summaryrefslogtreecommitdiffstats
path: root/Doc/howto/descriptor.rst
blob: 7b00d947f46bc0aff40a904e4e038ddea94e6dd7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
======================
Descriptor HowTo Guide
======================

:Author: Raymond Hettinger
:Contact: <python at rcn dot com>

.. Contents::

Abstract
--------

Defines descriptors, summarizes the protocol, and shows how descriptors are
called.  Examines a custom descriptor and several built-in python descriptors
including functions, properties, static methods, and class methods.  Shows how
each works by giving a pure Python equivalent and a sample application.

Learning about descriptors not only provides access to a larger toolset, it
creates a deeper understanding of how Python works and an appreciation for the
elegance of its design.


Definition and Introduction
---------------------------

In general, a descriptor is an object attribute with "binding behavior", one
whose attribute access has been overridden by methods in the descriptor
protocol.  Those methods are :meth:`__get__`, :meth:`__set__`, and
:meth:`__delete__`.  If any of those methods are defined for an object, it is
said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the
attribute from an object's dictionary.  For instance, ``a.x`` has a lookup chain
starting with ``a.__dict__['x']``, then ``type(a).__dict__['x']``, and
continuing through the base classes of ``type(a)`` excluding metaclasses. If the
looked-up value is an object defining one of the descriptor methods, then Python
may override the default behavior and invoke the descriptor method instead.
Where this occurs in the precedence chain depends on which descriptor methods
were defined.

Descriptors are a powerful, general purpose protocol.  They are the mechanism
behind properties, methods, static methods, class methods, and :func:`super()`.
They are used throughout Python itself to implement the new style classes
introduced in version 2.2.  Descriptors simplify the underlying C-code and offer
a flexible set of new tools for everyday Python programs.


Descriptor Protocol
-------------------

``descr.__get__(self, obj, type=None) -> value``

``descr.__set__(self, obj, value) -> None``

``descr.__delete__(self, obj) -> None``

That is all there is to it.  Define any of these methods and an object is
considered a descriptor and can override default behavior upon being looked up
as an attribute.

If an object defines :meth:`__set__` or :meth:`__delete__`, it is considered
a data descriptor.  Descriptors that only define :meth:`__get__` are called
non-data descriptors (they are typically used for methods but other uses are
possible).

Data and non-data descriptors differ in how overrides are calculated with
respect to entries in an instance's dictionary.  If an instance's dictionary
has an entry with the same name as a data descriptor, the data descriptor
takes precedence.  If an instance's dictionary has an entry with the same
name as a non-data descriptor, the dictionary entry takes precedence.

To make a read-only data descriptor, define both :meth:`__get__` and
:meth:`__set__` with the :meth:`__set__` raising an :exc:`AttributeError` when
called.  Defining the :meth:`__set__` method with an exception raising
placeholder is enough to make it a data descriptor.


Invoking Descriptors
--------------------

A descriptor can be called directly by its method name.  For example,
``d.__get__(obj)``.

Alternatively, it is more common for a descriptor to be invoked automatically
upon attribute access.  For example, ``obj.d`` looks up ``d`` in the dictionary
of ``obj``.  If ``d`` defines the method :meth:`__get__`, then ``d.__get__(obj)``
is invoked according to the precedence rules listed below.

The details of invocation depend on whether ``obj`` is an object or a class.

For objects, the machinery is in :meth:`object.__getattribute__` which
transforms ``b.x`` into ``type(b).__dict__['x'].__get__(b, type(b))``.  The
implementation works through a precedence chain that gives data descriptors
priority over instance variables, instance variables priority over non-data
descriptors, and assigns lowest priority to :meth:`__getattr__` if provided.
The full C implementation can be found in :c:func:`PyObject_GenericGetAttr()` in
:source:`Objects/object.c`.

For classes, the machinery is in :meth:`type.__getattribute__` which transforms
``B.x`` into ``B.__dict__['x'].__get__(None, B)``.  In pure Python, it looks
like::

    def __getattribute__(self, key):
        "Emulate type_getattro() in Objects/typeobject.c"
        v = object.__getattribute__(self, key)
        if hasattr(v, '__get__'):
            return v.__get__(None, self)
        return v

The important points to remember are:

* descriptors are invoked by the :meth:`__getattribute__` method
* overriding :meth:`__getattribute__` prevents automatic descriptor calls
* :meth:`object.__getattribute__` and :meth:`type.__getattribute__` make
  different calls to :meth:`__get__`.
* data descriptors always override instance dictionaries.
* non-data descriptors may be overridden by instance dictionaries.

The object returned by ``super()`` also has a custom :meth:`__getattribute__`
method for invoking descriptors.  The call ``super(B, obj).m()`` searches
``obj.__class__.__mro__`` for the base class ``A`` immediately following ``B``
and then returns ``A.__dict__['m'].__get__(obj, B)``.  If not a descriptor,
``m`` is returned unchanged.  If not in the dictionary, ``m`` reverts to a
search using :meth:`object.__getattribute__`.

The implementation details are in :c:func:`super_getattro()` in
:source:`Objects/typeobject.c`.  and a pure Python equivalent can be found in
`Guido's Tutorial`_.

.. _`Guido's Tutorial`: https://www.python.org/download/releases/2.2.3/descrintro/#cooperation

The details above show that the mechanism for descriptors is embedded in the
:meth:`__getattribute__()` methods for :class:`object`, :class:`type`, and
:func:`super`.  Classes inherit this machinery when they derive from
:class:`object` or if they have a meta-class providing similar functionality.
Likewise, classes can turn-off descriptor invocation by overriding
:meth:`__getattribute__()`.


Descriptor Example
------------------

The following code creates a class whose objects are data descriptors which
print a message for each get or set.  Overriding :meth:`__getattribute__` is
alternate approach that could do this for every attribute.  However, this
descriptor is useful for monitoring just a few chosen attributes::

    class RevealAccess(object):
        """A data descriptor that sets and returns values
           normally and prints a message logging their access.
        """

        def __init__(self, initval=None, name='var'):
            self.val = initval
            self.name = name

        def __get__(self, obj, objtype):
            print('Retrieving', self.name)
            return self.val

        def __set__(self, obj, val):
            print('Updating', self.name)
            self.val = val

    >>> class MyClass(object):
    ...     x = RevealAccess(10, 'var "x"')
    ...     y = 5
    ...
    >>> m = MyClass()
    >>> m.x
    Retrieving var "x"
    10
    >>> m.x = 20
    Updating var "x"
    >>> m.x
    Retrieving var "x"
    20
    >>> m.y
    5

The protocol is simple and offers exciting possibilities.  Several use cases are
so common that they have been packaged into individual function calls.
Properties, bound methods, static methods, and class methods are all
based on the descriptor protocol.


Properties
----------

Calling :func:`property` is a succinct way of building a data descriptor that
triggers function calls upon access to an attribute.  Its signature is::

    property(fget=None, fset=None, fdel=None, doc=None) -> property attribute

The documentation shows a typical use to define a managed attribute ``x``::

    class C(object):
        def getx(self): return self.__x
        def setx(self, value): self.__x = value
        def delx(self): del self.__x
        x = property(getx, setx, delx, "I'm the 'x' property.")

To see how :func:`property` is implemented in terms of the descriptor protocol,
here is a pure Python equivalent::

    class Property(object):
        "Emulate PyProperty_Type() in Objects/descrobject.c"

        def __init__(self, fget=None, fset=None, fdel=None, doc=None):
            self.fget = fget
            self.fset = fset
            self.fdel = fdel
            if doc is None and fget is not None:
                doc = fget.__doc__
            self.__doc__ = doc

        def __get__(self, obj, objtype=None):
            if obj is None:
                return self
            if self.fget is None:
                raise AttributeError("unreadable attribute")
            return self.fget(obj)

        def __set__(self, obj, value):
            if self.fset is None:
                raise AttributeError("can't set attribute")
            self.fset(obj, value)

        def __delete__(self, obj):
            if self.fdel is None:
                raise AttributeError("can't delete attribute")
            self.fdel(obj)

        def getter(self, fget):
            return type(self)(fget, self.fset, self.fdel, self.__doc__)

        def setter(self, fset):
            return type(self)(self.fget, fset, self.fdel, self.__doc__)

        def deleter(self, fdel):
            return type(self)(self.fget, self.fset, fdel, self.__doc__)

The :func:`property` builtin helps whenever a user interface has granted
attribute access and then subsequent changes require the intervention of a
method.

For instance, a spreadsheet class may grant access to a cell value through
``Cell('b10').value``. Subsequent improvements to the program require the cell
to be recalculated on every access; however, the programmer does not want to
affect existing client code accessing the attribute directly.  The solution is
to wrap access to the value attribute in a property data descriptor::

    class Cell(object):
        . . .
        def getvalue(self):
            "Recalculate the cell before returning value"
            self.recalc()
            return self._value
        value = property(getvalue)


Functions and Methods
---------------------

Python's object oriented features are built upon a function based environment.
Using non-data descriptors, the two are merged seamlessly.

Class dictionaries store methods as functions.  In a class definition, methods
are written using :keyword:`def` or :keyword:`lambda`, the usual tools for
creating functions.  Methods only differ from regular functions in that the
first argument is reserved for the object instance.  By Python convention, the
instance reference is called *self* but may be called *this* or any other
variable name.

To support method calls, functions include the :meth:`__get__` method for
binding methods during attribute access.  This means that all functions are
non-data descriptors which return bound methods when they are invoked from an
object.  In pure python, it works like this::

    class Function(object):
        . . .
        def __get__(self, obj, objtype=None):
            "Simulate func_descr_get() in Objects/funcobject.c"
            if obj is None:
                return self
            return types.MethodType(self, obj)

Running the interpreter shows how the function descriptor works in practice::

    >>> class D(object):
    ...     def f(self, x):
    ...         return x
    ...
    >>> d = D()

    # Access through the class dictionary does not invoke __get__.
    # It just returns the underlying function object.
    >>> D.__dict__['f']
    <function D.f at 0x00C45070>

    # Dotted access from a class calls __get__() which just returns
    # the underlying function unchanged.
    >>> D.f
    <function D.f at 0x00C45070>

    # The function has a __qualname__ attribute to support introspection
    >>> D.f.__qualname__
    'D.f'

    # Dotted access from an instance calls __get__() which returns the
    # function wrapped in a bound method object
    >>> d.f
    <bound method D.f of <__main__.D object at 0x00B18C90>>

    # Internally, the bound method stores the underlying function,
    # the bound instance, and the class of the bound instance.
    >>> d.f.__func__
    <function D.f at 0x1012e5ae8>
    >>> d.f.__self__
    <__main__.D object at 0x1012e1f98>
    >>> d.f.__class__
    <class 'method'>


Static Methods and Class Methods
--------------------------------

Non-data descriptors provide a simple mechanism for variations on the usual
patterns of binding functions into methods.

To recap, functions have a :meth:`__get__` method so that they can be converted
to a method when accessed as attributes.  The non-data descriptor transforms an
``obj.f(*args)`` call into ``f(obj, *args)``.  Calling ``klass.f(*args)``
becomes ``f(*args)``.

This chart summarizes the binding and its two most useful variants:

      +-----------------+----------------------+------------------+
      | Transformation  | Called from an       | Called from a    |
      |                 | Object               | Class            |
      +=================+======================+==================+
      | function        | f(obj, \*args)       | f(\*args)        |
      +-----------------+----------------------+------------------+
      | staticmethod    | f(\*args)            | f(\*args)        |
      +-----------------+----------------------+------------------+
      | classmethod     | f(type(obj), \*args) | f(klass, \*args) |
      +-----------------+----------------------+------------------+

Static methods return the underlying function without changes.  Calling either
``c.f`` or ``C.f`` is the equivalent of a direct lookup into
``object.__getattribute__(c, "f")`` or ``object.__getattribute__(C, "f")``. As a
result, the function becomes identically accessible from either an object or a
class.

Good candidates for static methods are methods that do not reference the
``self`` variable.

For instance, a statistics package may include a container class for
experimental data.  The class provides normal methods for computing the average,
mean, median, and other descriptive statistics that depend on the data. However,
there may be useful functions which are conceptually related but do not depend
on the data.  For instance, ``erf(x)`` is handy conversion routine that comes up
in statistical work but does not directly depend on a particular dataset.
It can be called either from an object or the class:  ``s.erf(1.5) --> .9332`` or
``Sample.erf(1.5) --> .9332``.

Since staticmethods return the underlying function with no changes, the example
calls are unexciting::

    >>> class E(object):
    ...     def f(x):
    ...         print(x)
    ...     f = staticmethod(f)
    ...
    >>> print(E.f(3))
    3
    >>> print(E().f(3))
    3

Using the non-data descriptor protocol, a pure Python version of
:func:`staticmethod` would look like this::

    class StaticMethod(object):
        "Emulate PyStaticMethod_Type() in Objects/funcobject.c"

        def __init__(self, f):
            self.f = f

        def __get__(self, obj, objtype=None):
            return self.f

Unlike static methods, class methods prepend the class reference to the
argument list before calling the function.  This format is the same
for whether the caller is an object or a class::

    >>> class E(object):
    ...     def f(klass, x):
    ...         return klass.__name__, x
    ...     f = classmethod(f)
    ...
    >>> print(E.f(3))
    ('E', 3)
    >>> print(E().f(3))
    ('E', 3)


This behavior is useful whenever the function only needs to have a class
reference and does not care about any underlying data.  One use for classmethods
is to create alternate class constructors.  In Python 2.3, the classmethod
:func:`dict.fromkeys` creates a new dictionary from a list of keys.  The pure
Python equivalent is::

    class Dict(object):
        . . .
        def fromkeys(klass, iterable, value=None):
            "Emulate dict_fromkeys() in Objects/dictobject.c"
            d = klass()
            for key in iterable:
                d[key] = value
            return d
        fromkeys = classmethod(fromkeys)

Now a new dictionary of unique keys can be constructed like this::

    >>> Dict.fromkeys('abracadabra')
    {'a': None, 'r': None, 'b': None, 'c': None, 'd': None}

Using the non-data descriptor protocol, a pure Python version of
:func:`classmethod` would look like this::

    class ClassMethod(object):
        "Emulate PyClassMethod_Type() in Objects/funcobject.c"

        def __init__(self, f):
            self.f = f

        def __get__(self, obj, klass=None):
            if klass is None:
                klass = type(obj)
            def newfunc(*args):
                return self.f(klass, *args)
            return newfunc