Return a
new reference to the reloaded module, or \NULL{} with an exception set
on failure (the module still exists in this case).
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyImport_AddModule}{char *name}
Return the module object corresponding to a module name. The
\var{name} argument may be of the form \code{package.module}). First
check the modules dictionary if there's one there, and if not, create
a new one and insert in in the modules dictionary. Because the former
action is most common, this does not return a new reference, and you
do not own the returned reference. Return \NULL{} with an
exception set on failure. \strong{Note:} this function returns
a ``borrowed'' reference.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyImport_ExecCodeModule}{char *name, PyObject *co}
Given a module name (possibly of the form \code{package.module}) and a
code object read from a Python bytecode file or obtained from the
built-in function \function{compile()}\bifuncindex{compile}, load the
module. Return a new reference to the module object, or \NULL{} with
an exception set if an error occurred (the module may still be created
in this case). (This function would reload the module if it was
already imported.)
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyImport_GetMagicNumber}{}
Return the magic number for Python bytecode files (a.k.a. \file{.pyc}
and \file{.pyo} files). The magic number should be present in the
first four bytes of the bytecode file, in little-endian byte order.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyImport_GetModuleDict}{}
Return the dictionary used for the module administration
(a.k.a. \code{sys.modules}). Note that this is a per-interpreter
variable.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{_PyImport_Init}{}
Initialize the import mechanism. For internal use only.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyImport_Cleanup}{}
Empty the module table. For internal use only.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{_PyImport_Fini}{}
Finalize the import mechanism. For internal use only.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{_PyImport_FindExtension}{char *, char *}
For internal use only.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{_PyImport_FixupExtension}{char *, char *}
For internal use only.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyImport_ImportFrozenModule}{char *}
Load a frozen module. Return \code{1} for success, \code{0} if the
module is not found, and \code{-1} with an exception set if the
initialization failed. To access the imported module on a successful
load, use \cfunction{PyImport_ImportModule()}.
(Note the misnomer --- this function would reload the module if it was
already imported.)
\end{cfuncdesc}
\begin{ctypedesc}{struct _frozen}
This is the structure type definition for frozen module descriptors,
as generated by the \program{freeze}\index{freeze utility} utility
(see \file{Tools/freeze/} in the Python source distribution). Its
definition is:
\begin{verbatim}
struct _frozen {
char *name;
unsigned char *code;
int size;
};
\end{verbatim}
\end{ctypedesc}
\begin{cvardesc}{struct _frozen*}{PyImport_FrozenModules}
This pointer is initialized to point to an array of \ctype{struct
_frozen} records, terminated by one whose members are all \NULL{}
or zero. When a frozen module is imported, it is searched in this
table. Third-party code could play tricks with this to provide a
dynamically created collection of frozen modules.
\end{cvardesc}
\chapter{Abstract Objects Layer}
\label{abstract}
The functions in this chapter interact with Python objects regardless
of their type, or with wide classes of object types (e.g. all
numerical types, or all sequence types). When used on object types
for which they do not apply, they will flag a Python exception.
\section{Object Protocol}
\label{object}
\begin{cfuncdesc}{int}{PyObject_Print}{PyObject *o, FILE *fp, int flags}
Print an object \var{o}, on file \var{fp}. Returns \code{-1} on error
The flags argument is used to enable certain printing
options. The only option currently supported is
\constant{Py_PRINT_RAW}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_HasAttrString}{PyObject *o, char *attr_name}
Returns \code{1} if \var{o} has the attribute \var{attr_name}, and
\code{0} otherwise. This is equivalent to the Python expression
\samp{hasattr(\var{o}, \var{attr_name})}.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_GetAttrString}{PyObject *o, char *attr_name}
Retrieve an attribute named \var{attr_name} from object \var{o}.
Returns the attribute value on success, or \NULL{} on failure.
This is the equivalent of the Python expression
\samp{\var{o}.\var{attr_name}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_HasAttr}{PyObject *o, PyObject *attr_name}
Returns \code{1} if \var{o} has the attribute \var{attr_name}, and
\code{0} otherwise. This is equivalent to the Python expression
\samp{hasattr(\var{o}, \var{attr_name})}.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_GetAttr}{PyObject *o, PyObject *attr_name}
Retrieve an attribute named \var{attr_name} from object \var{o}.
Returns the attribute value on success, or \NULL{} on failure.
This is the equivalent of the Python expression
\samp{\var{o}.\var{attr_name}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_SetAttrString}{PyObject *o, char *attr_name, PyObject *v}
Set the value of the attribute named \var{attr_name}, for object
\var{o}, to the value \var{v}. Returns \code{-1} on failure. This is
the equivalent of the Python statement \samp{\var{o}.\var{attr_name} =
\var{v}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_SetAttr}{PyObject *o, PyObject *attr_name, PyObject *v}
Set the value of the attribute named \var{attr_name}, for
object \var{o},
to the value \var{v}. Returns \code{-1} on failure. This is
the equivalent of the Python statement \samp{\var{o}.\var{attr_name} =
\var{v}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_DelAttrString}{PyObject *o, char *attr_name}
Delete attribute named \var{attr_name}, for object \var{o}. Returns
\code{-1} on failure. This is the equivalent of the Python
statement: \samp{del \var{o}.\var{attr_name}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_DelAttr}{PyObject *o, PyObject *attr_name}
Delete attribute named \var{attr_name}, for object \var{o}. Returns
\code{-1} on failure. This is the equivalent of the Python
statement \samp{del \var{o}.\var{attr_name}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_Cmp}{PyObject *o1, PyObject *o2, int *result}
Compare the values of \var{o1} and \var{o2} using a routine provided
by \var{o1}, if one exists, otherwise with a routine provided by
\var{o2}. The result of the comparison is returned in \var{result}.
Returns \code{-1} on failure. This is the equivalent of the Python
statement \samp{\var{result} = cmp(\var{o1}, \var{o2})}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_Compare}{PyObject *o1, PyObject *o2}
Compare the values of \var{o1} and \var{o2} using a routine provided
by \var{o1}, if one exists, otherwise with a routine provided by
\var{o2}. Returns the result of the comparison on success. On error,
the value returned is undefined; use \cfunction{PyErr_Occurred()} to
detect an error. This is equivalent to the
Python expression \samp{cmp(\var{o1}, \var{o2})}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_Repr}{PyObject *o}
Compute the string representation of object, \var{o}. Returns the
string representation on success, \NULL{} on failure. This is
the equivalent of the Python expression \samp{repr(\var{o})}.
Called by the \function{repr()}\bifuncindex{repr} built-in function
and by reverse quotes.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_Str}{PyObject *o}
Compute the string representation of object \var{o}. Returns the
string representation on success, \NULL{} on failure. This is
the equivalent of the Python expression \samp{str(\var{o})}.
Called by the \function{str()}\bifuncindex{str} built-in function and
by the \keyword{print} statement.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyCallable_Check}{PyObject *o}
Determine if the object \var{o}, is callable. Return \code{1} if the
object is callable and \code{0} otherwise.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_CallObject}{PyObject *callable_object, PyObject *args}
Call a callable Python object \var{callable_object}, with
arguments given by the tuple \var{args}. If no arguments are
needed, then args may be \NULL{}. Returns the result of the
call on success, or \NULL{} on failure. This is the equivalent
of the Python expression \samp{apply(\var{o}, \var{args})}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_CallFunction}{PyObject *callable_object, char *format, ...}
Call a callable Python object \var{callable_object}, with a
variable number of \C{} arguments. The \C{} arguments are described
using a \cfunction{Py_BuildValue()} style format string. The format may
be \NULL{}, indicating that no arguments are provided. Returns the
result of the call on success, or \NULL{} on failure. This is
the equivalent of the Python expression \samp{apply(\var{o},
\var{args})}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_CallMethod}{PyObject *o, char *m, char *format, ...}
Call the method named \var{m} of object \var{o} with a variable number
of C arguments. The \C{} arguments are described by a
\cfunction{Py_BuildValue()} format string. The format may be \NULL{},
indicating that no arguments are provided. Returns the result of the
call on success, or \NULL{} on failure. This is the equivalent of the
Python expression \samp{\var{o}.\var{method}(\var{args})}.
Note that Special method names, such as \method{__add__()},
\method{__getitem__()}, and so on are not supported. The specific
abstract-object routines for these must be used.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_Hash}{PyObject *o}
Compute and return the hash value of an object \var{o}. On
failure, return \code{-1}. This is the equivalent of the Python
expression \samp{hash(\var{o})}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_IsTrue}{PyObject *o}
Returns \code{1} if the object \var{o} is considered to be true, and
\code{0} otherwise. This is equivalent to the Python expression
\samp{not not \var{o}}.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_Type}{PyObject *o}
On success, returns a type object corresponding to the object
type of object \var{o}. On failure, returns \NULL{}. This is
equivalent to the Python expression \samp{type(\var{o})}.
\bifuncindex{type}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_Length}{PyObject *o}
Return the length of object \var{o}. If the object \var{o} provides
both sequence and mapping protocols, the sequence length is
returned. On error, \code{-1} is returned. This is the equivalent
to the Python expression \samp{len(\var{o})}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_GetItem}{PyObject *o, PyObject *key}
Return element of \var{o} corresponding to the object \var{key} or
\NULL{} on failure. This is the equivalent of the Python expression
\samp{\var{o}[\var{key}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_SetItem}{PyObject *o, PyObject *key, PyObject *v}
Map the object \var{key} to the value \var{v}.
Returns \code{-1} on failure. This is the equivalent
of the Python statement \samp{\var{o}[\var{key}] = \var{v}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyObject_DelItem}{PyObject *o, PyObject *key, PyObject *v}
Delete the mapping for \var{key} from \var{o}. Returns \code{-1} on
failure. This is the equivalent of the Python statement \samp{del
\var{o}[\var{key}]}.
\end{cfuncdesc}
\section{Number Protocol}
\label{number}
\begin{cfuncdesc}{int}{PyNumber_Check}{PyObject *o}
Returns \code{1} if the object \var{o} provides numeric protocols, and
false otherwise.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Add}{PyObject *o1, PyObject *o2}
Returns the result of adding \var{o1} and \var{o2}, or \NULL{} on
failure. This is the equivalent of the Python expression
\samp{\var{o1} + \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Subtract}{PyObject *o1, PyObject *o2}
Returns the result of subtracting \var{o2} from \var{o1}, or \NULL{}
on failure. This is the equivalent of the Python expression
\samp{\var{o1} - \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Multiply}{PyObject *o1, PyObject *o2}
Returns the result of multiplying \var{o1} and \var{o2}, or \NULL{} on
failure. This is the equivalent of the Python expression
\samp{\var{o1} * \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Divide}{PyObject *o1, PyObject *o2}
Returns the result of dividing \var{o1} by \var{o2}, or \NULL{} on
failure.
This is the equivalent of the Python expression \samp{\var{o1} /
\var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Remainder}{PyObject *o1, PyObject *o2}
Returns the remainder of dividing \var{o1} by \var{o2}, or \NULL{} on
failure. This is the equivalent of the Python expression
\samp{\var{o1} \% \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Divmod}{PyObject *o1, PyObject *o2}
See the built-in function \function{divmod()}\bifuncindex{divmod}.
Returns \NULL{} on failure. This is the equivalent of the Python
expression \samp{divmod(\var{o1}, \var{o2})}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Power}{PyObject *o1, PyObject *o2, PyObject *o3}
See the built-in function \function{pow()}\bifuncindex{pow}. Returns
\NULL{} on failure. This is the equivalent of the Python expression
\samp{pow(\var{o1}, \var{o2}, \var{o3})}, where \var{o3} is optional.
If \var{o3} is to be ignored, pass \cdata{Py_None} in its place.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Negative}{PyObject *o}
Returns the negation of \var{o} on success, or \NULL{} on failure.
This is the equivalent of the Python expression \samp{-\var{o}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Positive}{PyObject *o}
Returns \var{o} on success, or \NULL{} on failure.
This is the equivalent of the Python expression \samp{+\var{o}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Absolute}{PyObject *o}
Returns the absolute value of \var{o}, or \NULL{} on failure. This is
the equivalent of the Python expression \samp{abs(\var{o})}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Invert}{PyObject *o}
Returns the bitwise negation of \var{o} on success, or \NULL{} on
failure. This is the equivalent of the Python expression
\samp{\~\var{o}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Lshift}{PyObject *o1, PyObject *o2}
Returns the result of left shifting \var{o1} by \var{o2} on success,
or \NULL{} on failure. This is the equivalent of the Python
expression \samp{\var{o1} << \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Rshift}{PyObject *o1, PyObject *o2}
Returns the result of right shifting \var{o1} by \var{o2} on success,
or \NULL{} on failure. This is the equivalent of the Python
expression \samp{\var{o1} >> \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_And}{PyObject *o1, PyObject *o2}
Returns the result of ``anding'' \var{o2} and \var{o2} on success and
\NULL{} on failure. This is the equivalent of the Python
expression \samp{\var{o1} and \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Xor}{PyObject *o1, PyObject *o2}
Returns the bitwise exclusive or of \var{o1} by \var{o2} on success,
or \NULL{} on failure. This is the equivalent of the Python
expression \samp{\var{o1} \^{ }\var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Or}{PyObject *o1, PyObject *o2}
Returns the result of \var{o1} and \var{o2} on success, or \NULL{} on
failure. This is the equivalent of the Python expression
\samp{\var{o1} or \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Coerce}{PyObject **p1, PyObject **p2}
This function takes the addresses of two variables of type
\ctype{PyObject*}.
If the objects pointed to by \code{*\var{p1}} and \code{*\var{p2}}
have the same type, increment their reference count and return
\code{0} (success). If the objects can be converted to a common
numeric type, replace \code{*p1} and \code{*p2} by their converted
value (with 'new' reference counts), and return \code{0}.
If no conversion is possible, or if some other error occurs,
return \code{-1} (failure) and don't increment the reference counts.
The call \code{PyNumber_Coerce(\&o1, \&o2)} is equivalent to the
Python statement \samp{\var{o1}, \var{o2} = coerce(\var{o1},
\var{o2})}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Int}{PyObject *o}
Returns the \var{o} converted to an integer object on success, or
\NULL{} on failure. This is the equivalent of the Python
expression \samp{int(\var{o})}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Long}{PyObject *o}
Returns the \var{o} converted to a long integer object on success,
or \NULL{} on failure. This is the equivalent of the Python
expression \samp{long(\var{o})}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyNumber_Float}{PyObject *o}
Returns the \var{o} converted to a float object on success, or \NULL{}
on failure. This is the equivalent of the Python expression
\samp{float(\var{o})}.
\end{cfuncdesc}
\section{Sequence Protocol}
\label{sequence}
\begin{cfuncdesc}{int}{PySequence_Check}{PyObject *o}
Return \code{1} if the object provides sequence protocol, and \code{0}
otherwise.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_Concat}{PyObject *o1, PyObject *o2}
Return the concatenation of \var{o1} and \var{o2} on success, and \NULL{} on
failure. This is the equivalent of the Python
expression \samp{\var{o1} + \var{o2}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_Repeat}{PyObject *o, int count}
Return the result of repeating sequence object \var{o} \var{count}
times, or \NULL{} on failure. This is the equivalent of the Python
expression \samp{\var{o} * \var{count}}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_GetItem}{PyObject *o, int i}
Return the \var{i}th element of \var{o}, or \NULL{} on failure. This
is the equivalent of the Python expression \samp{\var{o}[\var{i}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_GetSlice}{PyObject *o, int i1, int i2}
Return the slice of sequence object \var{o} between \var{i1} and
\var{i2}, or \NULL{} on failure. This is the equivalent of the Python
expression \samp{\var{o}[\var{i1}:\var{i2}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySequence_SetItem}{PyObject *o, int i, PyObject *v}
Assign object \var{v} to the \var{i}th element of \var{o}.
Returns \code{-1} on failure. This is the equivalent of the Python
statement \samp{\var{o}[\var{i}] = \var{v}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySequence_DelItem}{PyObject *o, int i}
Delete the \var{i}th element of object \var{v}. Returns
\code{-1} on failure. This is the equivalent of the Python
statement \samp{del \var{o}[\var{i}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySequence_SetSlice}{PyObject *o, int i1, int i2, PyObject *v}
Assign the sequence object \var{v} to the slice in sequence
object \var{o} from \var{i1} to \var{i2}. This is the equivalent of
the Python statement \samp{\var{o}[\var{i1}:\var{i2}] = \var{v}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySequence_DelSlice}{PyObject *o, int i1, int i2}
Delete the slice in sequence object \var{o} from \var{i1} to \var{i2}.
Returns \code{-1} on failure. This is the equivalent of the Python
statement \samp{del \var{o}[\var{i1}:\var{i2}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySequence_Tuple}{PyObject *o}
Returns the \var{o} as a tuple on success, and \NULL{} on failure.
This is equivalent to the Python expression \code{tuple(\var{o})}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySequence_Count}{PyObject *o, PyObject *value}
Return the number of occurrences of \var{value} in \var{o}, that is,
return the number of keys for which \code{\var{o}[\var{key}] ==
\var{value}}. On failure, return \code{-1}. This is equivalent to
the Python expression \samp{\var{o}.count(\var{value})}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySequence_In}{PyObject *o, PyObject *value}
Determine if \var{o} contains \var{value}. If an item in \var{o} is
equal to \var{value}, return \code{1}, otherwise return \code{0}. On
error, return \code{-1}. This is equivalent to the Python expression
\samp{\var{value} in \var{o}}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySequence_Index}{PyObject *o, PyObject *value}
Return the first index \var{i} for which \code{\var{o}[\var{i}] ==
\var{value}}. On error, return \code{-1}. This is equivalent to
the Python expression \samp{\var{o}.index(\var{value})}.
\end{cfuncdesc}
\section{Mapping Protocol}
\label{mapping}
\begin{cfuncdesc}{int}{PyMapping_Check}{PyObject *o}
Return \code{1} if the object provides mapping protocol, and \code{0}
otherwise.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyMapping_Length}{PyObject *o}
Returns the number of keys in object \var{o} on success, and \code{-1}
on failure. For objects that do not provide sequence protocol,
this is equivalent to the Python expression \samp{len(\var{o})}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyMapping_DelItemString}{PyObject *o, char *key}
Remove the mapping for object \var{key} from the object \var{o}.
Return \code{-1} on failure. This is equivalent to
the Python statement \samp{del \var{o}[\var{key}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyMapping_DelItem}{PyObject *o, PyObject *key}
Remove the mapping for object \var{key} from the object \var{o}.
Return \code{-1} on failure. This is equivalent to
the Python statement \samp{del \var{o}[\var{key}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyMapping_HasKeyString}{PyObject *o, char *key}
On success, return \code{1} if the mapping object has the key \var{key}
and \code{0} otherwise. This is equivalent to the Python expression
\samp{\var{o}.has_key(\var{key})}.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyMapping_HasKey}{PyObject *o, PyObject *key}
Return \code{1} if the mapping object has the key \var{key} and
\code{0} otherwise. This is equivalent to the Python expression
\samp{\var{o}.has_key(\var{key})}.
This function always succeeds.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyMapping_Keys}{PyObject *o}
On success, return a list of the keys in object \var{o}. On
failure, return \NULL{}. This is equivalent to the Python
expression \samp{\var{o}.keys()}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyMapping_Values}{PyObject *o}
On success, return a list of the values in object \var{o}. On
failure, return \NULL{}. This is equivalent to the Python
expression \samp{\var{o}.values()}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyMapping_Items}{PyObject *o}
On success, return a list of the items in object \var{o}, where
each item is a tuple containing a key-value pair. On
failure, return \NULL{}. This is equivalent to the Python
expression \samp{\var{o}.items()}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyMapping_Clear}{PyObject *o}
Make object \var{o} empty. Returns \code{1} on success and \code{0}
on failure. This is equivalent to the Python statement
\samp{for key in \var{o}.keys(): del \var{o}[key]}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyMapping_GetItemString}{PyObject *o, char *key}
Return element of \var{o} corresponding to the object \var{key} or
\NULL{} on failure. This is the equivalent of the Python expression
\samp{\var{o}[\var{key}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyMapping_SetItemString}{PyObject *o, char *key, PyObject *v}
Map the object \var{key} to the value \var{v} in object \var{o}.
Returns \code{-1} on failure. This is the equivalent of the Python
statement \samp{\var{o}[\var{key}] = \var{v}}.
\end{cfuncdesc}
\section{Constructors}
\begin{cfuncdesc}{PyObject*}{PyFile_FromString}{char *file_name, char *mode}
On success, returns a new file object that is opened on the
file given by \var{file_name}, with a file mode given by \var{mode},
where \var{mode} has the same semantics as the standard \C{} routine
\cfunction{fopen()}. On failure, return \code{-1}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFile_FromFile}{FILE *fp, char *file_name, char *mode, int close_on_del}
Return a new file object for an already opened standard \C{} file
pointer, \var{fp}. A file name, \var{file_name}, and open mode,
\var{mode}, must be provided as well as a flag, \var{close_on_del},
that indicates whether the file is to be closed when the file object
is destroyed. On failure, return \code{-1}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFloat_FromDouble}{double v}
Returns a new float object with the value \var{v} on success, and
\NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyInt_FromLong}{long v}
Returns a new int object with the value \var{v} on success, and
\NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_New}{int len}
Returns a new list of length \var{len} on success, and \NULL{} on
failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromLong}{long v}
Returns a new long object with the value \var{v} on success, and
\NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromDouble}{double v}
Returns a new long object with the value \var{v} on success, and
\NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_New}{}
Returns a new empty dictionary on success, and \NULL{} on
failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_FromString}{char *v}
Returns a new string object with the value \var{v} on success, and
\NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_FromStringAndSize}{char *v, int len}
Returns a new string object with the value \var{v} and length
\var{len} on success, and \NULL{} on failure. If \var{v} is \NULL{},
the contents of the string are uninitialized.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyTuple_New}{int len}
Returns a new tuple of length \var{len} on success, and \NULL{} on
failure.
\end{cfuncdesc}
\chapter{Concrete Objects Layer}
\label{concrete}
The functions in this chapter are specific to certain Python object
types. Passing them an object of the wrong type is not a good idea;
if you receive an object from a Python program and you are not sure
that it has the right type, you must perform a type check first;
e.g. to check that an object is a dictionary, use
\cfunction{PyDict_Check()}. The chapter is structured like the
``family tree'' of Python object types.
\section{Fundamental Objects}
\label{fundamental}
This section describes Python type objects and the singleton object
\code{None}.
\subsection{Type Objects}
\label{typeObjects}
\begin{ctypedesc}{PyTypeObject}
\end{ctypedesc}
\begin{cvardesc}{PyObject *}{PyType_Type}
\end{cvardesc}
\subsection{The None Object}
\label{noneObject}
\begin{cvardesc}{PyObject *}{Py_None}
The Python \code{None} object, denoting lack of value. This object has
no methods.
\end{cvardesc}
\section{Sequence Objects}
\label{sequenceObjects}
Generic operations on sequence objects were discussed in the previous
chapter; this section deals with the specific kinds of sequence
objects that are intrinsic to the Python language.
\subsection{String Objects}
\label{stringObjects}
\begin{ctypedesc}{PyStringObject}
This subtype of \ctype{PyObject} represents a Python string object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyString_Type}
This instance of \ctype{PyTypeObject} represents the Python string type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyString_Check}{PyObject *o}
Returns true if the object \var{o} is a string object.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_FromStringAndSize}{const char *v,
int len}
Returns a new string object with the value \var{v} and length
\var{len} on success, and \NULL{} on failure. If \var{v} is \NULL{},
the contents of the string are uninitialized.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_FromString}{const char *v}
Returns a new string object with the value \var{v} on success, and
\NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyString_Size}{PyObject *string}
Returns the length of the string in string object \var{string}.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{PyString_AsString}{PyObject *string}
Resturns a \NULL{} terminated representation of the contents of \var{string}.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyString_Concat}{PyObject **string,
PyObject *newpart}
Creates a new string object in \var{*string} containing the contents
of \var{newpart} appended to \var{string}.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyString_ConcatAndDel}{PyObject **string,
PyObject *newpart}
Creates a new string object in \var{*string} containing the contents
of \var{newpart} appended to \var{string}. This version decrements
the reference count of \var{newpart}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{_PyString_Resize}{PyObject **string, int newsize}
A way to resize a string object even though it is ``immutable''.
Only use this to build up a brand new string object; don't use this if
the string may already be known in other parts of the code.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_Format}{PyObject *format,
PyObject *args}
Returns a new string object from \var{format} and \var{args}. Analogous
to \code{\var{format} \% \var{args}}. The \var{args} argument must be
a tuple.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyString_InternInPlace}{PyObject **string}
Intern the argument \var{*string} in place. The argument must be the
address of a pointer variable pointing to a Python string object.
If there is an existing interned string that is the same as
\var{*string}, it sets \var{*string} to it (decrementing the reference
count of the old string object and incrementing the reference count of
the interned string object), otherwise it leaves \var{*string} alone
and interns it (incrementing its reference count). (Clarification:
even though there is a lot of talk about reference counts, think of
this function as reference-count-neutral; you own the object after
the call if and only if you owned it before the call.)
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_InternFromString}{const char *v}
A combination of \cfunction{PyString_FromString()} and
\cfunction{PyString_InternInPlace()}, returning either a new string object
that has been interned, or a new (``owned'') reference to an earlier
interned string object with the same value.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{PyString_AS_STRING}{PyObject *string}
Macro form of \cfunction{PyString_AsString()} but without error checking.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyString_GET_SIZE}{PyObject *string}
Macro form of \cfunction{PyString_GetSize()} but without error checking.
\end{cfuncdesc}
\subsection{Tuple Objects}
\label{tupleObjects}
\begin{ctypedesc}{PyTupleObject}
This subtype of \ctype{PyObject} represents a Python tuple object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyTuple_Type}
This instance of \ctype{PyTypeObject} represents the Python tuple type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyTuple_Check}{PyObject *p}
Return true if the argument is a tuple object.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyTuple_New}{int s}
Return a new tuple object of size \var{s}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTuple_Size}{PyTupleObject *p}
Takes a pointer to a tuple object, and returns the size
of that tuple.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyTuple_GetItem}{PyTupleObject *p, int pos}
Returns the object at position \var{pos} in the tuple pointed
to by \var{p}. If \var{pos} is out of bounds, returns \NULL{} and
sets an \exception{IndexError} exception. \strong{Note:} this
function returns a ``borrowed'' reference.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyTuple_GET_ITEM}{PyTupleObject *p, int pos}
Does the same, but does no checking of its arguments.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyTuple_GetSlice}{PyTupleObject *p,
int low,
int high}
Takes a slice of the tuple pointed to by \var{p} from
\var{low} to \var{high} and returns it as a new tuple.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTuple_SetItem}{PyTupleObject *p,
int pos,
PyObject *o}
Inserts a reference to object \var{o} at position \var{pos} of
the tuple pointed to by \var{p}. It returns \code{0} on success.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyTuple_SET_ITEM}{PyTupleObject *p,
int pos,
PyObject *o}
Does the same, but does no error checking, and
should \emph{only} be used to fill in brand new tuples.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{_PyTuple_Resize}{PyTupleObject *p,
int new,
int last_is_sticky}
Can be used to resize a tuple. Because tuples are
\emph{supposed} to be immutable, this should only be used if there is only
one module referencing the object. Do \emph{not} use this if the tuple may
already be known to some other part of the code. \var{last_is_sticky} is
a flag --- if set, the tuple will grow or shrink at the front, otherwise
it will grow or shrink at the end. Think of this as destroying the old
tuple and creating a new one, only more efficiently.
\end{cfuncdesc}
\subsection{List Objects}
\label{listObjects}
\begin{ctypedesc}{PyListObject}
This subtype of \ctype{PyObject} represents a Python list object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyList_Type}
This instance of \ctype{PyTypeObject} represents the Python list type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyList_Check}{PyObject *p}
Returns true if its argument is a \ctype{PyListObject}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_New}{int size}
Returns a new list of length \var{len} on success, and \NULL{} on
failure.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Size}{PyObject *list}
Returns the length of the list object in \var{list}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_GetItem}{PyObject *list, int index}
Returns the object at position \var{pos} in the list pointed
to by \var{p}. If \var{pos} is out of bounds, returns \NULL{} and
sets an \exception{IndexError} exception. \strong{Note:} this
function returns a ``borrowed'' reference.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_SetItem}{PyObject *list, int index,
PyObject *item}
Sets the item at index \var{index} in list to \var{item}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Insert}{PyObject *list, int index,
PyObject *item}
Inserts the item \var{item} into list \var{list} in front of index
\var{index}. Returns 0 if successful; returns -1 and sets an
exception if unsuccessful. Analogous to \code{list.insert(index, item)}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Append}{PyObject *list, PyObject *item}
Appends the object \var{item} at the end of list \var{list}. Returns
0 if successful; returns -1 and sets an exception if unsuccessful.
Analogous to \code{list.append(item)}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_GetSlice}{PyObject *list,
int low, int high}
Returns a list of the objects in \var{list} containing the objects
\emph{between} \var{low} and \var{high}. Returns NULL and sets an
exception if unsuccessful.
Analogous to \code{list[low:high]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_SetSlice}{PyObject *list,
int low, int high,
PyObject *itemlist}
Sets the slice of \var{list} between \var{low} and \var{high} to the contents
of \var{itemlist}. Analogous to \code{list[low:high]=itemlist}. Returns 0
on success, -1 on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Sort}{PyObject *list}
Sorts the items of \var{list} in place. Returns 0 on success, -1 on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Reverse}{PyObject *list}
Reverses the items of \var{list} in place. Returns 0 on success, -1 on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_AsTuple}{PyObject *list}
Returns a new tuple object containing the contents of \var{list}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_GET_ITEM}{PyObject *list, int i}
Macro form of \cfunction{PyList_GetItem()} without error checking.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_SET_ITEM}{PyObject *list, int i,
PyObject *o}
Macro form of \cfunction{PyList_SetItem()} without error checking.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_GET_SIZE}{PyObject *list}
Macro form of \cfunction{PyList_GetSize()} without error checking.
\end{cfuncdesc}
\section{Mapping Objects}
\label{mapObjects}
\subsection{Dictionary Objects}
\label{dictObjects}
\begin{ctypedesc}{PyDictObject}
This subtype of \ctype{PyObject} represents a Python dictionary object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyDict_Type}
This instance of \ctype{PyTypeObject} represents the Python dictionary type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyDict_Check}{PyObject *p}
Returns true if its argument is a \ctype{PyDictObject}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_New}{}
Returns a new empty dictionary.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyDict_Clear}{PyDictObject *p}
Empties an existing dictionary of all key/value pairs.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_SetItem}{PyDictObject *p,
PyObject *key,
PyObject *val}
Inserts \var{value} into the dictionary with a key of \var{key}. Both
\var{key} and \var{value} should be PyObjects, and \var{key} should be
hashable.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_SetItemString}{PyDictObject *p,
char *key,
PyObject *val}
Inserts \var{value} into the dictionary using \var{key}
as a key. \var{key} should be a \ctype{char *}. The key object is
created using \code{PyString_FromString(\var{key})}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_DelItem}{PyDictObject *p, PyObject *key}
Removes the entry in dictionary \var{p} with key \var{key}.
\var{key} is a PyObject.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_DelItemString}{PyDictObject *p, char *key}
Removes the entry in dictionary \var{p} which has a key
specified by the \ctype{char *}\var{key}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_GetItem}{PyDictObject *p, PyObject *key}
Returns the object from dictionary \var{p} which has a key
\var{key}. Returns \NULL{} if the key \var{key} is not present, but
without (!) setting an exception. \strong{Note:} this function
returns a ``borrowed'' reference.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_GetItemString}{PyDictObject *p, char *key}
This is the same as \cfunction{PyDict_GetItem()}, but \var{key} is
specified as a \ctype{char *}, rather than a \ctype{PyObject *}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_Items}{PyDictObject *p}
Returns a \ctype{PyListObject} containing all the items
from the dictionary, as in the dictinoary method \method{items()} (see
the \emph{Python Library Reference}).
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_Keys}{PyDictObject *p}
Returns a \ctype{PyListObject} containing all the keys
from the dictionary, as in the dictionary method \method{keys()} (see the
\emph{Python Library Reference}).
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_Values}{PyDictObject *p}
Returns a \ctype{PyListObject} containing all the values
from the dictionary \var{p}, as in the dictionary method
\method{values()} (see the \emph{Python Library Reference}).
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_Size}{PyDictObject *p}
Returns the number of items in the dictionary.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_Next}{PyDictObject *p,
int ppos,
PyObject **pkey,
PyObject **pvalue}
\end{cfuncdesc}
\section{Numeric Objects}
\label{numericObjects}
\subsection{Plain Integer Objects}
\label{intObjects}
\begin{ctypedesc}{PyIntObject}
This subtype of \ctype{PyObject} represents a Python integer object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyInt_Type}
This instance of \ctype{PyTypeObject} represents the Python plain
integer type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyInt_Check}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyInt_FromLong}{long ival}
Creates a new integer object with a value of \var{ival}.
The current implementation keeps an array of integer objects for all
integers between \code{-1} and \code{100}, when you create an int in
that range you actually just get back a reference to the existing
object. So it should be possible to change the value of \code{1}. I
suspect the behaviour of Python in this case is undefined. :-)
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyInt_AS_LONG}{PyIntObject *io}
Returns the value of the object \var{io}. No error checking is
performed.
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyInt_AsLong}{PyObject *io}
Will first attempt to cast the object to a \ctype{PyIntObject}, if
it is not already one, and then return its value.
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyInt_GetMax}{}
Returns the systems idea of the largest integer it can handle
(\constant{LONG_MAX}, as defined in the system header files).
\end{cfuncdesc}
\subsection{Long Integer Objects}
\label{longObjects}
\begin{ctypedesc}{PyLongObject}
This subtype of \ctype{PyObject} represents a Python long integer
object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyLong_Type}
This instance of \ctype{PyTypeObject} represents the Python long
integer type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyLong_Check}{PyObject *p}
Returns true if its argument is a \ctype{PyLongObject}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromLong}{long v}
Returns a new \ctype{PyLongObject} object from \var{v}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromUnsignedLong}{unsigned long v}
Returns a new \ctype{PyLongObject} object from an unsigned \C{} long.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromDouble}{double v}
Returns a new \ctype{PyLongObject} object from the integer part of \var{v}.
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyLong_AsLong}{PyObject *pylong}
Returns a \C{} \ctype{long} representation of the contents of \var{pylong}.
WHAT HAPPENS IF \var{pylong} is greater than \constant{LONG_MAX}?
\end{cfuncdesc}
\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLong}{PyObject *pylong}
Returns a \C{} \ctype{unsigned long} representation of the contents of
\var{pylong}. WHAT HAPPENS IF \var{pylong} is greater than
\constant{ULONG_MAX}?
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyLong_AsDouble}{PyObject *pylong}
Returns a \C{} \ctype{double} representation of the contents of \var{pylong}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromString}{char *str, char **pend,
int base}
\end{cfuncdesc}
\subsection{Floating Point Objects}
\label{floatObjects}
\begin{ctypedesc}{PyFloatObject}
This subtype of \ctype{PyObject} represents a Python floating point
object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyFloat_Type}
This instance of \ctype{PyTypeObject} represents the Python floating
point type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyFloat_Check}{PyObject *p}
Returns true if its argument is a \ctype{PyFloatObject}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFloat_FromDouble}{double v}
Creates a \ctype{PyFloatObject} object from \var{v}.
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyFloat_AsDouble}{PyObject *pyfloat}
Returns a \C{} \ctype{double} representation of the contents of \var{pyfloat}.
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyFloat_AS_DOUBLE}{PyObject *pyfloat}
Returns a \C{} \ctype{double} representation of the contents of
\var{pyfloat}, but without error checking.
\end{cfuncdesc}
\subsection{Complex Number Objects}
\label{complexObjects}
\begin{ctypedesc}{Py_complex}
The \C{} structure which corresponds to the value portion of a Python
complex number object. Most of the functions for dealing with complex
number objects use structures of this type as input or output values,
as appropriate. It is defined as:
\begin{verbatim}
typedef struct {
double real;
double imag;
} Py_complex;
\end{verbatim}
\end{ctypedesc}
\begin{ctypedesc}{PyComplexObject}
This subtype of \ctype{PyObject} represents a Python complex number object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyComplex_Type}
This instance of \ctype{PyTypeObject} represents the Python complex
number type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyComplex_Check}{PyObject *p}
Returns true if its argument is a \ctype{PyComplexObject}.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_sum}{Py_complex left, Py_complex right}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_diff}{Py_complex left, Py_complex right}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_neg}{Py_complex complex}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_prod}{Py_complex left, Py_complex right}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_quot}{Py_complex dividend,
Py_complex divisor}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_pow}{Py_complex num, Py_complex exp}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyComplex_FromCComplex}{Py_complex v}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyComplex_FromDoubles}{double real, double imag}
Returns a new \ctype{PyComplexObject} object from \var{real} and \var{imag}.
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyComplex_RealAsDouble}{PyObject *op}
Returns the real part of \var{op} as a \C{} \ctype{double}.
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyComplex_ImagAsDouble}{PyObject *op}
Returns the imaginary part of \var{op} as a \C{} \ctype{double}.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{PyComplex_AsCComplex}{PyObject *op}
\end{cfuncdesc}
\section{Other Objects}
\label{otherObjects}
\subsection{File Objects}
\label{fileObjects}
\begin{ctypedesc}{PyFileObject}
This subtype of \ctype{PyObject} represents a Python file object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyFile_Type}
This instance of \ctype{PyTypeObject} represents the Python file type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyFile_Check}{PyObject *p}
Returns true if its argument is a \ctype{PyFileObject}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFile_FromString}{char *name, char *mode}
Creates a new \ctype{PyFileObject} pointing to the file
specified in \var{name} with the mode specified in \var{mode}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFile_FromFile}{FILE *fp,
char *name, char *mode, int (*close)}
Creates a new \ctype{PyFileObject} from the already-open \var{fp}.
The function \var{close} will be called when the file should be
closed.
\end{cfuncdesc}
\begin{cfuncdesc}{FILE *}{PyFile_AsFile}{PyFileObject *p}
Returns the file object associated with \var{p} as a \ctype{FILE *}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFile_GetLine}{PyObject *p, int n}
undocumented as yet
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFile_Name}{PyObject *p}
Returns the name of the file specified by \var{p} as a
\ctype{PyStringObject}.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyFile_SetBufSize}{PyFileObject *p, int n}
Available on systems with \cfunction{setvbuf()} only. This should
only be called immediately after file object creation.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_SoftSpace}{PyFileObject *p, int newflag}
Sets the \member{softspace} attribute of \var{p} to \var{newflag}.
Returns the previous value. This function clears any errors, and will
return \code{0} as the previous value if the attribute either does not
exist or if there were errors in retrieving it. There is no way to
detect errors from this function, but doing so should not be needed.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_WriteObject}{PyObject *obj, PyFileObject *p,
int flags}
Writes object \var{obj} to file object \var{p}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_WriteString}{char *s, PyFileObject *p,
int flags}
Writes string \var{s} to file object \var{p}.
\end{cfuncdesc}
\subsection{CObjects}
\label{cObjects}
\begin{ctypedesc}{PyCObject}
This subtype of \ctype{PyObject} represents an opaque value, useful for
\C{} extension modules who need to pass an opaque value (as a
\ctype{void *} pointer) through Python code to other \C{} code. It is
often used to make a C function pointer defined in one module
available to other modules, so the regular import mechanism can be
used to access C APIs defined in dynamically loaded modules.
\end{ctypedesc}
\begin{cfuncdesc}{PyObject *}{PyCObject_FromVoidPtr}{void* cobj,
void (*destr)(void *)}
Creates a \ctype{PyCObject} from the \code{void *} \var{cobj}. The
\var{destr} function will be called when the object is reclaimed.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyCObject_FromVoidPtrAndDesc}{void* cobj,
void* desc, void (*destr)(void *, void *) }
Creates a \ctype{PyCObject} from the \ctype{void *}\var{cobj}. The
\var{destr} function will be called when the object is reclaimed. The
\var{desc} argument can be used to pass extra callback data for the
destructor function.
\end{cfuncdesc}
\begin{cfuncdesc}{void *}{PyCObject_AsVoidPtr}{PyObject* self}
Returns the object \ctype{void *} that the \ctype{PyCObject} \var{self}
was created with.
\end{cfuncdesc}
\begin{cfuncdesc}{void *}{PyCObject_GetDesc}{PyObject* self}
Returns the description \ctype{void *} that the \ctype{PyCObject}
\var{self} was created with.
\end{cfuncdesc}
\chapter{Initialization, Finalization, and Threads}
\label{initialization}
\begin{cfuncdesc}{void}{Py_Initialize}{}
Initialize the Python interpreter. In an application embedding
Python, this should be called before using any other Python/C API
functions; with the exception of \cfunction{Py_SetProgramName()},
\cfunction{PyEval_InitThreads()}, \cfunction{PyEval_ReleaseLock()},
and \cfunction{PyEval_AcquireLock()}. This initializes the table of
loaded modules (\code{sys.modules}), and creates the fundamental
modules \module{__builtin__}\refbimodindex{__builtin__},
\module{__main__}\refbimodindex{__main__} and
\module{sys}\refbimodindex{sys}. It also initializes the module
search path (\code{sys.path}).%
\indexiii{module}{search}{path}
It does not set \code{sys.argv}; use \cfunction{PySys_SetArgv()} for
that. This is a no-op when called for a second time (without calling
\cfunction{Py_Finalize()} first). There is no return value; it is a
fatal error if the initialization fails.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_IsInitialized}{}
Return true (nonzero) when the Python interpreter has been
initialized, false (zero) if not. After \cfunction{Py_Finalize()} is
called, this returns false until \cfunction{Py_Initialize()} is called
again.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{Py_Finalize}{}
Undo all initializations made by \cfunction{Py_Initialize()} and
subsequent use of Python/C API functions, and destroy all
sub-interpreters (see \cfunction{Py_NewInterpreter()} below) that were
created and not yet destroyed since the last call to
\cfunction{Py_Initialize()}. Ideally, this frees all memory allocated
by the Python interpreter. This is a no-op when called for a second
time (without calling \cfunction{Py_Initialize()} again first). There
is no return value; errors during finalization are ignored.
This function is provided for a number of reasons. An embedding
application might want to restart Python without having to restart the
application itself. An application that has loaded the Python
interpreter from a dynamically loadable library (or DLL) might want to
free all memory allocated by Python before unloading the DLL. During a
hunt for memory leaks in an application a developer might want to free
all memory allocated by Python before exiting from the application.
\strong{Bugs and caveats:} The destruction of modules and objects in
modules is done in random order; this may cause destructors
(\method{__del__()} methods) to fail when they depend on other objects
(even functions) or modules. Dynamically loaded extension modules
loaded by Python are not unloaded. Small amounts of memory allocated
by the Python interpreter may not be freed (if you find a leak, please
report it). Memory tied up in circular references between objects is
not freed. Some memory allocated by extension modules may not be
freed. Some extension may not work properly if their initialization
routine is called more than once; this can happen if an applcation
calls \cfunction{Py_Initialize()} and \cfunction{Py_Finalize()} more
than once.
\end{cfuncdesc}
\begin{cfuncdesc}{PyThreadState*}{Py_NewInterpreter}{}
Create a new sub-interpreter. This is an (almost) totally separate
environment for the execution of Python code. In particular, the new
interpreter has separate, independent versions of all imported
modules, including the fundamental modules
\module{__builtin__}\refbimodindex{__builtin__},
\module{__main__}\refbimodindex{__main__} and
\module{sys}\refbimodindex{sys}. The table of loaded modules
(\code{sys.modules}) and the module search path (\code{sys.path}) are
also separate. The new environment has no \code{sys.argv} variable.
It has new standard I/O stream file objects \code{sys.stdin},
\code{sys.stdout} and \code{sys.stderr} (however these refer to the
same underlying \ctype{FILE} structures in the \C{} library).
The return value points to the first thread state created in the new
sub-interpreter. This thread state is made the current thread state.
Note that no actual thread is created; see the discussion of thread
states below. If creation of the new interpreter is unsuccessful,
\NULL{} is returned; no exception is set since the exception state
is stored in the current thread state and there may not be a current
thread state. (Like all other Python/C API functions, the global
interpreter lock must be held before calling this function and is
still held when it returns; however, unlike most other Python/C API
functions, there needn't be a current thread state on entry.)
Extension modules are shared between (sub-)interpreters as follows:
the first time a particular extension is imported, it is initialized
normally, and a (shallow) copy of its module's dictionary is
squirreled away. When the same extension is imported by another
(sub-)interpreter, a new module is initialized and filled with the
contents of this copy; the extension's \code{init} function is not
called. Note that this is different from what happens when an
extension is imported after the interpreter has been completely
re-initialized by calling \cfunction{Py_Finalize()} and
\cfunction{Py_Initialize()}; in that case, the extension's \code{init}
function \emph{is} called again.
\strong{Bugs and caveats:} Because sub-interpreters (and the main
interpreter) are part of the same process, the insulation between them
isn't perfect --- for example, using low-level file operations like
\function{os.close()} they can (accidentally or maliciously) affect each
other's open files. Because of the way extensions are shared between
(sub-)interpreters, some extensions may not work properly; this is
especially likely when the extension makes use of (static) global
variables, or when the extension manipulates its module's dictionary
after its initialization. It is possible to insert objects created in
one sub-interpreter into a namespace of another sub-interpreter; this
should be done with great care to avoid sharing user-defined
functions, methods, instances or classes between sub-interpreters,
since import operations executed by such objects may affect the
wrong (sub-)interpreter's dictionary of loaded modules. (XXX This is
a hard-to-fix bug that will be addressed in a future release.)
\end{cfuncdesc}
\begin{cfuncdesc}{void}{Py_EndInterpreter}{PyThreadState *tstate}
Destroy the (sub-)interpreter represented by the given thread state.
The given thread state must be the current thread state. See the
discussion of thread states below. When the call returns, the current
thread state is \NULL{}. All thread states associated with this
interpreted are destroyed. (The global interpreter lock must be held
before calling this function and is still held when it returns.)
\cfunction{Py_Finalize()} will destroy all sub-interpreters that haven't
been explicitly destroyed at that point.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{Py_SetProgramName}{char *name}
This function should be called before \cfunction{Py_Initialize()} is called
for the first time, if it is called at all. It tells the interpreter
the value of the \code{argv[0]} argument to the \cfunction{main()} function
of the program. This is used by \cfunction{Py_GetPath()} and some other
functions below to find the Python run-time libraries relative to the
interpreter executable. The default value is \code{"python"}. The
argument should point to a zero-terminated character string in static
storage whose contents will not change for the duration of the
program's execution. No code in the Python interpreter will change
the contents of this storage.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{Py_GetProgramName}{}
Return the program name set with \cfunction{Py_SetProgramName()}, or the
default. The returned string points into static storage; the caller
should not modify its value.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{Py_GetPrefix}{}
Return the \emph{prefix} for installed platform-independent files. This
is derived through a number of complicated rules from the program name
set with \cfunction{Py_SetProgramName()} and some environment variables;
for example, if the program name is \code{"/usr/local/bin/python"},
the prefix is \code{"/usr/local"}. The returned string points into
static storage; the caller should not modify its value. This
corresponds to the \makevar{prefix} variable in the top-level
\file{Makefile} and the \code{-}\code{-prefix} argument to the
\program{configure} script at build time. The value is available to
Python code as \code{sys.prefix}. It is only useful on \UNIX{}. See
also the next function.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{Py_GetExecPrefix}{}
Return the \emph{exec-prefix} for installed platform-\emph{de}pendent
files. This is derived through a number of complicated rules from the
program name set with \cfunction{Py_SetProgramName()} and some environment
variables; for example, if the program name is
\code{"/usr/local/bin/python"}, the exec-prefix is
\code{"/usr/local"}. The returned string points into static storage;
the caller should not modify its value. This corresponds to the
\makevar{exec_prefix} variable in the top-level \file{Makefile} and the
\code{-}\code{-exec_prefix} argument to the \program{configure} script
at build time. The value is available to Python code as
\code{sys.exec_prefix}. It is only useful on \UNIX{}.
Background: The exec-prefix differs from the prefix when platform
dependent files (such as executables and shared libraries) are
installed in a different directory tree. In a typical installation,
platform dependent files may be installed in the
\code{"/usr/local/plat"} subtree while platform independent may be
installed in \code{"/usr/local"}.
Generally speaking, a platform is a combination of hardware and
software families, e.g. Sparc machines running the Solaris 2.x
operating system are considered the same platform, but Intel machines
running Solaris 2.x are another platform, and Intel machines running
Linux are yet another platform. Different major revisions of the same
operating system generally also form different platforms. Non-\UNIX{}
operating systems are a different story; the installation strategies
on those systems are so different that the prefix and exec-prefix are
meaningless, and set to the empty string. Note that compiled Python
bytecode files are platform independent (but not independent from the
Python version by which they were compiled!).
System administrators will know how to configure the \program{mount} or
\program{automount} programs to share \code{"/usr/local"} between platforms
while having \code{"/usr/local/plat"} be a different filesystem for each
platform.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{Py_GetProgramFullPath}{}
Return the full program name of the Python executable; this is
computed as a side-effect of deriving the default module search path
from the program name (set by \cfunction{Py_SetProgramName()} above). The
returned string points into static storage; the caller should not
modify its value. The value is available to Python code as
\code{sys.executable}.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{Py_GetPath}{}
\indexiii{module}{search}{path}
Return the default module search path; this is computed from the
program name (set by \cfunction{Py_SetProgramName()} above) and some
environment variables. The returned string consists of a series of
directory names separated by a platform dependent delimiter character.
The delimiter character is \character{:} on \UNIX{}, \character{;} on
DOS/Windows, and \character{\\n} (the \ASCII{} newline character) on
Macintosh. The returned string points into static storage; the caller
should not modify its value. The value is available to Python code
as the list \code{sys.path}, which may be modified to change the
future search path for loaded modules.
% XXX should give the exact rules
\end{cfuncdesc}
\begin{cfuncdesc}{const char*}{Py_GetVersion}{}
Return the version of this Python interpreter. This is a string that
looks something like
\begin{verbatim}
"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]"
\end{verbatim}
The first word (up to the first space character) is the current Python
version; the first three characters are the major and minor version
separated by a period. The returned string points into static storage;
the caller should not modify its value. The value is available to
Python code as the list \code{sys.version}.
\end{cfuncdesc}
\begin{cfuncdesc}{const char*}{Py_GetPlatform}{}
Return the platform identifier for the current platform. On \UNIX{},
this is formed from the ``official'' name of the operating system,
converted to lower case, followed by the major revision number; e.g.,
for Solaris 2.x, which is also known as SunOS 5.x, the value is
\code{"sunos5"}. On Macintosh, it is \code{"mac"}. On Windows, it
is \code{"win"}. The returned string points into static storage;
the caller should not modify its value. The value is available to
Python code as \code{sys.platform}.
\end{cfuncdesc}
\begin{cfuncdesc}{const char*}{Py_GetCopyright}{}
Return the official copyright string for the current Python version,
for example
\code{"Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam"}
The returned string points into static storage; the caller should not
modify its value. The value is available to Python code as the list
\code{sys.copyright}.
\end{cfuncdesc}
\begin{cfuncdesc}{const char*}{Py_GetCompiler}{}
Return an indication of the compiler used to build the current Python
version, in square brackets, for example:
\begin{verbatim}
"[GCC 2.7.2.2]"
\end{verbatim}
The returned string points into static storage; the caller should not
modify its value. The value is available to Python code as part of
the variable \code{sys.version}.
\end{cfuncdesc}
\begin{cfuncdesc}{const char*}{Py_GetBuildInfo}{}
Return information about the sequence number and build date and time
of the current Python interpreter instance, for example
\begin{verbatim}
"#67, Aug 1 1997, 22:34:28"
\end{verbatim}
The returned string points into static storage; the caller should not
modify its value. The value is available to Python code as part of
the variable \code{sys.version}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySys_SetArgv}{int argc, char **argv}
% XXX
\end{cfuncdesc}
% XXX Other PySys thingies (doesn't really belong in this chapter)
\section{Thread State and the Global Interpreter Lock}
\label{threads}
The Python interpreter is not fully thread safe. In order to support
multi-threaded Python programs, there's a global lock that must be
held by the current thread before it can safely access Python objects.
Without the lock, even the simplest operations could cause problems in
a multi-threaded program: for example, when two threads simultaneously
increment the reference count of the same object, the reference count
could end up being incremented only once instead of twice.
Therefore, the rule exists that only the thread that has acquired the
global interpreter lock may operate on Python objects or call Python/C
API functions. In order to support multi-threaded Python programs,
the interpreter regularly release and reacquires the lock --- by
default, every ten bytecode instructions (this can be changed with
\function{sys.setcheckinterval()}). The lock is also released and
reacquired around potentially blocking I/O operations like reading or
writing a file, so that other threads can run while the thread that
requests the I/O is waiting for the I/O operation to complete.
The Python interpreter needs to keep some bookkeeping information
separate per thread --- for this it uses a data structure called
\ctype{PyThreadState}. This is new in Python 1.5; in earlier versions,
such state was stored in global variables, and switching threads could
cause problems. In particular, exception handling is now thread safe,
when the application uses \function{sys.exc_info()} to access the
exception last raised in the current thread.
There's one global variable left, however: the pointer to the current
\ctype{PyThreadState} structure. While most thread packages have a way
to store ``per-thread global data,'' Python's internal platform
independent thread abstraction doesn't support this yet. Therefore,
the current thread state must be manipulated explicitly.
This is easy enough in most cases. Most code manipulating the global
interpreter lock has the following simple structure:
\begin{verbatim}
Save the thread state in a local variable.
Release the interpreter lock.
...Do some blocking I/O operation...
Reacquire the interpreter lock.
Restore the thread state from the local variable.
\end{verbatim}
This is so common that a pair of macros exists to simplify it:
\begin{verbatim}
Py_BEGIN_ALLOW_THREADS
...Do some blocking I/O operation...
Py_END_ALLOW_THREADS
\end{verbatim}
The \code{Py_BEGIN_ALLOW_THREADS} macro opens a new block and declares
a hidden local variable; the \code{Py_END_ALLOW_THREADS} macro closes
the block. Another advantage of using these two macros is that when
Python is compiled without thread support, they are defined empty,
thus saving the thread state and lock manipulations.
When thread support is enabled, the block above expands to the
following code:
\begin{verbatim}
{
PyThreadState *_save;
_save = PyEval_SaveThread();
...Do some blocking I/O operation...
PyEval_RestoreThread(_save);
}
\end{verbatim}
Using even lower level primitives, we can get roughly the same effect
as follows:
\begin{verbatim}
{
PyThreadState *_save;
_save = PyThreadState_Swap(NULL);
PyEval_ReleaseLock();
...Do some blocking I/O operation...
PyEval_AcquireLock();
PyThreadState_Swap(_save);
}
\end{verbatim}
There are some subtle differences; in particular,
\cfunction{PyEval_RestoreThread()} saves and restores the value of the
global variable \cdata{errno}, since the lock manipulation does not
guarantee that \cdata{errno} is left alone. Also, when thread support
is disabled, \cfunction{PyEval_SaveThread()} and
\cfunction{PyEval_RestoreThread()} don't manipulate the lock; in this
case, \cfunction{PyEval_ReleaseLock()} and
\cfunction{PyEval_AcquireLock()} are not available. This is done so
that dynamically loaded extensions compiled with thread support
enabled can be loaded by an interpreter that was compiled with
disabled thread support.
The global interpreter lock is used to protect the pointer to the
current thread state. When releasing the lock and saving the thread
state, the current thread state pointer must be retrieved before the
lock is released (since another thread could immediately acquire the
lock and store its own thread state in the global variable).
Reversely, when acquiring the lock and restoring the thread state, the
lock must be acquired before storing the thread state pointer.
Why am I going on with so much detail about this? Because when
threads are created from \C{}, they don't have the global interpreter
lock, nor is there a thread state data structure for them. Such
threads must bootstrap themselves into existence, by first creating a
thread state data structure, then acquiring the lock, and finally
storing their thread state pointer, before they can start using the
Python/C API. When they are done, they should reset the thread state
pointer, release the lock, and finally free their thread state data
structure.
When creating a thread data structure, you need to provide an
interpreter state data structure. The interpreter state data
structure hold global data that is shared by all threads in an
interpreter, for example the module administration
(\code{sys.modules}). Depending on your needs, you can either create
a new interpreter state data structure, or share the interpreter state
data structure used by the Python main thread (to access the latter,
you must obtain the thread state and access its \member{interp} member;
this must be done by a thread that is created by Python or by the main
thread after Python is initialized).
XXX More?
\begin{ctypedesc}{PyInterpreterState}
This data structure represents the state shared by a number of
cooperating threads. Threads belonging to the same interpreter
share their module administration and a few other internal items.
There are no public members in this structure.
Threads belonging to different interpreters initially share nothing,
except process state like available memory, open file descriptors and
such. The global interpreter lock is also shared by all threads,
regardless of to which interpreter they belong.
\end{ctypedesc}
\begin{ctypedesc}{PyThreadState}
This data structure represents the state of a single thread. The only
public data member is \ctype{PyInterpreterState *}\member{interp},
which points to this thread's interpreter state.
\end{ctypedesc}
\begin{cfuncdesc}{void}{PyEval_InitThreads}{}
Initialize and acquire the global interpreter lock. It should be
called in the main thread before creating a second thread or engaging
in any other thread operations such as
\cfunction{PyEval_ReleaseLock()} or
\code{PyEval_ReleaseThread(\var{tstate})}. It is not needed before
calling \cfunction{PyEval_SaveThread()} or
\cfunction{PyEval_RestoreThread()}.
This is a no-op when called for a second time. It is safe to call
this function before calling \cfunction{Py_Initialize()}.
When only the main thread exists, no lock operations are needed. This
is a common situation (most Python programs do not use threads), and
the lock operations slow the interpreter down a bit. Therefore, the
lock is not created initially. This situation is equivalent to having
acquired the lock: when there is only a single thread, all object
accesses are safe. Therefore, when this function initializes the
lock, it also acquires it. Before the Python
\module{thread}\refbimodindex{thread} module creates a new thread,
knowing that either it has the lock or the lock hasn't been created
yet, it calls \cfunction{PyEval_InitThreads()}. When this call
returns, it is guaranteed that the lock has been created and that it
has acquired it.
It is \strong{not} safe to call this function when it is unknown which
thread (if any) currently has the global interpreter lock.
This function is not available when thread support is disabled at
compile time.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyEval_AcquireLock}{}
Acquire the global interpreter lock. The lock must have been created
earlier. If this thread already has the lock, a deadlock ensues.
This function is not available when thread support is disabled at
compile time.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyEval_ReleaseLock}{}
Release the global interpreter lock. The lock must have been created
earlier. This function is not available when thread support is
disabled at compile time.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyEval_AcquireThread}{PyThreadState *tstate}
Acquire the global interpreter lock and then set the current thread
state to \var{tstate}, which should not be \NULL{}. The lock must
have been created earlier. If this thread already has the lock,
deadlock ensues. This function is not available when thread support
is disabled at compile time.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyEval_ReleaseThread}{PyThreadState *tstate}
Reset the current thread state to \NULL{} and release the global
interpreter lock. The lock must have been created earlier and must be
held by the current thread. The \var{tstate} argument, which must not
be \NULL{}, is only used to check that it represents the current
thread state --- if it isn't, a fatal error is reported. This
function is not available when thread support is disabled at compile
time.
\end{cfuncdesc}
\begin{cfuncdesc}{PyThreadState*}{PyEval_SaveThread}{}
Release the interpreter lock (if it has been created and thread
support is enabled) and reset the thread state to \NULL{},
returning the previous thread state (which is not \NULL{}). If
the lock has been created, the current thread must have acquired it.
(This function is available even when thread support is disabled at
compile time.)
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyEval_RestoreThread}{PyThreadState *tstate}
Acquire the interpreter lock (if it has been created and thread
support is enabled) and set the thread state to \var{tstate}, which
must not be \NULL{}. If the lock has been created, the current
thread must not have acquired it, otherwise deadlock ensues. (This
function is available even when thread support is disabled at compile
time.)
\end{cfuncdesc}
% XXX These aren't really C types, but the ctypedesc macro is the simplest!
\begin{ctypedesc}{Py_BEGIN_ALLOW_THREADS}
This macro expands to
\samp{\{ PyThreadState *_save; _save = PyEval_SaveThread();}.
Note that it contains an opening brace; it must be matched with a
following \code{Py_END_ALLOW_THREADS} macro. See above for further
discussion of this macro. It is a no-op when thread support is
disabled at compile time.
\end{ctypedesc}
\begin{ctypedesc}{Py_END_ALLOW_THREADS}
This macro expands to
\samp{PyEval_RestoreThread(_save); \}}.
Note that it contains a closing brace; it must be matched with an
earlier \code{Py_BEGIN_ALLOW_THREADS} macro. See above for further
discussion of this macro. It is a no-op when thread support is
disabled at compile time.
\end{ctypedesc}
\begin{ctypedesc}{Py_BEGIN_BLOCK_THREADS}
This macro expands to \samp{PyEval_RestoreThread(_save);} i.e. it
is equivalent to \code{Py_END_ALLOW_THREADS} without the closing
brace. It is a no-op when thread support is disabled at compile
time.
\end{ctypedesc}
\begin{ctypedesc}{Py_BEGIN_UNBLOCK_THREADS}
This macro expands to \samp{_save = PyEval_SaveThread();} i.e. it is
equivalent to \code{Py_BEGIN_ALLOW_THREADS} without the opening brace
and variable declaration. It is a no-op when thread support is
disabled at compile time.
\end{ctypedesc}
All of the following functions are only available when thread support
is enabled at compile time, and must be called only when the
interpreter lock has been created.
\begin{cfuncdesc}{PyInterpreterState*}{PyInterpreterState_New}{}
Create a new interpreter state object. The interpreter lock need not
be held, but may be held if it is necessary to serialize calls to this
function.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyInterpreterState_Clear}{PyInterpreterState *interp}
Reset all information in an interpreter state object. The interpreter
lock must be held.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyInterpreterState_Delete}{PyInterpreterState *interp}
Destroy an interpreter state object. The interpreter lock need not be
held. The interpreter state must have been reset with a previous
call to \cfunction{PyInterpreterState_Clear()}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyThreadState*}{PyThreadState_New}{PyInterpreterState *interp}
Create a new thread state object belonging to the given interpreter
object. The interpreter lock need not be held, but may be held if it
is necessary to serialize calls to this function.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyThreadState_Clear}{PyThreadState *tstate}
Reset all information in a thread state object. The interpreter lock
must be held.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyThreadState_Delete}{PyThreadState *tstate}
Destroy a thread state object. The interpreter lock need not be
held. The thread state must have been reset with a previous
call to \cfunction{PyThreadState_Clear()}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyThreadState*}{PyThreadState_Get}{}
Return the current thread state. The interpreter lock must be held.
When the current thread state is \NULL{}, this issues a fatal
error (so that the caller needn't check for \NULL{}).
\end{cfuncdesc}
\begin{cfuncdesc}{PyThreadState*}{PyThreadState_Swap}{PyThreadState *tstate}
Swap the current thread state with the thread state given by the
argument \var{tstate}, which may be \NULL{}. The interpreter lock
must be held.
\end{cfuncdesc}
\chapter{Defining New Object Types}
\label{newTypes}
\begin{cfuncdesc}{PyObject*}{_PyObject_New}{PyTypeObject *type}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{_PyObject_NewVar}{PyTypeObject *type, int size}
\end{cfuncdesc}
\begin{cfuncdesc}{TYPE}{_PyObject_NEW}{TYPE, PyTypeObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{TYPE}{_PyObject_NEW_VAR}{TYPE, PyTypeObject *, int size}
\end{cfuncdesc}
Py_InitModule (!!!)
PyArg_ParseTupleAndKeywords, PyArg_ParseTuple, PyArg_Parse
Py_BuildValue
PyObject, PyVarObject
PyObject_HEAD, PyObject_HEAD_INIT, PyObject_VAR_HEAD
Typedefs:
unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc,
intintargfunc, intobjargproc, intintobjargproc, objobjargproc,
getreadbufferproc, getwritebufferproc, getsegcountproc,
destructor, printfunc, getattrfunc, getattrofunc, setattrfunc,
setattrofunc, cmpfunc, reprfunc, hashfunc
PyNumberMethods
PySequenceMethods
PyMappingMethods
PyBufferProcs
PyTypeObject
DL_IMPORT
PyType_Type
Py*_Check
Py_None, _Py_NoneStruct
\chapter{Debugging}
\label{debugging}
XXX Explain Py_DEBUG, Py_TRACE_REFS, Py_REF_DEBUG.
\input{api.ind} % Index -- must be last
\end{document}
|