summaryrefslogtreecommitdiffstats
path: root/Doc/c-api/structures.rst
blob: 083c3740531e4c98c3f8c815be8111bcec895d9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
.. highlight:: c

.. _common-structs:

Common Object Structures
========================

There are a large number of structures which are used in the definition of
object types for Python.  This section describes these structures and how they
are used.


Base object types and macros
----------------------------

All Python objects ultimately share a small number of fields at the beginning
of the object's representation in memory.  These are represented by the
:c:type:`PyObject` and :c:type:`PyVarObject` types, which are defined, in turn,
by the expansions of some macros also used, whether directly or indirectly, in
the definition of all other Python objects.


.. c:type:: PyObject

   All object types are extensions of this type.  This is a type which
   contains the information Python needs to treat a pointer to an object as an
   object.  In a normal "release" build, it contains only the object's
   reference count and a pointer to the corresponding type object.
   Nothing is actually declared to be a :c:type:`PyObject`, but every pointer
   to a Python object can be cast to a :c:type:`PyObject*`.  Access to the
   members must be done by using the macros :c:macro:`Py_REFCNT` and
   :c:macro:`Py_TYPE`.


.. c:type:: PyVarObject

   This is an extension of :c:type:`PyObject` that adds the :attr:`ob_size`
   field.  This is only used for objects that have some notion of *length*.
   This type does not often appear in the Python/C API.
   Access to the members must be done by using the macros
   :c:macro:`Py_REFCNT`, :c:macro:`Py_TYPE`, and :c:macro:`Py_SIZE`.


.. c:macro:: PyObject_HEAD

   This is a macro used when declaring new types which represent objects
   without a varying length.  The PyObject_HEAD macro expands to::

      PyObject ob_base;

   See documentation of :c:type:`PyObject` above.


.. c:macro:: PyObject_VAR_HEAD

   This is a macro used when declaring new types which represent objects
   with a length that varies from instance to instance.
   The PyObject_VAR_HEAD macro expands to::

      PyVarObject ob_base;

   See documentation of :c:type:`PyVarObject` above.


.. c:macro:: Py_TYPE(o)

   This macro is used to access the :attr:`ob_type` member of a Python object.
   It expands to::

      (((PyObject*)(o))->ob_type)


.. c:function:: void Py_SET_TYPE(PyObject *o, PyTypeObject *type)

   Set the object *o* type to *type*.

   .. versionadded:: 3.9


.. c:macro:: Py_REFCNT(o)

   This macro is used to access the :attr:`ob_refcnt` member of a Python
   object.
   It expands to::

      (((PyObject*)(o))->ob_refcnt)


.. c:function:: void Py_SET_REFCNT(PyObject *o, Py_ssize_t refcnt)

   Set the object *o* reference counter to *refcnt*.

   .. versionadded:: 3.9


.. c:macro:: Py_SIZE(o)

   This macro is used to access the :attr:`ob_size` member of a Python object.
   It expands to::

      (((PyVarObject*)(o))->ob_size)


.. c:function:: void Py_SET_SIZE(PyVarObject *o, Py_ssize_t size)

   Set the object *o* size to *size*.

   .. versionadded:: 3.9


.. c:macro:: PyObject_HEAD_INIT(type)

   This is a macro which expands to initialization values for a new
   :c:type:`PyObject` type.  This macro expands to::

      _PyObject_EXTRA_INIT
      1, type,


.. c:macro:: PyVarObject_HEAD_INIT(type, size)

   This is a macro which expands to initialization values for a new
   :c:type:`PyVarObject` type, including the :attr:`ob_size` field.
   This macro expands to::

      _PyObject_EXTRA_INIT
      1, type, size,


Implementing functions and methods
----------------------------------

.. c:type:: PyCFunction

   Type of the functions used to implement most Python callables in C.
   Functions of this type take two :c:type:`PyObject\*` parameters and return
   one such value.  If the return value is ``NULL``, an exception shall have
   been set.  If not ``NULL``, the return value is interpreted as the return
   value of the function as exposed in Python.  The function must return a new
   reference.


.. c:type:: PyCFunctionWithKeywords

   Type of the functions used to implement Python callables in C
   with signature :const:`METH_VARARGS | METH_KEYWORDS`.


.. c:type:: _PyCFunctionFast

   Type of the functions used to implement Python callables in C
   with signature :const:`METH_FASTCALL`.


.. c:type:: _PyCFunctionFastWithKeywords

   Type of the functions used to implement Python callables in C
   with signature :const:`METH_FASTCALL | METH_KEYWORDS`.


.. c:type:: PyMethodDef

   Structure used to describe a method of an extension type.  This structure has
   four fields:

   +------------------+---------------+-------------------------------+
   | Field            | C Type        | Meaning                       |
   +==================+===============+===============================+
   | :attr:`ml_name`  | const char \* | name of the method            |
   +------------------+---------------+-------------------------------+
   | :attr:`ml_meth`  | PyCFunction   | pointer to the C              |
   |                  |               | implementation                |
   +------------------+---------------+-------------------------------+
   | :attr:`ml_flags` | int           | flag bits indicating how the  |
   |                  |               | call should be constructed    |
   +------------------+---------------+-------------------------------+
   | :attr:`ml_doc`   | const char \* | points to the contents of the |
   |                  |               | docstring                     |
   +------------------+---------------+-------------------------------+

The :attr:`ml_meth` is a C function pointer.  The functions may be of different
types, but they always return :c:type:`PyObject\*`.  If the function is not of
the :c:type:`PyCFunction`, the compiler will require a cast in the method table.
Even though :c:type:`PyCFunction` defines the first parameter as
:c:type:`PyObject\*`, it is common that the method implementation uses the
specific C type of the *self* object.

The :attr:`ml_flags` field is a bitfield which can include the following flags.
The individual flags indicate either a calling convention or a binding
convention.

There are four basic calling conventions for positional arguments
and two of them can be combined with :const:`METH_KEYWORDS` to support
also keyword arguments.  So there are a total of 6 calling conventions:

.. data:: METH_VARARGS

   This is the typical calling convention, where the methods have the type
   :c:type:`PyCFunction`. The function expects two :c:type:`PyObject\*` values.
   The first one is the *self* object for methods; for module functions, it is
   the module object.  The second parameter (often called *args*) is a tuple
   object representing all arguments. This parameter is typically processed
   using :c:func:`PyArg_ParseTuple` or :c:func:`PyArg_UnpackTuple`.


.. data:: METH_VARARGS | METH_KEYWORDS

   Methods with these flags must be of type :c:type:`PyCFunctionWithKeywords`.
   The function expects three parameters: *self*, *args*, *kwargs* where
   *kwargs* is a dictionary of all the keyword arguments or possibly ``NULL``
   if there are no keyword arguments.  The parameters are typically processed
   using :c:func:`PyArg_ParseTupleAndKeywords`.


.. data:: METH_FASTCALL

   Fast calling convention supporting only positional arguments.
   The methods have the type :c:type:`_PyCFunctionFast`.
   The first parameter is *self*, the second parameter is a C array
   of :c:type:`PyObject\*` values indicating the arguments and the third
   parameter is the number of arguments (the length of the array).

   This is not part of the :ref:`limited API <stable>`.

   .. versionadded:: 3.7


.. data:: METH_FASTCALL | METH_KEYWORDS

   Extension of :const:`METH_FASTCALL` supporting also keyword arguments,
   with methods of type :c:type:`_PyCFunctionFastWithKeywords`.
   Keyword arguments are passed the same way as in the
   :ref:`vectorcall protocol <vectorcall>`:
   there is an additional fourth :c:type:`PyObject\*` parameter
   which is a tuple representing the names of the keyword arguments
   (which are guaranteed to be strings)
   or possibly ``NULL`` if there are no keywords.  The values of the keyword
   arguments are stored in the *args* array, after the positional arguments.

   This is not part of the :ref:`limited API <stable>`.

   .. versionadded:: 3.7


.. data:: METH_NOARGS

   Methods without parameters don't need to check whether arguments are given if
   they are listed with the :const:`METH_NOARGS` flag.  They need to be of type
   :c:type:`PyCFunction`.  The first parameter is typically named *self* and will
   hold a reference to the module or object instance.  In all cases the second
   parameter will be ``NULL``.


.. data:: METH_O

   Methods with a single object argument can be listed with the :const:`METH_O`
   flag, instead of invoking :c:func:`PyArg_ParseTuple` with a ``"O"`` argument.
   They have the type :c:type:`PyCFunction`, with the *self* parameter, and a
   :c:type:`PyObject\*` parameter representing the single argument.


These two constants are not used to indicate the calling convention but the
binding when use with methods of classes.  These may not be used for functions
defined for modules.  At most one of these flags may be set for any given
method.


.. data:: METH_CLASS

   .. index:: builtin: classmethod

   The method will be passed the type object as the first parameter rather
   than an instance of the type.  This is used to create *class methods*,
   similar to what is created when using the :func:`classmethod` built-in
   function.


.. data:: METH_STATIC

   .. index:: builtin: staticmethod

   The method will be passed ``NULL`` as the first parameter rather than an
   instance of the type.  This is used to create *static methods*, similar to
   what is created when using the :func:`staticmethod` built-in function.

One other constant controls whether a method is loaded in place of another
definition with the same method name.


.. data:: METH_COEXIST

   The method will be loaded in place of existing definitions.  Without
   *METH_COEXIST*, the default is to skip repeated definitions.  Since slot
   wrappers are loaded before the method table, the existence of a
   *sq_contains* slot, for example, would generate a wrapped method named
   :meth:`__contains__` and preclude the loading of a corresponding
   PyCFunction with the same name.  With the flag defined, the PyCFunction
   will be loaded in place of the wrapper object and will co-exist with the
   slot.  This is helpful because calls to PyCFunctions are optimized more
   than wrapper object calls.


Accessing attributes of extension types
---------------------------------------

.. c:type:: PyMemberDef

   Structure which describes an attribute of a type which corresponds to a C
   struct member.  Its fields are:

   +------------------+---------------+-------------------------------+
   | Field            | C Type        | Meaning                       |
   +==================+===============+===============================+
   | :attr:`name`     | const char \* | name of the member            |
   +------------------+---------------+-------------------------------+
   | :attr:`!type`    | int           | the type of the member in the |
   |                  |               | C struct                      |
   +------------------+---------------+-------------------------------+
   | :attr:`offset`   | Py_ssize_t    | the offset in bytes that the  |
   |                  |               | member is located on the      |
   |                  |               | type's object struct          |
   +------------------+---------------+-------------------------------+
   | :attr:`flags`    | int           | flag bits indicating if the   |
   |                  |               | field should be read-only or  |
   |                  |               | writable                      |
   +------------------+---------------+-------------------------------+
   | :attr:`doc`      | const char \* | points to the contents of the |
   |                  |               | docstring                     |
   +------------------+---------------+-------------------------------+

   :attr:`!type` can be one of many ``T_`` macros corresponding to various C
   types.  When the member is accessed in Python, it will be converted to the
   equivalent Python type.

   =============== ==================
   Macro name      C type
   =============== ==================
   T_SHORT         short
   T_INT           int
   T_LONG          long
   T_FLOAT         float
   T_DOUBLE        double
   T_STRING        const char \*
   T_OBJECT        PyObject \*
   T_OBJECT_EX     PyObject \*
   T_CHAR          char
   T_BYTE          char
   T_UBYTE         unsigned char
   T_UINT          unsigned int
   T_USHORT        unsigned short
   T_ULONG         unsigned long
   T_BOOL          char
   T_LONGLONG      long long
   T_ULONGLONG     unsigned long long
   T_PYSSIZET      Py_ssize_t
   =============== ==================

   :c:macro:`T_OBJECT` and :c:macro:`T_OBJECT_EX` differ in that
   :c:macro:`T_OBJECT` returns ``None`` if the member is ``NULL`` and
   :c:macro:`T_OBJECT_EX` raises an :exc:`AttributeError`.  Try to use
   :c:macro:`T_OBJECT_EX` over :c:macro:`T_OBJECT` because :c:macro:`T_OBJECT_EX`
   handles use of the :keyword:`del` statement on that attribute more correctly
   than :c:macro:`T_OBJECT`.

   :attr:`flags` can be ``0`` for write and read access or :c:macro:`READONLY` for
   read-only access.  Using :c:macro:`T_STRING` for :attr:`type` implies
   :c:macro:`READONLY`.  :c:macro:`T_STRING` data is interpreted as UTF-8.
   Only :c:macro:`T_OBJECT` and :c:macro:`T_OBJECT_EX`
   members can be deleted.  (They are set to ``NULL``).

   .. _pymemberdef-offsets:

   Heap allocated types (created using :c:func:`PyType_FromSpec` or similar),
   ``PyMemberDef`` may contain definitions for the special members
   ``__dictoffset__`` and ``__weaklistoffset__``, corresponding to
   :c:member:`~PyTypeObject.tp_dictoffset` and
   :c:member:`~PyTypeObject.tp_weaklistoffset` in type objects.
   These must be defined with ``T_PYSSIZET`` and ``READONLY``, for example::

      static PyMemberDef spam_type_members[] = {
          {"__dictoffset__", T_PYSSIZET, offsetof(Spam_object, dict), READONLY},
          {NULL}  /* Sentinel */
      };

.. c:type:: PyGetSetDef

   Structure to define property-like access for a type. See also description of
   the :c:member:`PyTypeObject.tp_getset` slot.

   +-------------+------------------+-----------------------------------+
   | Field       | C Type           | Meaning                           |
   +=============+==================+===================================+
   | name        | const char \*    | attribute name                    |
   +-------------+------------------+-----------------------------------+
   | get         | getter           | C Function to get the attribute   |
   +-------------+------------------+-----------------------------------+
   | set         | setter           | optional C function to set or     |
   |             |                  | delete the attribute, if omitted  |
   |             |                  | the attribute is readonly         |
   +-------------+------------------+-----------------------------------+
   | doc         | const char \*    | optional docstring                |
   +-------------+------------------+-----------------------------------+
   | closure     | void \*          | optional function pointer,        |
   |             |                  | providing additional data for     |
   |             |                  | getter and setter                 |
   +-------------+------------------+-----------------------------------+

   The ``get`` function takes one :c:type:`PyObject\*` parameter (the
   instance) and a function pointer (the associated ``closure``)::

      typedef PyObject *(*getter)(PyObject *, void *);

   It should return a new reference on success or ``NULL`` with a set exception
   on failure.

   ``set`` functions take two :c:type:`PyObject\*` parameters (the instance and
   the value to be set) and a function pointer (the associated ``closure``)::

      typedef int (*setter)(PyObject *, PyObject *, void *);

   In case the attribute should be deleted the second parameter is ``NULL``.
   Should return ``0`` on success or ``-1`` with a set exception on failure.