1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
|
\documentclass{manual}
\usepackage{distutils}
% $Id$
% TODO
% Document extension.read_setup_file
% Document build_clib command
%
\title{Distributing Python Modules}
\input{boilerplate}
\author{Greg Ward\\
Anthony Baxter}
\authoraddress{
\strong{Python Software Foundation}\\
Email: \email{distutils-sig@python.org}
}
\makeindex
\makemodindex
\begin{document}
\maketitle
\begin{abstract}
\noindent
This document describes the Python Distribution Utilities
(``Distutils'') from the module developer's point of view, describing
how to use the Distutils to make Python modules and extensions easily
available to a wider audience with very little overhead for
build/release/install mechanics.
\end{abstract}
% The ugly "%begin{latexonly}" pseudo-environment supresses the table
% of contents for HTML generation.
%
%begin{latexonly}
\tableofcontents
%end{latexonly}
\chapter{An Introduction to Distutils}
\label{intro}
This document covers using the Distutils to distribute your Python
modules, concentrating on the role of developer/distributor: if
you're looking for information on installing Python modules, you
should refer to the \citetitle[../inst/inst.html]{Installing Python
Modules} manual.
\section{Concepts \& Terminology}
\label{concepts}
Using the Distutils is quite simple, both for module developers and for
users/administrators installing third-party modules. As a developer,
your responsibilities (apart from writing solid, well-documented and
well-tested code, of course!) are:
\begin{itemize}
\item write a setup script (\file{setup.py} by convention)
\item (optional) write a setup configuration file
\item create a source distribution
\item (optional) create one or more built (binary) distributions
\end{itemize}
Each of these tasks is covered in this document.
Not all module developers have access to a multitude of platforms, so
it's not always feasible to expect them to create a multitude of built
distributions. It is hoped that a class of intermediaries, called
\emph{packagers}, will arise to address this need. Packagers will take
source distributions released by module developers, build them on one or
more platforms, and release the resulting built distributions. Thus,
users on the most popular platforms will be able to install most popular
Python module distributions in the most natural way for their platform,
without having to run a single setup script or compile a line of code.
\section{A Simple Example}
\label{simple-example}
The setup script is usually quite simple, although since it's written
in Python, there are no arbitrary limits to what you can do with it,
though you should be careful about putting arbitrarily expensive
operations in your setup script. Unlike, say, Autoconf-style configure
scripts, the setup script may be run multiple times in the course of
building and installing your module distribution.
If all you want to do is distribute a module called \module{foo},
contained in a file \file{foo.py}, then your setup script can be as
simple as this:
\begin{verbatim}
from distutils.core import setup
setup(name='foo',
version='1.0',
py_modules=['foo'],
)
\end{verbatim}
Some observations:
\begin{itemize}
\item most information that you supply to the Distutils is supplied as
keyword arguments to the \function{setup()} function
\item those keyword arguments fall into two categories: package
metadata (name, version number) and information about what's in the
package (a list of pure Python modules, in this case)
\item modules are specified by module name, not filename (the same will
hold true for packages and extensions)
\item it's recommended that you supply a little more metadata, in
particular your name, email address and a URL for the project
(see section~\ref{setup-script} for an example)
\end{itemize}
To create a source distribution for this module, you would create a
setup script, \file{setup.py}, containing the above code, and run:
\begin{verbatim}
python setup.py sdist
\end{verbatim}
which will create an archive file (e.g., tarball on \UNIX, ZIP file on
Windows) containing your setup script \file{setup.py}, and your module
\file{foo.py}. The archive file will be named \file{foo-1.0.tar.gz} (or
\file{.zip}), and will unpack into a directory \file{foo-1.0}.
If an end-user wishes to install your \module{foo} module, all she has
to do is download \file{foo-1.0.tar.gz} (or \file{.zip}), unpack it,
and---from the \file{foo-1.0} directory---run
\begin{verbatim}
python setup.py install
\end{verbatim}
which will ultimately copy \file{foo.py} to the appropriate directory
for third-party modules in their Python installation.
This simple example demonstrates some fundamental concepts of the
Distutils. First, both developers and installers have the same basic
user interface, i.e. the setup script. The difference is which
Distutils \emph{commands} they use: the \command{sdist} command is
almost exclusively for module developers, while \command{install} is
more often for installers (although most developers will want to install
their own code occasionally).
If you want to make things really easy for your users, you can create
one or more built distributions for them. For instance, if you are
running on a Windows machine, and want to make things easy for other
Windows users, you can create an executable installer (the most
appropriate type of built distribution for this platform) with the
\command{bdist\_wininst} command. For example:
\begin{verbatim}
python setup.py bdist_wininst
\end{verbatim}
will create an executable installer, \file{foo-1.0.win32.exe}, in the
current directory.
Other useful built distribution formats are RPM, implemented by the
\command{bdist\_rpm} command, Solaris \program{pkgtool}
(\command{bdist\_pkgtool}), and HP-UX \program{swinstall}
(\command{bdist_sdux}). For example, the following command will
create an RPM file called \file{foo-1.0.noarch.rpm}:
\begin{verbatim}
python setup.py bdist_rpm
\end{verbatim}
(The \command{bdist\_rpm} command uses the \command{rpm} executable,
therefore this has to be run on an RPM-based system such as Red Hat
Linux, SuSE Linux, or Mandrake Linux.)
You can find out what distribution formats are available at any time by
running
\begin{verbatim}
python setup.py bdist --help-formats
\end{verbatim}
\section{General Python terminology}
\label{python-terms}
If you're reading this document, you probably have a good idea of what
modules, extensions, and so forth are. Nevertheless, just to be sure
that everyone is operating from a common starting point, we offer the
following glossary of common Python terms:
\begin{description}
\item[module] the basic unit of code reusability in Python: a block of
code imported by some other code. Three types of modules concern us
here: pure Python modules, extension modules, and packages.
\item[pure Python module] a module written in Python and contained in a
single \file{.py} file (and possibly associated \file{.pyc} and/or
\file{.pyo} files). Sometimes referred to as a ``pure module.''
\item[extension module] a module written in the low-level language of
the Python implementation: C/\Cpp{} for Python, Java for Jython.
Typically contained in a single dynamically loadable pre-compiled
file, e.g. a shared object (\file{.so}) file for Python extensions on
\UNIX, a DLL (given the \file{.pyd} extension) for Python extensions
on Windows, or a Java class file for Jython extensions. (Note that
currently, the Distutils only handles C/\Cpp{} extensions for Python.)
\item[package] a module that contains other modules; typically contained
in a directory in the filesystem and distinguished from other
directories by the presence of a file \file{\_\_init\_\_.py}.
\item[root package] the root of the hierarchy of packages. (This isn't
really a package, since it doesn't have an \file{\_\_init\_\_.py}
file. But we have to call it something.) The vast majority of the
standard library is in the root package, as are many small, standalone
third-party modules that don't belong to a larger module collection.
Unlike regular packages, modules in the root package can be found in
many directories: in fact, every directory listed in \code{sys.path}
contributes modules to the root package.
\end{description}
\section{Distutils-specific terminology}
\label{distutils-term}
The following terms apply more specifically to the domain of
distributing Python modules using the Distutils:
\begin{description}
\item[module distribution] a collection of Python modules distributed
together as a single downloadable resource and meant to be installed
\emph{en masse}. Examples of some well-known module distributions are
Numeric Python, PyXML, PIL (the Python Imaging Library), or
mxBase. (This would be called a \emph{package}, except that term
is already taken in the Python context: a single module distribution
may contain zero, one, or many Python packages.)
\item[pure module distribution] a module distribution that contains only
pure Python modules and packages. Sometimes referred to as a ``pure
distribution.''
\item[non-pure module distribution] a module distribution that contains
at least one extension module. Sometimes referred to as a ``non-pure
distribution.''
\item[distribution root] the top-level directory of your source tree (or
source distribution); the directory where \file{setup.py} exists. Generally
\file{setup.py} will be run from this directory.
\end{description}
\chapter{Writing the Setup Script}
\label{setup-script}
The setup script is the centre of all activity in building,
distributing, and installing modules using the Distutils. The main
purpose of the setup script is to describe your module distribution to
the Distutils, so that the various commands that operate on your modules
do the right thing. As we saw in section~\ref{simple-example} above,
the setup script consists mainly of a call to \function{setup()}, and
most information supplied to the Distutils by the module developer is
supplied as keyword arguments to \function{setup()}.
Here's a slightly more involved example, which we'll follow for the next
couple of sections: the Distutils' own setup script. (Keep in mind that
although the Distutils are included with Python 1.6 and later, they also
have an independent existence so that Python 1.5.2 users can use them to
install other module distributions. The Distutils' own setup script,
shown here, is used to install the package into Python 1.5.2.)
\begin{verbatim}
#!/usr/bin/env python
from distutils.core import setup
setup(name='Distutils',
version='1.0',
description='Python Distribution Utilities',
author='Greg Ward',
author_email='gward@python.net',
url='http://www.python.org/sigs/distutils-sig/',
packages=['distutils', 'distutils.command'],
)
\end{verbatim}
There are only two differences between this and the trivial one-file
distribution presented in section~\ref{simple-example}: more
metadata, and the specification of pure Python modules by package,
rather than by module. This is important since the Distutils consist of
a couple of dozen modules split into (so far) two packages; an explicit
list of every module would be tedious to generate and difficult to
maintain. For more information on the additional meta-data, see
section~\ref{meta-data}.
Note that any pathnames (files or directories) supplied in the setup
script should be written using the \UNIX{} convention, i.e.
slash-separated. The Distutils will take care of converting this
platform-neutral representation into whatever is appropriate on your
current platform before actually using the pathname. This makes your
setup script portable across operating systems, which of course is one
of the major goals of the Distutils. In this spirit, all pathnames in
this document are slash-separated. (Mac OS programmers should keep in
mind that the \emph{absence} of a leading slash indicates a relative
path, the opposite of the Mac OS convention with colons.)
This, of course, only applies to pathnames given to Distutils
functions. If you, for example, use standard Python functions such as
\function{glob.glob()} or \function{os.listdir()} to specify files, you
should be careful to write portable code instead of hardcoding path
separators:
\begin{verbatim}
glob.glob(os.path.join('mydir', 'subdir', '*.html'))
os.listdir(os.path.join('mydir', 'subdir'))
\end{verbatim}
\subsection{Listing whole packages}
\label{listing-packages}
The \option{packages} option tells the Distutils to process (build,
distribute, install, etc.) all pure Python modules found in each package
mentioned in the \option{packages} list. In order to do this, of
course, there has to be a correspondence between package names and
directories in the filesystem. The default correspondence is the most
obvious one, i.e. package \module{distutils} is found in the directory
\file{distutils} relative to the distribution root. Thus, when you say
\code{packages = ['foo']} in your setup script, you are promising that
the Distutils will find a file \file{foo/\_\_init\_\_.py} (which might
be spelled differently on your system, but you get the idea) relative to
the directory where your setup script lives. If you break this
promise, the Distutils will issue a warning but still process the broken
package anyways.
If you use a different convention to lay out your source directory,
that's no problem: you just have to supply the \option{package\_dir}
option to tell the Distutils about your convention. For example, say
you keep all Python source under \file{lib}, so that modules in the
``root package'' (i.e., not in any package at all) are in
\file{lib}, modules in the \module{foo} package are in \file{lib/foo},
and so forth. Then you would put
\begin{verbatim}
package_dir = {'': 'lib'}
\end{verbatim}
in your setup script. The keys to this dictionary are package names,
and an empty package name stands for the root package. The values are
directory names relative to your distribution root. In this case, when
you say \code{packages = ['foo']}, you are promising that the file
\file{lib/foo/\_\_init\_\_.py} exists.
Another possible convention is to put the \module{foo} package right in
\file{lib}, the \module{foo.bar} package in \file{lib/bar}, etc. This
would be written in the setup script as
\begin{verbatim}
package_dir = {'foo': 'lib'}
\end{verbatim}
A \code{\var{package}: \var{dir}} entry in the \option{package\_dir}
dictionary implicitly applies to all packages below \var{package}, so
the \module{foo.bar} case is automatically handled here. In this
example, having \code{packages = ['foo', 'foo.bar']} tells the Distutils
to look for \file{lib/\_\_init\_\_.py} and
\file{lib/bar/\_\_init\_\_.py}. (Keep in mind that although
\option{package\_dir} applies recursively, you must explicitly list all
packages in \option{packages}: the Distutils will \emph{not} recursively
scan your source tree looking for any directory with an
\file{\_\_init\_\_.py} file.)
\subsection{Listing individual modules}
\label{listing-modules}
For a small module distribution, you might prefer to list all modules
rather than listing packages---especially the case of a single module
that goes in the ``root package'' (i.e., no package at all). This
simplest case was shown in section~\ref{simple-example}; here is a
slightly more involved example:
\begin{verbatim}
py_modules = ['mod1', 'pkg.mod2']
\end{verbatim}
This describes two modules, one of them in the ``root'' package, the
other in the \module{pkg} package. Again, the default package/directory
layout implies that these two modules can be found in \file{mod1.py} and
\file{pkg/mod2.py}, and that \file{pkg/\_\_init\_\_.py} exists as well.
And again, you can override the package/directory correspondence using
the \option{package\_dir} option.
\subsection{Describing extension modules}
\label{describing-extensions}
% XXX read over this section
Just as writing Python extension modules is a bit more complicated than
writing pure Python modules, describing them to the Distutils is a bit
more complicated. Unlike pure modules, it's not enough just to list
modules or packages and expect the Distutils to go out and find the
right files; you have to specify the extension name, source file(s), and
any compile/link requirements (include directories, libraries to link
with, etc.).
All of this is done through another keyword argument to
\function{setup()}, the \option{extensions} option. \option{extensions}
is just a list of \class{Extension} instances, each of which describes a
single extension module. Suppose your distribution includes a single
extension, called \module{foo} and implemented by \file{foo.c}. If no
additional instructions to the compiler/linker are needed, describing
this extension is quite simple:
\begin{verbatim}
Extension('foo', ['foo.c'])
\end{verbatim}
The \class{Extension} class can be imported from
\module{distutils.core} along with \function{setup()}. Thus, the setup
script for a module distribution that contains only this one extension
and nothing else might be:
\begin{verbatim}
from distutils.core import setup, Extension
setup(name='foo',
version='1.0',
ext_modules=[Extension('foo', ['foo.c'])],
)
\end{verbatim}
The \class{Extension} class (actually, the underlying extension-building
machinery implemented by the \command{build\_ext} command) supports a
great deal of flexibility in describing Python extensions, which is
explained in the following sections.
\subsubsection{Extension names and packages}
The first argument to the \class{Extension} constructor is always the
name of the extension, including any package names. For example,
\begin{verbatim}
Extension('foo', ['src/foo1.c', 'src/foo2.c'])
\end{verbatim}
describes an extension that lives in the root package, while
\begin{verbatim}
Extension('pkg.foo', ['src/foo1.c', 'src/foo2.c'])
\end{verbatim}
describes the same extension in the \module{pkg} package. The source
files and resulting object code are identical in both cases; the only
difference is where in the filesystem (and therefore where in Python's
namespace hierarchy) the resulting extension lives.
If you have a number of extensions all in the same package (or all under
the same base package), use the \option{ext\_package} keyword argument
to \function{setup()}. For example,
\begin{verbatim}
setup(...
ext_package='pkg',
ext_modules=[Extension('foo', ['foo.c']),
Extension('subpkg.bar', ['bar.c'])],
)
\end{verbatim}
will compile \file{foo.c} to the extension \module{pkg.foo}, and
\file{bar.c} to \module{pkg.subpkg.bar}.
\subsubsection{Extension source files}
The second argument to the \class{Extension} constructor is a list of
source files. Since the Distutils currently only support C, \Cpp, and
Objective-C extensions, these are normally C/\Cpp/Objective-C source
files. (Be sure to use appropriate extensions to distinguish \Cpp\
source files: \file{.cc} and \file{.cpp} seem to be recognized by both
\UNIX{} and Windows compilers.)
However, you can also include SWIG interface (\file{.i}) files in the
list; the \command{build\_ext} command knows how to deal with SWIG
extensions: it will run SWIG on the interface file and compile the
resulting C/\Cpp{} file into your extension.
\XXX{SWIG support is rough around the edges and largely untested;
especially SWIG support for \Cpp{} extensions! Explain in more detail
here when the interface firms up.}
On some platforms, you can include non-source files that are processed
by the compiler and included in your extension. Currently, this just
means Windows message text (\file{.mc}) files and resource definition
(\file{.rc}) files for Visual \Cpp. These will be compiled to binary resource
(\file{.res}) files and linked into the executable.
\subsubsection{Preprocessor options}
Three optional arguments to \class{Extension} will help if you need to
specify include directories to search or preprocessor macros to
define/undefine: \code{include\_dirs}, \code{define\_macros}, and
\code{undef\_macros}.
For example, if your extension requires header files in the
\file{include} directory under your distribution root, use the
\code{include\_dirs} option:
\begin{verbatim}
Extension('foo', ['foo.c'], include_dirs=['include'])
\end{verbatim}
You can specify absolute directories there; if you know that your
extension will only be built on \UNIX{} systems with X11R6 installed to
\file{/usr}, you can get away with
\begin{verbatim}
Extension('foo', ['foo.c'], include_dirs=['/usr/include/X11'])
\end{verbatim}
You should avoid this sort of non-portable usage if you plan to
distribute your code: it's probably better to write C code like
\begin{verbatim}
#include <X11/Xlib.h>
\end{verbatim}
If you need to include header files from some other Python extension,
you can take advantage of the fact that header files are installed in a
consistent way by the Distutils \command{install\_header} command. For
example, the Numerical Python header files are installed (on a standard
Unix installation) to \file{/usr/local/include/python1.5/Numerical}.
(The exact location will differ according to your platform and Python
installation.) Since the Python include
directory---\file{/usr/local/include/python1.5} in this case---is always
included in the search path when building Python extensions, the best
approach is to write C code like
\begin{verbatim}
#include <Numerical/arrayobject.h>
\end{verbatim}
If you must put the \file{Numerical} include directory right into your
header search path, though, you can find that directory using the
Distutils \refmodule{distutils.sysconfig} module:
\begin{verbatim}
from distutils.sysconfig import get_python_inc
incdir = os.path.join(get_python_inc(plat_specific=1), 'Numerical')
setup(...,
Extension(..., include_dirs=[incdir]),
)
\end{verbatim}
Even though this is quite portable---it will work on any Python
installation, regardless of platform---it's probably easier to just
write your C code in the sensible way.
You can define and undefine pre-processor macros with the
\code{define\_macros} and \code{undef\_macros} options.
\code{define\_macros} takes a list of \code{(name, value)} tuples, where
\code{name} is the name of the macro to define (a string) and
\code{value} is its value: either a string or \code{None}. (Defining a
macro \code{FOO} to \code{None} is the equivalent of a bare
\code{\#define FOO} in your C source: with most compilers, this sets
\code{FOO} to the string \code{1}.) \code{undef\_macros} is just
a list of macros to undefine.
For example:
\begin{verbatim}
Extension(...,
define_macros=[('NDEBUG', '1'),
('HAVE_STRFTIME', None)],
undef_macros=['HAVE_FOO', 'HAVE_BAR'])
\end{verbatim}
is the equivalent of having this at the top of every C source file:
\begin{verbatim}
#define NDEBUG 1
#define HAVE_STRFTIME
#undef HAVE_FOO
#undef HAVE_BAR
\end{verbatim}
\subsubsection{Library options}
You can also specify the libraries to link against when building your
extension, and the directories to search for those libraries. The
\code{libraries} option is a list of libraries to link against,
\code{library\_dirs} is a list of directories to search for libraries at
link-time, and \code{runtime\_library\_dirs} is a list of directories to
search for shared (dynamically loaded) libraries at run-time.
For example, if you need to link against libraries known to be in the
standard library search path on target systems
\begin{verbatim}
Extension(...,
libraries=['gdbm', 'readline'])
\end{verbatim}
If you need to link with libraries in a non-standard location, you'll
have to include the location in \code{library\_dirs}:
\begin{verbatim}
Extension(...,
library_dirs=['/usr/X11R6/lib'],
libraries=['X11', 'Xt'])
\end{verbatim}
(Again, this sort of non-portable construct should be avoided if you
intend to distribute your code.)
\XXX{Should mention clib libraries here or somewhere else!}
\subsubsection{Other options}
There are still some other options which can be used to handle special
cases.
The \option{extra\_objects} option is a list of object files to be passed
to the linker. These files must not have extensions, as the default
extension for the compiler is used.
\option{extra\_compile\_args} and \option{extra\_link\_args} can be used
to specify additional command line options for the respective compiler and
linker command lines.
\option{export\_symbols} is only useful on Windows. It can contain a list
of symbols (functions or variables) to be exported. This option
is not needed when building compiled extensions: Distutils
will automatically add \code{initmodule}
to the list of exported symbols.
\subsection{Installing Scripts}
So far we have been dealing with pure and non-pure Python modules,
which are usually not run by themselves but imported by scripts.
Scripts are files containing Python source code, intended to be
started from the command line. Scripts don't require Distutils to do
anything very complicated. The only clever feature is that if the
first line of the script starts with \code{\#!} and contains the word
``python'', the Distutils will adjust the first line to refer to the
current interpreter location.
The \option{scripts} option simply is a list of files to be handled
in this way. From the PyXML setup script:
\begin{verbatim}
setup(...
scripts=['scripts/xmlproc_parse', 'scripts/xmlproc_val']
)
\end{verbatim}
\subsection{Installing Additional Files}
The \option{data\_files} option can be used to specify additional
files needed by the module distribution: configuration files, message
catalogs, data files, anything which doesn't fit in the previous
categories.
\option{data\_files} specifies a sequence of (\var{directory},
\var{files}) pairs in the following way:
\begin{verbatim}
setup(...
data_files=[('bitmaps', ['bm/b1.gif', 'bm/b2.gif']),
('config', ['cfg/data.cfg']),
('/etc/init.d', ['init-script'])]
)
\end{verbatim}
Note that you can specify the directory names where the data files
will be installed, but you cannot rename the data files themselves.
Each (\var{directory}, \var{files}) pair in the sequence specifies the
installation directory and the files to install there. If
\var{directory} is a relative path, it is interpreted relative to the
installation prefix (Python's \code{sys.prefix} for pure-Python
packages, \code{sys.exec_prefix} for packages that contain extension
modules). Each file name in \var{files} is interpreted relative to
the \file{setup.py} script at the top of the package source
distribution. No directory information from \var{files} is used to
determine the final location of the installed file; only the name of
the file is used.
You can specify the \option{data\_files} options as a simple sequence
of files without specifying a target directory, but this is not recommended,
and the \command{install} command will print a warning in this case.
To install data files directly in the target directory, an empty
string should be given as the directory.
\subsection{Additional meta-data}
\label{meta-data}
The setup script may include additional meta-data beyond the name and
version. This information includes:
\begin{tableiv}{l|l|l|c}{code}%
{Meta-Data}{Description}{Value}{Notes}
\lineiv{name}{name of the package}
{short string}{(1)}
\lineiv{version}{version of this release}
{short string}{(1)(2)}
\lineiv{author}{package author's name}
{short string}{(3)}
\lineiv{author_email}{email address of the package author}
{email address}{(3)}
\lineiv{maintainer}{package maintainer's name}
{short string}{(3)}
\lineiv{maintainer_email}{email address of the package maintainer}
{email address}{(3)}
\lineiv{url}{home page for the package}
{URL}{(1)}
\lineiv{description}{short, summary description of the package}
{short string}{}
\lineiv{long_description}{longer description of the package}
{long string}{}
\lineiv{download_url}{location where the package may be downloaded}
{URL}{(4)}
\lineiv{classifiers}{a list of Trove classifiers}
{list of strings}{(4)}
\end{tableiv}
\noindent Notes:
\begin{description}
\item[(1)] These fields are required.
\item[(2)] It is recommended that versions take the form
\emph{major.minor\optional{.patch\optional{.sub}}}.
\item[(3)] Either the author or the maintainer must be identified.
\item[(4)] These fields should not be used if your package is to be
compatible with Python versions prior to 2.2.3 or 2.3. The list is
available from the \ulink{PyPI website}{http://www.python.org/pypi}.
\item['short string'] A single line of text, not more than 200 characters.
\item['long string'] Multiple lines of plain text in reStructuredText
format (see \url{http://docutils.sf.net/}).
\item['list of strings'] See below.
\end{description}
None of the string values may be Unicode.
Encoding the version information is an art in itself. Python packages
generally adhere to the version format
\emph{major.minor\optional{.patch}\optional{sub}}. The major number is
0 for
initial, experimental releases of software. It is incremented for
releases that represent major milestones in a package. The minor
number is incremented when important new features are added to the
package. The patch number increments when bug-fix releases are
made. Additional trailing version information is sometimes used to
indicate sub-releases. These are "a1,a2,...,aN" (for alpha releases,
where functionality and API may change), "b1,b2,...,bN" (for beta
releases, which only fix bugs) and "pr1,pr2,...,prN" (for final
pre-release release testing). Some examples:
\begin{description}
\item[0.1.0] the first, experimental release of a package
\item[1.0.1a2] the second alpha release of the first patch version of 1.0
\end{description}
\option{classifiers} are specified in a python list:
\begin{verbatim}
setup(...
classifiers=[
'Development Status :: 4 - Beta',
'Environment :: Console',
'Environment :: Web Environment',
'Intended Audience :: End Users/Desktop',
'Intended Audience :: Developers',
'Intended Audience :: System Administrators',
'License :: OSI Approved :: Python Software Foundation License',
'Operating System :: MacOS :: MacOS X',
'Operating System :: Microsoft :: Windows',
'Operating System :: POSIX',
'Programming Language :: Python',
'Topic :: Communications :: Email',
'Topic :: Office/Business',
'Topic :: Software Development :: Bug Tracking',
],
)
\end{verbatim}
If you wish to include classifiers in your \file{setup.py} file and also
wish to remain backwards-compatible with Python releases prior to 2.2.3,
then you can include the following code fragment in your \file{setup.py}
before the \function{setup()} call.
\begin{verbatim}
# patch distutils if it can't cope with the "classifiers" or
# "download_url" keywords
if sys.version < '2.2.3':
from distutils.dist import DistributionMetadata
DistributionMetadata.classifiers = None
DistributionMetadata.download_url = None
\end{verbatim}
\subsection{Debugging the setup script}
Sometimes things go wrong, and the setup script doesn't do what the
developer wants.
Distutils catches any exceptions when running the setup script, and
print a simple error message before the script is terminated. The
motivation for this behaviour is to not confuse administrators who
don't know much about Python and are trying to install a package. If
they get a big long traceback from deep inside the guts of Distutils,
they may think the package or the Python installation is broken
because they don't read all the way down to the bottom and see that
it's a permission problem.
On the other hand, this doesn't help the developer to find the cause
of the failure. For this purpose, the DISTUTILS_DEBUG environment
variable can be set to anything except an empty string, and distutils
will now print detailed information what it is doing, and prints the
full traceback in case an exception occurs.
\chapter{Writing the Setup Configuration File}
\label{setup-config}
Often, it's not possible to write down everything needed to build a
distribution \emph{a priori}: you may need to get some information from
the user, or from the user's system, in order to proceed. As long as
that information is fairly simple---a list of directories to search for
C header files or libraries, for example---then providing a
configuration file, \file{setup.cfg}, for users to edit is a cheap and
easy way to solicit it. Configuration files also let you provide
default values for any command option, which the installer can then
override either on the command-line or by editing the config file.
% (If you have more advanced needs, such as determining which extensions
% to build based on what capabilities are present on the target system,
% then you need the Distutils ``auto-configuration'' facility. This
% started to appear in Distutils 0.9 but, as of this writing, isn't mature
% or stable enough yet for real-world use.)
The setup configuration file is a useful middle-ground between the setup
script---which, ideally, would be opaque to installers\footnote{This
ideal probably won't be achieved until auto-configuration is fully
supported by the Distutils.}---and the command-line to the setup
script, which is outside of your control and entirely up to the
installer. In fact, \file{setup.cfg} (and any other Distutils
configuration files present on the target system) are processed after
the contents of the setup script, but before the command-line. This has
several useful consequences:
\begin{itemize}
\item installers can override some of what you put in \file{setup.py} by
editing \file{setup.cfg}
\item you can provide non-standard defaults for options that are not
easily set in \file{setup.py}
\item installers can override anything in \file{setup.cfg} using the
command-line options to \file{setup.py}
\end{itemize}
The basic syntax of the configuration file is simple:
\begin{verbatim}
[command]
option=value
...
\end{verbatim}
where \var{command} is one of the Distutils commands (e.g.
\command{build\_py}, \command{install}), and \var{option} is one of
the options that command supports. Any number of options can be
supplied for each command, and any number of command sections can be
included in the file. Blank lines are ignored, as are comments, which
run from a \character{\#} character until the end of the line. Long
option values can be split across multiple lines simply by indenting
the continuation lines.
You can find out the list of options supported by a particular command
with the universal \longprogramopt{help} option, e.g.
\begin{verbatim}
> python setup.py --help build_ext
[...]
Options for 'build_ext' command:
--build-lib (-b) directory for compiled extension modules
--build-temp (-t) directory for temporary files (build by-products)
--inplace (-i) ignore build-lib and put compiled extensions into the
source directory alongside your pure Python modules
--include-dirs (-I) list of directories to search for header files
--define (-D) C preprocessor macros to define
--undef (-U) C preprocessor macros to undefine
[...]
\end{verbatim}
Note that an option spelled \longprogramopt{foo-bar} on the command-line
is spelled \option{foo\_bar} in configuration files.
For example, say you want your extensions to be built
``in-place''---that is, you have an extension \module{pkg.ext}, and you
want the compiled extension file (\file{ext.so} on \UNIX, say) to be put
in the same source directory as your pure Python modules
\module{pkg.mod1} and \module{pkg.mod2}. You can always use the
\longprogramopt{inplace} option on the command-line to ensure this:
\begin{verbatim}
python setup.py build_ext --inplace
\end{verbatim}
But this requires that you always specify the \command{build\_ext}
command explicitly, and remember to provide \longprogramopt{inplace}.
An easier way is to ``set and forget'' this option, by encoding it in
\file{setup.cfg}, the configuration file for this distribution:
\begin{verbatim}
[build_ext]
inplace=1
\end{verbatim}
This will affect all builds of this module distribution, whether or not
you explcitly specify \command{build\_ext}. If you include
\file{setup.cfg} in your source distribution, it will also affect
end-user builds---which is probably a bad idea for this option, since
always building extensions in-place would break installation of the
module distribution. In certain peculiar cases, though, modules are
built right in their installation directory, so this is conceivably a
useful ability. (Distributing extensions that expect to be built in
their installation directory is almost always a bad idea, though.)
Another example: certain commands take a lot of options that don't
change from run to run; for example, \command{bdist\_rpm} needs to know
everything required to generate a ``spec'' file for creating an RPM
distribution. Some of this information comes from the setup script, and
some is automatically generated by the Distutils (such as the list of
files installed). But some of it has to be supplied as options to
\command{bdist\_rpm}, which would be very tedious to do on the
command-line for every run. Hence, here is a snippet from the
Distutils' own \file{setup.cfg}:
\begin{verbatim}
[bdist_rpm]
release = 1
packager = Greg Ward <gward@python.net>
doc_files = CHANGES.txt
README.txt
USAGE.txt
doc/
examples/
\end{verbatim}
Note that the \option{doc\_files} option is simply a
whitespace-separated string split across multiple lines for readability.
\begin{seealso}
\seetitle[../inst/config-syntax.html]{Installing Python
Modules}{More information on the configuration files is
available in the manual for system administrators.}
\end{seealso}
\chapter{Creating a Source Distribution}
\label{source-dist}
As shown in section~\ref{simple-example}, you use the
\command{sdist} command to create a source distribution. In the
simplest case,
\begin{verbatim}
python setup.py sdist
\end{verbatim}
(assuming you haven't specified any \command{sdist} options in the setup
script or config file), \command{sdist} creates the archive of the
default format for the current platform. The default format is a gzip'ed
tar file (\file{.tar.gz}) on \UNIX, and ZIP file on Windows.
\XXX{no Mac OS support here}
You can specify as many formats as you like using the
\longprogramopt{formats} option, for example:
\begin{verbatim}
python setup.py sdist --formats=gztar,zip
\end{verbatim}
to create a gzipped tarball and a zip file. The available formats are:
\begin{tableiii}{l|l|c}{code}%
{Format}{Description}{Notes}
\lineiii{zip}{zip file (\file{.zip})}{(1),(3)}
\lineiii{gztar}{gzip'ed tar file (\file{.tar.gz})}{(2),(4)}
\lineiii{bztar}{bzip2'ed tar file (\file{.tar.bz2})}{(4)}
\lineiii{ztar}{compressed tar file (\file{.tar.Z})}{(4)}
\lineiii{tar}{tar file (\file{.tar})}{(4)}
\end{tableiii}
\noindent Notes:
\begin{description}
\item[(1)] default on Windows
\item[(2)] default on \UNIX
\item[(3)] requires either external \program{zip} utility or
\module{zipfile} module (part of the standard Python library since
Python~1.6)
\item[(4)] requires external utilities: \program{tar} and possibly one
of \program{gzip}, \program{bzip2}, or \program{compress}
\end{description}
\subsection{Specifying the files to distribute}
\label{manifest}
If you don't supply an explicit list of files (or instructions on how to
generate one), the \command{sdist} command puts a minimal default set
into the source distribution:
\begin{itemize}
\item all Python source files implied by the \option{py\_modules} and
\option{packages} options
\item all C source files mentioned in the \option{ext\_modules} or
\option{libraries} options (\XXX{getting C library sources currently
broken---no \method{get_source_files()} method in \file{build_clib.py}!})
\item scripts identified by the \option{scripts} option
\item anything that looks like a test script: \file{test/test*.py}
(currently, the Distutils don't do anything with test scripts except
include them in source distributions, but in the future there will be
a standard for testing Python module distributions)
\item \file{README.txt} (or \file{README}), \file{setup.py} (or whatever
you called your setup script), and \file{setup.cfg}
\end{itemize}
Sometimes this is enough, but usually you will want to specify
additional files to distribute. The typical way to do this is to write
a \emph{manifest template}, called \file{MANIFEST.in} by default. The
manifest template is just a list of instructions for how to generate
your manifest file, \file{MANIFEST}, which is the exact list of files to
include in your source distribution. The \command{sdist} command
processes this template and generates a manifest based on its
instructions and what it finds in the filesystem.
If you prefer to roll your own manifest file, the format is simple: one
filename per line, regular files (or symlinks to them) only. If you do
supply your own \file{MANIFEST}, you must specify everything: the
default set of files described above does not apply in this case.
The manifest template has one command per line, where each command
specifies a set of files to include or exclude from the source
distribution. For an example, again we turn to the Distutils' own
manifest template:
\begin{verbatim}
include *.txt
recursive-include examples *.txt *.py
prune examples/sample?/build
\end{verbatim}
The meanings should be fairly clear: include all files in the
distribution root matching \file{*.txt}, all files anywhere under the
\file{examples} directory matching \file{*.txt} or \file{*.py}, and
exclude all directories matching \file{examples/sample?/build}. All of
this is done \emph{after} the standard include set, so you can exclude
files from the standard set with explicit instructions in the manifest
template. (Or, you can use the \longprogramopt{no-defaults} option to
disable the standard set entirely.) There are several other commands
available in the manifest template mini-language; see
section~\ref{sdist-cmd}.
The order of commands in the manifest template matters: initially, we
have the list of default files as described above, and each command in
the template adds to or removes from that list of files. Once we have
fully processed the manifest template, we remove files that should not
be included in the source distribution:
\begin{itemize}
\item all files in the Distutils ``build'' tree (default \file{build/})
\item all files in directories named \file{RCS} or \file{CVS}
\end{itemize}
Now we have our complete list of files, which is written to the manifest
for future reference, and then used to build the source distribution
archive(s).
You can disable the default set of included files with the
\longprogramopt{no-defaults} option, and you can disable the standard
exclude set with \longprogramopt{no-prune}.
Following the Distutils' own manifest template, let's trace how the
\command{sdist} command builds the list of files to include in the
Distutils source distribution:
\begin{enumerate}
\item include all Python source files in the \file{distutils} and
\file{distutils/command} subdirectories (because packages
corresponding to those two directories were mentioned in the
\option{packages} option in the setup script---see
section~\ref{setup-script})
\item include \file{README.txt}, \file{setup.py}, and \file{setup.cfg}
(standard files)
\item include \file{test/test*.py} (standard files)
\item include \file{*.txt} in the distribution root (this will find
\file{README.txt} a second time, but such redundancies are weeded out
later)
\item include anything matching \file{*.txt} or \file{*.py} in the
sub-tree under \file{examples},
\item exclude all files in the sub-trees starting at directories
matching \file{examples/sample?/build}---this may exclude files
included by the previous two steps, so it's important that the
\code{prune} command in the manifest template comes after the
\code{recursive-include} command
\item exclude the entire \file{build} tree, and any \file{RCS} or
\file{CVS} directories
\end{enumerate}
Just like in the setup script, file and directory names in the manifest
template should always be slash-separated; the Distutils will take care
of converting them to the standard representation on your platform.
That way, the manifest template is portable across operating systems.
\subsection{Manifest-related options}
\label{manifest-options}
The normal course of operations for the \command{sdist} command is as
follows:
\begin{itemize}
\item if the manifest file, \file{MANIFEST} doesn't exist, read
\file{MANIFEST.in} and create the manifest
\item if neither \file{MANIFEST} nor \file{MANIFEST.in} exist, create a
manifest with just the default file set
\item if either \file{MANIFEST.in} or the setup script (\file{setup.py})
are more recent than \file{MANIFEST}, recreate \file{MANIFEST} by
reading \file{MANIFEST.in}
\item use the list of files now in \file{MANIFEST} (either just
generated or read in) to create the source distribution archive(s)
\end{itemize}
There are a couple of options that modify this behaviour. First, use
the \longprogramopt{no-defaults} and \longprogramopt{no-prune} to
disable the standard ``include'' and ``exclude'' sets.
Second, you might want to force the manifest to be regenerated---for
example, if you have added or removed files or directories that match an
existing pattern in the manifest template, you should regenerate the
manifest:
\begin{verbatim}
python setup.py sdist --force-manifest
\end{verbatim}
Or, you might just want to (re)generate the manifest, but not create a
source distribution:
\begin{verbatim}
python setup.py sdist --manifest-only
\end{verbatim}
\longprogramopt{manifest-only} implies \longprogramopt{force-manifest}.
\programopt{-o} is a shortcut for \longprogramopt{manifest-only}, and
\programopt{-f} for \longprogramopt{force-manifest}.
\chapter{Creating Built Distributions}
\label{built-dist}
A ``built distribution'' is what you're probably used to thinking of
either as a ``binary package'' or an ``installer'' (depending on your
background). It's not necessarily binary, though, because it might
contain only Python source code and/or byte-code; and we don't call it a
package, because that word is already spoken for in Python. (And
``installer'' is a term specific to the world of mainstream desktop
systems.)
A built distribution is how you make life as easy as possible for
installers of your module distribution: for users of RPM-based Linux
systems, it's a binary RPM; for Windows users, it's an executable
installer; for Debian-based Linux users, it's a Debian package; and so
forth. Obviously, no one person will be able to create built
distributions for every platform under the sun, so the Distutils are
designed to enable module developers to concentrate on their
specialty---writing code and creating source distributions---while an
intermediary species called \emph{packagers} springs up to turn source
distributions into built distributions for as many platforms as there
are packagers.
Of course, the module developer could be his own packager; or the
packager could be a volunteer ``out there'' somewhere who has access to
a platform which the original developer does not; or it could be
software periodically grabbing new source distributions and turning them
into built distributions for as many platforms as the software has
access to. Regardless of who they are, a packager uses the
setup script and the \command{bdist} command family to generate built
distributions.
As a simple example, if I run the following command in the Distutils
source tree:
\begin{verbatim}
python setup.py bdist
\end{verbatim}
then the Distutils builds my module distribution (the Distutils itself
in this case), does a ``fake'' installation (also in the \file{build}
directory), and creates the default type of built distribution for my
platform. The default format for built distributions is a ``dumb'' tar
file on \UNIX, and a simple executable installer on Windows. (That tar
file is considered ``dumb'' because it has to be unpacked in a specific
location to work.)
Thus, the above command on a \UNIX{} system creates
\file{Distutils-1.0.\filevar{plat}.tar.gz}; unpacking this tarball
from the right place installs the Distutils just as though you had
downloaded the source distribution and run \code{python setup.py
install}. (The ``right place'' is either the root of the filesystem or
Python's \filevar{prefix} directory, depending on the options given to
the \command{bdist\_dumb} command; the default is to make dumb
distributions relative to \filevar{prefix}.)
Obviously, for pure Python distributions, this isn't any simpler than
just running \code{python setup.py install}---but for non-pure
distributions, which include extensions that would need to be
compiled, it can mean the difference between someone being able to use
your extensions or not. And creating ``smart'' built distributions,
such as an RPM package or an executable installer for Windows, is far
more convenient for users even if your distribution doesn't include
any extensions.
The \command{bdist} command has a \longprogramopt{formats} option,
similar to the \command{sdist} command, which you can use to select the
types of built distribution to generate: for example,
\begin{verbatim}
python setup.py bdist --format=zip
\end{verbatim}
would, when run on a \UNIX{} system, create
\file{Distutils-1.0.\filevar{plat}.zip}---again, this archive would be
unpacked from the root directory to install the Distutils.
The available formats for built distributions are:
\begin{tableiii}{l|l|c}{code}%
{Format}{Description}{Notes}
\lineiii{gztar}{gzipped tar file (\file{.tar.gz})}{(1),(3)}
\lineiii{ztar}{compressed tar file (\file{.tar.Z})}{(3)}
\lineiii{tar}{tar file (\file{.tar})}{(3)}
\lineiii{zip}{zip file (\file{.zip})}{(4)}
\lineiii{rpm}{RPM}{(5)}
\lineiii{pkgtool}{Solaris \program{pkgtool}}{}
\lineiii{sdux}{HP-UX \program{swinstall}}{}
\lineiii{rpm}{RPM}{(5)}
% \lineiii{srpm}{source RPM}{(5) \XXX{to do!}}
\lineiii{wininst}{self-extracting ZIP file for Windows}{(2),(4)}
\end{tableiii}
\noindent Notes:
\begin{description}
\item[(1)] default on \UNIX
\item[(2)] default on Windows \XXX{to-do!}
\item[(3)] requires external utilities: \program{tar} and possibly one
of \program{gzip}, \program{bzip2}, or \program{compress}
\item[(4)] requires either external \program{zip} utility or
\module{zipfile} module (part of the standard Python library since
Python~1.6)
\item[(5)] requires external \program{rpm} utility, version 3.0.4 or
better (use \code{rpm --version} to find out which version you have)
\end{description}
You don't have to use the \command{bdist} command with the
\longprogramopt{formats} option; you can also use the command that
directly implements the format you're interested in. Some of these
\command{bdist} ``sub-commands'' actually generate several similar
formats; for instance, the \command{bdist\_dumb} command generates all
the ``dumb'' archive formats (\code{tar}, \code{ztar}, \code{gztar}, and
\code{zip}), and \command{bdist\_rpm} generates both binary and source
RPMs. The \command{bdist} sub-commands, and the formats generated by
each, are:
\begin{tableii}{l|l}{command}%
{Command}{Formats}
\lineii{bdist\_dumb}{tar, ztar, gztar, zip}
\lineii{bdist\_rpm}{rpm, srpm}
\lineii{bdist\_wininst}{wininst}
\end{tableii}
The following sections give details on the individual \command{bdist\_*}
commands.
\subsection{Creating dumb built distributions}
\label{creating-dumb}
\XXX{Need to document absolute vs. prefix-relative packages here, but
first I have to implement it!}
\subsection{Creating RPM packages}
\label{creating-rpms}
The RPM format is used by many popular Linux distributions, including
Red Hat, SuSE, and Mandrake. If one of these (or any of the other
RPM-based Linux distributions) is your usual environment, creating RPM
packages for other users of that same distribution is trivial.
Depending on the complexity of your module distribution and differences
between Linux distributions, you may also be able to create RPMs that
work on different RPM-based distributions.
The usual way to create an RPM of your module distribution is to run the
\command{bdist\_rpm} command:
\begin{verbatim}
python setup.py bdist_rpm
\end{verbatim}
or the \command{bdist} command with the \longprogramopt{format} option:
\begin{verbatim}
python setup.py bdist --formats=rpm
\end{verbatim}
The former allows you to specify RPM-specific options; the latter allows
you to easily specify multiple formats in one run. If you need to do
both, you can explicitly specify multiple \command{bdist\_*} commands
and their options:
\begin{verbatim}
python setup.py bdist_rpm --packager="John Doe <jdoe@example.org>" \
bdist_wininst --target_version="2.0"
\end{verbatim}
Creating RPM packages is driven by a \file{.spec} file, much as using
the Distutils is driven by the setup script. To make your life easier,
the \command{bdist\_rpm} command normally creates a \file{.spec} file
based on the information you supply in the setup script, on the command
line, and in any Distutils configuration files. Various options and
sections in the \file{.spec} file are derived from options in the setup
script as follows:
\begin{tableii}{l|l}{textrm}%
{RPM \file{.spec} file option or section}{Distutils setup script option}
\lineii{Name}{\option{name}}
\lineii{Summary (in preamble)}{\option{description}}
\lineii{Version}{\option{version}}
\lineii{Vendor}{\option{author} and \option{author\_email}, or \\&
\option{maintainer} and \option{maintainer\_email}}
\lineii{Copyright}{\option{licence}}
\lineii{Url}{\option{url}}
\lineii{\%description (section)}{\option{long\_description}}
\end{tableii}
Additionally, there many options in \file{.spec} files that don't have
corresponding options in the setup script. Most of these are handled
through options to the \command{bdist\_rpm} command as follows:
\begin{tableiii}{l|l|l}{textrm}%
{RPM \file{.spec} file option or section}%
{\command{bdist\_rpm} option}%
{default value}
\lineiii{Release}{\option{release}}{``1''}
\lineiii{Group}{\option{group}}{``Development/Libraries''}
\lineiii{Vendor}{\option{vendor}}{(see above)}
\lineiii{Packager}{\option{packager}}{(none)}
\lineiii{Provides}{\option{provides}}{(none)}
\lineiii{Requires}{\option{requires}}{(none)}
\lineiii{Conflicts}{\option{conflicts}}{(none)}
\lineiii{Obsoletes}{\option{obsoletes}}{(none)}
\lineiii{Distribution}{\option{distribution\_name}}{(none)}
\lineiii{BuildRequires}{\option{build\_requires}}{(none)}
\lineiii{Icon}{\option{icon}}{(none)}
\end{tableiii}
Obviously, supplying even a few of these options on the command-line
would be tedious and error-prone, so it's usually best to put them in
the setup configuration file, \file{setup.cfg}---see
section~\ref{setup-config}. If you distribute or package many Python
module distributions, you might want to put options that apply to all of
them in your personal Distutils configuration file
(\file{\textasciitilde/.pydistutils.cfg}).
There are three steps to building a binary RPM package, all of which are
handled automatically by the Distutils:
\begin{enumerate}
\item create a \file{.spec} file, which describes the package (analogous
to the Distutils setup script; in fact, much of the information in the
setup script winds up in the \file{.spec} file)
\item create the source RPM
\item create the ``binary'' RPM (which may or may not contain binary
code, depending on whether your module distribution contains Python
extensions)
\end{enumerate}
Normally, RPM bundles the last two steps together; when you use the
Distutils, all three steps are typically bundled together.
If you wish, you can separate these three steps. You can use the
\longprogramopt{spec-only} option to make \command{bdist_rpm} just
create the \file{.spec} file and exit; in this case, the \file{.spec}
file will be written to the ``distribution directory''---normally
\file{dist/}, but customizable with the \longprogramopt{dist-dir}
option. (Normally, the \file{.spec} file winds up deep in the ``build
tree,'' in a temporary directory created by \command{bdist_rpm}.)
% \XXX{this isn't implemented yet---is it needed?!}
% You can also specify a custom \file{.spec} file with the
% \longprogramopt{spec-file} option; used in conjunction with
% \longprogramopt{spec-only}, this gives you an opportunity to customize
% the \file{.spec} file manually:
%
% \begin{verbatim}
% > python setup.py bdist_rpm --spec-only
% # ...edit dist/FooBar-1.0.spec
% > python setup.py bdist_rpm --spec-file=dist/FooBar-1.0.spec
% \end{verbatim}
%
% (Although a better way to do this is probably to override the standard
% \command{bdist\_rpm} command with one that writes whatever else you want
% to the \file{.spec} file.)
\subsection{Creating Windows Installers}
\label{creating-wininst}
Executable installers are the natural format for binary distributions
on Windows. They display a nice graphical user interface, display
some information about the module distribution to be installed taken
from the metadata in the setup script, let the user select a few
options, and start or cancel the installation.
Since the metadata is taken from the setup script, creating Windows
installers is usually as easy as running:
\begin{verbatim}
python setup.py bdist_wininst
\end{verbatim}
or the \command{bdist} command with the \longprogramopt{formats} option:
\begin{verbatim}
python setup.py bdist --formats=wininst
\end{verbatim}
If you have a pure module distribution (only containing pure Python
modules and packages), the resulting installer will be version
independent and have a name like \file{foo-1.0.win32.exe}. These
installers can even be created on \UNIX{} or Mac OS platforms.
If you have a non-pure distribution, the extensions can only be
created on a Windows platform, and will be Python version dependent.
The installer filename will reflect this and now has the form
\file{foo-1.0.win32-py2.0.exe}. You have to create a separate installer
for every Python version you want to support.
The installer will try to compile pure modules into bytecode after
installation on the target system in normal and optimizing mode. If
you don't want this to happen for some reason, you can run the
\command{bdist_wininst} command with the
\longprogramopt{no-target-compile} and/or the
\longprogramopt{no-target-optimize} option.
By default the installer will display the cool ``Python Powered'' logo
when it is run, but you can also supply your own bitmap which must be
a Windows \file{.bmp} file with the \longprogramopt{bitmap} option.
The installer will also display a large title on the desktop
background window when it is run, which is constructed from the name
of your distribution and the version number. This can be changed to
another text by using the \longprogramopt{title} option.
The installer file will be written to the ``distribution directory''
--- normally \file{dist/}, but customizable with the
\longprogramopt{dist-dir} option.
\subsubsection{The Postinstallation script}
\label{postinstallation-script}
Starting with Python 2.3, a postinstallation script can be specified
which the \longprogramopt{install-script} option. The basename of the
script must be specified, and the script filename must also be listed
in the scripts argument to the setup function.
This script will be run at installation time on the target system
after all the files have been copied, with \code{argv[1]} set to
\programopt{-install}, and again at uninstallation time before the
files are removed with \code{argv[1]} set to \programopt{-remove}.
The installation script runs embedded in the windows installer, every
output (\code{sys.stdout}, \code{sys.stderr}) is redirected into a
buffer and will be displayed in the GUI after the script has finished.
Some functions especially useful in this context are available as
additional built-in functions in the installation script.
\begin{funcdesc}{directory_created}{path}
\funcline{file_created}{path}
These functions should be called when a directory or file is created
by the postinstall script at installation time. It will register
\var{path} with the uninstaller, so that it will be removed when the
distribution is uninstalled. To be safe, directories are only removed
if they are empty.
\end{funcdesc}
\begin{funcdesc}{get_special_folder_path}{csidl_string}
This function can be used to retrieve special folder locations on
Windows like the Start Menu or the Desktop. It returns the full
path to the folder. \var{csidl_string} must be one of the following
strings:
\begin{verbatim}
"CSIDL_APPDATA"
"CSIDL_COMMON_STARTMENU"
"CSIDL_STARTMENU"
"CSIDL_COMMON_DESKTOPDIRECTORY"
"CSIDL_DESKTOPDIRECTORY"
"CSIDL_COMMON_STARTUP"
"CSIDL_STARTUP"
"CSIDL_COMMON_PROGRAMS"
"CSIDL_PROGRAMS"
"CSIDL_FONTS"
\end{verbatim}
If the folder cannot be retrieved, \exception{OSError} is raised.
Which folders are available depends on the exact Windows version,
and probably also the configuration. For details refer to
Microsoft's documentation of the
\cfunction{SHGetSpecialFolderPath()} function.
\end{funcdesc}
\begin{funcdesc}{create_shortcut}{target, description,
filename\optional{,
arguments\optional{,
workdir\optional{,
iconpath\optional{, iconindex}}}}}
This function creates a shortcut.
\var{target} is the path to the program to be started by the shortcut.
\var{description} is the description of the sortcut.
\var{filename} is the title of the shortcut that the user will see.
\var{arguments} specifies the command line arguments, if any.
\var{workdir} is the working directory for the program.
\var{iconpath} is the file containing the icon for the shortcut,
and \var{iconindex} is the index of the icon in the file
\var{iconpath}. Again, for details consult the Microsoft
documentation for the \class{IShellLink} interface.
\end{funcdesc}
\chapter{Registering with the Package Index}
\label{package-index}
The Python Package Index (PyPI) holds meta-data describing distributions
packaged with distutils. The distutils command \command{register} is
used to submit your distribution's meta-data to the index. It is invoked
as follows:
\begin{verbatim}
python setup.py register
\end{verbatim}
Distutils will respond with the following prompt:
\begin{verbatim}
running register
We need to know who you are, so please choose either:
1. use your existing login,
2. register as a new user,
3. have the server generate a new password for you (and email it to you), or
4. quit
Your selection [default 1]:
\end{verbatim}
\noindent Note: if your username and password are saved locally, you will
not see this menu.
If you have not registered with PyPI, then you will need to do so now. You
should choose option 2, and enter your details as required. Soon after
submitting your details, you will receive an email which will be used to
confirm your registration.
Once you are registered, you may choose option 1 from the menu. You will
be prompted for your PyPI username and password, and \command{register}
will then submit your meta-data to the index.
You may submit any number of versions of your distribution to the index. If
you alter the meta-data for a particular version, you may submit it again
and the index will be updated.
PyPI holds a record for each (name, version) combination submitted. The
first user to submit information for a given name is designated the Owner
of that name. They may submit changes through the \command{register}
command or through the web interface. They may also designate other users
as Owners or Maintainers. Maintainers may edit the package information, but
not designate other Owners or Maintainers.
By default PyPI will list all versions of a given package. To hide certain
versions, the Hidden property should be set to yes. This must be edited
through the web interface.
\chapter{Examples}
\label{examples}
\section{Pure Python distribution (by module)}
\label{pure-mod}
If you're just distributing a couple of modules, especially if they
don't live in a particular package, you can specify them individually
using the \option{py\_modules} option in the setup script.
In the simplest case, you'll have two files to worry about: a setup
script and the single module you're distributing, \file{foo.py} in this
example:
\begin{verbatim}
<root>/
setup.py
foo.py
\end{verbatim}
(In all diagrams in this section, \verb|<root>| will refer to the
distribution root directory.) A minimal setup script to describe this
situation would be:
\begin{verbatim}
from distutils.core import setup
setup(name='foo',
version='1.0',
py_modules=['foo'],
)
\end{verbatim}
Note that the name of the distribution is specified independently with
the \option{name} option, and there's no rule that says it has to be the
same as the name of the sole module in the distribution (although that's
probably a good convention to follow). However, the distribution name
is used to generate filenames, so you should stick to letters, digits,
underscores, and hyphens.
Since \option{py\_modules} is a list, you can of course specify multiple
modules, eg. if you're distributing modules \module{foo} and
\module{bar}, your setup might look like this:
\begin{verbatim}
<root>/
setup.py
foo.py
bar.py
\end{verbatim}
and the setup script might be
\begin{verbatim}
from distutils.core import setup
setup(name='foobar',
version='1.0',
py_modules=['foo', 'bar'],
)
\end{verbatim}
You can put module source files into another directory, but if you have
enough modules to do that, it's probably easier to specify modules by
package rather than listing them individually.
\section{Pure Python distribution (by package)}
\label{pure-pkg}
If you have more than a couple of modules to distribute, especially if
they are in multiple packages, it's probably easier to specify whole
packages rather than individual modules. This works even if your
modules are not in a package; you can just tell the Distutils to process
modules from the root package, and that works the same as any other
package (except that you don't have to have an \file{\_\_init\_\_.py}
file).
The setup script from the last example could also be written as
\begin{verbatim}
from distutils.core import setup
setup(name='foobar',
version='1.0',
packages=[''],
)
\end{verbatim}
(The empty string stands for the root package.)
If those two files are moved into a subdirectory, but remain in the root
package, e.g.:
\begin{verbatim}
<root>/
setup.py
src/ foo.py
bar.py
\end{verbatim}
then you would still specify the root package, but you have to tell the
Distutils where source files in the root package live:
\begin{verbatim}
from distutils.core import setup
setup(name='foobar',
version='1.0',
package_dir={'': 'src'},
packages=[''],
)
\end{verbatim}
More typically, though, you will want to distribute multiple modules in
the same package (or in sub-packages). For example, if the \module{foo}
and \module{bar} modules belong in package \module{foobar}, one way to
layout your source tree is
\begin{verbatim}
<root>/
setup.py
foobar/
__init__.py
foo.py
bar.py
\end{verbatim}
This is in fact the default layout expected by the Distutils, and the
one that requires the least work to describe in your setup script:
\begin{verbatim}
from distutils.core import setup
setup(name='foobar',
version='1.0',
packages=['foobar'],
)
\end{verbatim}
If you want to put modules in directories not named for their package,
then you need to use the \option{package\_dir} option again. For
example, if the \file{src} directory holds modules in the
\module{foobar} package:
\begin{verbatim}
<root>/
setup.py
src/
__init__.py
foo.py
bar.py
\end{verbatim}
an appropriate setup script would be
\begin{verbatim}
from distutils.core import setup
setup(name='foobar',
version='1.0',
package_dir={'foobar': 'src'},
packages=['foobar'],
)
\end{verbatim}
Or, you might put modules from your main package right in the
distribution root:
\begin{verbatim}
<root>/
setup.py
__init__.py
foo.py
bar.py
\end{verbatim}
in which case your setup script would be
\begin{verbatim}
from distutils.core import setup
setup(name='foobar',
version='1.0',
package_dir={'foobar': ''},
packages=['foobar'],
)
\end{verbatim}
(The empty string also stands for the current directory.)
If you have sub-packages, they must be explicitly listed in
\option{packages}, but any entries in \option{package\_dir}
automatically extend to sub-packages. (In other words, the Distutils
does \emph{not} scan your source tree, trying to figure out which
directories correspond to Python packages by looking for
\file{\_\_init\_\_.py} files.) Thus, if the default layout grows a
sub-package:
\begin{verbatim}
<root>/
setup.py
foobar/
__init__.py
foo.py
bar.py
subfoo/
__init__.py
blah.py
\end{verbatim}
then the corresponding setup script would be
\begin{verbatim}
from distutils.core import setup
setup(name='foobar',
version='1.0',
packages=['foobar', 'foobar.subfoo'],
)
\end{verbatim}
(Again, the empty string in \option{package\_dir} stands for the current
directory.)
\section{Single extension module}
\label{single-ext}
Extension modules are specified using the \option{ext\_modules} option.
\option{package\_dir} has no effect on where extension source files are
found; it only affects the source for pure Python modules. The simplest
case, a single extension module in a single C source file, is:
\begin{verbatim}
<root>/
setup.py
foo.c
\end{verbatim}
If the \module{foo} extension belongs in the root package, the setup
script for this could be
\begin{verbatim}
from distutils.core import setup
setup(name='foobar',
version='1.0',
ext_modules=[Extension('foo', ['foo.c'])],
)
\end{verbatim}
If the extension actually belongs in a package, say \module{foopkg},
then
With exactly the same source tree layout, this extension can be put in
the \module{foopkg} package simply by changing the name of the
extension:
\begin{verbatim}
from distutils.core import setup
setup(name='foobar',
version='1.0',
ext_modules=[Extension('foopkg.foo', ['foo.c'])],
)
\end{verbatim}
%\section{Multiple extension modules}
%\label{multiple-ext}
%\section{Putting it all together}
%\chapter{Extending the Distutils}
%\label{extending}
%\section{Extending existing commands}
%\label{extend-existing}
%\section{Writing new commands}
%\label{new-commands}
%\XXX{Would an uninstall command be a good example here?}
\chapter{Command Reference}
\label{reference}
%\subsection{Building modules: the \protect\command{build} command family}
%\label{build-cmds}
%\subsubsection{\protect\command{build}}
%\label{build-cmd}
%\subsubsection{\protect\command{build\_py}}
%\label{build-py-cmd}
%\subsubsection{\protect\command{build\_ext}}
%\label{build-ext-cmd}
%\subsubsection{\protect\command{build\_clib}}
%\label{build-clib-cmd}
\section{Installing modules: the \protect\command{install} command family}
\label{install-cmd}
The install command ensures that the build commands have been run and then
runs the subcommands \command{install\_lib},
\command{install\_data} and
\command{install\_scripts}.
%\subsubsection{\protect\command{install\_lib}}
%\label{install-lib-cmd}
\subsection{\protect\command{install\_data}}
\label{install-data-cmd}
This command installs all data files provided with the distribution.
\subsection{\protect\command{install\_scripts}}
\label{install-scripts-cmd}
This command installs all (Python) scripts in the distribution.
%\subsection{Cleaning up: the \protect\command{clean} command}
%\label{clean-cmd}
\section{Creating a source distribution: the
\protect\command{sdist} command}
\label{sdist-cmd}
\XXX{fragment moved down from above: needs context!}
The manifest template commands are:
\begin{tableii}{ll}{command}{Command}{Description}
\lineii{include \var{pat1} \var{pat2} ... }
{include all files matching any of the listed patterns}
\lineii{exclude \var{pat1} \var{pat2} ... }
{exclude all files matching any of the listed patterns}
\lineii{recursive-include \var{dir} \var{pat1} \var{pat2} ... }
{include all files under \var{dir} matching any of the listed patterns}
\lineii{recursive-exclude \var{dir} \var{pat1} \var{pat2} ...}
{exclude all files under \var{dir} matching any of the listed patterns}
\lineii{global-include \var{pat1} \var{pat2} ...}
{include all files anywhere in the source tree matching\\&
any of the listed patterns}
\lineii{global-exclude \var{pat1} \var{pat2} ...}
{exclude all files anywhere in the source tree matching\\&
any of the listed patterns}
\lineii{prune \var{dir}}{exclude all files under \var{dir}}
\lineii{graft \var{dir}}{include all files under \var{dir}}
\end{tableii}
The patterns here are \UNIX-style ``glob'' patterns: \code{*} matches any
sequence of regular filename characters, \code{?} matches any single
regular filename character, and \code{[\var{range}]} matches any of the
characters in \var{range} (e.g., \code{a-z}, \code{a-zA-Z},
\code{a-f0-9\_.}). The definition of ``regular filename character'' is
platform-specific: on \UNIX{} it is anything except slash; on Windows
anything except backslash or colon; on Mac OS anything except colon.
\XXX{Windows and Mac OS support not there yet}
%\section{Creating a built distribution: the
% \protect\command{bdist} command family}
%\label{bdist-cmds}
%\subsection{\protect\command{bdist}}
%\subsection{\protect\command{bdist\_dumb}}
%\subsection{\protect\command{bdist\_rpm}}
%\subsection{\protect\command{bdist\_wininst}}
\chapter{API Reference \label{api-reference}}
\section{\module{distutils.core} --- Core Distutils functionality}
\declaremodule{standard}{distutils.core}
\modulesynopsis{The core Distutils functionality}
The \module{distutils.core} module is the only module that needs to be
installed to use the Distutils. It provides the \function{setup()} (which
is called from the setup script). Indirectly provides the
\class{distutils.dist.Distribution} and \class{distutils.cmd.Command} class.
\begin{funcdesc}{setup}{arguments}
The basic do-everything function that does most everything you could ever
ask for from a Distutils method. See XXXXX
The setup function takes a large number of arguments. These
are laid out in the following table.
\begin{tableiii}{c|l|l}{argument name}{argument name}{value}{type}
\lineiii{name}{The name of the package}{a string}
\lineiii{version}{The version number of the package}{See \refmodule{distutils.version}}
\lineiii{description}{A single line describing the package}{a string}
\lineiii{long_description}{Longer description of the package}{a string}
\lineiii{author}{The name of the package author}{a string}
\lineiii{author_email}{The email address of the package author}{a string}
\lineiii{maintainer}{The name of the current maintainer, if different from the author}{a string}
\lineiii{maintainer_email}{The email address of the current maintainer, if different from the author}{}
\lineiii{url}{A URL for the package (homepage)}{a URL}
\lineiii{download_url}{A URL to download the package}{a URL}
\lineiii{packages}{A list of Python packages that distutils will manipulate}{a list of strings}
\lineiii{py_modules}{A list of Python modules that distutils will manipulate}{a list of strings}
\lineiii{scripts}{A list of standalone script files to be built and installed}{a list of strings}
\lineiii{ext_modules}{A list of Python extensions to be built}{A list of
instances of \class{distutils.core.Extension}}
\lineiii{classifiers}{A list of Trove categories for the package}{XXX link to better definition}
\lineiii{distclass}{the \class{Distribution} class to use}{A subclass of \class{distutils.core.Distribution}}
% What on earth is the use case for script_name?
\lineiii{script_name}{The name of the setup.py script - defaults to \code{sys.argv[0]}}{a string}
\lineiii{script_args}{Arguments to supply to the setup script}{a list of strings}
\lineiii{options}{default options for the setup script}{a string}
\lineiii{license}{The license for the package}{}
\lineiii{keywords}{Descriptive meta-data. See \pep{314}}{}
\lineiii{platforms}{}{}
\lineiii{cmdclass}{A mapping of command names to \class{Command} subclasses}{a dictionary}
\end{tableiii}
\end{funcdesc}
\begin{funcdesc}{run_setup}{script_name\optional{, script_args=\code{None}, stop_after=\code{'run'}}}
Run a setup script in a somewhat controlled environment, and return
the \class{distutils.dist.Distribution} instance that drives things.
This is useful if you need to find out the distribution meta-data
(passed as keyword args from \var{script} to \function{setup()}), or
the contents of the config files or command-line.
\var{script_name} is a file that will be run with \function{execfile()}
\var{sys.argv[0]} will be replaced with \var{script} for the duration of the
call. \var{script_args} is a list of strings; if supplied,
\var{sys.argv[1:]} will be replaced by \var{script_args} for the duration
of the call.
\var{stop_after} tells \function{setup()} when to stop processing; possible
values:
\begin{tableii}{c|l}{value}{value}{description}
\lineii{init}{Stop after the \class{Distribution} instance has been created
and populated with the keyword arguments to \function{setup()}}
\lineii{config}{Stop after config files have been parsed (and their data
stored in the \class{Distribution} instance)}
\lineii{commandline}{Stop after the command-line (\code{sys.argv[1:]} or
\var{script_args}) have been parsed (and the data stored in the
\class{Distribution} instance.)}
\lineii{run}{Stop after all commands have been run (the same as
if \function{setup()} had been called in the usual way). This is the default
value.}
\end{tableii}
\end{funcdesc}
In addition, the \module{distutils.core} module exposed a number of
classes that live elsewhere.
\begin{itemize}
\item \class{Extension} from \refmodule{distutils.extension}
\item \class{Command} from \refmodule{distutils.cmd}
\item \class{Distribution} from \refmodule{distutils.dist}
\end{itemize}
A short description of each of these follows, but see the relevant
module for the full reference.
\begin{classdesc*}{Extension}
The Extension class describes a single C or \Cpp extension module in a
setup script. It accepts the following keyword arguments in it's
constructor
\begin{tableiii}{c|l|l}{argument name}{argument name}{value}{type}
\lineiii{name}{the full name of the extension, including any packages
--- ie. \emph{not} a filename or pathname, but Python dotted name}{string}
\lineiii{sources}{list of source filenames, relative to the distribution
root (where the setup script lives), in Unix form (slash-separated) for
portability. Source files may be C, \Cpp, SWIG (.i), platform-specific
resource files, or whatever else is recognized by the \command{build_ext}
command as source for a Python extension.}{string}
\lineiii{include_dirs}{list of directories to search for C/\Cpp{} header
files (in \UNIX{} form for portability)}{string}
\lineiii{define_macros}{list of macros to define; each macro is defined
using a 2-tuple, where 'value' is either the string to define it to or
\code{None} to define it without a particular value (equivalent of
\code{\#define FOO} in source or \programopt{-DFOO} on \UNIX{} C
compiler command line) }{ (string,string)
tuple or (name,\code{None}) }
\lineiii{undef_macros}{list of macros to undefine explicitly}{string}
\lineiii{library_dirs}{list of directories to search for C/\Cpp{} libraries
at link time }{string}
\lineiii{libraries}{list of library names (not filenames or paths) to
link against }{string}
\lineiii{runtime_library_dirs}{list of directories to search for C/\Cpp{}
libraries at run time (for shared extensions, this is when the extension
is loaded)}{string}
\lineiii{extra_objects}{list of extra files to link with (eg. object
files not implied by 'sources', static library that must be explicitly
specified, binary resource files, etc.)}{string}
\lineiii{extra_compile_args}{any extra platform- and compiler-specific
information to use when compiling the source files in 'sources'. For
platforms and compilers where a command line makes sense, this is
typically a list of command-line arguments, but for other platforms it
could be anything.}{string}
\lineiii{extra_link_args}{any extra platform- and compiler-specific
information to use when linking object files together to create the
extension (or to create a new static Python interpreter). Similar
interpretation as for 'extra_compile_args'.}{string}
\lineiii{export_symbols}{list of symbols to be exported from a shared
extension. Not used on all platforms, and not generally necessary for
Python extensions, which typically export exactly one symbol: \code{init} +
extension_name. }{string}
\lineiii{depends}{list of files that the extension depends on }{string}
\lineiii{language}{extension language (i.e. \code{'c'}, \code{'c++'},
\code{'objc'}). Will be detected from the source extensions if not provided.
}{string}
\end{tableiii}
\end{classdesc*}
\begin{classdesc*}{Distribution}
A \class{Distribution} describes how to build, install and package up a
Python software package.
See the \function{setup()} function for a list of keyword arguments accepted
by the Distribution constructor. \function{setup()} creates a Distribution
instance.
\end{classdesc*}
\begin{classdesc*}{Command}
A \class{Command} class (or rather, an instance of one of it's subclasses)
implement a single distutils command.
\end{classdesc*}
\section{\module{distutils.ccompiler} --- CCompiler base class}
\declaremodule{standard}{distutils.ccompiler}
\modulesynopsis{Abstract CCompiler class}
This module provides the abstract base class for the \class{CCompiler}
classes. A \class{CCompiler} instance can be used for all the compile
and link steps needed to build a single project. Methods are provided to
set options for the compiler --- macro definitions, include directories,
link path, libraries and the like.
This module provides the following functions.
\begin{funcdesc}{gen_lib_options}{compiler, library_dirs, runtime_library_dirs, libraries}
Generate linker options for searching library directories and
linking with specific libraries. \var{libraries} and \var{library_dirs} are,
respectively, lists of library names (not filenames!) and search
directories. Returns a list of command-line options suitable for use
with some compiler (depending on the two format strings passed in).
\end{funcdesc}
\begin{funcdesc}{gen_preprocess_options}{macros, include_dirs}
Generate C pre-processor options (-D, -U, -I) as used by at least
two types of compilers: the typical \UNIX{} compiler and Visual \Cpp.
\var{macros} is the usual thing, a list of 1- or 2-tuples, where \var{(name,)}
means undefine (-U) macro \var{name}, and \var{(name,value)} means define (-D)
macro \var{name} to \var{value}. \var{include_dirs} is just a list of directory
names to be added to the header file search path (-I). Returns a list
of command-line options suitable for either \UNIX{} compilers or Visual
\Cpp.
\end{funcdesc}
\begin{funcdesc}{get_default_compiler}{osname, platform}
Determine the default compiler to use for the given platform.
\var{osname} should be one of the standard Python OS names (i.e. the
ones returned by \var{os.name}) and \var{platform} the common value
returned by \var{sys.platform} for the platform in question.
The default values are \code{os.name} and \code{sys.platform} in case the
parameters are not given.
\end{funcdesc}
\begin{funcdesc}{new_compiler}{plat=\code{None}, compiler=\code{None}, verbose=\code{0}, dry_run=\code{0}, force=\code{0}}
Factory function to generate an instance of some CCompiler subclass
for the supplied platform/compiler combination. \var{plat} defaults
to \code{os.name} (eg. \code{'posix'}, \code{'nt'}), and \var{compiler}
defaults to the default compiler for that platform. Currently only
\code{'posix'} and \code{'nt'} are supported, and the default
compilers are ``traditional \UNIX{} interface'' (\class{UnixCCompiler}
class) and Visual \Cpp (\class{MSVCCompiler} class). Note that it's
perfectly possible to ask for a \UNIX{} compiler object under Windows,
and a Microsoft compiler object under \UNIX---if you supply a value
for \var{compiler}, \var{plat} is ignored.
% Is the posix/nt only thing still true? Mac OS X seems to work, and
% returns a UnixCCompiler instance. How to document this... hmm.
\end{funcdesc}
\begin{funcdesc}{show_compilers}{}
Print list of available compilers (used by the
\longprogramopt{help-compiler} options to \command{build},
\command{build_ext}, \command{build_clib}).
\end{funcdesc}
\begin{classdesc}{CCompiler}{\optional{verbose=\code{0}, dry_run=\code{0}, force=\code{0}}}
The abstract base class \class{CCompiler} defines the interface that
must be implemented by real compiler classes. The class also has
some utility methods used by several compiler classes.
The basic idea behind a compiler abstraction class is that each
instance can be used for all the compile/link steps in building a
single project. Thus, attributes common to all of those compile and
link steps --- include directories, macros to define, libraries to link
against, etc. --- are attributes of the compiler instance. To allow for
variability in how individual files are treated, most of those
attributes may be varied on a per-compilation or per-link basis.
The constructor for each subclass creates an instance of the Compiler
object. Flags are \var{verbose} (show verbose output), \var{dry_run}
(don't actually execute the steps) and \var{force} (rebuild
everything, regardless of dependencies). All of these flags default to
\code{0} (off). Note that you probably don't want to instantiate
\class{CCompiler} or one of it's subclasses directly - use the
\function{distutils.CCompiler.new_compiler()} factory function
instead.
The following methods allow you to manually alter compiler options for
the instance of the Compiler class.
\begin{methoddesc}{add_include_dir}{dir}
Add \var{dir} to the list of directories that will be searched for
header files. The compiler is instructed to search directories in
the order in which they are supplied by successive calls to
\method{add_include_dir()}.
\end{methoddesc}
\begin{methoddesc}{set_include_dirs}{dirs}
Set the list of directories that will be searched to \var{dirs} (a
list of strings). Overrides any preceding calls to
\method{add_include_dir()}; subsequent calls to
\method{add_include_dir()} add to the list passed to
\method{set_include_dirs()}. This does not affect any list of
standard include directories that the compiler may search by default.
\end{methoddesc}
\begin{methoddesc}{add_library}{libname}
Add \var{libname} to the list of libraries that will be included in
all links driven by this compiler object. Note that \var{libname}
should *not* be the name of a file containing a library, but the
name of the library itself: the actual filename will be inferred by
the linker, the compiler, or the compiler class (depending on the
platform).
The linker will be instructed to link against libraries in the
order they were supplied to \method{add_library()} and/or
\method{set_libraries()}. It is perfectly valid to duplicate library
names; the linker will be instructed to link against libraries as
many times as they are mentioned.
\end{methoddesc}
\begin{methoddesc}{set_libraries}{libnames}
Set the list of libraries to be included in all links driven by
this compiler object to \var{libnames} (a list of strings). This does
not affect any standard system libraries that the linker may
include by default.
\end{methoddesc}
\begin{methoddesc}{add_library_dir}{dir}
Add \var{dir} to the list of directories that will be searched for
libraries specified to \method{add_library()} and
\method{set_libraries()}. The linker will be instructed to search for
libraries in the order they are supplied to \method{add_library_dir()}
and/or \method{set_library_dirs()}.
\end{methoddesc}
\begin{methoddesc}{set_library_dirs}{dirs}
Set the list of library search directories to \var{dirs} (a list of
strings). This does not affect any standard library search path
that the linker may search by default.
\end{methoddesc}
\begin{methoddesc}{add_runtime_library_dir}{dir}
Add \var{dir} to the list of directories that will be searched for
shared libraries at runtime.
\end{methoddesc}
\begin{methoddesc}{set_runtime_library_dirs}{dirs}
Set the list of directories to search for shared libraries at
runtime to \var{dirs} (a list of strings). This does not affect any
standard search path that the runtime linker may search by
default.
\end{methoddesc}
\begin{methoddesc}{define_macro}{name\optional{, value=\code{None}}}
Define a preprocessor macro for all compilations driven by this
compiler object. The optional parameter \var{value} should be a
string; if it is not supplied, then the macro will be defined
without an explicit value and the exact outcome depends on the
compiler used (XXX true? does ANSI say anything about this?)
\end{methoddesc}
\begin{methoddesc}{undefine_macro}{name}
Undefine a preprocessor macro for all compilations driven by
this compiler object. If the same macro is defined by
\method{define_macro()} and undefined by \method{undefine_macro()}
the last call takes precedence (including multiple redefinitions or
undefinitions). If the macro is redefined/undefined on a
per-compilation basis (ie. in the call to \method{compile()}), then that
takes precedence.
\end{methoddesc}
\begin{methoddesc}{add_link_object}{object}
Add \var{object} to the list of object files (or analogues, such as
explicitly named library files or the output of ``resource
compilers'') to be included in every link driven by this compiler
object.
\end{methoddesc}
\begin{methoddesc}{set_link_objects}{objects}
Set the list of object files (or analogues) to be included in
every link to \var{objects}. This does not affect any standard object
files that the linker may include by default (such as system
libraries).
\end{methoddesc}
The following methods implement methods for autodetection of compiler
options, providing some functionality similar to GNU \program{autoconf}.
\begin{methoddesc}{detect_language}{sources}
Detect the language of a given file, or list of files. Uses the
instance attributes \member{language_map} (a dictionary), and
\member{language_order} (a list) to do the job.
\end{methoddesc}
\begin{methoddesc}{find_library_file}{dirs, lib\optional{, debug=\code{0}}}
Search the specified list of directories for a static or shared
library file \var{lib} and return the full path to that file. If
\var{debug} is true, look for a debugging version (if that makes sense on
the current platform). Return \code{None} if \var{lib} wasn't found in any of
the specified directories.
\end{methoddesc}
\begin{methoddesc}{has_function}{funcname \optional{, includes=\code{None}, include_dirs=\code{None}, libraries=\code{None}, library_dirs=\code{None}}}
Return a boolean indicating whether \var{funcname} is supported on
the current platform. The optional arguments can be used to
augment the compilation environment by providing additional include
files and paths and libraries and paths.
\end{methoddesc}
\begin{methoddesc}{library_dir_option}{dir}
Return the compiler option to add \var{dir} to the list of
directories searched for libraries.
\end{methoddesc}
\begin{methoddesc}{library_option}{lib}
Return the compiler option to add \var{dir} to the list of libraries
linked into the shared library or executable.
\end{methoddesc}
\begin{methoddesc}{runtime_library_dir_option}{dir}
Return the compiler option to add \var{dir} to the list of
directories searched for runtime libraries.
\end{methoddesc}
\begin{methoddesc}{set_executables}{**args}
Define the executables (and options for them) that will be run
to perform the various stages of compilation. The exact set of
executables that may be specified here depends on the compiler
class (via the 'executables' class attribute), but most will have:
\begin{tableii}{l|l}{attribute}{attribute}{description}
\lineii{compiler}{the C/\Cpp{} compiler}
\lineii{linker_so}{linker used to create shared objects and libraries}
\lineii{linker_exe}{linker used to create binary executables}
\lineii{archiver}{static library creator}
\end{tableii}
On platforms with a command-line (\UNIX, DOS/Windows), each of these
is a string that will be split into executable name and (optional)
list of arguments. (Splitting the string is done similarly to how
\UNIX{} shells operate: words are delimited by spaces, but quotes and
backslashes can override this. See
\function{distutils.util.split_quoted()}.)
\end{methoddesc}
The following methods invoke stages in the build process.
\begin{methoddesc}{compile}{sources\optional{, output_dir=\code{None}, macros=\code{None}, include_dirs=\code{None}, debug=\code{0}, extra_preargs=\code{None}, extra_postargs=\code{None}, depends=\code{None}}}
Compile one or more source files. Generates object files (e.g.
transforms a \file{.c} file to a \file{.o} file.)
\var{sources} must be a list of filenames, most likely C/\Cpp
files, but in reality anything that can be handled by a
particular compiler and compiler class (eg. \class{MSVCCompiler} can
handle resource files in \var{sources}). Return a list of object
filenames, one per source filename in \var{sources}. Depending on
the implementation, not all source files will necessarily be
compiled, but all corresponding object filenames will be
returned.
If \var{output_dir} is given, object files will be put under it, while
retaining their original path component. That is, \file{foo/bar.c}
normally compiles to \file{foo/bar.o} (for a \UNIX{} implementation); if
\var{output_dir} is \var{build}, then it would compile to
\file{build/foo/bar.o}.
\var{macros}, if given, must be a list of macro definitions. A macro
definition is either a \var{(name, value)} 2-tuple or a \var{(name,)} 1-tuple.
The former defines a macro; if the value is \code{None}, the macro is
defined without an explicit value. The 1-tuple case undefines a
macro. Later definitions/redefinitions/undefinitions take
precedence.
\var{include_dirs}, if given, must be a list of strings, the
directories to add to the default include file search path for this
compilation only.
\var{debug} is a boolean; if true, the compiler will be instructed to
output debug symbols in (or alongside) the object file(s).
\var{extra_preargs} and \var{extra_postargs} are implementation- dependent.
On platforms that have the notion of a command-line (e.g. \UNIX,
DOS/Windows), they are most likely lists of strings: extra
command-line arguments to prepand/append to the compiler command
line. On other platforms, consult the implementation class
documentation. In any event, they are intended as an escape hatch
for those occasions when the abstract compiler framework doesn't
cut the mustard.
\var{depends}, if given, is a list of filenames that all targets
depend on. If a source file is older than any file in
depends, then the source file will be recompiled. This
supports dependency tracking, but only at a coarse
granularity.
Raises \exception{CompileError} on failure.
\end{methoddesc}
\begin{methoddesc}{create_static_lib}{objects, output_libname\optional{, output_dir=\code{None}, debug=\code{0}, target_lang=\code{None}}}
Link a bunch of stuff together to create a static library file.
The ``bunch of stuff'' consists of the list of object files supplied
as \var{objects}, the extra object files supplied to
\method{add_link_object()} and/or \method{set_link_objects()}, the libraries
supplied to \method{add_library()} and/or \method{set_libraries()}, and the
libraries supplied as \var{libraries} (if any).
\var{output_libname} should be a library name, not a filename; the
filename will be inferred from the library name. \var{output_dir} is
the directory where the library file will be put. XXX defaults to what?
\var{debug} is a boolean; if true, debugging information will be
included in the library (note that on most platforms, it is the
compile step where this matters: the \var{debug} flag is included here
just for consistency).
\var{target_lang} is the target language for which the given objects
are being compiled. This allows specific linkage time treatment of
certain languages.
Raises \exception{LibError} on failure.
\end{methoddesc}
\begin{methoddesc}{link}{target_desc, objects, output_filename\optional{, output_dir=\code{None}, libraries=\code{None}, library_dirs=\code{None}, runtime_library_dirs=\code{None}, export_symbols=\code{None}, debug=\code{0}, extra_preargs=\code{None}, extra_postargs=\code{None}, build_temp=\code{None}, target_lang=\code{None}}}
Link a bunch of stuff together to create an executable or
shared library file.
The ``bunch of stuff'' consists of the list of object files supplied
as \var{objects}. \var{output_filename} should be a filename. If
\var{output_dir} is supplied, \var{output_filename} is relative to it
(i.e. \var{output_filename} can provide directory components if
needed).
\var{libraries} is a list of libraries to link against. These are
library names, not filenames, since they're translated into
filenames in a platform-specific way (eg. \var{foo} becomes \file{libfoo.a}
on \UNIX{} and \file{foo.lib} on DOS/Windows). However, they can include a
directory component, which means the linker will look in that
specific directory rather than searching all the normal locations.
\var{library_dirs}, if supplied, should be a list of directories to
search for libraries that were specified as bare library names
(ie. no directory component). These are on top of the system
default and those supplied to \method{add_library_dir()} and/or
\method{set_library_dirs()}. \var{runtime_library_dirs} is a list of
directories that will be embedded into the shared library and used
to search for other shared libraries that *it* depends on at
run-time. (This may only be relevant on \UNIX.)
\var{export_symbols} is a list of symbols that the shared library will
export. (This appears to be relevant only on Windows.)
\var{debug} is as for \method{compile()} and \method{create_static_lib()},
with the slight distinction that it actually matters on most platforms (as
opposed to \method{create_static_lib()}, which includes a \var{debug} flag
mostly for form's sake).
\var{extra_preargs} and \var{extra_postargs} are as for \method{compile()}
(except of course that they supply command-line arguments for the
particular linker being used).
\var{target_lang} is the target language for which the given objects
are being compiled. This allows specific linkage time treatment of
certain languages.
Raises \exception{LinkError} on failure.
\end{methoddesc}
\begin{methoddesc}{link_executable}{objects, output_progname\optional{, output_dir=\code{None}, libraries=\code{None}, library_dirs=\code{None}, runtime_library_dirs=\code{None}, debug=\code{0}, extra_preargs=\code{None}, extra_postargs=\code{None}, target_lang=\code{None}}}
Link an executable.
\var{output_progname} is the name of the file executable,
while \var{objects} are a list of object filenames to link in. Other arguments
are as for the \method{link} method.
\end{methoddesc}
\begin{methoddesc}{link_shared_lib}{objects, output_libname\optional{, output_dir=\code{None}, libraries=\code{None}, library_dirs=\code{None}, runtime_library_dirs=\code{None}, export_symbols=\code{None}, debug=\code{0}, extra_preargs=\code{None}, extra_postargs=\code{None}, build_temp=\code{None}, target_lang=\code{None}}}
Link a shared library. \var{output_libname} is the name of the output
library, while \var{objects} is a list of object filenames to link in.
Other arguments are as for the \method{link} method.
\end{methoddesc}
\begin{methoddesc}{link_shared_object}{objects, output_filename\optional{, output_dir=\code{None}, libraries=\code{None}, library_dirs=\code{None}, runtime_library_dirs=\code{None}, export_symbols=\code{None}, debug=\code{0}, extra_preargs=\code{None}, extra_postargs=\code{None}, build_temp=\code{None}, target_lang=\code{None}}}
Link a shared object. \var{output_filename} is the name of the shared object
that will be created, while \var{objects} is a list of object filenames
to link in. Other arguments are as for the \method{link} method.
\end{methoddesc}
\begin{methoddesc}{preprocess}{source\optional{, output_file=\code{None}, macros=\code{None}, include_dirs=\code{None}, extra_preargs=\code{None}, extra_postargs=\code{None}}}
Preprocess a single C/\Cpp{} source file, named in \var{source}.
Output will be written to file named \var{output_file}, or \var{stdout} if
\var{output_file} not supplied. \var{macros} is a list of macro
definitions as for \method{compile()}, which will augment the macros set
with \method{define_macro()} and \method{undefine_macro()}.
\var{include_dirs} is a list of directory names that will be added to the
default list, in the same way as \method{add_include_dir()}.
Raises \exception{PreprocessError} on failure.
\end{methoddesc}
The following utility methods are defined by the \class{CCompiler} class,
for use by the various concrete subclasses.
\begin{methoddesc}{executable_filename}{basename\optional{, strip_dir=\code{0}, output_dir=\code{''}}}
Returns the filename of the executable for the given \var{basename}.
Typically for non-Windows platforms this is the same as the basename,
while Windows will get a \file{.exe} added.
\end{methoddesc}
\begin{methoddesc}{library_filename}{libname\optional{, lib_type=\code{'static'}, strip_dir=\code{0}, output_dir=\code{''}}}
Returns the filename for the given library name on the current platform.
On \UNIX{} a library with \var{lib_type} of \code{'static'} will typically
be of the form \file{liblibname.a}, while a \var{lib_type} of \code{'dynamic'}
will be of the form \file{liblibname.so}.
\end{methoddesc}
\begin{methoddesc}{object_filenames}{source_filenames\optional{, strip_dir=\code{0}, output_dir=\code{''}}}
Returns the name of the object files for the given source files.
\var{source_filenames} should be a list of filenames.
\end{methoddesc}
\begin{methoddesc}{shared_object_filename}{basename\optional{, strip_dir=\code{0}, output_dir=\code{''}}}
Returns the name of a shared object file for the given file name \var{basename}.
\end{methoddesc}
\begin{methoddesc}{execute}{func, args\optional{, msg=\code{None}, level=\code{1}}}
Invokes \function{distutils.util.execute()} This method invokes a
Python function \var{func} with the given arguments \var{args}, after
logging and taking into account the \var{dry_run} flag. XXX see also.
\end{methoddesc}
\begin{methoddesc}{spawn}{cmd}
Invokes \function{distutils.util.spawn()}. This invokes an external
process to run the given command. XXX see also.
\end{methoddesc}
\begin{methoddesc}{mkpath}{name\optional{, mode=\code{511}}}
Invokes \function{distutils.dir_util.mkpath()}. This creates a directory
and any missing ancestor directories. XXX see also.
\end{methoddesc}
\begin{methoddesc}{move_file}{src, dst}
Invokes \method{distutils.file_util.move_file()}. Renames \var{src} to
\var{dst}. XXX see also.
\end{methoddesc}
\begin{methoddesc}{announce}{msg\optional{, level=\code{1}}}
Write a message using \function{distutils.log.debug()}. XXX see also.
\end{methoddesc}
\begin{methoddesc}{warn}{msg}
Write a warning message \var{msg} to standard error.
\end{methoddesc}
\begin{methoddesc}{debug_print}{msg}
If the \var{debug} flag is set on this \class{CCompiler} instance, print
\var{msg} to standard output, otherwise do nothing.
\end{methoddesc}
\end{classdesc}
%\subsection{Compiler-specific modules}
%
%The following modules implement concrete subclasses of the abstract
%\class{CCompiler} class. They should not be instantiated directly, but should
%be created using \function{distutils.ccompiler.new_compiler()} factory
%function.
\section{\module{distutils.unixccompiler} --- Unix C Compiler}
\declaremodule{standard}{distutils.unixccompiler}
\modulesynopsis{UNIX C Compiler}
This module provides the \class{UnixCCompiler} class, a subclass of
\class{CCompiler} that handles the typical \UNIX-style command-line
C compiler:
\begin{itemize}
\item macros defined with \programopt{-D\var{name}\optional{=value}}
\item macros undefined with \programopt{-U\var{name}}
\item include search directories specified with
\programopt{-I\var{dir}}
\item libraries specified with \programopt{-l\var{lib}}
\item library search directories specified with \programopt{-L\var{dir}}
\item compile handled by \program{cc} (or similar) executable with
\programopt{-c} option: compiles \file{.c} to \file{.o}
\item link static library handled by \program{ar} command (possibly
with \program{ranlib})
\item link shared library handled by \program{cc} \programopt{-shared}
\end{itemize}
\section{\module{distutils.msvccompiler} --- Microsoft Compiler}
\declaremodule{standard}{distutils.msvccompiler}
\modulesynopsis{Microsoft Compiler}
This module provides \class{MSVCCompiler}, an implementation of the abstract
\class{CCompiler} class for Microsoft Visual Studio. It should also work using
the freely available compiler provided as part of the .Net SDK download. XXX
download link.
\section{\module{distutils.bcppcompiler} --- Borland Compiler}
\declaremodule{standard}{distutils.bcppcompiler}
This module provides \class{BorlandCCompiler}, an subclass of the abstract \class{CCompiler} class for the Borland \Cpp{} compiler.
\section{\module{distutils.cygwincompiler} --- Cygwin Compiler}
\declaremodule{standard}{distutils.cygwinccompiler}
This module provides the \class{CygwinCCompiler} class, a subclass of \class{UnixCCompiler} that
handles the Cygwin port of the GNU C compiler to Windows. It also contains
the Mingw32CCompiler class which handles the mingw32 port of GCC (same as
cygwin in no-cygwin mode).
\section{\module{distutils.emxccompiler} --- OS/2 EMX Compiler}
\declaremodule{standard}{distutils.emxccompiler}
\modulesynopsis{OS/2 EMX Compiler support}
This module provides the EMXCCompiler class, a subclass of \class{UnixCCompiler} that handles the EMX port of the GNU C compiler to OS/2.
\section{\module{distutils.mwerkscompiler} --- Metrowerks CodeWarrior support}
\declaremodule{standard}{distutils.mwerkscompiler}
\modulesynopsis{Metrowerks CodeWarrior support}
Contains \class{MWerksCompiler}, an implementation of the abstract
\class{CCompiler} class for MetroWerks CodeWarrior on the Macintosh. Needs work to support CW on Windows.
%\subsection{Utility modules}
%
%The following modules all provide general utility functions. They haven't
%all been documented yet.
\section{\module{distutils.archive_util} ---
Archiving utilities}
\declaremodule[distutils.archiveutil]{standard}{distutils.archive_util}
\modulesynopsis{Utility functions for creating archive files (tarballs, zip files, ...)}
This module provides a few functions for creating archive files, such as
tarballs or zipfiles.
\begin{funcdesc}{make_archive}{base_name, format\optional{, root_dir=\code{None}, base_dir=\code{None}, verbose=\code{0}, dry_run=\code{0}}}
Create an archive file (eg. \code{zip} or \code{tar}). \var{base_name}
is the name of the file to create, minus any format-specific extension;
\var{format} is the archive format: one of \code{zip}, \code{tar},
\code{ztar}, or \code{gztar}.
\var{root_dir} is a directory that will be the root directory of the
archive; ie. we typically \code{chdir} into \var{root_dir} before
creating the archive. \var{base_dir} is the directory where we start
archiving from; ie. \var{base_dir} will be the common prefix of all files and
directories in the archive. \var{root_dir} and \var{base_dir} both default
to the current directory. Returns the name of the archive file.
\warning{This should be changed to support bz2 files}
\end{funcdesc}
\begin{funcdesc}{make_tarball}{base_name, base_dir\optional{, compress=\code{'gzip'}, verbose=\code{0}, dry_run=\code{0}}}'Create an (optional compressed) archive as a tar file from all files in and under \var{base_dir}. \var{compress} must be \code{'gzip'} (the default),
\code{'compress'}, \code{'bzip2'}, or \code{None}. Both \code{'tar'}
and the compression utility named by \var{'compress'} must be on the
default program search path, so this is probably \UNIX-specific. The
output tar file will be named \file{\var{base_dir}.tar}, possibly plus
the appropriate compression extension (\file{.gz}, \file{.bz2} or
\file{.Z}). Return the output filename.
\warning{This should be replaced with calls to the \module{tarfile} module.}
\end{funcdesc}
\begin{funcdesc}{make_zipfile}{base_name, base_dir\optional{, verbose=\code{0}, dry_run=\code{0}}}
Create a zip file from all files in and under \var{base_dir}. The output
zip file will be named \var{base_dir} + \file{.zip}. Uses either the
\module{zipfile} Python module (if available) or the InfoZIP \file{zip}
utility (if installed and found on the default search path). If neither
tool is available, raises \exception{DistutilsExecError}.
Returns the name of the output zip file.
\end{funcdesc}
\section{\module{distutils.dep_util} --- Dependency checking}
\declaremodule[distutils.deputil]{standard}{distutils.dep_util}
\modulesynopsis{Utility functions for simple dependency checking}
This module provides functions for performing simple, timestamp-based
dependency of files and groups of files; also, functions based entirely
on such timestamp dependency analysis.
\begin{funcdesc}{newer}{source, target}
Return true if \var{source} exists and is more recently modified than
\var{target}, or if \var{source} exists and \var{target} doesn't.
Return false if both exist and \var{target} is the same age or newer
than \var{source}.
Raise \exception{DistutilsFileError} if \var{source} does not exist.
\end{funcdesc}
\begin{funcdesc}{newer_pairwise}{sources, targets}
Walk two filename lists in parallel, testing if each source is newer
than its corresponding target. Return a pair of lists (\var{sources},
\var{targets}) where source is newer than target, according to the semantics
of \function{newer()}
%% equivalent to a listcomp...
\end{funcdesc}
\begin{funcdesc}{newer_group}{sources, target\optional{, missing=\code{'error'}}}
Return true if \var{target} is out-of-date with respect to any file
listed in \var{sources} In other words, if \var{target} exists and is newer
than every file in \var{sources}, return false; otherwise return true.
\var{missing} controls what we do when a source file is missing; the
default (\code{'error'}) is to blow up with an \exception{OSError} from
inside \function{os.stat()};
if it is \code{'ignore'}, we silently drop any missing source files; if it is
\code{'newer'}, any missing source files make us assume that \var{target} is
out-of-date (this is handy in ``dry-run'' mode: it'll make you pretend to
carry out commands that wouldn't work because inputs are missing, but
that doesn't matter because you're not actually going to run the
commands).
\end{funcdesc}
\section{\module{distutils.dir_util} --- Directory tree operations}
\declaremodule[distutils.dirutil]{standard}{distutils.dir_util}
\modulesynopsis{Utility functions for operating on directories and directory trees}
This module provides functions for operating on directories and trees
of directories.
\begin{funcdesc}{mkpath}{name\optional{, mode=\code{0777}, verbose=\code{0}, dry_run=\code{0}}}
Create a directory and any missing ancestor directories. If the
directory already exists (or if \var{name} is the empty string, which
means the current directory, which of course exists), then do
nothing. Raise \exception{DistutilsFileError} if unable to create some
directory along the way (eg. some sub-path exists, but is a file
rather than a directory). If \var{verbose} is true, print a one-line
summary of each mkdir to stdout. Return the list of directories
actually created.
\end{funcdesc}
\begin{funcdesc}{create_tree}{base_dir, files\optional{, mode=\code{0777}, verbose=\code{0}, dry_run=\code{0}}}
Create all the empty directories under \var{base_dir} needed to
put \var{files} there. \var{base_dir} is just the a name of a directory
which doesn't necessarily exist yet; \var{files} is a list of filenames
to be interpreted relative to \var{base_dir}. \var{base_dir} + the
directory portion of every file in \var{files} will be created if it
doesn't already exist. \var{mode}, \var{verbose} and \var{dry_run} flags
are as for \function{mkpath()}.
\end{funcdesc}
\begin{funcdesc}{copy_tree}{src, dst\optional{preserve_mode=\code{1}, preserve_times=\code{1}, preserve_symlinks=\code{0}, update=\code{0}, verbose=\code{0}, dry_run=\code{0}}}
Copy an entire directory tree \var{src} to a new location \var{dst}. Both
\var{src} and \var{dst} must be directory names. If \var{src} is not a
directory, raise \exception{DistutilsFileError}. If \var{dst} does
not exist, it is created with \var{mkpath()}. The end result of the
copy is that every file in \var{src} is copied to \var{dst}, and
directories under \var{src} are recursively copied to \var{dst}.
Return the list of files that were copied or might have been copied,
using their output name. The return value is unaffected by \var{update}
or \var{dry_run}: it is simply the list of all files under \var{src},
with the names changed to be under \var{dst}.
\var{preserve_mode} and \var{preserve_times} are the same as for
\function{copy_file} in \refmodule[distutils.fileutil]{distutils.file_util};
note that they only apply to regular files, not to directories. If
\var{preserve_symlinks} is true, symlinks will be copied as symlinks
(on platforms that support them!); otherwise (the default), the
destination of the symlink will be copied. \var{update} and
\var{verbose} are the same as for
\function{copy_file()}.
\end{funcdesc}
\begin{funcdesc}{remove_tree}{directory\optional{verbose=\code{0}, dry_run=\code{0}}}
Recursively remove \var{directory} and all files and directories underneath
it. Any errors are ignored (apart from being reported to \code{stdout} if
\var{verbose} is true).
\end{funcdesc}
\XXX{Some of this could be replaced with the shutil module?}
\section{\module{distutils.file_util} --- Single file operations}
\declaremodule[distutils.fileutil]{standard}{distutils.file_util}
\modulesynopsis{Utility functions for operating on single files}
This module contains some utility functions for operating on individual files.
\begin{funcdesc}{copy_file}{src, dst\optional{preserve_mode=\code{1}, preserve_times=\code{1}, update=\code{0}, link=\code{None}, verbose=\code{0}, dry_run=\code{0}}}
Copy file \var{src} to \var{dst}. If \var{dst} is a directory, then
\var{src} is copied there with the same name; otherwise, it must be a
filename. (If the file exists, it will be ruthlessly clobbered.) If
\var{preserve_mode} is true (the default), the file's mode (type and
permission bits, or whatever is analogous on the current platform) is
copied. If \var{preserve_times} is true (the default), the last-modified
and last-access times are copied as well. If \var{update} is true,
\var{src} will only be copied if \var{dst} does not exist, or if
\var{dst} does exist but is older than \var{src}.
\var{link} allows you to make hard links (using \function{os.link}) or
symbolic links (using \function{os.symlink}) instead of copying: set it
to \code{'hard'} or \code{'sym'}; if it is \code{None} (the default),
files are copied. Don't set \var{link} on systems that don't support
it: \function{copy_file()} doesn't check if hard or symbolic linking is
available.
Under Mac OS 9, uses the native file copy function in \module{macostools};
on other systems, uses \var{_copy_file_contents()} to copy file contents.
Return a tuple \samp{(dest_name, copied)}: \var{dest_name} is the actual
name of the output file, and \var{copied} is true if the file was copied
(or would have been copied, if \var{dry_run} true).
% XXX if the destination file already exists, we clobber it if
% copying, but blow up if linking. Hmmm. And I don't know what
% macostools.copyfile() does. Should definitely be consistent, and
% should probably blow up if destination exists and we would be
% changing it (ie. it's not already a hard/soft link to src OR
% (not update) and (src newer than dst)).
\end{funcdesc}
\begin{funcdesc}{move_file}{src, dst\optional{verbose, dry_run}}
Move file \var{src} to \var{dst}. If \var{dst} is a directory, the file will
be moved into it with the same name; otherwise, \var{src} is just renamed
to \var{dst}. Returns the new full name of the file.
\warning{Handles cross-device moves on Unix using \function{copy_file()}.
What about other systems???}
\end{funcdesc}
\begin{funcdesc}{write_file}{filename, contents}
Create a file called \var{filename} and write \var{contents} (a
sequence of strings without line terminators) to it.
\end{funcdesc}
\section{\module{distutils.utils} --- Miscellaneous other utility functions}
\declaremodule{standard}{distutils.util}
\modulesynopsis{Miscellaneous other utility functions}
This module contains other assorted bits and pieces that don't fit into
any other utility module.
\begin{funcdesc}{get_platform}{}
Return a string that identifies the current platform. This is used
mainly to distinguish platform-specific build directories and
platform-specific built distributions. Typically includes the OS name
and version and the architecture (as supplied by 'os.uname()'),
although the exact information included depends on the OS; eg. for IRIX
the architecture isn't particularly important (IRIX only runs on SGI
hardware), but for Linux the kernel version isn't particularly
important.
Examples of returned values:
\begin{itemize}
\item \code{linux-i586}
\item \code{linux-alpha}
\item \code{solaris-2.6-sun4u}
\item \code{irix-5.3}
\item \code{irix64-6.2}
\end{itemize}
For non-\POSIX{} platforms, currently just returns \code{sys.platform}.
% XXX isn't this also provided by some other non-distutils module?
\end{funcdesc}
\begin{funcdesc}{convert_path}{pathname}
Return 'pathname' as a name that will work on the native filesystem,
i.e. split it on '/' and put it back together again using the current
directory separator. Needed because filenames in the setup script are
always supplied in Unix style, and have to be converted to the local
convention before we can actually use them in the filesystem. Raises
\exception{ValueError} on non-\UNIX-ish systems if \var{pathname} either
starts or ends with a slash.
\end{funcdesc}
\begin{funcdesc}{change_root}{new_root, pathname}
Return \var{pathname} with \var{new_root} prepended. If \var{pathname} is
relative, this is equivalent to \samp{os.path.join(new_root,pathname)}
Otherwise, it requires making \var{pathname} relative and then joining the
two, which is tricky on DOS/Windows and Mac OS.
\end{funcdesc}
\begin{funcdesc}{check_environ}{}
Ensure that 'os.environ' has all the environment variables we
guarantee that users can use in config files, command-line options,
etc. Currently this includes:
\begin{itemize}
\item \envvar{HOME} - user's home directory (\UNIX{} only)
\item \envvar{PLAT} - description of the current platform, including
hardware and OS (see \function{get_platform()})
\end{itemize}
\end{funcdesc}
\begin{funcdesc}{subst_vars}{s, local_vars}
Perform shell/Perl-style variable substitution on \var{s}. Every
occurrence of \code{\$} followed by a name is considered a variable, and
variable is substituted by the value found in the \var{local_vars}
dictionary, or in \code{os.environ} if it's not in \var{local_vars}.
\var{os.environ} is first checked/augmented to guarantee that it contains
certain values: see \function{check_environ()}. Raise \exception{ValueError}
for any variables not found in either \var{local_vars} or \code{os.environ}.
Note that this is not a fully-fledged string interpolation function. A
valid \code{\$variable} can consist only of upper and lower case letters,
numbers and an underscore. No \{ \} or \( \) style quoting is available.
\end{funcdesc}
\begin{funcdesc}{grok_environment_error}{exc\optional{, prefix=\samp{'error: '}}}
Generate a useful error message from an \exception{EnvironmentError}
(\exception{IOError} or \exception{OSError}) exception object.
Handles Python 1.5.1 and later styles, and does what it can to deal with
exception objects that don't have a filename (which happens when the error
is due to a two-file operation, such as \function{rename()} or
\function{link()}). Returns the error message as a string prefixed
with \var{prefix}.
\end{funcdesc}
\begin{funcdesc}{split_quoted}{s}
Split a string up according to Unix shell-like rules for quotes and
backslashes. In short: words are delimited by spaces, as long as those
spaces are not escaped by a backslash, or inside a quoted string.
Single and double quotes are equivalent, and the quote characters can
be backslash-escaped. The backslash is stripped from any two-character
escape sequence, leaving only the escaped character. The quote
characters are stripped from any quoted string. Returns a list of
words.
% Should probably be moved into the standard library.
\end{funcdesc}
\begin{funcdesc}{execute}{func, args\optional{, msg=\code{None}, verbose=\code{0}, dry_run=\code{0}}}
Perform some action that affects the outside world (for instance,
writing to the filesystem). Such actions are special because they
are disabled by the \var{dry_run} flag. This method takes
care of all that bureaucracy for you; all you have to do is supply the
function to call and an argument tuple for it (to embody the
``external action'' being performed), and an optional message to
print.
\end{funcdesc}
\begin{funcdesc}{strtobool}{val}
Convert a string representation of truth to true (1) or false (0).
True values are \code{y}, \code{yes}, \code{t}, \code{true}, \code{on}
and \code{1}; false values are \code{n}, \code{no}, \code{f}, \code{false},
\code{off} and \code{0}. Raises \exception{ValueError} if \var{val}
is anything else.
\end{funcdesc}
\begin{funcdesc}{byte_compile}{py_files\optional{,
optimize=\code{0}, force=\code{0},
prefix=\code{None}, base_dir=\code{None},
verbose=\code{1}, dry_run=\code{0},
direct=\code{None}}}
Byte-compile a collection of Python source files to either \file{.pyc}
or \file{.pyo} files in the same directory. \var{py_files} is a list of files
to compile; any files that don't end in \file{.py} are silently skipped.
\var{optimize} must be one of the following:
\begin{itemize}
\item \code{0} - don't optimize (generate \file{.pyc})
\item \code{1} - normal optimization (like \samp{python -O})
\item \code{2} - extra optimization (like \samp{python -OO})
\end{itemize}
If \var{force} is true, all files are recompiled regardless of
timestamps.
The source filename encoded in each bytecode file defaults to the
filenames listed in \var{py_files}; you can modify these with \var{prefix} and
\var{basedir}. \var{prefix} is a string that will be stripped off of each
source filename, and \var{base_dir} is a directory name that will be
prepended (after \var{prefix} is stripped). You can supply either or both
(or neither) of \var{prefix} and \var{base_dir}, as you wish.
If \var{dry_run} is true, doesn't actually do anything that would
affect the filesystem.
Byte-compilation is either done directly in this interpreter process
with the standard \module{py_compile} module, or indirectly by writing a
temporary script and executing it. Normally, you should let
\function{byte_compile()} figure out to use direct compilation or not (see
the source for details). The \var{direct} flag is used by the script
generated in indirect mode; unless you know what you're doing, leave
it set to \code{None}.
\end{funcdesc}
\begin{funcdesc}{rfc822_escape}{header}
Return a version of \var{header} escaped for inclusion in an
\rfc{822} header, by ensuring there are 8 spaces space after each newline.
Note that it does no other modification of the string.
% this _can_ be replaced
\end{funcdesc}
%\subsection{Distutils objects}
\section{\module{distutils.dist} --- The Distribution class}
\declaremodule{standard}{distutils.dist}
\modulesynopsis{Provides the Distribution class, which represents the
module distribution being built/installed/distributed}
This module provides the \class{Distribution} class, which represents
the module distribution being built/installed/distributed.
\section{\module{distutils.extension} --- The Extension class}
\declaremodule{standard}{distutils.extension}
\modulesynopsis{Provides the Extension class, used to describe
C/\Cpp{} extension modules in setup scripts}
This module provides the \class{Extension} class, used to describe
C/\Cpp{} extension modules in setup scripts.
%\subsection{Ungrouped modules}
%The following haven't been moved into a more appropriate section yet.
\section{\module{distutils.debug} --- Distutils debug mode}
\declaremodule{standard}{distutils.debug}
\modulesynopsis{Provides the debug flag for distutils}
This module provides the DEBUG flag.
\section{\module{distutils.errors} --- Distutils exceptions}
\declaremodule{standard}{distutils.errors}
\modulesynopsis{Provides standard distutils exceptions}
Provides exceptions used by the Distutils modules. Note that Distutils
modules may raise standard exceptions; in particular, SystemExit is
usually raised for errors that are obviously the end-user's fault
(eg. bad command-line arguments).
This module is safe to use in \samp{from ... import *} mode; it only exports
symbols whose names start with \code{Distutils} and end with \code{Error}.
\section{\module{distutils.fancy_getopt}
--- Wrapper around the standard getopt module}
\declaremodule[distutils.fancygetopt]{standard}{distutils.fancy_getopt}
\modulesynopsis{Additional \module{getopt} functionality}
This module provides a wrapper around the standard \module{getopt}
module that provides the following additional features:
\begin{itemize}
\item short and long options are tied together
\item options have help strings, so \function{fancy_getopt} could potentially
create a complete usage summary
\item options set attributes of a passed-in object
\item boolean options can have ``negative aliases'' --- eg. if
\longprogramopt{quiet} is the ``negative alias'' of
\longprogramopt{verbose}, then \longprogramopt{quiet} on the command
line sets \var{verbose} to false.
\end{itemize}
\XXX{Should be replaced with \module{optik} (which is also now
known as \module{optparse} in Python 2.3 and later).}
\begin{funcdesc}{fancy_getopt}{options, negative_opt, object, args}
Wrapper function. \var{options} is a list of
\samp{(long_option, short_option, help_string)} 3-tuples as described in the
constructor for \class{FancyGetopt}. \var{negative_opt} should be a dictionary
mapping option names to option names, both the key and value should be in the
\var{options} list. \var{object} is an object which will be used to store
values (see the \method{getopt()} method of the \class{FancyGetopt} class).
\var{args} is the argument list. Will use \code{sys.argv[1:]} if you
pass \code{None} as \var{args}.
\end{funcdesc}
\begin{funcdesc}{wrap_text}{text, width}
Wraps \var{text} to less than \var{width} wide.
\warning{Should be replaced with \module{textwrap} (which is available
in Python 2.3 and later).}
\end{funcdesc}
\begin{classdesc}{FancyGetopt}{\optional{option_table=\code{None}}}
The option_table is a list of 3-tuples: \samp{(long_option,
short_option, help_string)}
If an option takes an argument, it's \var{long_option} should have \code{'='}
appended; \var{short_option} should just be a single character, no \code{':'}
in any case. \var{short_option} should be \code{None} if a \var{long_option}
doesn't have a corresponding \var{short_option}. All option tuples must have
long options.
\end{classdesc}
The \class{FancyGetopt} class provides the following methods:
\begin{methoddesc}{getopt}{\optional{args=\code{None}, object=\code{None}}}
Parse command-line options in args. Store as attributes on \var{object}.
If \var{args} is \code{None} or not supplied, uses \code{sys.argv[1:]}. If
\var{object} is \code{None} or not supplied, creates a new \class{OptionDummy}
instance, stores option values there, and returns a tuple \samp{(args,
object)}. If \var{object} is supplied, it is modified in place and
\function{getopt()} just returns \var{args}; in both cases, the returned
\var{args} is a modified copy of the passed-in \var{args} list, which
is left untouched.
% and args returned are?
\end{methoddesc}
\begin{methoddesc}{get_option_order}{}
Returns the list of \samp{(option, value)} tuples processed by the
previous run of \method{getopt()} Raises \exception{RuntimeError} if
\method{getopt()} hasn't been called yet.
\end{methoddesc}
\begin{methoddesc}{generate_help}{\optional{header=\code{None}}}
Generate help text (a list of strings, one per suggested line of
output) from the option table for this \class{FancyGetopt} object.
If supplied, prints the supplied \var{header} at the top of the help.
\end{methoddesc}
\section{\module{distutils.filelist} --- The FileList class}
\declaremodule{standard}{distutils.filelist}
\modulesynopsis{The \class{FileList} class, used for poking about the
file system and building lists of files.}
This module provides the \class{FileList} class, used for poking about
the filesystem and building lists of files.
\section{\module{distutils.log} --- Simple PEP 282-style logging}
\declaremodule{standard}{distutils.log}
\modulesynopsis{A simple logging mechanism, \pep{282}-style}
\warning{Should be replaced with standard \module{logging} module.}
%\subsubsection{\module{} --- }
%\declaremodule{standard}{distutils.magic}
%\modulesynopsis{ }
\section{\module{distutils.spawn} --- Spawn a sub-process}
\declaremodule{standard}{distutils.spawn}
\modulesynopsis{Provides the spawn() function}
This module provides the \function{spawn()} function, a front-end to
various platform-specific functions for launching another program in a
sub-process.
Also provides \function{find_executable()} to search the path for a given
executable name.
\input{sysconfig}
\section{\module{distutils.text_file} --- The TextFile class}
\declaremodule[distutils.textfile]{standard}{distutils.text_file}
\modulesynopsis{provides the TextFile class, a simple interface to text files}
This module provides the \class{TextFile} class, which gives an interface
to text files that (optionally) takes care of stripping comments, ignoring
blank lines, and joining lines with backslashes.
\begin{classdesc}{TextFile}{\optional{filename=\code{None}, file=\code{None}, **options}}
This class provides a file-like object that takes care of all
the things you commonly want to do when processing a text file
that has some line-by-line syntax: strip comments (as long as \code{\#}
is your comment character), skip blank lines, join adjacent lines by
escaping the newline (ie. backslash at end of line), strip
leading and/or trailing whitespace. All of these are optional
and independently controllable.
The class provides a \method{warn()} method so you can generate
warning messages that report physical line number, even if the
logical line in question spans multiple physical lines. Also
provides \method{unreadline()} for implementing line-at-a-time lookahead.
\class{TextFile} instances are create with either \var{filename}, \var{file},
or both. \exception{RuntimeError} is raised if both are \code{None}.
\var{filename} should be a string, and \var{file} a file object (or
something that provides \method{readline()} and \method{close()}
methods). It is recommended that you supply at least \var{filename},
so that \class{TextFile} can include it in warning messages. If
\var{file} is not supplied, TextFile creates its own using the
\var{open()} builtin.
The options are all boolean, and affect the values returned by
\var{readline()}
\begin{tableiii}{c|l|l}{option name}{option name}{description}{default}
\lineiii{strip_comments}{
strip from \character{\#} to end-of-line, as well as any whitespace
leading up to the \character{\#}---unless it is escaped by a backslash}
{true}
\lineiii{lstrip_ws}{
strip leading whitespace from each line before returning it}
{false}
\lineiii{rstrip_ws}{
strip trailing whitespace (including line terminator!) from
each line before returning it.}
{true}
\lineiii{skip_blanks}{
skip lines that are empty *after* stripping comments and
whitespace. (If both lstrip_ws and rstrip_ws are false,
then some lines may consist of solely whitespace: these will
*not* be skipped, even if \var{skip_blanks} is true.)}
{true}
\lineiii{join_lines}{
if a backslash is the last non-newline character on a line
after stripping comments and whitespace, join the following line
to it to form one logical line; if N consecutive lines end
with a backslash, then N+1 physical lines will be joined to
form one logical line.}
{false}
\lineiii{collapse_join}{
strip leading whitespace from lines that are joined to their
predecessor; only matters if \samp{(join_lines and not lstrip_ws)}}
{false}
\end{tableiii}
Note that since \var{rstrip_ws} can strip the trailing newline, the
semantics of \method{readline()} must differ from those of the builtin file
object's \method{readline()} method! In particular, \method{readline()}
returns \code{None} for end-of-file: an empty string might just be a
blank line (or an all-whitespace line), if \var{rstrip_ws} is true
but \var{skip_blanks} is not.
\begin{methoddesc}{open}{filename}
Open a new file \var{filename}. This overrides any \var{file} or
\var{filename} constructor arguments.
\end{methoddesc}
\begin{methoddesc}{close}{}
Close the current file and forget everything we know about it (including
the filename and the current line number).
\end{methoddesc}
\begin{methoddesc}{warn}{msg\optional{,line=\code{None}}}
Print (to stderr) a warning message tied to the current logical
line in the current file. If the current logical line in the
file spans multiple physical lines, the warning refers to the
whole range, such as \samp{"lines 3-5"}. If \var{line} is supplied,
it overrides the current line number; it may be a list or tuple
to indicate a range of physical lines, or an integer for a
single physical line.
\end{methoddesc}
\begin{methoddesc}{readline}{}
Read and return a single logical line from the current file (or
from an internal buffer if lines have previously been ``unread''
with \method{unreadline()}). If the \var{join_lines} option
is true, this may involve reading multiple physical lines
concatenated into a single string. Updates the current line number,
so calling \method{warn()} after \method{readline()} emits a warning
about the physical line(s) just read. Returns \code{None} on end-of-file,
since the empty string can occur if \var{rstrip_ws} is true but
\var{strip_blanks} is not.
\end{methoddesc}
\begin{methoddesc}{readlines}{}
Read and return the list of all logical lines remaining in the current file.
This updates the current line number to the last line of the file.
\end{methoddesc}
\begin{methoddesc}{unreadline}{line}
Push \var{line} (a string) onto an internal buffer that will be
checked by future \method{readline()} calls. Handy for implementing
a parser with line-at-a-time lookahead. Note that lines that are ``unread''
with \method{unreadline} are not subsequently re-cleansed (whitespace
stripped, or whatever) when read with \method{readline}. If multiple
calls are made to \method{unreadline} before a call to \method{readline},
the lines will be returned most in most recent first order.
\end{methoddesc}
\end{classdesc}
\section{\module{distutils.version} --- Version number classes}
\declaremodule{standard}{distutils.version}
\modulesynopsis{implements classes that represent module version numbers. }
% todo
%\section{Distutils Commands}
%
%This part of Distutils implements the various Distutils commands, such
%as \code{build}, \code{install} \&c. Each command is implemented as a
%separate module, with the command name as the name of the module.
\section{\module{distutils.cmd} --- Abstract base class for Distutils commands}
\declaremodule{standard}{distutils.cmd}
\modulesynopsis{This module provides the abstract base class Command. This
class is subclassed by the modules in the \refmodule{distutils.command}
subpackage. }
This module supplies the abstract base class \class{Command}.
\begin{classdesc}{Command}{dist}
Abstract base class for defining command classes, the ``worker bees''
of the Distutils. A useful analogy for command classes is to think of
them as subroutines with local variables called \var{options}. The
options are declared in \method{initialize_options()} and defined
(given their final values) in \method{finalize_options()}, both of
which must be defined by every command class. The distinction between
the two is necessary because option values might come from the outside
world (command line, config file, ...), and any options dependent on
other options must be computed after these outside influences have
been processed --- hence \method{finalize_options()}. The body of the
subroutine, where it does all its work based on the values of its
options, is the \method{run()} method, which must also be implemented
by every command class.
The class constructor takes a single argument \var{dist}, a
\class{Distribution} instance.
\end{classdesc}
\section{\module{distutils.command} --- Individual Distutils commands}
\declaremodule{standard}{distutils.command}
\modulesynopsis{This subpackage contains one module for each standard Distutils command.}
%\subsubsection{Individual Distutils commands}
% todo
\section{\module{distutils.command.bdist} --- Build a binary installer}
\declaremodule{standard}{distutils.command.bdist}
\modulesynopsis{Build a binary installer for a package}
% todo
\section{\module{distutils.command.bdist_packager} --- Abstract base class for packagers}
\declaremodule[distutils.command.bdistpackager]{standard}{distutils.command.bdist_packager}
\modulesynopsis{Abstract base class for packagers}
% todo
\section{\module{distutils.command.bdist_dumb} --- Build a ``dumb'' installer}
\declaremodule[distutils.command.bdistdumb]{standard}{distutils.command.bdist_dumb}
\modulesynopsis{Build a ``dumb'' installer - a simple archive of files}
% todo
\section{\module{distutils.command.bdist_rpm} --- Build a binary distribution as a Redhat RPM and SRPM}
\declaremodule[distutils.command.bdistrpm]{standard}{distutils.command.bdist_rpm}
\modulesynopsis{Build a binary distribution as a Redhat RPM and SRPM}
% todo
\section{\module{distutils.command.bdist_wininst} --- Build a Windows installer}
\declaremodule[distutils.command.bdistwininst]{standard}{distutils.command.bdist_wininst}
\modulesynopsis{Build a Windows installer}
% todo
\section{\module{distutils.command.sdist} --- Build a source distribution}
\declaremodule{standard}{distutils.command.sdist}
\modulesynopsis{Build a source distribution}
% todo
\section{\module{distutils.command.build} --- Build all files of a package}
\declaremodule{standard}{distutils.command.build}
\modulesynopsis{Build all files of a package}
% todo
\section{\module{distutils.command.build_clib} --- Build any C libraries in a package}
\declaremodule[distutils.command.buildclib]{standard}{distutils.command.build_clib}
\modulesynopsis{Build any C libraries in a package}
% todo
\section{\module{distutils.command.build_ext} --- Build any extensions in a package}
\declaremodule[distutils.command.buildext]{standard}{distutils.command.build_ext}
\modulesynopsis{Build any extensions in a package}
% todo
\section{\module{distutils.command.build_py} --- Build the .py/.pyc files of a package}
\declaremodule[distutils.command.buildpy]{standard}{distutils.command.build_py}
\modulesynopsis{Build the .py/.pyc files of a package}
% todo
\section{\module{distutils.command.build_scripts} --- Build the scripts of a package}
\declaremodule[distutils.command.buildscripts]{standard}{distutils.command.build_scripts}
\modulesynopsis{Build the scripts of a package}
% todo
\section{\module{distutils.command.clean} --- Clean a package build area}
\declaremodule{standard}{distutils.command.clean}
\modulesynopsis{Clean a package build area}
% todo
\section{\module{distutils.command.config} --- Perform package configuration}
\declaremodule{standard}{distutils.command.config}
\modulesynopsis{Perform package configuration}
% todo
\subsubsection{\module{distutils.command.install} --- Install a package}
\declaremodule{standard}{distutils.command.install}
\modulesynopsis{Install a package}
% todo
\subsubsection{\module{distutils.command.install_data}
--- Install data files from a package}
\declaremodule[distutils.command.installdata]{standard}{distutils.command.install_data}
\modulesynopsis{Install data files from a package}
% todo
\subsubsection{\module{distutils.command.install_headers}
--- Install C/\Cpp{} header files from a package}
\declaremodule[distutils.command.installheaders]{standard}{distutils.command.install_headers}
\modulesynopsis{Install C/\Cpp{} header files from a package}
% todo
\subsubsection{\module{distutils.command.install_lib}
--- Install library files from a package}
\declaremodule[distutils.command.installlib]{standard}{distutils.command.install_lib}
\modulesynopsis{Install library files from a package}
% todo
\subsubsection{\module{distutils.command.install_scripts}
--- Install script files from a package}
\declaremodule[distutils.command.installscripts]{standard}{distutils.command.install_scripts}
\modulesynopsis{Install script files from a package}
% todo
\subsubsection{\module{distutils.command.register}
--- Register a module with the Python Package Index}
\declaremodule{standard}{distutils.command.register}
\modulesynopsis{Register a module with the Python Package Index}
The \code{register} command registers the package with the Python Package
Index. This is described in more detail in \pep{301}.
% todo
\subsubsection{Creating a new Distutils command}
This section outlines the steps to create a new Distutils command.
A new command lives in a module in the \module{distutils.command}
package. There is a sample template in that directory called
\file{command_template}. Copy this file to a new module with the
same name as the new command you're implementing. This module should
implement a class with the same name as the module (and the command).
So, for instance, to create the command \code{peel_banana} (so that users
can run \samp{setup.py peel_banana}), you'd copy \file{command_template}
to \file{distutils/command/peel_banana.py}, then edit it so that it's
implementing the class \class{peel_banana}, a subclass of
\class{distutils.cmd.Command}.
Subclasses of \class{Command} must define the following methods.
\begin{methoddesc}{initialize_options()}
Set default values for all the options that this command
supports. Note that these defaults may be overridden by other
commands, by the setup script, by config files, or by the
command-line. Thus, this is not the place to code dependencies
between options; generally, \method{initialize_options()} implementations
are just a bunch of \samp{self.foo = None} assignments.
\end{methoddesc}
\begin{methoddesc}{finalize_options}{}
Set final values for all the options that this command supports.
This is always called as late as possible, ie. after any option
assignments from the command-line or from other commands have been
done. Thus, this is the place to to code option dependencies: if
\var{foo} depends on \var{bar}, then it is safe to set \var{foo} from
\var{bar} as long as \var{foo} still has the same value it was assigned in
\method{initialize_options()}.
\end{methoddesc}
\begin{methoddesc}{run}{}
A command's raison d'etre: carry out the action it exists to
perform, controlled by the options initialized in
\method{initialize_options()}, customized by other commands, the setup
script, the command-line, and config files, and finalized in
\method{finalize_options()}. All terminal output and filesystem
interaction should be done by \method{run()}.
\end{methoddesc}
\var{sub_commands} formalizes the notion of a ``family'' of commands,
eg. \code{install} as the parent with sub-commands \code{install_lib},
\code{install_headers}, etc. The parent of a family of commands
defines \var{sub_commands} as a class attribute; it's a list of
2-tuples \samp{(command_name, predicate)}, with \var{command_name} a string
and \var{predicate} an unbound method, a string or None.
\var{predicate} is a method of the parent command that
determines whether the corresponding command is applicable in the
current situation. (Eg. we \code{install_headers} is only applicable if
we have any C header files to install.) If \var{predicate} is None,
that command is always applicable.
\var{sub_commands} is usually defined at the *end* of a class, because
predicates can be unbound methods, so they must already have been
defined. The canonical example is the \command{install} command.
%
% The ugly "%begin{latexonly}" pseudo-environments are really just to
% keep LaTeX2HTML quiet during the \renewcommand{} macros; they're
% not really valuable.
%
%begin{latexonly}
\renewcommand{\indexname}{Module Index}
%end{latexonly}
\input{moddist.ind} % Module Index
%begin{latexonly}
\renewcommand{\indexname}{Index}
%end{latexonly}
\input{dist.ind} % Index
\end{document}
|