summaryrefslogtreecommitdiffstats
path: root/Doc/ext/ext.tex
blob: c1b09245b32b25bb4348111011b8197b27a659ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
\documentclass{manual}

% XXX PM explain how to add new types to Python

\title{Extending and Embedding the Python Interpreter}

\input{boilerplate}

% Tell \index to actually write the .idx file
\makeindex

\begin{document}

\maketitle

\ifhtml
\chapter*{Front Matter\label{front}}
\fi

\input{copyright}


\begin{abstract}

\noindent
Python is an interpreted, object-oriented programming language.  This
document describes how to write modules in C or \Cpp{} to extend the
Python interpreter with new modules.  Those modules can define new
functions but also new object types and their methods.  The document
also describes how to embed the Python interpreter in another
application, for use as an extension language.  Finally, it shows how
to compile and link extension modules so that they can be loaded
dynamically (at run time) into the interpreter, if the underlying
operating system supports this feature.

This document assumes basic knowledge about Python.  For an informal
introduction to the language, see the
\citetitle[../tut/tut.html]{Python Tutorial}.  The
\citetitle[../ref/ref.html]{Python Reference Manual} gives a more
formal definition of the language.  The
\citetitle[../lib/lib.html]{Python Library Reference} documents the
existing object types, functions and modules (both built-in and
written in Python) that give the language its wide application range.

For a detailed description of the whole Python/C API, see the separate
\citetitle[../api/api.html]{Python/C API Reference Manual}.

\end{abstract}

\tableofcontents


\chapter{Extending Python with C or \Cpp{} \label{intro}}


It is quite easy to add new built-in modules to Python, if you know
how to program in C.  Such \dfn{extension modules} can do two things
that can't be done directly in Python: they can implement new built-in
object types, and they can call C library functions and system calls.

To support extensions, the Python API (Application Programmers
Interface) defines a set of functions, macros and variables that
provide access to most aspects of the Python run-time system.  The
Python API is incorporated in a C source file by including the header
\code{"Python.h"}.

The compilation of an extension module depends on its intended use as
well as on your system setup; details are given in later chapters.


\section{A Simple Example
         \label{simpleExample}}

Let's create an extension module called \samp{spam} (the favorite food
of Monty Python fans...) and let's say we want to create a Python
interface to the C library function \cfunction{system()}.\footnote{An
interface for this function already exists in the standard module
\module{os} --- it was chosen as a simple and straightfoward example.}
This function takes a null-terminated character string as argument and
returns an integer.  We want this function to be callable from Python
as follows:

\begin{verbatim}
>>> import spam
>>> status = spam.system("ls -l")
\end{verbatim}

Begin by creating a file \file{spammodule.c}.  (Historically, if a
module is called \samp{spam}, the C file containing its implementation
is called \file{spammodule.c}; if the module name is very long, like
\samp{spammify}, the module name can be just \file{spammify.c}.)

The first line of our file can be:

\begin{verbatim}
#include <Python.h>
\end{verbatim}

which pulls in the Python API (you can add a comment describing the
purpose of the module and a copyright notice if you like).

All user-visible symbols defined by \code{"Python.h"} have a prefix of
\samp{Py} or \samp{PY}, except those defined in standard header files.
For convenience, and since they are used extensively by the Python
interpreter, \code{"Python.h"} includes a few standard header files:
\code{<stdio.h>}, \code{<string.h>}, \code{<errno.h>}, and
\code{<stdlib.h>}.  If the latter header file does not exist on your
system, it declares the functions \cfunction{malloc()},
\cfunction{free()} and \cfunction{realloc()} directly.

The next thing we add to our module file is the C function that will
be called when the Python expression \samp{spam.system(\var{string})}
is evaluated (we'll see shortly how it ends up being called):

\begin{verbatim}
static PyObject *
spam_system(self, args)
    PyObject *self;
    PyObject *args;
{
    char *command;
    int sts;

    if (!PyArg_ParseTuple(args, "s", &command))
        return NULL;
    sts = system(command);
    return Py_BuildValue("i", sts);
}
\end{verbatim}

There is a straightforward translation from the argument list in
Python (e.g.\ the single expression \code{"ls -l"}) to the arguments
passed to the C function.  The C function always has two arguments,
conventionally named \var{self} and \var{args}.

The \var{self} argument is only used when the C function implements a
built-in method, not a function. In the example, \var{self} will
always be a \NULL{} pointer, since we are defining a function, not a
method.  (This is done so that the interpreter doesn't have to
understand two different types of C functions.)

The \var{args} argument will be a pointer to a Python tuple object
containing the arguments.  Each item of the tuple corresponds to an
argument in the call's argument list.  The arguments are Python
objects --- in order to do anything with them in our C function we have
to convert them to C values.  The function \cfunction{PyArg_ParseTuple()}
in the Python API checks the argument types and converts them to C
values.  It uses a template string to determine the required types of
the arguments as well as the types of the C variables into which to
store the converted values.  More about this later.

\cfunction{PyArg_ParseTuple()} returns true (nonzero) if all arguments have
the right type and its components have been stored in the variables
whose addresses are passed.  It returns false (zero) if an invalid
argument list was passed.  In the latter case it also raises an
appropriate exception so the calling function can return
\NULL{} immediately (as we saw in the example).


\section{Intermezzo: Errors and Exceptions
         \label{errors}}

An important convention throughout the Python interpreter is the
following: when a function fails, it should set an exception condition
and return an error value (usually a \NULL{} pointer).  Exceptions
are stored in a static global variable inside the interpreter; if this
variable is \NULL{} no exception has occurred.  A second global
variable stores the ``associated value'' of the exception (the second
argument to \keyword{raise}).  A third variable contains the stack
traceback in case the error originated in Python code.  These three
variables are the C equivalents of the Python variables
\code{sys.exc_type}, \code{sys.exc_value} and \code{sys.exc_traceback} (see
the section on module \module{sys} in the
\citetitle[../lib/lib.html]{Python Library Reference}).  It is
important to know about them to understand how errors are passed
around.

The Python API defines a number of functions to set various types of
exceptions.

The most common one is \cfunction{PyErr_SetString()}.  Its arguments
are an exception object and a C string.  The exception object is
usually a predefined object like \cdata{PyExc_ZeroDivisionError}.  The
C string indicates the cause of the error and is converted to a
Python string object and stored as the ``associated value'' of the
exception.

Another useful function is \cfunction{PyErr_SetFromErrno()}, which only
takes an exception argument and constructs the associated value by
inspection of the global variable \cdata{errno}.  The most
general function is \cfunction{PyErr_SetObject()}, which takes two object
arguments, the exception and its associated value.  You don't need to
\cfunction{Py_INCREF()} the objects passed to any of these functions.

You can test non-destructively whether an exception has been set with
\cfunction{PyErr_Occurred()}.  This returns the current exception object,
or \NULL{} if no exception has occurred.  You normally don't need
to call \cfunction{PyErr_Occurred()} to see whether an error occurred in a
function call, since you should be able to tell from the return value.

When a function \var{f} that calls another function \var{g} detects
that the latter fails, \var{f} should itself return an error value
(e.g.\ \NULL{} or \code{-1}).  It should \emph{not} call one of the
\cfunction{PyErr_*()} functions --- one has already been called by \var{g}.
\var{f}'s caller is then supposed to also return an error indication
to \emph{its} caller, again \emph{without} calling \cfunction{PyErr_*()},
and so on --- the most detailed cause of the error was already
reported by the function that first detected it.  Once the error
reaches the Python interpreter's main loop, this aborts the currently
executing Python code and tries to find an exception handler specified
by the Python programmer.

(There are situations where a module can actually give a more detailed
error message by calling another \cfunction{PyErr_*()} function, and in
such cases it is fine to do so.  As a general rule, however, this is
not necessary, and can cause information about the cause of the error
to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception
condition must be cleared explicitly by calling \cfunction{PyErr_Clear()}. 
The only time C code should call \cfunction{PyErr_Clear()} is if it doesn't
want to pass the error on to the interpreter but wants to handle it
completely by itself (e.g.\ by trying something else or pretending
nothing happened).

Every failing \cfunction{malloc()} call must be turned into an
exception --- the direct caller of \cfunction{malloc()} (or
\cfunction{realloc()}) must call \cfunction{PyErr_NoMemory()} and
return a failure indicator itself.  All the object-creating functions
(for example, \cfunction{PyInt_FromLong()}) already do this, so this
note is only relevant to those who call \cfunction{malloc()} directly.

Also note that, with the important exception of
\cfunction{PyArg_ParseTuple()} and friends, functions that return an
integer status usually return a positive value or zero for success and
\code{-1} for failure, like \UNIX{} system calls.

Finally, be careful to clean up garbage (by making
\cfunction{Py_XDECREF()} or \cfunction{Py_DECREF()} calls for objects
you have already created) when you return an error indicator!

The choice of which exception to raise is entirely yours.  There are
predeclared C objects corresponding to all built-in Python exceptions,
e.g.\ \cdata{PyExc_ZeroDivisionError}, which you can use directly.  Of
course, you should choose exceptions wisely --- don't use
\cdata{PyExc_TypeError} to mean that a file couldn't be opened (that
should probably be \cdata{PyExc_IOError}).  If something's wrong with
the argument list, the \cfunction{PyArg_ParseTuple()} function usually
raises \cdata{PyExc_TypeError}.  If you have an argument whose value
must be in a particular range or must satisfy other conditions,
\cdata{PyExc_ValueError} is appropriate.

You can also define a new exception that is unique to your module.
For this, you usually declare a static object variable at the
beginning of your file, e.g.

\begin{verbatim}
static PyObject *SpamError;
\end{verbatim}

and initialize it in your module's initialization function
(\cfunction{initspam()}) with an exception object, e.g.\ (leaving out
the error checking for now):

\begin{verbatim}
void
initspam()
{
    PyObject *m, *d;

    m = Py_InitModule("spam", SpamMethods);
    d = PyModule_GetDict(m);
    SpamError = PyErr_NewException("spam.error", NULL, NULL);
    PyDict_SetItemString(d, "error", SpamError);
}
\end{verbatim}

Note that the Python name for the exception object is
\exception{spam.error}.  The \cfunction{PyErr_NewException()} function
may create either a string or class, depending on whether the
\programopt{-X} flag was passed to the interpreter.  If
\programopt{-X} was used, \cdata{SpamError} will be a string object,
otherwise it will be a class object with the base class being
\exception{Exception}, described in the
\citetitle[../lib/lib.html]{Python Library Reference} under ``Built-in
Exceptions.''


\section{Back to the Example
         \label{backToExample}}

Going back to our example function, you should now be able to
understand this statement:

\begin{verbatim}
    if (!PyArg_ParseTuple(args, "s", &command))
        return NULL;
\end{verbatim}

It returns \NULL{} (the error indicator for functions returning
object pointers) if an error is detected in the argument list, relying
on the exception set by \cfunction{PyArg_ParseTuple()}.  Otherwise the
string value of the argument has been copied to the local variable
\cdata{command}.  This is a pointer assignment and you are not supposed
to modify the string to which it points (so in Standard C, the variable
\cdata{command} should properly be declared as \samp{const char
*command}).

The next statement is a call to the \UNIX{} function
\cfunction{system()}, passing it the string we just got from
\cfunction{PyArg_ParseTuple()}:

\begin{verbatim}
    sts = system(command);
\end{verbatim}

Our \function{spam.system()} function must return the value of
\cdata{sts} as a Python object.  This is done using the function
\cfunction{Py_BuildValue()}, which is something like the inverse of
\cfunction{PyArg_ParseTuple()}: it takes a format string and an
arbitrary number of C values, and returns a new Python object.
More info on \cfunction{Py_BuildValue()} is given later.

\begin{verbatim}
    return Py_BuildValue("i", sts);
\end{verbatim}

In this case, it will return an integer object.  (Yes, even integers
are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function
returning \ctype{void}), the corresponding Python function must return
\code{None}.   You need this idiom to do so:

\begin{verbatim}
    Py_INCREF(Py_None);
    return Py_None;
\end{verbatim}

\cdata{Py_None} is the C name for the special Python object
\code{None}.  It is a genuine Python object rather than a \NULL{}
pointer, which means ``error'' in most contexts, as we have seen.


\section{The Module's Method Table and Initialization Function
         \label{methodTable}}

I promised to show how \cfunction{spam_system()} is called from Python
programs.  First, we need to list its name and address in a ``method
table'':

\begin{verbatim}
static PyMethodDef SpamMethods[] = {
    ...
    {"system",  spam_system, METH_VARARGS},
    ...
    {NULL,      NULL}        /* Sentinel */
};
\end{verbatim}

Note the third entry (\samp{METH_VARARGS}).  This is a flag telling
the interpreter the calling convention to be used for the C
function.  It should normally always be \samp{METH_VARARGS} or
\samp{METH_VARARGS | METH_KEYWORDS}; a value of \code{0} means that an
obsolete variant of \cfunction{PyArg_ParseTuple()} is used.

When using only \samp{METH_VARARGS}, the function should expect
the Python-level parameters to be passed in as a tuple acceptable for
parsing via \cfunction{PyArg_ParseTuple()}; more information on this
function is provided below.

The \constant{METH_KEYWORDS} bit may be set in the third field if
keyword arguments should be passed to the function.  In this case, the
C function should accept a third \samp{PyObject *} parameter which
will be a dictionary of keywords.  Use
\cfunction{PyArg_ParseTupleAndKeywords()} to parse the arguments to
such a function.

The method table must be passed to the interpreter in the module's
initialization function.  The initialization function must be named
\cfunction{init\var{name}()}, where \var{name} is the name of the
module, and should be the only non-\keyword{static} item defined in
the module file:

\begin{verbatim}
void
initspam()
{
    (void) Py_InitModule("spam", SpamMethods);
}
\end{verbatim}

Note that for \Cpp, this method must be declared \code{extern "C"}.

When the Python program imports module \module{spam} for the first
time, \cfunction{initspam()} is called. (See below for comments about
embedding Python.)  It calls
\cfunction{Py_InitModule()}, which creates a ``module object'' (which
is inserted in the dictionary \code{sys.modules} under the key
\code{"spam"}), and inserts built-in function objects into the newly
created module based upon the table (an array of \ctype{PyMethodDef}
structures) that was passed as its second argument.
\cfunction{Py_InitModule()} returns a pointer to the module object
that it creates (which is unused here).  It aborts with a fatal error
if the module could not be initialized satisfactorily, so the caller
doesn't need to check for errors.

When embedding Python, the \cfunction{initspam()} function is not
called automatically unless there's an entry in the
\cdata{_PyImport_Inittab} table.  The easiest way to handle this is to 
statically initialize your statically-linked modules by directly
calling \cfunction{initspam()} after the call to
\cfunction{Py_Initialize()} or \cfunction{PyMac_Initialize()}:

\begin{verbatim}
int main(int argc, char **argv)
{
    /* Pass argv[0] to the Python interpreter */
    Py_SetProgramName(argv[0]);

    /* Initialize the Python interpreter.  Required. */
    Py_Initialize();

    /* Add a static module */
    initspam();
\end{verbatim}

An example may be found in the file \file{Demo/embed/demo.c} in the
Python source distribution.

\strong{Note:}  Removing entries from \code{sys.modules} or importing
compiled modules into multiple interpreters within a process (or
following a \cfunction{fork()} without an intervening
\cfunction{exec()}) can create problems for some extension modules.
Extension module authors should exercise caution when initializing
internal data structures.
Note also that the \function{reload()} function can be used with
extension modules, and will call the module initialization function
(\cfunction{initspam()} in the example), but will not load the module
again if it was loaded from a dynamically loadable object file
(\file{.so} on \UNIX, \file{.dll} on Windows).

A more substantial example module is included in the Python source
distribution as \file{Modules/xxmodule.c}.  This file may be used as a 
template or simply read as an example.  The \program{modulator.py}
script included in the source distribution or Windows install provides 
a simple graphical user interface for declaring the functions and
objects which a module should implement, and can generate a template
which can be filled in.  The script lives in the
\file{Tools/modulator/} directory; see the \file{README} file there
for more information.


\section{Compilation and Linkage
         \label{compilation}}

There are two more things to do before you can use your new extension:
compiling and linking it with the Python system.  If you use dynamic
loading, the details depend on the style of dynamic loading your
system uses; see the chapters about building extension modules on
\UNIX{} (chapter \ref{building-on-unix}) and Windows (chapter
\ref{building-on-windows}) for more information about this.
% XXX Add information about MacOS  

If you can't use dynamic loading, or if you want to make your module a
permanent part of the Python interpreter, you will have to change the
configuration setup and rebuild the interpreter.  Luckily, this is
very simple: just place your file (\file{spammodule.c} for example) in
the \file{Modules/} directory of an unpacked source distribution, add
a line to the file \file{Modules/Setup.local} describing your file:

\begin{verbatim}
spam spammodule.o
\end{verbatim}

and rebuild the interpreter by running \program{make} in the toplevel
directory.  You can also run \program{make} in the \file{Modules/}
subdirectory, but then you must first rebuild \file{Makefile}
there by running `\program{make} Makefile'.  (This is necessary each
time you change the \file{Setup} file.)

If your module requires additional libraries to link with, these can
be listed on the line in the configuration file as well, for instance:

\begin{verbatim}
spam spammodule.o -lX11
\end{verbatim}

\section{Calling Python Functions from C
         \label{callingPython}}

So far we have concentrated on making C functions callable from
Python.  The reverse is also useful: calling Python functions from C.
This is especially the case for libraries that support so-called
``callback'' functions.  If a C interface makes use of callbacks, the
equivalent Python often needs to provide a callback mechanism to the
Python programmer; the implementation will require calling the Python
callback functions from a C callback.  Other uses are also imaginable.

Fortunately, the Python interpreter is easily called recursively, and
there is a standard interface to call a Python function.  (I won't
dwell on how to call the Python parser with a particular string as
input --- if you're interested, have a look at the implementation of
the \programopt{-c} command line option in \file{Python/pythonmain.c}
from the Python source code.)

Calling a Python function is easy.  First, the Python program must
somehow pass you the Python function object.  You should provide a
function (or some other interface) to do this.  When this function is
called, save a pointer to the Python function object (be careful to
\cfunction{Py_INCREF()} it!) in a global variable --- or wherever you
see fit. For example, the following function might be part of a module
definition:

\begin{verbatim}
static PyObject *my_callback = NULL;

static PyObject *
my_set_callback(dummy, args)
    PyObject *dummy, *args;
{
    PyObject *result = NULL;
    PyObject *temp;

    if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {
        if (!PyCallable_Check(temp)) {
            PyErr_SetString(PyExc_TypeError, "parameter must be callable");
            return NULL;
        }
        Py_XINCREF(temp);         /* Add a reference to new callback */
        Py_XDECREF(my_callback);  /* Dispose of previous callback */
        my_callback = temp;       /* Remember new callback */
        /* Boilerplate to return "None" */
        Py_INCREF(Py_None);
        result = Py_None;
    }
    return result;
}
\end{verbatim}

This function must be registered with the interpreter using the
\constant{METH_VARARGS} flag; this is described in section
\ref{methodTable}, ``The Module's Method Table and Initialization
Function.''  The \cfunction{PyArg_ParseTuple()} function and its
arguments are documented in section \ref{parseTuple}, ``Format Strings
for \cfunction{PyArg_ParseTuple()}.''

The macros \cfunction{Py_XINCREF()} and \cfunction{Py_XDECREF()}
increment/decrement the reference count of an object and are safe in
the presence of \NULL{} pointers (but note that \var{temp} will not be 
\NULL{} in this context).  More info on them in section
\ref{refcounts}, ``Reference Counts.''

Later, when it is time to call the function, you call the C function
\cfunction{PyEval_CallObject()}.  This function has two arguments, both
pointers to arbitrary Python objects: the Python function, and the
argument list.  The argument list must always be a tuple object, whose
length is the number of arguments.  To call the Python function with
no arguments, pass an empty tuple; to call it with one argument, pass
a singleton tuple.  \cfunction{Py_BuildValue()} returns a tuple when its
format string consists of zero or more format codes between
parentheses.  For example:

\begin{verbatim}
    int arg;
    PyObject *arglist;
    PyObject *result;
    ...
    arg = 123;
    ...
    /* Time to call the callback */
    arglist = Py_BuildValue("(i)", arg);
    result = PyEval_CallObject(my_callback, arglist);
    Py_DECREF(arglist);
\end{verbatim}

\cfunction{PyEval_CallObject()} returns a Python object pointer: this is
the return value of the Python function.  \cfunction{PyEval_CallObject()} is
``reference-count-neutral'' with respect to its arguments.  In the
example a new tuple was created to serve as the argument list, which
is \cfunction{Py_DECREF()}-ed immediately after the call.

The return value of \cfunction{PyEval_CallObject()} is ``new'': either it
is a brand new object, or it is an existing object whose reference
count has been incremented.  So, unless you want to save it in a
global variable, you should somehow \cfunction{Py_DECREF()} the result,
even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return
value isn't \NULL{}.  If it is, the Python function terminated by
raising an exception.  If the C code that called
\cfunction{PyEval_CallObject()} is called from Python, it should now
return an error indication to its Python caller, so the interpreter
can print a stack trace, or the calling Python code can handle the
exception.  If this is not possible or desirable, the exception should
be cleared by calling \cfunction{PyErr_Clear()}.  For example:

\begin{verbatim}
    if (result == NULL)
        return NULL; /* Pass error back */
    ...use result...
    Py_DECREF(result); 
\end{verbatim}

Depending on the desired interface to the Python callback function,
you may also have to provide an argument list to
\cfunction{PyEval_CallObject()}.  In some cases the argument list is
also provided by the Python program, through the same interface that
specified the callback function.  It can then be saved and used in the
same manner as the function object.  In other cases, you may have to
construct a new tuple to pass as the argument list.  The simplest way
to do this is to call \cfunction{Py_BuildValue()}.  For example, if
you want to pass an integral event code, you might use the following
code:

\begin{verbatim}
    PyObject *arglist;
    ...
    arglist = Py_BuildValue("(l)", eventcode);
    result = PyEval_CallObject(my_callback, arglist);
    Py_DECREF(arglist);
    if (result == NULL)
        return NULL; /* Pass error back */
    /* Here maybe use the result */
    Py_DECREF(result);
\end{verbatim}

Note the placement of \samp{Py_DECREF(arglist)} immediately after the
call, before the error check!  Also note that strictly spoken this
code is not complete: \cfunction{Py_BuildValue()} may run out of
memory, and this should be checked.


\section{Extracting Parameters in Extension Functions
         \label{parseTuple}}

The \cfunction{PyArg_ParseTuple()} function is declared as follows:

\begin{verbatim}
int PyArg_ParseTuple(PyObject *arg, char *format, ...);
\end{verbatim}

The \var{arg} argument must be a tuple object containing an argument
list passed from Python to a C function.  The \var{format} argument
must be a format string, whose syntax is explained below.  The
remaining arguments must be addresses of variables whose type is
determined by the format string.  For the conversion to succeed, the
\var{arg} object must match the format and the format must be
exhausted.

Note that while \cfunction{PyArg_ParseTuple()} checks that the Python
arguments have the required types, it cannot check the validity of the
addresses of C variables passed to the call: if you make mistakes
there, your code will probably crash or at least overwrite random bits
in memory.  So be careful!

A format string consists of zero or more ``format units''.  A format
unit describes one Python object; it is usually a single character or
a parenthesized sequence of format units.  With a few exceptions, a
format unit that is not a parenthesized sequence normally corresponds
to a single address argument to \cfunction{PyArg_ParseTuple()}.  In the
following description, the quoted form is the format unit; the entry
in (round) parentheses is the Python object type that matches the
format unit; and the entry in [square] brackets is the type of the C
variable(s) whose address should be passed.  (Use the \samp{\&}
operator to pass a variable's address.)

Note that any Python object references which are provided to the
caller are \emph{borrowed} references; do not decrement their
reference count!

\begin{description}

\item[\samp{s} (string or Unicode object) {[char *]}]
Convert a Python string or Unicode object to a C pointer to a
character string.  You must not provide storage for the string
itself; a pointer to an existing string is stored into the character
pointer variable whose address you pass.  The C string is
null-terminated.  The Python string must not contain embedded null
bytes; if it does, a \exception{TypeError} exception is raised.
Unicode objects are converted to C strings using the default
encoding. If this conversion fails, an \exception{UnicodeError} is
raised.

\item[\samp{s\#} (string, Unicode or any read buffer compatible object) 
{[char *, int]}]
This variant on \samp{s} stores into two C variables, the first one a
pointer to a character string, the second one its length.  In this
case the Python string may contain embedded null bytes.  Unicode
objects pass back a pointer to the default encoded string version of the
object if such a conversion is possible. All other read buffer
compatible objects pass back a reference to the raw internal data
representation.

\item[\samp{z} (string or \code{None}) {[char *]}]
Like \samp{s}, but the Python object may also be \code{None}, in which
case the C pointer is set to \NULL{}.

\item[\samp{z\#} (string or \code{None} or any read buffer compatible object) 
{[char *, int]}]
This is to \samp{s\#} as \samp{z} is to \samp{s}.

\item[\samp{u} (Unicode object) {[Py_UNICODE *]}]
Convert a Python Unicode object to a C pointer to a null-terminated
buffer of 16-bit Unicode (UTF-16) data.  As with \samp{s}, there is no need
to provide storage for the Unicode data buffer; a pointer to the
existing Unicode data is stored into the Py_UNICODE pointer variable whose
address you pass.  

\item[\samp{u\#} (Unicode object) {[Py_UNICODE *, int]}]
This variant on \samp{u} stores into two C variables, the first one
a pointer to a Unicode data buffer, the second one its length.

\item[\samp{es} (string, Unicode object or character buffer compatible
object) {[const char *encoding, char **buffer]}]
This variant on \samp{s} is used for encoding Unicode and objects
convertible to Unicode into a character buffer. It only works for
encoded data without embedded \NULL{} bytes.

The variant reads one C variable and stores into two C variables, the
first one a pointer to an encoding name string (\var{encoding}), and the
second a pointer to a pointer to a character buffer (\var{**buffer},
the buffer used for storing the encoded data).

The encoding name must map to a registered codec. If set to \NULL{},
the default encoding is used.

\cfunction{PyArg_ParseTuple()} will allocate a buffer of the needed
size using \cfunction{PyMem_NEW()}, copy the encoded data into this
buffer and adjust \var{*buffer} to reference the newly allocated
storage. The caller is responsible for calling
\cfunction{PyMem_Free()} to free the allocated buffer after usage.

\item[\samp{es\#} (string, Unicode object or character buffer compatible
object) {[const char *encoding, char **buffer, int *buffer_length]}]
This variant on \samp{s\#} is used for encoding Unicode and objects
convertible to Unicode into a character buffer. It reads one C
variable and stores into three C variables, the first one a pointer to
an encoding name string (\var{encoding}), the second a pointer to a
pointer to a character buffer (\var{**buffer}, the buffer used for
storing the encoded data) and the third one a pointer to an integer
(\var{*buffer_length}, the buffer length).

The encoding name must map to a registered codec. If set to \NULL{},
the default encoding is used.

There are two modes of operation: 

If \var{*buffer} points a \NULL{} pointer,
\cfunction{PyArg_ParseTuple()} will allocate a buffer of the needed
size using \cfunction{PyMem_NEW()}, copy the encoded data into this
buffer and adjust \var{*buffer} to reference the newly allocated
storage. The caller is responsible for calling
\cfunction{PyMem_Free()} to free the allocated buffer after usage.

If \var{*buffer} points to a non-\NULL{} pointer (an already allocated
buffer), \cfunction{PyArg_ParseTuple()} will use this location as
buffer and interpret \var{*buffer_length} as buffer size. It will then
copy the encoded data into the buffer and 0-terminate it. Buffer
overflow is signalled with an exception.

In both cases, \var{*buffer_length} is set to the length of the
encoded data without the trailing 0-byte.

\item[\samp{b} (integer) {[char]}]
Convert a Python integer to a tiny int, stored in a C \ctype{char}.

\item[\samp{h} (integer) {[short int]}]
Convert a Python integer to a C \ctype{short int}.

\item[\samp{i} (integer) {[int]}]
Convert a Python integer to a plain C \ctype{int}.

\item[\samp{l} (integer) {[long int]}]
Convert a Python integer to a C \ctype{long int}.

\item[\samp{c} (string of length 1) {[char]}]
Convert a Python character, represented as a string of length 1, to a
C \ctype{char}.

\item[\samp{f} (float) {[float]}]
Convert a Python floating point number to a C \ctype{float}.

\item[\samp{d} (float) {[double]}]
Convert a Python floating point number to a C \ctype{double}.

\item[\samp{D} (complex) {[Py_complex]}]
Convert a Python complex number to a C \ctype{Py_complex} structure.

\item[\samp{O} (object) {[PyObject *]}]
Store a Python object (without any conversion) in a C object pointer.
The C program thus receives the actual object that was passed.  The
object's reference count is not increased.  The pointer stored is not
\NULL{}.

\item[\samp{O!} (object) {[\var{typeobject}, PyObject *]}]
Store a Python object in a C object pointer.  This is similar to
\samp{O}, but takes two C arguments: the first is the address of a
Python type object, the second is the address of the C variable (of
type \ctype{PyObject *}) into which the object pointer is stored.
If the Python object does not have the required type,
\exception{TypeError} is raised.

\item[\samp{O\&} (object) {[\var{converter}, \var{anything}]}]
Convert a Python object to a C variable through a \var{converter}
function.  This takes two arguments: the first is a function, the
second is the address of a C variable (of arbitrary type), converted
to \ctype{void *}.  The \var{converter} function in turn is called as
follows:

\var{status}\code{ = }\var{converter}\code{(}\var{object}, \var{address}\code{);}

where \var{object} is the Python object to be converted and
\var{address} is the \ctype{void *} argument that was passed to
\cfunction{PyArg_ConvertTuple()}.  The returned \var{status} should be
\code{1} for a successful conversion and \code{0} if the conversion
has failed.  When the conversion fails, the \var{converter} function
should raise an exception.

\item[\samp{S} (string) {[PyStringObject *]}]
Like \samp{O} but requires that the Python object is a string object.
Raises \exception{TypeError} if the object is not a string object.
The C variable may also be declared as \ctype{PyObject *}.

\item[\samp{U} (Unicode string) {[PyUnicodeObject *]}]
Like \samp{O} but requires that the Python object is a Unicode object.
Raises \exception{TypeError} if the object is not a Unicode object.
The C variable may also be declared as \ctype{PyObject *}.

\item[\samp{t\#} (read-only character buffer) {[char *, int]}]
Like \samp{s\#}, but accepts any object which implements the read-only 
buffer interface.  The \ctype{char *} variable is set to point to the
first byte of the buffer, and the \ctype{int} is set to the length of
the buffer.  Only single-segment buffer objects are accepted;
\exception{TypeError} is raised for all others.

\item[\samp{w} (read-write character buffer) {[char *]}]
Similar to \samp{s}, but accepts any object which implements the
read-write buffer interface.  The caller must determine the length of
the buffer by other means, or use \samp{w\#} instead.  Only
single-segment buffer objects are accepted; \exception{TypeError} is
raised for all others.

\item[\samp{w\#} (read-write character buffer) {[char *, int]}]
Like \samp{s\#}, but accepts any object which implements the
read-write buffer interface.  The \ctype{char *} variable is set to
point to the first byte of the buffer, and the \ctype{int} is set to
the length of the buffer.  Only single-segment buffer objects are
accepted; \exception{TypeError} is raised for all others.

\item[\samp{(\var{items})} (tuple) {[\var{matching-items}]}]
The object must be a Python sequence whose length is the number of
format units in \var{items}.  The C arguments must correspond to the
individual format units in \var{items}.  Format units for sequences
may be nested.

\strong{Note:} Prior to Python version 1.5.2, this format specifier
only accepted a tuple containing the individual parameters, not an
arbitrary sequence.  Code which previously caused
\exception{TypeError} to be raised here may now proceed without an
exception.  This is not expected to be a problem for existing code.

\end{description}

It is possible to pass Python long integers where integers are
requested; however no proper range checking is done --- the most
significant bits are silently truncated when the receiving field is
too small to receive the value (actually, the semantics are inherited
from downcasts in C --- your mileage may vary).

A few other characters have a meaning in a format string.  These may
not occur inside nested parentheses.  They are:

\begin{description}

\item[\samp{|}]
Indicates that the remaining arguments in the Python argument list are
optional.  The C variables corresponding to optional arguments should
be initialized to their default value --- when an optional argument is
not specified, \cfunction{PyArg_ParseTuple()} does not touch the contents
of the corresponding C variable(s).

\item[\samp{:}]
The list of format units ends here; the string after the colon is used
as the function name in error messages (the ``associated value'' of
the exception that \cfunction{PyArg_ParseTuple()} raises).

\item[\samp{;}]
The list of format units ends here; the string after the semicolon is
used as the error message \emph{instead} of the default error message.
Clearly, \samp{:} and \samp{;} mutually exclude each other.

\end{description}

Some example calls:

\begin{verbatim}
    int ok;
    int i, j;
    long k, l;
    char *s;
    int size;

    ok = PyArg_ParseTuple(args, ""); /* No arguments */
        /* Python call: f() */
\end{verbatim}

\begin{verbatim}
    ok = PyArg_ParseTuple(args, "s", &s); /* A string */
        /* Possible Python call: f('whoops!') */
\end{verbatim}

\begin{verbatim}
    ok = PyArg_ParseTuple(args, "lls", &k, &l, &s); /* Two longs and a string */
        /* Possible Python call: f(1, 2, 'three') */
\end{verbatim}

\begin{verbatim}
    ok = PyArg_ParseTuple(args, "(ii)s#", &i, &j, &s, &size);
        /* A pair of ints and a string, whose size is also returned */
        /* Possible Python call: f((1, 2), 'three') */
\end{verbatim}

\begin{verbatim}
    {
        char *file;
        char *mode = "r";
        int bufsize = 0;
        ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
        /* A string, and optionally another string and an integer */
        /* Possible Python calls:
           f('spam')
           f('spam', 'w')
           f('spam', 'wb', 100000) */
    }
\end{verbatim}

\begin{verbatim}
    {
        int left, top, right, bottom, h, v;
        ok = PyArg_ParseTuple(args, "((ii)(ii))(ii)",
                 &left, &top, &right, &bottom, &h, &v);
        /* A rectangle and a point */
        /* Possible Python call:
           f(((0, 0), (400, 300)), (10, 10)) */
    }
\end{verbatim}

\begin{verbatim}
    {
        Py_complex c;
        ok = PyArg_ParseTuple(args, "D:myfunction", &c);
        /* a complex, also providing a function name for errors */
        /* Possible Python call: myfunction(1+2j) */
    }
\end{verbatim}


\section{Keyword Parameters for Extension Functions
         \label{parseTupleAndKeywords}}

The \cfunction{PyArg_ParseTupleAndKeywords()} function is declared as
follows:

\begin{verbatim}
int PyArg_ParseTupleAndKeywords(PyObject *arg, PyObject *kwdict,
                                char *format, char **kwlist, ...);
\end{verbatim}

The \var{arg} and \var{format} parameters are identical to those of the
\cfunction{PyArg_ParseTuple()} function.  The \var{kwdict} parameter
is the dictionary of keywords received as the third parameter from the 
Python runtime.  The \var{kwlist} parameter is a \NULL{}-terminated
list of strings which identify the parameters; the names are matched
with the type information from \var{format} from left to right.

\strong{Note:}  Nested tuples cannot be parsed when using keyword
arguments!  Keyword parameters passed in which are not present in the
\var{kwlist} will cause \exception{TypeError} to be raised.

Here is an example module which uses keywords, based on an example by
Geoff Philbrick (\email{philbrick@hks.com}):%
\index{Philbrick, Geoff}

\begin{verbatim}
#include <stdio.h>
#include "Python.h"

static PyObject *
keywdarg_parrot(self, args, keywds)
    PyObject *self;
    PyObject *args;
    PyObject *keywds;
{  
    int voltage;
    char *state = "a stiff";
    char *action = "voom";
    char *type = "Norwegian Blue";

    static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

    if (!PyArg_ParseTupleAndKeywords(args, keywds, "i|sss", kwlist, 
                                     &voltage, &state, &action, &type))
        return NULL; 
  
    printf("-- This parrot wouldn't %s if you put %i Volts through it.\n", 
           action, voltage);
    printf("-- Lovely plumage, the %s -- It's %s!\n", type, state);

    Py_INCREF(Py_None);

    return Py_None;
}

static PyMethodDef keywdarg_methods[] = {
    /* The cast of the function is necessary since PyCFunction values
     * only take two PyObject* parameters, and keywdarg_parrot() takes
     * three.
     */
    {"parrot", (PyCFunction)keywdarg_parrot, METH_VARARGS|METH_KEYWORDS},
    {NULL,  NULL}   /* sentinel */
};

void
initkeywdarg()
{
  /* Create the module and add the functions */
  Py_InitModule("keywdarg", keywdarg_methods);
}
\end{verbatim}


\section{Building Arbitrary Values
         \label{buildValue}}

This function is the counterpart to \cfunction{PyArg_ParseTuple()}.  It is
declared as follows:

\begin{verbatim}
PyObject *Py_BuildValue(char *format, ...);
\end{verbatim}

It recognizes a set of format units similar to the ones recognized by
\cfunction{PyArg_ParseTuple()}, but the arguments (which are input to the
function, not output) must not be pointers, just values.  It returns a
new Python object, suitable for returning from a C function called
from Python.

One difference with \cfunction{PyArg_ParseTuple()}: while the latter
requires its first argument to be a tuple (since Python argument lists
are always represented as tuples internally),
\cfunction{Py_BuildValue()} does not always build a tuple.  It builds
a tuple only if its format string contains two or more format units.
If the format string is empty, it returns \code{None}; if it contains
exactly one format unit, it returns whatever object is described by
that format unit.  To force it to return a tuple of size 0 or one,
parenthesize the format string.

When memory buffers are passed as parameters to supply data to build
objects, as for the \samp{s} and \samp{s\#} formats, the required data
is copied.  Buffers provided by the caller are never referenced by the
objects created by \cfunction{Py_BuildValue()}.  In other words, if
your code invokes \cfunction{malloc()} and passes the allocated memory
to \cfunction{Py_BuildValue()}, your code is responsible for
calling \cfunction{free()} for that memory once
\cfunction{Py_BuildValue()} returns.

In the following description, the quoted form is the format unit; the
entry in (round) parentheses is the Python object type that the format
unit will return; and the entry in [square] brackets is the type of
the C value(s) to be passed.

The characters space, tab, colon and comma are ignored in format
strings (but not within format units such as \samp{s\#}).  This can be
used to make long format strings a tad more readable.

\begin{description}

\item[\samp{s} (string) {[char *]}]
Convert a null-terminated C string to a Python object.  If the C
string pointer is \NULL{}, \code{None} is used.

\item[\samp{s\#} (string) {[char *, int]}]
Convert a C string and its length to a Python object.  If the C string
pointer is \NULL{}, the length is ignored and \code{None} is
returned.

\item[\samp{z} (string or \code{None}) {[char *]}]
Same as \samp{s}.

\item[\samp{z\#} (string or \code{None}) {[char *, int]}]
Same as \samp{s\#}.

\item[\samp{u} (Unicode string) {[Py_UNICODE *]}]
Convert a null-terminated buffer of Unicode (UCS-2) data to a Python
Unicode object.  If the Unicode buffer pointer is \NULL,
\code{None} is returned.

\item[\samp{u\#} (Unicode string) {[Py_UNICODE *, int]}]
Convert a Unicode (UCS-2) data buffer and its length to a Python
Unicode object.   If the Unicode buffer pointer is \NULL, the length
is ignored and \code{None} is returned.

\item[\samp{i} (integer) {[int]}]
Convert a plain C \ctype{int} to a Python integer object.

\item[\samp{b} (integer) {[char]}]
Same as \samp{i}.

\item[\samp{h} (integer) {[short int]}]
Same as \samp{i}.

\item[\samp{l} (integer) {[long int]}]
Convert a C \ctype{long int} to a Python integer object.

\item[\samp{c} (string of length 1) {[char]}]
Convert a C \ctype{int} representing a character to a Python string of
length 1.

\item[\samp{d} (float) {[double]}]
Convert a C \ctype{double} to a Python floating point number.

\item[\samp{f} (float) {[float]}]
Same as \samp{d}.

\item[\samp{O} (object) {[PyObject *]}]
Pass a Python object untouched (except for its reference count, which
is incremented by one).  If the object passed in is a \NULL{}
pointer, it is assumed that this was caused because the call producing
the argument found an error and set an exception.  Therefore,
\cfunction{Py_BuildValue()} will return \NULL{} but won't raise an
exception.  If no exception has been raised yet,
\cdata{PyExc_SystemError} is set.

\item[\samp{S} (object) {[PyObject *]}]
Same as \samp{O}.

\item[\samp{U} (object) {[PyObject *]}]
Same as \samp{O}.

\item[\samp{N} (object) {[PyObject *]}]
Same as \samp{O}, except it doesn't increment the reference count on
the object.  Useful when the object is created by a call to an object
constructor in the argument list.

\item[\samp{O\&} (object) {[\var{converter}, \var{anything}]}]
Convert \var{anything} to a Python object through a \var{converter}
function.  The function is called with \var{anything} (which should be
compatible with \ctype{void *}) as its argument and should return a
``new'' Python object, or \NULL{} if an error occurred.

\item[\samp{(\var{items})} (tuple) {[\var{matching-items}]}]
Convert a sequence of C values to a Python tuple with the same number
of items.

\item[\samp{[\var{items}]} (list) {[\var{matching-items}]}]
Convert a sequence of C values to a Python list with the same number
of items.

\item[\samp{\{\var{items}\}} (dictionary) {[\var{matching-items}]}]
Convert a sequence of C values to a Python dictionary.  Each pair of
consecutive C values adds one item to the dictionary, serving as key
and value, respectively.

\end{description}

If there is an error in the format string, the
\cdata{PyExc_SystemError} exception is raised and \NULL{} returned.

Examples (to the left the call, to the right the resulting Python value):

\begin{verbatim}
    Py_BuildValue("")                        None
    Py_BuildValue("i", 123)                  123
    Py_BuildValue("iii", 123, 456, 789)      (123, 456, 789)
    Py_BuildValue("s", "hello")              'hello'
    Py_BuildValue("ss", "hello", "world")    ('hello', 'world')
    Py_BuildValue("s#", "hello", 4)          'hell'
    Py_BuildValue("()")                      ()
    Py_BuildValue("(i)", 123)                (123,)
    Py_BuildValue("(ii)", 123, 456)          (123, 456)
    Py_BuildValue("(i,i)", 123, 456)         (123, 456)
    Py_BuildValue("[i,i]", 123, 456)         [123, 456]
    Py_BuildValue("{s:i,s:i}",
                  "abc", 123, "def", 456)    {'abc': 123, 'def': 456}
    Py_BuildValue("((ii)(ii)) (ii)",
                  1, 2, 3, 4, 5, 6)          (((1, 2), (3, 4)), (5, 6))
\end{verbatim}


\section{Reference Counts
         \label{refcounts}}

In languages like C or \Cpp{}, the programmer is responsible for
dynamic allocation and deallocation of memory on the heap.  In C,
this is done using the functions \cfunction{malloc()} and
\cfunction{free()}.  In \Cpp{}, the operators \keyword{new} and
\keyword{delete} are used with essentially the same meaning; they are
actually implemented using \cfunction{malloc()} and
\cfunction{free()}, so we'll restrict the following discussion to the
latter.

Every block of memory allocated with \cfunction{malloc()} should
eventually be returned to the pool of available memory by exactly one
call to \cfunction{free()}.  It is important to call
\cfunction{free()} at the right time.  If a block's address is
forgotten but \cfunction{free()} is not called for it, the memory it
occupies cannot be reused until the program terminates.  This is
called a \dfn{memory leak}.  On the other hand, if a program calls
\cfunction{free()} for a block and then continues to use the block, it
creates a conflict with re-use of the block through another
\cfunction{malloc()} call.  This is called \dfn{using freed memory}.
It has the same bad consequences as referencing uninitialized data ---
core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code.  For
instance, a function may allocate a block of memory, do some
calculation, and then free the block again.  Now a change in the
requirements for the function may add a test to the calculation that
detects an error condition and can return prematurely from the
function.  It's easy to forget to free the allocated memory block when
taking this premature exit, especially when it is added later to the
code.  Such leaks, once introduced, often go undetected for a long
time: the error exit is taken only in a small fraction of all calls,
and most modern machines have plenty of virtual memory, so the leak
only becomes apparent in a long-running process that uses the leaking
function frequently.  Therefore, it's important to prevent leaks from
happening by having a coding convention or strategy that minimizes
this kind of errors.

Since Python makes heavy use of \cfunction{malloc()} and
\cfunction{free()}, it needs a strategy to avoid memory leaks as well
as the use of freed memory.  The chosen method is called
\dfn{reference counting}.  The principle is simple: every object
contains a counter, which is incremented when a reference to the
object is stored somewhere, and which is decremented when a reference
to it is deleted.  When the counter reaches zero, the last reference
to the object has been deleted and the object is freed.

An alternative strategy is called \dfn{automatic garbage collection}.
(Sometimes, reference counting is also referred to as a garbage
collection strategy, hence my use of ``automatic'' to distinguish the
two.)  The big advantage of automatic garbage collection is that the
user doesn't need to call \cfunction{free()} explicitly.  (Another claimed
advantage is an improvement in speed or memory usage --- this is no
hard fact however.)  The disadvantage is that for C, there is no
truly portable automatic garbage collector, while reference counting
can be implemented portably (as long as the functions \cfunction{malloc()}
and \cfunction{free()} are available --- which the C Standard guarantees).
Maybe some day a sufficiently portable automatic garbage collector
will be available for C.  Until then, we'll have to live with
reference counts.

\subsection{Reference Counting in Python
            \label{refcountsInPython}}

There are two macros, \code{Py_INCREF(x)} and \code{Py_DECREF(x)},
which handle the incrementing and decrementing of the reference count.
\cfunction{Py_DECREF()} also frees the object when the count reaches zero.
For flexibility, it doesn't call \cfunction{free()} directly --- rather, it
makes a call through a function pointer in the object's \dfn{type
object}.  For this purpose (and others), every object also contains a
pointer to its type object.

The big question now remains: when to use \code{Py_INCREF(x)} and
\code{Py_DECREF(x)}?  Let's first introduce some terms.  Nobody
``owns'' an object; however, you can \dfn{own a reference} to an
object.  An object's reference count is now defined as the number of
owned references to it.  The owner of a reference is responsible for
calling \cfunction{Py_DECREF()} when the reference is no longer
needed.  Ownership of a reference can be transferred.  There are three
ways to dispose of an owned reference: pass it on, store it, or call
\cfunction{Py_DECREF()}.  Forgetting to dispose of an owned reference
creates a memory leak.

It is also possible to \dfn{borrow}\footnote{The metaphor of
``borrowing'' a reference is not completely correct: the owner still
has a copy of the reference.} a reference to an object.  The borrower
of a reference should not call \cfunction{Py_DECREF()}.  The borrower must
not hold on to the object longer than the owner from which it was
borrowed.  Using a borrowed reference after the owner has disposed of
it risks using freed memory and should be avoided
completely.\footnote{Checking that the reference count is at least 1
\strong{does not work} --- the reference count itself could be in
freed memory and may thus be reused for another object!}

The advantage of borrowing over owning a reference is that you don't
need to take care of disposing of the reference on all possible paths
through the code --- in other words, with a borrowed reference you
don't run the risk of leaking when a premature exit is taken.  The
disadvantage of borrowing over leaking is that there are some subtle
situations where in seemingly correct code a borrowed reference can be
used after the owner from which it was borrowed has in fact disposed
of it.

A borrowed reference can be changed into an owned reference by calling
\cfunction{Py_INCREF()}.  This does not affect the status of the owner from
which the reference was borrowed --- it creates a new owned reference,
and gives full owner responsibilities (i.e., the new owner must
dispose of the reference properly, as well as the previous owner).


\subsection{Ownership Rules
            \label{ownershipRules}}

Whenever an object reference is passed into or out of a function, it
is part of the function's interface specification whether ownership is
transferred with the reference or not.

Most functions that return a reference to an object pass on ownership
with the reference.  In particular, all functions whose function it is
to create a new object, e.g.\ \cfunction{PyInt_FromLong()} and
\cfunction{Py_BuildValue()}, pass ownership to the receiver.  Even if in
fact, in some cases, you don't receive a reference to a brand new
object, you still receive ownership of the reference.  For instance,
\cfunction{PyInt_FromLong()} maintains a cache of popular values and can
return a reference to a cached item.

Many functions that extract objects from other objects also transfer
ownership with the reference, for instance
\cfunction{PyObject_GetAttrString()}.  The picture is less clear, here,
however, since a few common routines are exceptions:
\cfunction{PyTuple_GetItem()}, \cfunction{PyList_GetItem()},
\cfunction{PyDict_GetItem()}, and \cfunction{PyDict_GetItemString()}
all return references that you borrow from the tuple, list or
dictionary.

The function \cfunction{PyImport_AddModule()} also returns a borrowed
reference, even though it may actually create the object it returns:
this is possible because an owned reference to the object is stored in
\code{sys.modules}.

When you pass an object reference into another function, in general,
the function borrows the reference from you --- if it needs to store
it, it will use \cfunction{Py_INCREF()} to become an independent
owner.  There are exactly two important exceptions to this rule:
\cfunction{PyTuple_SetItem()} and \cfunction{PyList_SetItem()}.  These
functions take over ownership of the item passed to them --- even if
they fail!  (Note that \cfunction{PyDict_SetItem()} and friends don't
take over ownership --- they are ``normal.'')

When a C function is called from Python, it borrows references to its
arguments from the caller.  The caller owns a reference to the object,
so the borrowed reference's lifetime is guaranteed until the function
returns.  Only when such a borrowed reference must be stored or passed
on, it must be turned into an owned reference by calling
\cfunction{Py_INCREF()}.

The object reference returned from a C function that is called from
Python must be an owned reference --- ownership is tranferred from the
function to its caller.


\subsection{Thin Ice
            \label{thinIce}}

There are a few situations where seemingly harmless use of a borrowed
reference can lead to problems.  These all have to do with implicit
invocations of the interpreter, which can cause the owner of a
reference to dispose of it.

The first and most important case to know about is using
\cfunction{Py_DECREF()} on an unrelated object while borrowing a
reference to a list item.  For instance:

\begin{verbatim}
bug(PyObject *list) {
    PyObject *item = PyList_GetItem(list, 0);

    PyList_SetItem(list, 1, PyInt_FromLong(0L));
    PyObject_Print(item, stdout, 0); /* BUG! */
}
\end{verbatim}

This function first borrows a reference to \code{list[0]}, then
replaces \code{list[1]} with the value \code{0}, and finally prints
the borrowed reference.  Looks harmless, right?  But it's not!

Let's follow the control flow into \cfunction{PyList_SetItem()}.  The list
owns references to all its items, so when item 1 is replaced, it has
to dispose of the original item 1.  Now let's suppose the original
item 1 was an instance of a user-defined class, and let's further
suppose that the class defined a \method{__del__()} method.  If this
class instance has a reference count of 1, disposing of it will call
its \method{__del__()} method.

Since it is written in Python, the \method{__del__()} method can execute
arbitrary Python code.  Could it perhaps do something to invalidate
the reference to \code{item} in \cfunction{bug()}?  You bet!  Assuming
that the list passed into \cfunction{bug()} is accessible to the
\method{__del__()} method, it could execute a statement to the effect of
\samp{del list[0]}, and assuming this was the last reference to that
object, it would free the memory associated with it, thereby
invalidating \code{item}.

The solution, once you know the source of the problem, is easy:
temporarily increment the reference count.  The correct version of the
function reads:

\begin{verbatim}
no_bug(PyObject *list) {
    PyObject *item = PyList_GetItem(list, 0);

    Py_INCREF(item);
    PyList_SetItem(list, 1, PyInt_FromLong(0L));
    PyObject_Print(item, stdout, 0);
    Py_DECREF(item);
}
\end{verbatim}

This is a true story.  An older version of Python contained variants
of this bug and someone spent a considerable amount of time in a C
debugger to figure out why his \method{__del__()} methods would fail...

The second case of problems with a borrowed reference is a variant
involving threads.  Normally, multiple threads in the Python
interpreter can't get in each other's way, because there is a global
lock protecting Python's entire object space.  However, it is possible
to temporarily release this lock using the macro
\code{Py_BEGIN_ALLOW_THREADS}, and to re-acquire it using
\code{Py_END_ALLOW_THREADS}.  This is common around blocking I/O
calls, to let other threads use the CPU while waiting for the I/O to
complete.  Obviously, the following function has the same problem as
the previous one:

\begin{verbatim}
bug(PyObject *list) {
    PyObject *item = PyList_GetItem(list, 0);
    Py_BEGIN_ALLOW_THREADS
    ...some blocking I/O call...
    Py_END_ALLOW_THREADS
    PyObject_Print(item, stdout, 0); /* BUG! */
}
\end{verbatim}


\subsection{NULL Pointers
            \label{nullPointers}}

In general, functions that take object references as arguments do not
expect you to pass them \NULL{} pointers, and will dump core (or
cause later core dumps) if you do so.  Functions that return object
references generally return \NULL{} only to indicate that an
exception occurred.  The reason for not testing for \NULL{}
arguments is that functions often pass the objects they receive on to
other function --- if each function were to test for \NULL{},
there would be a lot of redundant tests and the code would run more
slowly.

It is better to test for \NULL{} only at the ``source'', i.e.\ when a
pointer that may be \NULL{} is received, e.g.\ from
\cfunction{malloc()} or from a function that may raise an exception.

The macros \cfunction{Py_INCREF()} and \cfunction{Py_DECREF()}
do not check for \NULL{} pointers --- however, their variants
\cfunction{Py_XINCREF()} and \cfunction{Py_XDECREF()} do.

The macros for checking for a particular object type
(\code{Py\var{type}_Check()}) don't check for \NULL{} pointers ---
again, there is much code that calls several of these in a row to test
an object against various different expected types, and this would
generate redundant tests.  There are no variants with \NULL{}
checking.

The C function calling mechanism guarantees that the argument list
passed to C functions (\code{args} in the examples) is never
\NULL{} --- in fact it guarantees that it is always a tuple.\footnote{
These guarantees don't hold when you use the ``old'' style
calling convention --- this is still found in much existing code.}

It is a severe error to ever let a \NULL{} pointer ``escape'' to
the Python user.

% Frank Stajano:
% A pedagogically buggy example, along the lines of the previous listing, 
% would be helpful here -- showing in more concrete terms what sort of 
% actions could cause the problem. I can't very well imagine it from the 
% description.


\section{Writing Extensions in \Cpp{}
         \label{cplusplus}}

It is possible to write extension modules in \Cpp{}.  Some restrictions
apply.  If the main program (the Python interpreter) is compiled and
linked by the C compiler, global or static objects with constructors
cannot be used.  This is not a problem if the main program is linked
by the \Cpp{} compiler.  Functions that will be called by the
Python interpreter (in particular, module initalization functions)
have to be declared using \code{extern "C"}.
It is unnecessary to enclose the Python header files in
\code{extern "C" \{...\}} --- they use this form already if the symbol
\samp{__cplusplus} is defined (all recent \Cpp{} compilers define this
symbol).


\section{Providing a C API for an Extension Module
         \label{using-cobjects}}
\sectionauthor{Konrad Hinsen}{hinsen@cnrs-orleans.fr}

Many extension modules just provide new functions and types to be
used from Python, but sometimes the code in an extension module can
be useful for other extension modules. For example, an extension
module could implement a type ``collection'' which works like lists
without order. Just like the standard Python list type has a C API
which permits extension modules to create and manipulate lists, this
new collection type should have a set of C functions for direct
manipulation from other extension modules.

At first sight this seems easy: just write the functions (without
declaring them \keyword{static}, of course), provide an appropriate
header file, and document the C API. And in fact this would work if
all extension modules were always linked statically with the Python
interpreter. When modules are used as shared libraries, however, the
symbols defined in one module may not be visible to another module.
The details of visibility depend on the operating system; some systems
use one global namespace for the Python interpreter and all extension
modules (e.g.\ Windows), whereas others require an explicit list of
imported symbols at module link time (e.g.\ AIX), or offer a choice of
different strategies (most Unices). And even if symbols are globally
visible, the module whose functions one wishes to call might not have
been loaded yet!

Portability therefore requires not to make any assumptions about
symbol visibility. This means that all symbols in extension modules
should be declared \keyword{static}, except for the module's
initialization function, in order to avoid name clashes with other
extension modules (as discussed in section~\ref{methodTable}). And it
means that symbols that \emph{should} be accessible from other
extension modules must be exported in a different way.

Python provides a special mechanism to pass C-level information (i.e.
pointers) from one extension module to another one: CObjects.
A CObject is a Python data type which stores a pointer (\ctype{void
*}).  CObjects can only be created and accessed via their C API, but
they can be passed around like any other Python object. In particular, 
they can be assigned to a name in an extension module's namespace.
Other extension modules can then import this module, retrieve the
value of this name, and then retrieve the pointer from the CObject.

There are many ways in which CObjects can be used to export the C API
of an extension module. Each name could get its own CObject, or all C
API pointers could be stored in an array whose address is published in
a CObject. And the various tasks of storing and retrieving the pointers
can be distributed in different ways between the module providing the
code and the client modules.

The following example demonstrates an approach that puts most of the
burden on the writer of the exporting module, which is appropriate
for commonly used library modules. It stores all C API pointers
(just one in the example!) in an array of \ctype{void} pointers which
becomes the value of a CObject. The header file corresponding to
the module provides a macro that takes care of importing the module
and retrieving its C API pointers; client modules only have to call
this macro before accessing the C API.

The exporting module is a modification of the \module{spam} module from
section~\ref{simpleExample}. The function \function{spam.system()}
does not call the C library function \cfunction{system()} directly,
but a function \cfunction{PySpam_System()}, which would of course do
something more complicated in reality (such as adding ``spam'' to
every command). This function \cfunction{PySpam_System()} is also
exported to other extension modules.

The function \cfunction{PySpam_System()} is a plain C function,
declared \keyword{static} like everything else:

\begin{verbatim}
static int
PySpam_System(command)
    char *command;
{
    return system(command);
}
\end{verbatim}

The function \cfunction{spam_system()} is modified in a trivial way:

\begin{verbatim}
static PyObject *
spam_system(self, args)
    PyObject *self;
    PyObject *args;
{
    char *command;
    int sts;

    if (!PyArg_ParseTuple(args, "s", &command))
        return NULL;
    sts = PySpam_System(command);
    return Py_BuildValue("i", sts);
}
\end{verbatim}

In the beginning of the module, right after the line

\begin{verbatim}
#include "Python.h"
\end{verbatim}

two more lines must be added:

\begin{verbatim}
#define SPAM_MODULE
#include "spammodule.h"
\end{verbatim}

The \code{\#define} is used to tell the header file that it is being
included in the exporting module, not a client module. Finally,
the module's initialization function must take care of initializing
the C API pointer array:

\begin{verbatim}
void
initspam()
{
    PyObject *m, *d;
    static void *PySpam_API[PySpam_API_pointers];
    PyObject *c_api_object;
    m = Py_InitModule("spam", SpamMethods);

    /* Initialize the C API pointer array */
    PySpam_API[PySpam_System_NUM] = (void *)PySpam_System;

    /* Create a CObject containing the API pointer array's address */
    c_api_object = PyCObject_FromVoidPtr((void *)PySpam_API, NULL);

    /* Create a name for this object in the module's namespace */
    d = PyModule_GetDict(m);
    PyDict_SetItemString(d, "_C_API", c_api_object);
}
\end{verbatim}

Note that \code{PySpam_API} is declared \code{static}; otherwise
the pointer array would disappear when \code{initspam} terminates!

The bulk of the work is in the header file \file{spammodule.h},
which looks like this:

\begin{verbatim}
#ifndef Py_SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef __cplusplus
extern "C" {
#endif

/* Header file for spammodule */

/* C API functions */
#define PySpam_System_NUM 0
#define PySpam_System_RETURN int
#define PySpam_System_PROTO (char *command)

/* Total number of C API pointers */
#define PySpam_API_pointers 1


#ifdef SPAM_MODULE
/* This section is used when compiling spammodule.c */

static PySpam_System_RETURN PySpam_System PySpam_System_PROTO;

#else
/* This section is used in modules that use spammodule's API */

static void **PySpam_API;

#define PySpam_System \
 (*(PySpam_System_RETURN (*)PySpam_System_PROTO) PySpam_API[PySpam_System_NUM])

#define import_spam() \
{ \
  PyObject *module = PyImport_ImportModule("spam"); \
  if (module != NULL) { \
    PyObject *module_dict = PyModule_GetDict(module); \
    PyObject *c_api_object = PyDict_GetItemString(module_dict, "_C_API"); \
    if (PyCObject_Check(c_api_object)) { \
      PySpam_API = (void **)PyCObject_AsVoidPtr(c_api_object); \
    } \
  } \
}

#endif

#ifdef __cplusplus
}
#endif

#endif /* !defined(Py_SPAMMODULE_H */
\end{verbatim}

All that a client module must do in order to have access to the
function \cfunction{PySpam_System()} is to call the function (or
rather macro) \cfunction{import_spam()} in its initialization
function:

\begin{verbatim}
void
initclient()
{
    PyObject *m;

    Py_InitModule("client", ClientMethods);
    import_spam();
}
\end{verbatim}

The main disadvantage of this approach is that the file
\file{spammodule.h} is rather complicated. However, the
basic structure is the same for each function that is
exported, so it has to be learned only once.

Finally it should be mentioned that CObjects offer additional
functionality, which is especially useful for memory allocation and
deallocation of the pointer stored in a CObject. The details
are described in the \citetitle[../api/api.html]{Python/C API
Reference Manual} in the section ``CObjects'' and in the
implementation of CObjects (files \file{Include/cobject.h} and
\file{Objects/cobject.c} in the Python source code distribution).


\chapter{Defining New Types
        \label{defining-new-types}}
\sectionauthor{Michael Hudson}{mwh21@cam.ac.uk}

As mentioned in the last chapter, Python allows the writer of an
extension module to define new types that can be manipulated from
Python code, much like strings and lists in core Python.

This is not hard; the code for all extension types follows a pattern,
but there are some details that you need to understand before you can
get started.

\section{The Basics
    \label{dnt-basics}}

The Python runtime sees all Python objects as variables of type
\ctype{PyObject*}.  A \ctype{PyObject} is not a very magnificent
object - it just contains the refcount and a pointer to the object's
``type object''.  This is where the action is; the type object
determines which (C) functions get called when, for instance, an
attribute gets looked up on an object or it is multiplied by another
object.  I call these C functions ``type methods'' to distinguish them
from things like \code{[].append} (which I will call ``object
methods'' when I get around to them).

So, if you want to define a new object type, you need to create a new
type object.

This sort of thing can only be explained by example, so here's a
minimal, but complete, module that defines a new type:

\begin{verbatim}
#include <Python.h>

staticforward PyTypeObject noddy_NoddyType;

typedef struct {
    PyObject_HEAD
} noddy_NoddyObject;

static PyObject*
noddy_new_noddy(PyObject* self, PyObject* args)
{
    noddy_NoddyObject* noddy;

    if (!PyArg_ParseTuple(args,":new_noddy")) 
        return NULL;

    noddy = PyObject_New(noddy_NoddyObject, &noddy_NoddyType);

    return (PyObject*)noddy;
}

static void
noddy_noddy_dealloc(PyObject* self)
{
    PyObject_Del(self);
}

static PyTypeObject noddy_NoddyType = {
    PyObject_HEAD_INIT(NULL)
    0,
    "Noddy",
    sizeof(noddy_NoddyObject),
    0,
    noddy_noddy_dealloc, /*tp_dealloc*/
    0,          /*tp_print*/
    0,          /*tp_getattr*/
    0,          /*tp_setattr*/
    0,          /*tp_compare*/
    0,          /*tp_repr*/
    0,          /*tp_as_number*/
    0,          /*tp_as_sequence*/
    0,          /*tp_as_mapping*/
    0,          /*tp_hash */
};

static PyMethodDef noddy_methods[] = {
    { "new_noddy", noddy_new_noddy, METH_VARARGS },
    {NULL, NULL}
};

DL_EXPORT(void)
initnoddy(void) 
{
    noddy_NoddyType.ob_type = &PyType_Type;

    Py_InitModule("noddy", noddy_methods);
}
\end{verbatim}

Now that's quite a bit to take in at once, but hopefully bits will
seem familiar from the last chapter.

The first bit that will be new is:

\begin{verbatim}
staticforward PyTypeObject noddy_NoddyType;
\end{verbatim}

This names the type object that will be defining further down in the
file.  It can't be defined here because its definition has to refer to
functions that have no yet been defined, but we need to be able to
refer to it, hence the declaration.

The \code{staticforward} is required to placate various brain dead
compilers.

\begin{verbatim}
typedef struct {
    PyObject_HEAD
} noddy_NoddyObject;
\end{verbatim}

This is what a Noddy object will contain.  In this case nothing more
than every Python object contains - a refcount and a pointer to a type
object.  These are the fields the \code{PyObject_HEAD} macro brings
in.  The reason for the macro is to standardize the layout and to
enable special debugging fields to be brought in debug builds.

For contrast

\begin{verbatim}
typedef struct {
    PyObject_HEAD
    long ob_ival;
} PyIntObject;
\end{verbatim}

is the corresponding definition for standard Python integers.

Next up is:

\begin{verbatim}
static PyObject*
noddy_new_noddy(PyObject* self, PyObject* args)
{
    noddy_NoddyObject* noddy;

    if (!PyArg_ParseTuple(args,":new_noddy")) 
        return NULL;

    noddy = PyObject_New(noddy_NoddyObject, &noddy_NoddyType);

    return (PyObject*)noddy;
}
\end{verbatim}

This is in fact just a regular module function, as described in the
last chapter.  The reason it gets special mention is that this is
where we create our Noddy object.  Defining PyTypeObject structures is
all very well, but if there's no way to actually \textit{create} one
of the wretched things it is not going to do anyone much good.

Almost always, you create objects with a call of the form:

\begin{verbatim}
PyObject_New(<type>, &<type object>);
\end{verbatim}

This allocates the memory and then initializes the object (i.e.\ sets
the reference count to one, makes the \cdata{ob_type} pointer point at
the right place and maybe some other stuff, depending on build options).
You \emph{can} do these steps separately if you have some reason to
--- but at this level we don't bother.

We cast the return value to a \ctype{PyObject*} because that's what
the Python runtime expects.  This is safe because of guarantees about
the layout of structures in the C standard, and is a fairly common C
programming trick.  One could declare \cfunction{noddy_new_noddy} to
return a \ctype{noddy_NoddyObject*} and then put a cast in the
definition of \cdata{noddy_methods} further down the file --- it
doesn't make much difference.

Now a Noddy object doesn't do very much and so doesn't need to
implement many type methods.  One you can't avoid is handling
deallocation, so we find

\begin{verbatim}
static void
noddy_noddy_dealloc(PyObject* self)
{
    PyObject_Del(self);
}
\end{verbatim}

This is so short as to be self explanatory.  This function will be
called when the reference count on a Noddy object reaches \code{0} (or
it is found as part of an unreachable cycle by the cyclic garbage
collector).  \cfunction{PyObject_Del()} is what you call when you want
an object to go away.  If a Noddy object held references to other
Python objects, one would decref them here.

Moving on, we come to the crunch --- the type object.

\begin{verbatim}
static PyTypeObject noddy_NoddyType = {
    PyObject_HEAD_INIT(NULL)
    0,
    "Noddy",
    sizeof(noddy_NoddyObject),
    0,
    noddy_noddy_dealloc, /*tp_dealloc*/
    0,                   /*tp_print*/
    0,                   /*tp_getattr*/
    0,                   /*tp_setattr*/
    0,                   /*tp_compare*/
    0,                   /*tp_repr*/
    0,                   /*tp_as_number*/
    0,                   /*tp_as_sequence*/
    0,                   /*tp_as_mapping*/
    0,                   /*tp_hash */
};
\end{verbatim}

Now if you go and look up the definition of \ctype{PyTypeObject} in
\file{object.h} you'll see that it has many, many more fields that the
definition above.  The remaining fields will be filled with zeros by
the C compiler, and it's common practice to not specify them
explicitly unless you need them.  

This is so important that I'm going to pick the top of it apart still
further:

\begin{verbatim}
    PyObject_HEAD_INIT(NULL)
\end{verbatim}

This line is a bit of a wart; what we'd like to write is:

\begin{verbatim}
    PyObject_HEAD_INIT(&PyType_Type)
\end{verbatim}

as the type of a type object is ``type'', but this isn't strictly
conforming C and some compilers complain.  So instead we fill in the
\cdata{ob_type} field of \cdata{noddy_NoddyType} at the earliest
oppourtunity --- in \cfunction{initnoddy()}.

\begin{verbatim}
    0,
\end{verbatim}

XXX why does the type info struct start PyObject_*VAR*_HEAD??

\begin{verbatim}
    "Noddy",
\end{verbatim}

The name of our type.  This will appear in the default textual
representation of our objects and in some error messages, for example:

\begin{verbatim}
>>> "" + noddy.new_noddy()
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
TypeError: cannot add type "Noddy" to string
\end{verbatim}

\begin{verbatim}
    sizeof(noddy_NoddyObject),
\end{verbatim}

This is so that Python knows how much memory to allocate when you call
\cfunction{PyObject_New}.

\begin{verbatim}
    0,
\end{verbatim}

This has to do with variable length objects like lists and strings.
Ignore for now...

Now we get into the type methods, the things that make your objects
different from the others.  Of course, the Noddy object doesn't
implement many of these, but as mentioned above you have to implement
the deallocation function.

\begin{verbatim}
    noddy_noddy_dealloc, /*tp_dealloc*/
\end{verbatim}

From here, all the type methods are nil so I won't go over them yet -
that's for the next section!

Everything else in the file should be familiar, except for this line
in \cfunction{initnoddy}:

\begin{verbatim}
    noddy_NoddyType.ob_type = &PyType_Type;
\end{verbatim}

This was alluded to above --- the \cdata{noddy_NoddyType} object should
have type ``type'', but \code{\&PyType_Type} is not constant and so
can't be used in its initializer.  To work around this, we patch it up
in the module initialization.

That's it!  All that remains is to build it; put the above code in a
file called \file{noddymodule.c} and

\begin{verbatim}
from distutils.core import setup, Extension
setup(name = "noddy", version = "1.0",
    ext_modules = [Extension("noddy", ["noddymodule.c"])])
\end{verbatim}

in a file called \file{setup.py}; then typing

\begin{verbatim}
$ python setup.py build%$
\end{verbatim}

at a shell should produce a file \file{noddy.so} in a subdirectory;
move to that directory and fire up Python --- you should be able to
\code{import noddy} and play around with Noddy objects.

That wasn't so hard, was it?

\section{Type Methods
         \label{dnt-type-methods}}

This section aims to give a quick fly-by on the various type methods
you can implement and what they do.

Here is the definition of \ctype{PyTypeObject}, with some fields only
used in debug builds omitted:

\begin{verbatim}
typedef struct _typeobject {
    PyObject_VAR_HEAD
    char *tp_name; /* For printing */
    int tp_basicsize, tp_itemsize; /* For allocation */

    /* Methods to implement standard operations */

    destructor tp_dealloc;
    printfunc tp_print;
    getattrfunc tp_getattr;
    setattrfunc tp_setattr;
    cmpfunc tp_compare;
    reprfunc tp_repr;

    /* Method suites for standard classes */

    PyNumberMethods *tp_as_number;
    PySequenceMethods *tp_as_sequence;
    PyMappingMethods *tp_as_mapping;

    /* More standard operations (here for binary compatibility) */

    hashfunc tp_hash;
    ternaryfunc tp_call;
    reprfunc tp_str;
    getattrofunc tp_getattro;
    setattrofunc tp_setattro;

    /* Functions to access object as input/output buffer */
    PyBufferProcs *tp_as_buffer;

    /* Flags to define presence of optional/expanded features */
    long tp_flags;

    char *tp_doc; /* Documentation string */

    /* call function for all accessible objects */
    traverseproc tp_traverse;

    /* delete references to contained objects */
    inquiry tp_clear;

    /* rich comparisons */
    richcmpfunc tp_richcompare;

    /* weak reference enabler */
    long tp_weaklistoffset;

} PyTypeObject;
\end{verbatim}

Now that's a \emph{lot} of methods.  Don't worry too much though - if
you have a type you want to define, the chances are very good that you
will only implement a handful of these.

As you probably expect by now, I'm going to go over this line-by-line,
saying a word about each field as we get to it.

\begin{verbatim}
    char *tp_name; /* For printing */
\end{verbatim}

The name of the type - as mentioned in the last section, this will
appear in various places, almost entirely for diagnostic purposes.
Try to choose something that will be helpful in such a situation!

\begin{verbatim}
    int tp_basicsize, tp_itemsize; /* For allocation */
\end{verbatim}

These fields tell the runtime how much memory to allocate when new
objects of this typed are created.  Python has some builtin support
for variable length structures (think: strings, lists) which is where
the \cdata{tp_itemsize} field comes in.  This will be dealt with
later.

Now we come to the basic type methods - the ones most extension types
will implement.

\begin{verbatim}
	destructor tp_dealloc;
\end{verbatim}
\begin{verbatim}
	printfunc tp_print;
\end{verbatim}
\begin{verbatim}
	getattrfunc tp_getattr;
\end{verbatim}
\begin{verbatim}
	setattrfunc tp_setattr;
\end{verbatim}
\begin{verbatim}
	cmpfunc tp_compare;
\end{verbatim}
\begin{verbatim}
	reprfunc tp_repr;
\end{verbatim}


%\section{Attributes \& Methods
%    \label{dnt-attrs-and-meths}}


\chapter{Building C and \Cpp{} Extensions on \UNIX{}
     \label{building-on-unix}}

\sectionauthor{Jim Fulton}{jim@Digicool.com}


%The make file make file, building C extensions on Unix


Starting in Python 1.4, Python provides a special make file for
building make files for building dynamically-linked extensions and
custom interpreters.  The make file make file builds a make file
that reflects various system variables determined by configure when
the Python interpreter was built, so people building module's don't
have to resupply these settings.  This vastly simplifies the process
of building extensions and custom interpreters on Unix systems.

The make file make file is distributed as the file
\file{Misc/Makefile.pre.in} in the Python source distribution.  The
first step in building extensions or custom interpreters is to copy
this make file to a development directory containing extension module
source.

The make file make file, \file{Makefile.pre.in} uses metadata
provided in a file named \file{Setup}.  The format of the \file{Setup}
file is the same as the \file{Setup} (or \file{Setup.dist}) file
provided in the \file{Modules/} directory of the Python source
distribution.  The \file{Setup} file contains variable definitions:

\begin{verbatim}
EC=/projects/ExtensionClass
\end{verbatim}

and module description lines.  It can also contain blank lines and
comment lines that start with \character{\#}.

A module description line includes a module name, source files,
options, variable references, and other input files, such
as libraries or object files.  Consider a simple example:

\begin{verbatim}
ExtensionClass ExtensionClass.c
\end{verbatim}

This is the simplest form of a module definition line.  It defines a
module, \module{ExtensionClass}, which has a single source file,
\file{ExtensionClass.c}.

This slightly more complex example uses an \strong{-I} option to
specify an include directory:

\begin{verbatim}
EC=/projects/ExtensionClass
cPersistence cPersistence.c -I$(EC)
\end{verbatim} % $ <-- bow to font lock

This example also illustrates the format for variable references.

For systems that support dynamic linking, the \file{Setup} file should 
begin:

\begin{verbatim}
*shared*
\end{verbatim}

to indicate that the modules defined in \file{Setup} are to be built
as dynamically linked modules.  A line containing only \samp{*static*}
can be used to indicate the subsequently listed modules should be
statically linked.

Here is a complete \file{Setup} file for building a
\module{cPersistent} module:

\begin{verbatim}
# Set-up file to build the cPersistence module. 
# Note that the text should begin in the first column.
*shared*

# We need the path to the directory containing the ExtensionClass
# include file.
EC=/projects/ExtensionClass
cPersistence cPersistence.c -I$(EC)
\end{verbatim} % $ <-- bow to font lock

After the \file{Setup} file has been created, \file{Makefile.pre.in}
is run with the \samp{boot} target to create a make file:

\begin{verbatim}
make -f Makefile.pre.in boot
\end{verbatim}

This creates the file, Makefile.  To build the extensions, simply
run the created make file:

\begin{verbatim}
make
\end{verbatim}

It's not necessary to re-run \file{Makefile.pre.in} if the
\file{Setup} file is changed.  The make file automatically rebuilds
itself if the \file{Setup} file changes.


\section{Building Custom Interpreters \label{custom-interps}}

The make file built by \file{Makefile.pre.in} can be run with the
\samp{static} target to build an interpreter:

\begin{verbatim}
make static
\end{verbatim}

Any modules defined in the \file{Setup} file before the
\samp{*shared*} line will be statically linked into the interpreter.
Typically, a \samp{*shared*} line is omitted from the
\file{Setup} file when a custom interpreter is desired.


\section{Module Definition Options \label{module-defn-options}}

Several compiler options are supported:

\begin{tableii}{l|l}{programopt}{Option}{Meaning}
  \lineii{-C}{Tell the C pre-processor not to discard comments}
  \lineii{-D\var{name}=\var{value}}{Define a macro}
  \lineii{-I\var{dir}}{Specify an include directory, \var{dir}}
  \lineii{-L\var{dir}}{Specify a link-time library directory, \var{dir}}
  \lineii{-R\var{dir}}{Specify a run-time library directory, \var{dir}}
  \lineii{-l\var{lib}}{Link a library, \var{lib}}
  \lineii{-U\var{name}}{Undefine a macro}
\end{tableii}

Other compiler options can be included (snuck in) by putting them
in variables.

Source files can include files with \file{.c}, \file{.C}, \file{.cc},
\file{.cpp}, \file{.cxx}, and \file{.c++} extensions. 

Other input files include files with \file{.a}, \file{.o}, \file{.sl}, 
and \file{.so} extensions.


\section{Example \label{module-defn-example}}

Here is a more complicated example from \file{Modules/Setup.dist}:

\begin{verbatim}
GMP=/ufs/guido/src/gmp
mpz mpzmodule.c -I$(GMP) $(GMP)/libgmp.a
\end{verbatim}

which could also be written as:

\begin{verbatim}
mpz mpzmodule.c -I$(GMP) -L$(GMP) -lgmp
\end{verbatim}


\section{Distributing your extension modules
     \label{distributing}}

There are two ways to distribute extension modules for others to use.
The way that allows the easiest cross-platform support is to use the
\module{distutils}\refstmodindex{distutils} package.  The manual
\citetitle[../dist/dist.html]{Distributing Python Modules} contains
information on this approach.  It is recommended that all new
extensions be distributed using this approach to allow easy building
and installation across platforms.  Older extensions should migrate to
this approach as well.

What follows describes the older approach; there are still many
extensions which use this.

When distributing your extension modules in source form, make sure to
include a \file{Setup} file.  The \file{Setup} file should be named
\file{Setup.in} in the distribution.  The make file make file,
\file{Makefile.pre.in}, will copy \file{Setup.in} to \file{Setup} if
the person installing the extension doesn't do so manually.
Distributing a \file{Setup.in} file makes it easy for people to
customize the \file{Setup} file while keeping the original in
\file{Setup.in}.

It is a good idea to include a copy of \file{Makefile.pre.in} for
people who do not have a source distribution of Python.

Do not distribute a make file.  People building your modules
should use \file{Makefile.pre.in} to build their own make file.  A
\file{README} file included in the package should provide simple
instructions to perform the build.


\chapter{Building C and \Cpp{} Extensions on Windows
     \label{building-on-windows}}


This chapter briefly explains how to create a Windows extension module
for Python using Microsoft Visual \Cpp{}, and follows with more
detailed background information on how it works.  The explanatory
material is useful for both the Windows programmer learning to build
Python extensions and the \UNIX{} programmer interested in producing
software which can be successfully built on both \UNIX{} and Windows.


\section{A Cookbook Approach \label{win-cookbook}}

\sectionauthor{Neil Schemenauer}{neil_schemenauer@transcanada.com}

This section provides a recipe for building a Python extension on
Windows.

Grab the binary installer from \url{http://www.python.org/} and
install Python.  The binary installer has all of the required header
files except for \file{config.h}.

Get the source distribution and extract it into a convenient location.
Copy the \file{config.h} from the \file{PC/} directory into the
\file{include/} directory created by the installer.

Create a \file{Setup} file for your extension module, as described in
chapter \ref{building-on-unix}.

Get David Ascher's \file{compile.py} script from
\url{http://starship.python.net/crew/da/compile/}.  Run the script to
create Microsoft Visual \Cpp{} project files.

Open the DSW file in Visual \Cpp{} and select \strong{Build}.

If your module creates a new type, you may have trouble with this line:

\begin{verbatim}
    PyObject_HEAD_INIT(&PyType_Type)
\end{verbatim}

Change it to:

\begin{verbatim}
    PyObject_HEAD_INIT(NULL)
\end{verbatim}

and add the following to the module initialization function:

\begin{verbatim}
    MyObject_Type.ob_type = &PyType_Type;
\end{verbatim}

Refer to section 3 of the
\citetitle[http://www.python.org/doc/FAQ.html]{Python FAQ} for details
on why you must do this.


\section{Differences Between \UNIX{} and Windows
     \label{dynamic-linking}}
\sectionauthor{Chris Phoenix}{cphoenix@best.com}


\UNIX{} and Windows use completely different paradigms for run-time
loading of code.  Before you try to build a module that can be
dynamically loaded, be aware of how your system works.

In \UNIX{}, a shared object (\file{.so}) file contains code to be used by the
program, and also the names of functions and data that it expects to
find in the program.  When the file is joined to the program, all
references to those functions and data in the file's code are changed
to point to the actual locations in the program where the functions
and data are placed in memory.  This is basically a link operation.

In Windows, a dynamic-link library (\file{.dll}) file has no dangling
references.  Instead, an access to functions or data goes through a
lookup table.  So the DLL code does not have to be fixed up at runtime
to refer to the program's memory; instead, the code already uses the
DLL's lookup table, and the lookup table is modified at runtime to
point to the functions and data.

In \UNIX{}, there is only one type of library file (\file{.a}) which
contains code from several object files (\file{.o}).  During the link
step to create a shared object file (\file{.so}), the linker may find
that it doesn't know where an identifier is defined.  The linker will
look for it in the object files in the libraries; if it finds it, it
will include all the code from that object file.

In Windows, there are two types of library, a static library and an
import library (both called \file{.lib}).  A static library is like a
\UNIX{} \file{.a} file; it contains code to be included as necessary.
An import library is basically used only to reassure the linker that a
certain identifier is legal, and will be present in the program when
the DLL is loaded.  So the linker uses the information from the
import library to build the lookup table for using identifiers that
are not included in the DLL.  When an application or a DLL is linked,
an import library may be generated, which will need to be used for all
future DLLs that depend on the symbols in the application or DLL.

Suppose you are building two dynamic-load modules, B and C, which should
share another block of code A.  On \UNIX{}, you would \emph{not} pass
\file{A.a} to the linker for \file{B.so} and \file{C.so}; that would
cause it to be included twice, so that B and C would each have their
own copy.  In Windows, building \file{A.dll} will also build
\file{A.lib}.  You \emph{do} pass \file{A.lib} to the linker for B and
C.  \file{A.lib} does not contain code; it just contains information
which will be used at runtime to access A's code.  

In Windows, using an import library is sort of like using \samp{import
spam}; it gives you access to spam's names, but does not create a
separate copy.  On \UNIX{}, linking with a library is more like
\samp{from spam import *}; it does create a separate copy.


\section{Using DLLs in Practice \label{win-dlls}}
\sectionauthor{Chris Phoenix}{cphoenix@best.com}

Windows Python is built in Microsoft Visual \Cpp{}; using other
compilers may or may not work (though Borland seems to).  The rest of
this section is MSV\Cpp{} specific.

When creating DLLs in Windows, you must pass \file{python15.lib} to
the linker.  To build two DLLs, spam and ni (which uses C functions
found in spam), you could use these commands:

\begin{verbatim}
cl /LD /I/python/include spam.c ../libs/python15.lib
cl /LD /I/python/include ni.c spam.lib ../libs/python15.lib
\end{verbatim}

The first command created three files: \file{spam.obj},
\file{spam.dll} and \file{spam.lib}.  \file{Spam.dll} does not contain
any Python functions (such as \cfunction{PyArg_ParseTuple()}), but it
does know how to find the Python code thanks to \file{python15.lib}.

The second command created \file{ni.dll} (and \file{.obj} and
\file{.lib}), which knows how to find the necessary functions from
spam, and also from the Python executable.

Not every identifier is exported to the lookup table.  If you want any
other modules (including Python) to be able to see your identifiers,
you have to say \samp{_declspec(dllexport)}, as in \samp{void
_declspec(dllexport) initspam(void)} or \samp{PyObject
_declspec(dllexport) *NiGetSpamData(void)}.

Developer Studio will throw in a lot of import libraries that you do
not really need, adding about 100K to your executable.  To get rid of
them, use the Project Settings dialog, Link tab, to specify
\emph{ignore default libraries}.  Add the correct
\file{msvcrt\var{xx}.lib} to the list of libraries.


\chapter{Embedding Python in Another Application
     \label{embedding}}

Embedding Python is similar to extending it, but not quite.  The
difference is that when you extend Python, the main program of the
application is still the Python interpreter, while if you embed
Python, the main program may have nothing to do with Python ---
instead, some parts of the application occasionally call the Python
interpreter to run some Python code.

So if you are embedding Python, you are providing your own main
program.  One of the things this main program has to do is initialize
the Python interpreter.  At the very least, you have to call the
function \cfunction{Py_Initialize()} (on MacOS, call
\cfunction{PyMac_Initialize()} instead).  There are optional calls to
pass command line arguments to Python.  Then later you can call the
interpreter from any part of the application.

There are several different ways to call the interpreter: you can pass
a string containing Python statements to
\cfunction{PyRun_SimpleString()}, or you can pass a stdio file pointer
and a file name (for identification in error messages only) to
\cfunction{PyRun_SimpleFile()}.  You can also call the lower-level
operations described in the previous chapters to construct and use
Python objects.

A simple demo of embedding Python can be found in the directory
\file{Demo/embed/} of the source distribution.


\section{Embedding Python in \Cpp{}
     \label{embeddingInCplusplus}}

It is also possible to embed Python in a \Cpp{} program; precisely how this
is done will depend on the details of the \Cpp{} system used; in general you
will need to write the main program in \Cpp{}, and use the \Cpp{} compiler
to compile and link your program.  There is no need to recompile Python
itself using \Cpp{}.


\section{Linking Requirements
         \label{link-reqs}}

While the \program{configure} script shipped with the Python sources
will correctly build Python to export the symbols needed by
dynamically linked extensions, this is not automatically inherited by
applications which embed the Python library statically, at least on
\UNIX.  This is an issue when the application is linked to the static
runtime library (\file{libpython.a}) and needs to load dynamic
extensions (implemented as \file{.so} files).

The problem is that some entry points are defined by the Python
runtime solely for extension modules to use.  If the embedding
application does not use any of these entry points, some linkers will
not include those entries in the symbol table of the finished
executable.  Some additional options are needed to inform the linker
not to remove these symbols.

Determining the right options to use for any given platform can be
quite difficult, but fortunately the Python configuration already has
those values.  To retrieve them from an installed Python interpreter,
start an interactive interpreter and have a short session like this:

\begin{verbatim}
>>> import distutils.sysconfig
>>> distutils.sysconfig.get_config_var('LINKFORSHARED')
'-Xlinker -export-dynamic'
\end{verbatim}
\refstmodindex{distutils.sysconfig}

The contents of the string presented will be the options that should
be used.  If the string is empty, there's no need to add any
additional options.  The \constant{LINKFORSHARED} definition
corresponds to the variable of the same name in Python's top-level
\file{Makefile}.


\appendix
\chapter{Reporting Bugs}
\input{reportingbugs}

\end{document}