1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
|
.. _logging-cookbook:
================
Logging Cookbook
================
:Author: Vinay Sajip <vinay_sajip at red-dove dot com>
This page contains a number of recipes related to logging, which have been found
useful in the past.
.. currentmodule:: logging
Using logging in multiple modules
---------------------------------
Multiple calls to ``logging.getLogger('someLogger')`` return a reference to the
same logger object. This is true not only within the same module, but also
across modules as long as it is in the same Python interpreter process. It is
true for references to the same object; additionally, application code can
define and configure a parent logger in one module and create (but not
configure) a child logger in a separate module, and all logger calls to the
child will pass up to the parent. Here is a main module::
import logging
import auxiliary_module
# create logger with 'spam_application'
logger = logging.getLogger('spam_application')
logger.setLevel(logging.DEBUG)
# create file handler which logs even debug messages
fh = logging.FileHandler('spam.log')
fh.setLevel(logging.DEBUG)
# create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
# create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
# add the handlers to the logger
logger.addHandler(fh)
logger.addHandler(ch)
logger.info('creating an instance of auxiliary_module.Auxiliary')
a = auxiliary_module.Auxiliary()
logger.info('created an instance of auxiliary_module.Auxiliary')
logger.info('calling auxiliary_module.Auxiliary.do_something')
a.do_something()
logger.info('finished auxiliary_module.Auxiliary.do_something')
logger.info('calling auxiliary_module.some_function()')
auxiliary_module.some_function()
logger.info('done with auxiliary_module.some_function()')
Here is the auxiliary module::
import logging
# create logger
module_logger = logging.getLogger('spam_application.auxiliary')
class Auxiliary:
def __init__(self):
self.logger = logging.getLogger('spam_application.auxiliary.Auxiliary')
self.logger.info('creating an instance of Auxiliary')
def do_something(self):
self.logger.info('doing something')
a = 1 + 1
self.logger.info('done doing something')
def some_function():
module_logger.info('received a call to "some_function"')
The output looks like this::
2005-03-23 23:47:11,663 - spam_application - INFO -
creating an instance of auxiliary_module.Auxiliary
2005-03-23 23:47:11,665 - spam_application.auxiliary.Auxiliary - INFO -
creating an instance of Auxiliary
2005-03-23 23:47:11,665 - spam_application - INFO -
created an instance of auxiliary_module.Auxiliary
2005-03-23 23:47:11,668 - spam_application - INFO -
calling auxiliary_module.Auxiliary.do_something
2005-03-23 23:47:11,668 - spam_application.auxiliary.Auxiliary - INFO -
doing something
2005-03-23 23:47:11,669 - spam_application.auxiliary.Auxiliary - INFO -
done doing something
2005-03-23 23:47:11,670 - spam_application - INFO -
finished auxiliary_module.Auxiliary.do_something
2005-03-23 23:47:11,671 - spam_application - INFO -
calling auxiliary_module.some_function()
2005-03-23 23:47:11,672 - spam_application.auxiliary - INFO -
received a call to 'some_function'
2005-03-23 23:47:11,673 - spam_application - INFO -
done with auxiliary_module.some_function()
Multiple handlers and formatters
--------------------------------
Loggers are plain Python objects. The :meth:`~Logger.addHandler` method has no
minimum or maximum quota for the number of handlers you may add. Sometimes it
will be beneficial for an application to log all messages of all severities to a
text file while simultaneously logging errors or above to the console. To set
this up, simply configure the appropriate handlers. The logging calls in the
application code will remain unchanged. Here is a slight modification to the
previous simple module-based configuration example::
import logging
logger = logging.getLogger('simple_example')
logger.setLevel(logging.DEBUG)
# create file handler which logs even debug messages
fh = logging.FileHandler('spam.log')
fh.setLevel(logging.DEBUG)
# create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
# create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch.setFormatter(formatter)
fh.setFormatter(formatter)
# add the handlers to logger
logger.addHandler(ch)
logger.addHandler(fh)
# 'application' code
logger.debug('debug message')
logger.info('info message')
logger.warn('warn message')
logger.error('error message')
logger.critical('critical message')
Notice that the 'application' code does not care about multiple handlers. All
that changed was the addition and configuration of a new handler named *fh*.
The ability to create new handlers with higher- or lower-severity filters can be
very helpful when writing and testing an application. Instead of using many
``print`` statements for debugging, use ``logger.debug``: Unlike the print
statements, which you will have to delete or comment out later, the logger.debug
statements can remain intact in the source code and remain dormant until you
need them again. At that time, the only change that needs to happen is to
modify the severity level of the logger and/or handler to debug.
.. _multiple-destinations:
Logging to multiple destinations
--------------------------------
Let's say you want to log to console and file with different message formats and
in differing circumstances. Say you want to log messages with levels of DEBUG
and higher to file, and those messages at level INFO and higher to the console.
Let's also assume that the file should contain timestamps, but the console
messages should not. Here's how you can achieve this::
import logging
# set up logging to file - see previous section for more details
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
datefmt='%m-%d %H:%M',
filename='/temp/myapp.log',
filemode='w')
# define a Handler which writes INFO messages or higher to the sys.stderr
console = logging.StreamHandler()
console.setLevel(logging.INFO)
# set a format which is simpler for console use
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
# tell the handler to use this format
console.setFormatter(formatter)
# add the handler to the root logger
logging.getLogger('').addHandler(console)
# Now, we can log to the root logger, or any other logger. First the root...
logging.info('Jackdaws love my big sphinx of quartz.')
# Now, define a couple of other loggers which might represent areas in your
# application:
logger1 = logging.getLogger('myapp.area1')
logger2 = logging.getLogger('myapp.area2')
logger1.debug('Quick zephyrs blow, vexing daft Jim.')
logger1.info('How quickly daft jumping zebras vex.')
logger2.warning('Jail zesty vixen who grabbed pay from quack.')
logger2.error('The five boxing wizards jump quickly.')
When you run this, on the console you will see ::
root : INFO Jackdaws love my big sphinx of quartz.
myapp.area1 : INFO How quickly daft jumping zebras vex.
myapp.area2 : WARNING Jail zesty vixen who grabbed pay from quack.
myapp.area2 : ERROR The five boxing wizards jump quickly.
and in the file you will see something like ::
10-22 22:19 root INFO Jackdaws love my big sphinx of quartz.
10-22 22:19 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim.
10-22 22:19 myapp.area1 INFO How quickly daft jumping zebras vex.
10-22 22:19 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack.
10-22 22:19 myapp.area2 ERROR The five boxing wizards jump quickly.
As you can see, the DEBUG message only shows up in the file. The other messages
are sent to both destinations.
This example uses console and file handlers, but you can use any number and
combination of handlers you choose.
Configuration server example
----------------------------
Here is an example of a module using the logging configuration server::
import logging
import logging.config
import time
import os
# read initial config file
logging.config.fileConfig('logging.conf')
# create and start listener on port 9999
t = logging.config.listen(9999)
t.start()
logger = logging.getLogger('simpleExample')
try:
# loop through logging calls to see the difference
# new configurations make, until Ctrl+C is pressed
while True:
logger.debug('debug message')
logger.info('info message')
logger.warn('warn message')
logger.error('error message')
logger.critical('critical message')
time.sleep(5)
except KeyboardInterrupt:
# cleanup
logging.config.stopListening()
t.join()
And here is a script that takes a filename and sends that file to the server,
properly preceded with the binary-encoded length, as the new logging
configuration::
#!/usr/bin/env python
import socket, sys, struct
with open(sys.argv[1], 'rb') as f:
data_to_send = f.read()
HOST = 'localhost'
PORT = 9999
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print('connecting...')
s.connect((HOST, PORT))
print('sending config...')
s.send(struct.pack('>L', len(data_to_send)))
s.send(data_to_send)
s.close()
print('complete')
Dealing with handlers that block
--------------------------------
.. currentmodule:: logging.handlers
Sometimes you have to get your logging handlers to do their work without
blocking the thread you're logging from. This is common in Web applications,
though of course it also occurs in other scenarios.
A common culprit which demonstrates sluggish behaviour is the
:class:`SMTPHandler`: sending emails can take a long time, for a
number of reasons outside the developer's control (for example, a poorly
performing mail or network infrastructure). But almost any network-based
handler can block: Even a :class:`SocketHandler` operation may do a
DNS query under the hood which is too slow (and this query can be deep in the
socket library code, below the Python layer, and outside your control).
One solution is to use a two-part approach. For the first part, attach only a
:class:`QueueHandler` to those loggers which are accessed from
performance-critical threads. They simply write to their queue, which can be
sized to a large enough capacity or initialized with no upper bound to their
size. The write to the queue will typically be accepted quickly, though you
will probably need to catch the :exc:`queue.Full` exception as a precaution
in your code. If you are a library developer who has performance-critical
threads in their code, be sure to document this (together with a suggestion to
attach only ``QueueHandlers`` to your loggers) for the benefit of other
developers who will use your code.
The second part of the solution is :class:`QueueListener`, which has been
designed as the counterpart to :class:`QueueHandler`. A
:class:`QueueListener` is very simple: it's passed a queue and some handlers,
and it fires up an internal thread which listens to its queue for LogRecords
sent from ``QueueHandlers`` (or any other source of ``LogRecords``, for that
matter). The ``LogRecords`` are removed from the queue and passed to the
handlers for processing.
The advantage of having a separate :class:`QueueListener` class is that you
can use the same instance to service multiple ``QueueHandlers``. This is more
resource-friendly than, say, having threaded versions of the existing handler
classes, which would eat up one thread per handler for no particular benefit.
An example of using these two classes follows (imports omitted)::
que = queue.Queue(-1) # no limit on size
queue_handler = QueueHandler(que)
handler = logging.StreamHandler()
listener = QueueListener(que, handler)
root = logging.getLogger()
root.addHandler(queue_handler)
formatter = logging.Formatter('%(threadName)s: %(message)s')
handler.setFormatter(formatter)
listener.start()
# The log output will display the thread which generated
# the event (the main thread) rather than the internal
# thread which monitors the internal queue. This is what
# you want to happen.
root.warning('Look out!')
listener.stop()
which, when run, will produce::
MainThread: Look out!
.. _network-logging:
Sending and receiving logging events across a network
-----------------------------------------------------
Let's say you want to send logging events across a network, and handle them at
the receiving end. A simple way of doing this is attaching a
:class:`SocketHandler` instance to the root logger at the sending end::
import logging, logging.handlers
rootLogger = logging.getLogger('')
rootLogger.setLevel(logging.DEBUG)
socketHandler = logging.handlers.SocketHandler('localhost',
logging.handlers.DEFAULT_TCP_LOGGING_PORT)
# don't bother with a formatter, since a socket handler sends the event as
# an unformatted pickle
rootLogger.addHandler(socketHandler)
# Now, we can log to the root logger, or any other logger. First the root...
logging.info('Jackdaws love my big sphinx of quartz.')
# Now, define a couple of other loggers which might represent areas in your
# application:
logger1 = logging.getLogger('myapp.area1')
logger2 = logging.getLogger('myapp.area2')
logger1.debug('Quick zephyrs blow, vexing daft Jim.')
logger1.info('How quickly daft jumping zebras vex.')
logger2.warning('Jail zesty vixen who grabbed pay from quack.')
logger2.error('The five boxing wizards jump quickly.')
At the receiving end, you can set up a receiver using the :mod:`socketserver`
module. Here is a basic working example::
import pickle
import logging
import logging.handlers
import socketserver
import struct
class LogRecordStreamHandler(socketserver.StreamRequestHandler):
"""Handler for a streaming logging request.
This basically logs the record using whatever logging policy is
configured locally.
"""
def handle(self):
"""
Handle multiple requests - each expected to be a 4-byte length,
followed by the LogRecord in pickle format. Logs the record
according to whatever policy is configured locally.
"""
while True:
chunk = self.connection.recv(4)
if len(chunk) < 4:
break
slen = struct.unpack('>L', chunk)[0]
chunk = self.connection.recv(slen)
while len(chunk) < slen:
chunk = chunk + self.connection.recv(slen - len(chunk))
obj = self.unPickle(chunk)
record = logging.makeLogRecord(obj)
self.handleLogRecord(record)
def unPickle(self, data):
return pickle.loads(data)
def handleLogRecord(self, record):
# if a name is specified, we use the named logger rather than the one
# implied by the record.
if self.server.logname is not None:
name = self.server.logname
else:
name = record.name
logger = logging.getLogger(name)
# N.B. EVERY record gets logged. This is because Logger.handle
# is normally called AFTER logger-level filtering. If you want
# to do filtering, do it at the client end to save wasting
# cycles and network bandwidth!
logger.handle(record)
class LogRecordSocketReceiver(socketserver.ThreadingTCPServer):
"""
Simple TCP socket-based logging receiver suitable for testing.
"""
allow_reuse_address = True
def __init__(self, host='localhost',
port=logging.handlers.DEFAULT_TCP_LOGGING_PORT,
handler=LogRecordStreamHandler):
socketserver.ThreadingTCPServer.__init__(self, (host, port), handler)
self.abort = 0
self.timeout = 1
self.logname = None
def serve_until_stopped(self):
import select
abort = 0
while not abort:
rd, wr, ex = select.select([self.socket.fileno()],
[], [],
self.timeout)
if rd:
self.handle_request()
abort = self.abort
def main():
logging.basicConfig(
format='%(relativeCreated)5d %(name)-15s %(levelname)-8s %(message)s')
tcpserver = LogRecordSocketReceiver()
print('About to start TCP server...')
tcpserver.serve_until_stopped()
if __name__ == '__main__':
main()
First run the server, and then the client. On the client side, nothing is
printed on the console; on the server side, you should see something like::
About to start TCP server...
59 root INFO Jackdaws love my big sphinx of quartz.
59 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim.
69 myapp.area1 INFO How quickly daft jumping zebras vex.
69 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack.
69 myapp.area2 ERROR The five boxing wizards jump quickly.
Note that there are some security issues with pickle in some scenarios. If
these affect you, you can use an alternative serialization scheme by overriding
the :meth:`~handlers.SocketHandler.makePickle` method and implementing your
alternative there, as well as adapting the above script to use your alternative
serialization.
.. _context-info:
Adding contextual information to your logging output
----------------------------------------------------
Sometimes you want logging output to contain contextual information in
addition to the parameters passed to the logging call. For example, in a
networked application, it may be desirable to log client-specific information
in the log (e.g. remote client's username, or IP address). Although you could
use the *extra* parameter to achieve this, it's not always convenient to pass
the information in this way. While it might be tempting to create
:class:`Logger` instances on a per-connection basis, this is not a good idea
because these instances are not garbage collected. While this is not a problem
in practice, when the number of :class:`Logger` instances is dependent on the
level of granularity you want to use in logging an application, it could
be hard to manage if the number of :class:`Logger` instances becomes
effectively unbounded.
Using LoggerAdapters to impart contextual information
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
An easy way in which you can pass contextual information to be output along
with logging event information is to use the :class:`LoggerAdapter` class.
This class is designed to look like a :class:`Logger`, so that you can call
:meth:`debug`, :meth:`info`, :meth:`warning`, :meth:`error`,
:meth:`exception`, :meth:`critical` and :meth:`log`. These methods have the
same signatures as their counterparts in :class:`Logger`, so you can use the
two types of instances interchangeably.
When you create an instance of :class:`LoggerAdapter`, you pass it a
:class:`Logger` instance and a dict-like object which contains your contextual
information. When you call one of the logging methods on an instance of
:class:`LoggerAdapter`, it delegates the call to the underlying instance of
:class:`Logger` passed to its constructor, and arranges to pass the contextual
information in the delegated call. Here's a snippet from the code of
:class:`LoggerAdapter`::
def debug(self, msg, *args, **kwargs):
"""
Delegate a debug call to the underlying logger, after adding
contextual information from this adapter instance.
"""
msg, kwargs = self.process(msg, kwargs)
self.logger.debug(msg, *args, **kwargs)
The :meth:`~LoggerAdapter.process` method of :class:`LoggerAdapter` is where the
contextual information is added to the logging output. It's passed the message
and keyword arguments of the logging call, and it passes back (potentially)
modified versions of these to use in the call to the underlying logger. The
default implementation of this method leaves the message alone, but inserts
an 'extra' key in the keyword argument whose value is the dict-like object
passed to the constructor. Of course, if you had passed an 'extra' keyword
argument in the call to the adapter, it will be silently overwritten.
The advantage of using 'extra' is that the values in the dict-like object are
merged into the :class:`LogRecord` instance's __dict__, allowing you to use
customized strings with your :class:`Formatter` instances which know about
the keys of the dict-like object. If you need a different method, e.g. if you
want to prepend or append the contextual information to the message string,
you just need to subclass :class:`LoggerAdapter` and override
:meth:`~LoggerAdapter.process` to do what you need. Here is a simple example::
class CustomAdapter(logging.LoggerAdapter):
"""
This example adapter expects the passed in dict-like object to have a
'connid' key, whose value in brackets is prepended to the log message.
"""
def process(self, msg, kwargs):
return '[%s] %s' % (self.extra['connid'], msg), kwargs
which you can use like this::
logger = logging.getLogger(__name__)
adapter = CustomAdapter(logger, {'connid': some_conn_id})
Then any events that you log to the adapter will have the value of
``some_conn_id`` prepended to the log messages.
Using objects other than dicts to pass contextual information
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You don't need to pass an actual dict to a :class:`LoggerAdapter` - you could
pass an instance of a class which implements ``__getitem__`` and ``__iter__`` so
that it looks like a dict to logging. This would be useful if you want to
generate values dynamically (whereas the values in a dict would be constant).
.. _filters-contextual:
Using Filters to impart contextual information
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can also add contextual information to log output using a user-defined
:class:`Filter`. ``Filter`` instances are allowed to modify the ``LogRecords``
passed to them, including adding additional attributes which can then be output
using a suitable format string, or if needed a custom :class:`Formatter`.
For example in a web application, the request being processed (or at least,
the interesting parts of it) can be stored in a threadlocal
(:class:`threading.local`) variable, and then accessed from a ``Filter`` to
add, say, information from the request - say, the remote IP address and remote
user's username - to the ``LogRecord``, using the attribute names 'ip' and
'user' as in the ``LoggerAdapter`` example above. In that case, the same format
string can be used to get similar output to that shown above. Here's an example
script::
import logging
from random import choice
class ContextFilter(logging.Filter):
"""
This is a filter which injects contextual information into the log.
Rather than use actual contextual information, we just use random
data in this demo.
"""
USERS = ['jim', 'fred', 'sheila']
IPS = ['123.231.231.123', '127.0.0.1', '192.168.0.1']
def filter(self, record):
record.ip = choice(ContextFilter.IPS)
record.user = choice(ContextFilter.USERS)
return True
if __name__ == '__main__':
levels = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL)
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)-15s %(name)-5s %(levelname)-8s IP: %(ip)-15s User: %(user)-8s %(message)s')
a1 = logging.getLogger('a.b.c')
a2 = logging.getLogger('d.e.f')
f = ContextFilter()
a1.addFilter(f)
a2.addFilter(f)
a1.debug('A debug message')
a1.info('An info message with %s', 'some parameters')
for x in range(10):
lvl = choice(levels)
lvlname = logging.getLevelName(lvl)
a2.log(lvl, 'A message at %s level with %d %s', lvlname, 2, 'parameters')
which, when run, produces something like::
2010-09-06 22:38:15,292 a.b.c DEBUG IP: 123.231.231.123 User: fred A debug message
2010-09-06 22:38:15,300 a.b.c INFO IP: 192.168.0.1 User: sheila An info message with some parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A message at CRITICAL level with 2 parameters
2010-09-06 22:38:15,300 d.e.f ERROR IP: 127.0.0.1 User: jim A message at ERROR level with 2 parameters
2010-09-06 22:38:15,300 d.e.f DEBUG IP: 127.0.0.1 User: sheila A message at DEBUG level with 2 parameters
2010-09-06 22:38:15,300 d.e.f ERROR IP: 123.231.231.123 User: fred A message at ERROR level with 2 parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 192.168.0.1 User: jim A message at CRITICAL level with 2 parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A message at CRITICAL level with 2 parameters
2010-09-06 22:38:15,300 d.e.f DEBUG IP: 192.168.0.1 User: jim A message at DEBUG level with 2 parameters
2010-09-06 22:38:15,301 d.e.f ERROR IP: 127.0.0.1 User: sheila A message at ERROR level with 2 parameters
2010-09-06 22:38:15,301 d.e.f DEBUG IP: 123.231.231.123 User: fred A message at DEBUG level with 2 parameters
2010-09-06 22:38:15,301 d.e.f INFO IP: 123.231.231.123 User: fred A message at INFO level with 2 parameters
.. _multiple-processes:
Logging to a single file from multiple processes
------------------------------------------------
Although logging is thread-safe, and logging to a single file from multiple
threads in a single process *is* supported, logging to a single file from
*multiple processes* is *not* supported, because there is no standard way to
serialize access to a single file across multiple processes in Python. If you
need to log to a single file from multiple processes, one way of doing this is
to have all the processes log to a :class:`~handlers.SocketHandler`, and have a
separate process which implements a socket server which reads from the socket
and logs to file. (If you prefer, you can dedicate one thread in one of the
existing processes to perform this function.)
:ref:`This section <network-logging>` documents this approach in more detail and
includes a working socket receiver which can be used as a starting point for you
to adapt in your own applications.
If you are using a recent version of Python which includes the
:mod:`multiprocessing` module, you could write your own handler which uses the
:class:`~multiprocessing.Lock` class from this module to serialize access to the
file from your processes. The existing :class:`FileHandler` and subclasses do
not make use of :mod:`multiprocessing` at present, though they may do so in the
future. Note that at present, the :mod:`multiprocessing` module does not provide
working lock functionality on all platforms (see
https://bugs.python.org/issue3770).
.. currentmodule:: logging.handlers
Alternatively, you can use a ``Queue`` and a :class:`QueueHandler` to send
all logging events to one of the processes in your multi-process application.
The following example script demonstrates how you can do this; in the example
a separate listener process listens for events sent by other processes and logs
them according to its own logging configuration. Although the example only
demonstrates one way of doing it (for example, you may want to use a listener
thread rather than a separate listener process -- the implementation would be
analogous) it does allow for completely different logging configurations for
the listener and the other processes in your application, and can be used as
the basis for code meeting your own specific requirements::
# You'll need these imports in your own code
import logging
import logging.handlers
import multiprocessing
# Next two import lines for this demo only
from random import choice, random
import time
#
# Because you'll want to define the logging configurations for listener and workers, the
# listener and worker process functions take a configurer parameter which is a callable
# for configuring logging for that process. These functions are also passed the queue,
# which they use for communication.
#
# In practice, you can configure the listener however you want, but note that in this
# simple example, the listener does not apply level or filter logic to received records.
# In practice, you would probably want to do this logic in the worker processes, to avoid
# sending events which would be filtered out between processes.
#
# The size of the rotated files is made small so you can see the results easily.
def listener_configurer():
root = logging.getLogger()
h = logging.handlers.RotatingFileHandler('mptest.log', 'a', 300, 10)
f = logging.Formatter('%(asctime)s %(processName)-10s %(name)s %(levelname)-8s %(message)s')
h.setFormatter(f)
root.addHandler(h)
# This is the listener process top-level loop: wait for logging events
# (LogRecords)on the queue and handle them, quit when you get a None for a
# LogRecord.
def listener_process(queue, configurer):
configurer()
while True:
try:
record = queue.get()
if record is None: # We send this as a sentinel to tell the listener to quit.
break
logger = logging.getLogger(record.name)
logger.handle(record) # No level or filter logic applied - just do it!
except Exception:
import sys, traceback
print('Whoops! Problem:', file=sys.stderr)
traceback.print_exc(file=sys.stderr)
# Arrays used for random selections in this demo
LEVELS = [logging.DEBUG, logging.INFO, logging.WARNING,
logging.ERROR, logging.CRITICAL]
LOGGERS = ['a.b.c', 'd.e.f']
MESSAGES = [
'Random message #1',
'Random message #2',
'Random message #3',
]
# The worker configuration is done at the start of the worker process run.
# Note that on Windows you can't rely on fork semantics, so each process
# will run the logging configuration code when it starts.
def worker_configurer(queue):
h = logging.handlers.QueueHandler(queue) # Just the one handler needed
root = logging.getLogger()
root.addHandler(h)
root.setLevel(logging.DEBUG) # send all messages, for demo; no other level or filter logic applied.
# This is the worker process top-level loop, which just logs ten events with
# random intervening delays before terminating.
# The print messages are just so you know it's doing something!
def worker_process(queue, configurer):
configurer(queue)
name = multiprocessing.current_process().name
print('Worker started: %s' % name)
for i in range(10):
time.sleep(random())
logger = logging.getLogger(choice(LOGGERS))
level = choice(LEVELS)
message = choice(MESSAGES)
logger.log(level, message)
print('Worker finished: %s' % name)
# Here's where the demo gets orchestrated. Create the queue, create and start
# the listener, create ten workers and start them, wait for them to finish,
# then send a None to the queue to tell the listener to finish.
def main():
queue = multiprocessing.Queue(-1)
listener = multiprocessing.Process(target=listener_process,
args=(queue, listener_configurer))
listener.start()
workers = []
for i in range(10):
worker = multiprocessing.Process(target=worker_process,
args=(queue, worker_configurer))
workers.append(worker)
worker.start()
for w in workers:
w.join()
queue.put_nowait(None)
listener.join()
if __name__ == '__main__':
main()
A variant of the above script keeps the logging in the main process, in a
separate thread::
import logging
import logging.config
import logging.handlers
from multiprocessing import Process, Queue
import random
import threading
import time
def logger_thread(q):
while True:
record = q.get()
if record is None:
break
logger = logging.getLogger(record.name)
logger.handle(record)
def worker_process(q):
qh = logging.handlers.QueueHandler(q)
root = logging.getLogger()
root.setLevel(logging.DEBUG)
root.addHandler(qh)
levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,
logging.CRITICAL]
loggers = ['foo', 'foo.bar', 'foo.bar.baz',
'spam', 'spam.ham', 'spam.ham.eggs']
for i in range(100):
lvl = random.choice(levels)
logger = logging.getLogger(random.choice(loggers))
logger.log(lvl, 'Message no. %d', i)
if __name__ == '__main__':
q = Queue()
d = {
'version': 1,
'formatters': {
'detailed': {
'class': 'logging.Formatter',
'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-10s %(message)s'
}
},
'handlers': {
'console': {
'class': 'logging.StreamHandler',
'level': 'INFO',
},
'file': {
'class': 'logging.FileHandler',
'filename': 'mplog.log',
'mode': 'w',
'formatter': 'detailed',
},
'foofile': {
'class': 'logging.FileHandler',
'filename': 'mplog-foo.log',
'mode': 'w',
'formatter': 'detailed',
},
'errors': {
'class': 'logging.FileHandler',
'filename': 'mplog-errors.log',
'mode': 'w',
'level': 'ERROR',
'formatter': 'detailed',
},
},
'loggers': {
'foo': {
'handlers': ['foofile']
}
},
'root': {
'level': 'DEBUG',
'handlers': ['console', 'file', 'errors']
},
}
workers = []
for i in range(5):
wp = Process(target=worker_process, name='worker %d' % (i + 1), args=(q,))
workers.append(wp)
wp.start()
logging.config.dictConfig(d)
lp = threading.Thread(target=logger_thread, args=(q,))
lp.start()
# At this point, the main process could do some useful work of its own
# Once it's done that, it can wait for the workers to terminate...
for wp in workers:
wp.join()
# And now tell the logging thread to finish up, too
q.put(None)
lp.join()
This variant shows how you can e.g. apply configuration for particular loggers
- e.g. the ``foo`` logger has a special handler which stores all events in the
``foo`` subsystem in a file ``mplog-foo.log``. This will be used by the logging
machinery in the main process (even though the logging events are generated in
the worker processes) to direct the messages to the appropriate destinations.
Using file rotation
-------------------
.. sectionauthor:: Doug Hellmann, Vinay Sajip (changes)
.. (see <http://blog.doughellmann.com/2007/05/pymotw-logging.html>)
Sometimes you want to let a log file grow to a certain size, then open a new
file and log to that. You may want to keep a certain number of these files, and
when that many files have been created, rotate the files so that the number of
files and the size of the files both remain bounded. For this usage pattern, the
logging package provides a :class:`~handlers.RotatingFileHandler`::
import glob
import logging
import logging.handlers
LOG_FILENAME = 'logging_rotatingfile_example.out'
# Set up a specific logger with our desired output level
my_logger = logging.getLogger('MyLogger')
my_logger.setLevel(logging.DEBUG)
# Add the log message handler to the logger
handler = logging.handlers.RotatingFileHandler(
LOG_FILENAME, maxBytes=20, backupCount=5)
my_logger.addHandler(handler)
# Log some messages
for i in range(20):
my_logger.debug('i = %d' % i)
# See what files are created
logfiles = glob.glob('%s*' % LOG_FILENAME)
for filename in logfiles:
print(filename)
The result should be 6 separate files, each with part of the log history for the
application::
logging_rotatingfile_example.out
logging_rotatingfile_example.out.1
logging_rotatingfile_example.out.2
logging_rotatingfile_example.out.3
logging_rotatingfile_example.out.4
logging_rotatingfile_example.out.5
The most current file is always :file:`logging_rotatingfile_example.out`,
and each time it reaches the size limit it is renamed with the suffix
``.1``. Each of the existing backup files is renamed to increment the suffix
(``.1`` becomes ``.2``, etc.) and the ``.6`` file is erased.
Obviously this example sets the log length much too small as an extreme
example. You would want to set *maxBytes* to an appropriate value.
.. _format-styles:
Use of alternative formatting styles
------------------------------------
When logging was added to the Python standard library, the only way of
formatting messages with variable content was to use the %-formatting
method. Since then, Python has gained two new formatting approaches:
:class:`string.Template` (added in Python 2.4) and :meth:`str.format`
(added in Python 2.6).
Logging (as of 3.2) provides improved support for these two additional
formatting styles. The :class:`Formatter` class been enhanced to take an
additional, optional keyword parameter named ``style``. This defaults to
``'%'``, but other possible values are ``'{'`` and ``'$'``, which correspond
to the other two formatting styles. Backwards compatibility is maintained by
default (as you would expect), but by explicitly specifying a style parameter,
you get the ability to specify format strings which work with
:meth:`str.format` or :class:`string.Template`. Here's an example console
session to show the possibilities:
.. code-block:: pycon
>>> import logging
>>> root = logging.getLogger()
>>> root.setLevel(logging.DEBUG)
>>> handler = logging.StreamHandler()
>>> bf = logging.Formatter('{asctime} {name} {levelname:8s} {message}',
... style='{')
>>> handler.setFormatter(bf)
>>> root.addHandler(handler)
>>> logger = logging.getLogger('foo.bar')
>>> logger.debug('This is a DEBUG message')
2010-10-28 15:11:55,341 foo.bar DEBUG This is a DEBUG message
>>> logger.critical('This is a CRITICAL message')
2010-10-28 15:12:11,526 foo.bar CRITICAL This is a CRITICAL message
>>> df = logging.Formatter('$asctime $name ${levelname} $message',
... style='$')
>>> handler.setFormatter(df)
>>> logger.debug('This is a DEBUG message')
2010-10-28 15:13:06,924 foo.bar DEBUG This is a DEBUG message
>>> logger.critical('This is a CRITICAL message')
2010-10-28 15:13:11,494 foo.bar CRITICAL This is a CRITICAL message
>>>
Note that the formatting of logging messages for final output to logs is
completely independent of how an individual logging message is constructed.
That can still use %-formatting, as shown here::
>>> logger.error('This is an%s %s %s', 'other,', 'ERROR,', 'message')
2010-10-28 15:19:29,833 foo.bar ERROR This is another, ERROR, message
>>>
Logging calls (``logger.debug()``, ``logger.info()`` etc.) only take
positional parameters for the actual logging message itself, with keyword
parameters used only for determining options for how to handle the actual
logging call (e.g. the ``exc_info`` keyword parameter to indicate that
traceback information should be logged, or the ``extra`` keyword parameter
to indicate additional contextual information to be added to the log). So
you cannot directly make logging calls using :meth:`str.format` or
:class:`string.Template` syntax, because internally the logging package
uses %-formatting to merge the format string and the variable arguments.
There would no changing this while preserving backward compatibility, since
all logging calls which are out there in existing code will be using %-format
strings.
There is, however, a way that you can use {}- and $- formatting to construct
your individual log messages. Recall that for a message you can use an
arbitrary object as a message format string, and that the logging package will
call ``str()`` on that object to get the actual format string. Consider the
following two classes::
class BraceMessage:
def __init__(self, fmt, *args, **kwargs):
self.fmt = fmt
self.args = args
self.kwargs = kwargs
def __str__(self):
return self.fmt.format(*self.args, **self.kwargs)
class DollarMessage:
def __init__(self, fmt, **kwargs):
self.fmt = fmt
self.kwargs = kwargs
def __str__(self):
from string import Template
return Template(self.fmt).substitute(**self.kwargs)
Either of these can be used in place of a format string, to allow {}- or
$-formatting to be used to build the actual "message" part which appears in the
formatted log output in place of "%(message)s" or "{message}" or "$message".
It's a little unwieldy to use the class names whenever you want to log
something, but it's quite palatable if you use an alias such as __ (double
underscore – not to be confused with _, the single underscore used as a
synonym/alias for :func:`gettext.gettext` or its brethren).
The above classes are not included in Python, though they're easy enough to
copy and paste into your own code. They can be used as follows (assuming that
they're declared in a module called ``wherever``):
.. code-block:: pycon
>>> from wherever import BraceMessage as __
>>> print(__('Message with {0} {name}', 2, name='placeholders'))
Message with 2 placeholders
>>> class Point: pass
...
>>> p = Point()
>>> p.x = 0.5
>>> p.y = 0.5
>>> print(__('Message with coordinates: ({point.x:.2f}, {point.y:.2f})',
... point=p))
Message with coordinates: (0.50, 0.50)
>>> from wherever import DollarMessage as __
>>> print(__('Message with $num $what', num=2, what='placeholders'))
Message with 2 placeholders
>>>
While the above examples use ``print()`` to show how the formatting works, you
would of course use ``logger.debug()`` or similar to actually log using this
approach.
One thing to note is that you pay no significant performance penalty with this
approach: the actual formatting happens not when you make the logging call, but
when (and if) the logged message is actually about to be output to a log by a
handler. So the only slightly unusual thing which might trip you up is that the
parentheses go around the format string and the arguments, not just the format
string. That's because the __ notation is just syntax sugar for a constructor
call to one of the XXXMessage classes.
If you prefer, you can use a :class:`LoggerAdapter` to achieve a similar effect
to the above, as in the following example::
import logging
class Message(object):
def __init__(self, fmt, args):
self.fmt = fmt
self.args = args
def __str__(self):
return self.fmt.format(*self.args)
class StyleAdapter(logging.LoggerAdapter):
def __init__(self, logger, extra=None):
super(StyleAdapter, self).__init__(logger, extra or {})
def log(self, level, msg, *args, **kwargs):
if self.isEnabledFor(level):
msg, kwargs = self.process(msg, kwargs)
self.logger._log(level, Message(msg, args), (), **kwargs)
logger = StyleAdapter(logging.getLogger(__name__))
def main():
logger.debug('Hello, {}', 'world!')
if __name__ == '__main__':
logging.basicConfig(level=logging.DEBUG)
main()
The above script should log the message ``Hello, world!`` when run with
Python 3.2 or later.
.. currentmodule:: logging
.. _custom-logrecord:
Customizing ``LogRecord``
-------------------------
Every logging event is represented by a :class:`LogRecord` instance.
When an event is logged and not filtered out by a logger's level, a
:class:`LogRecord` is created, populated with information about the event and
then passed to the handlers for that logger (and its ancestors, up to and
including the logger where further propagation up the hierarchy is disabled).
Before Python 3.2, there were only two places where this creation was done:
* :meth:`Logger.makeRecord`, which is called in the normal process of
logging an event. This invoked :class:`LogRecord` directly to create an
instance.
* :func:`makeLogRecord`, which is called with a dictionary containing
attributes to be added to the LogRecord. This is typically invoked when a
suitable dictionary has been received over the network (e.g. in pickle form
via a :class:`~handlers.SocketHandler`, or in JSON form via an
:class:`~handlers.HTTPHandler`).
This has usually meant that if you need to do anything special with a
:class:`LogRecord`, you've had to do one of the following.
* Create your own :class:`Logger` subclass, which overrides
:meth:`Logger.makeRecord`, and set it using :func:`~logging.setLoggerClass`
before any loggers that you care about are instantiated.
* Add a :class:`Filter` to a logger or handler, which does the
necessary special manipulation you need when its
:meth:`~Filter.filter` method is called.
The first approach would be a little unwieldy in the scenario where (say)
several different libraries wanted to do different things. Each would attempt
to set its own :class:`Logger` subclass, and the one which did this last would
win.
The second approach works reasonably well for many cases, but does not allow
you to e.g. use a specialized subclass of :class:`LogRecord`. Library
developers can set a suitable filter on their loggers, but they would have to
remember to do this every time they introduced a new logger (which they would
do simply by adding new packages or modules and doing ::
logger = logging.getLogger(__name__)
at module level). It's probably one too many things to think about. Developers
could also add the filter to a :class:`~logging.NullHandler` attached to their
top-level logger, but this would not be invoked if an application developer
attached a handler to a lower-level library logger – so output from that
handler would not reflect the intentions of the library developer.
In Python 3.2 and later, :class:`~logging.LogRecord` creation is done through a
factory, which you can specify. The factory is just a callable you can set with
:func:`~logging.setLogRecordFactory`, and interrogate with
:func:`~logging.getLogRecordFactory`. The factory is invoked with the same
signature as the :class:`~logging.LogRecord` constructor, as :class:`LogRecord`
is the default setting for the factory.
This approach allows a custom factory to control all aspects of LogRecord
creation. For example, you could return a subclass, or just add some additional
attributes to the record once created, using a pattern similar to this::
old_factory = logging.getLogRecordFactory()
def record_factory(*args, **kwargs):
record = old_factory(*args, **kwargs)
record.custom_attribute = 0xdecafbad
return record
logging.setLogRecordFactory(record_factory)
This pattern allows different libraries to chain factories together, and as
long as they don't overwrite each other's attributes or unintentionally
overwrite the attributes provided as standard, there should be no surprises.
However, it should be borne in mind that each link in the chain adds run-time
overhead to all logging operations, and the technique should only be used when
the use of a :class:`Filter` does not provide the desired result.
.. _zeromq-handlers:
Subclassing QueueHandler - a ZeroMQ example
-------------------------------------------
You can use a :class:`QueueHandler` subclass to send messages to other kinds
of queues, for example a ZeroMQ 'publish' socket. In the example below,the
socket is created separately and passed to the handler (as its 'queue')::
import zmq # using pyzmq, the Python binding for ZeroMQ
import json # for serializing records portably
ctx = zmq.Context()
sock = zmq.Socket(ctx, zmq.PUB) # or zmq.PUSH, or other suitable value
sock.bind('tcp://*:5556') # or wherever
class ZeroMQSocketHandler(QueueHandler):
def enqueue(self, record):
data = json.dumps(record.__dict__)
self.queue.send(data)
handler = ZeroMQSocketHandler(sock)
Of course there are other ways of organizing this, for example passing in the
data needed by the handler to create the socket::
class ZeroMQSocketHandler(QueueHandler):
def __init__(self, uri, socktype=zmq.PUB, ctx=None):
self.ctx = ctx or zmq.Context()
socket = zmq.Socket(self.ctx, socktype)
socket.bind(uri)
QueueHandler.__init__(self, socket)
def enqueue(self, record):
data = json.dumps(record.__dict__)
self.queue.send(data)
def close(self):
self.queue.close()
Subclassing QueueListener - a ZeroMQ example
--------------------------------------------
You can also subclass :class:`QueueListener` to get messages from other kinds
of queues, for example a ZeroMQ 'subscribe' socket. Here's an example::
class ZeroMQSocketListener(QueueListener):
def __init__(self, uri, *handlers, **kwargs):
self.ctx = kwargs.get('ctx') or zmq.Context()
socket = zmq.Socket(self.ctx, zmq.SUB)
socket.setsockopt(zmq.SUBSCRIBE, '') # subscribe to everything
socket.connect(uri)
def dequeue(self):
msg = self.queue.recv()
return logging.makeLogRecord(json.loads(msg))
.. seealso::
Module :mod:`logging`
API reference for the logging module.
Module :mod:`logging.config`
Configuration API for the logging module.
Module :mod:`logging.handlers`
Useful handlers included with the logging module.
:ref:`A basic logging tutorial <logging-basic-tutorial>`
:ref:`A more advanced logging tutorial <logging-advanced-tutorial>`
An example dictionary-based configuration
-----------------------------------------
Below is an example of a logging configuration dictionary - it's taken from
the `documentation on the Django project <https://docs.djangoproject.com/en/1.3/topics/logging/#configuring-logging>`_.
This dictionary is passed to :func:`~config.dictConfig` to put the configuration into effect::
LOGGING = {
'version': 1,
'disable_existing_loggers': True,
'formatters': {
'verbose': {
'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s'
},
'simple': {
'format': '%(levelname)s %(message)s'
},
},
'filters': {
'special': {
'()': 'project.logging.SpecialFilter',
'foo': 'bar',
}
},
'handlers': {
'null': {
'level':'DEBUG',
'class':'django.utils.log.NullHandler',
},
'console':{
'level':'DEBUG',
'class':'logging.StreamHandler',
'formatter': 'simple'
},
'mail_admins': {
'level': 'ERROR',
'class': 'django.utils.log.AdminEmailHandler',
'filters': ['special']
}
},
'loggers': {
'django': {
'handlers':['null'],
'propagate': True,
'level':'INFO',
},
'django.request': {
'handlers': ['mail_admins'],
'level': 'ERROR',
'propagate': False,
},
'myproject.custom': {
'handlers': ['console', 'mail_admins'],
'level': 'INFO',
'filters': ['special']
}
}
}
For more information about this configuration, you can see the `relevant
section <https://docs.djangoproject.com/en/1.6/topics/logging/#configuring-logging>`_
of the Django documentation.
.. _cookbook-rotator-namer:
Using a rotator and namer to customize log rotation processing
--------------------------------------------------------------
An example of how you can define a namer and rotator is given in the following
snippet, which shows zlib-based compression of the log file::
def namer(name):
return name + ".gz"
def rotator(source, dest):
with open(source, "rb") as sf:
data = sf.read()
compressed = zlib.compress(data, 9)
with open(dest, "wb") as df:
df.write(compressed)
os.remove(source)
rh = logging.handlers.RotatingFileHandler(...)
rh.rotator = rotator
rh.namer = namer
These are not "true" .gz files, as they are bare compressed data, with no
"container" such as you’d find in an actual gzip file. This snippet is just
for illustration purposes.
A more elaborate multiprocessing example
----------------------------------------
The following working example shows how logging can be used with multiprocessing
using configuration files. The configurations are fairly simple, but serve to
illustrate how more complex ones could be implemented in a real multiprocessing
scenario.
In the example, the main process spawns a listener process and some worker
processes. Each of the main process, the listener and the workers have three
separate configurations (the workers all share the same configuration). We can
see logging in the main process, how the workers log to a QueueHandler and how
the listener implements a QueueListener and a more complex logging
configuration, and arranges to dispatch events received via the queue to the
handlers specified in the configuration. Note that these configurations are
purely illustrative, but you should be able to adapt this example to your own
scenario.
Here's the script - the docstrings and the comments hopefully explain how it
works::
import logging
import logging.config
import logging.handlers
from multiprocessing import Process, Queue, Event, current_process
import os
import random
import time
class MyHandler:
"""
A simple handler for logging events. It runs in the listener process and
dispatches events to loggers based on the name in the received record,
which then get dispatched, by the logging system, to the handlers
configured for those loggers.
"""
def handle(self, record):
logger = logging.getLogger(record.name)
# The process name is transformed just to show that it's the listener
# doing the logging to files and console
record.processName = '%s (for %s)' % (current_process().name, record.processName)
logger.handle(record)
def listener_process(q, stop_event, config):
"""
This could be done in the main process, but is just done in a separate
process for illustrative purposes.
This initialises logging according to the specified configuration,
starts the listener and waits for the main process to signal completion
via the event. The listener is then stopped, and the process exits.
"""
logging.config.dictConfig(config)
listener = logging.handlers.QueueListener(q, MyHandler())
listener.start()
if os.name == 'posix':
# On POSIX, the setup logger will have been configured in the
# parent process, but should have been disabled following the
# dictConfig call.
# On Windows, since fork isn't used, the setup logger won't
# exist in the child, so it would be created and the message
# would appear - hence the "if posix" clause.
logger = logging.getLogger('setup')
logger.critical('Should not appear, because of disabled logger ...')
stop_event.wait()
listener.stop()
def worker_process(config):
"""
A number of these are spawned for the purpose of illustration. In
practice, they could be a heterogeneous bunch of processes rather than
ones which are identical to each other.
This initialises logging according to the specified configuration,
and logs a hundred messages with random levels to randomly selected
loggers.
A small sleep is added to allow other processes a chance to run. This
is not strictly needed, but it mixes the output from the different
processes a bit more than if it's left out.
"""
logging.config.dictConfig(config)
levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,
logging.CRITICAL]
loggers = ['foo', 'foo.bar', 'foo.bar.baz',
'spam', 'spam.ham', 'spam.ham.eggs']
if os.name == 'posix':
# On POSIX, the setup logger will have been configured in the
# parent process, but should have been disabled following the
# dictConfig call.
# On Windows, since fork isn't used, the setup logger won't
# exist in the child, so it would be created and the message
# would appear - hence the "if posix" clause.
logger = logging.getLogger('setup')
logger.critical('Should not appear, because of disabled logger ...')
for i in range(100):
lvl = random.choice(levels)
logger = logging.getLogger(random.choice(loggers))
logger.log(lvl, 'Message no. %d', i)
time.sleep(0.01)
def main():
q = Queue()
# The main process gets a simple configuration which prints to the console.
config_initial = {
'version': 1,
'formatters': {
'detailed': {
'class': 'logging.Formatter',
'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-10s %(message)s'
}
},
'handlers': {
'console': {
'class': 'logging.StreamHandler',
'level': 'INFO',
},
},
'root': {
'level': 'DEBUG',
'handlers': ['console']
},
}
# The worker process configuration is just a QueueHandler attached to the
# root logger, which allows all messages to be sent to the queue.
# We disable existing loggers to disable the "setup" logger used in the
# parent process. This is needed on POSIX because the logger will
# be there in the child following a fork().
config_worker = {
'version': 1,
'disable_existing_loggers': True,
'handlers': {
'queue': {
'class': 'logging.handlers.QueueHandler',
'queue': q,
},
},
'root': {
'level': 'DEBUG',
'handlers': ['queue']
},
}
# The listener process configuration shows that the full flexibility of
# logging configuration is available to dispatch events to handlers however
# you want.
# We disable existing loggers to disable the "setup" logger used in the
# parent process. This is needed on POSIX because the logger will
# be there in the child following a fork().
config_listener = {
'version': 1,
'disable_existing_loggers': True,
'formatters': {
'detailed': {
'class': 'logging.Formatter',
'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-10s %(message)s'
},
'simple': {
'class': 'logging.Formatter',
'format': '%(name)-15s %(levelname)-8s %(processName)-10s %(message)s'
}
},
'handlers': {
'console': {
'class': 'logging.StreamHandler',
'level': 'INFO',
'formatter': 'simple',
},
'file': {
'class': 'logging.FileHandler',
'filename': 'mplog.log',
'mode': 'w',
'formatter': 'detailed',
},
'foofile': {
'class': 'logging.FileHandler',
'filename': 'mplog-foo.log',
'mode': 'w',
'formatter': 'detailed',
},
'errors': {
'class': 'logging.FileHandler',
'filename': 'mplog-errors.log',
'mode': 'w',
'level': 'ERROR',
'formatter': 'detailed',
},
},
'loggers': {
'foo': {
'handlers': ['foofile']
}
},
'root': {
'level': 'DEBUG',
'handlers': ['console', 'file', 'errors']
},
}
# Log some initial events, just to show that logging in the parent works
# normally.
logging.config.dictConfig(config_initial)
logger = logging.getLogger('setup')
logger.info('About to create workers ...')
workers = []
for i in range(5):
wp = Process(target=worker_process, name='worker %d' % (i + 1),
args=(config_worker,))
workers.append(wp)
wp.start()
logger.info('Started worker: %s', wp.name)
logger.info('About to create listener ...')
stop_event = Event()
lp = Process(target=listener_process, name='listener',
args=(q, stop_event, config_listener))
lp.start()
logger.info('Started listener')
# We now hang around for the workers to finish their work.
for wp in workers:
wp.join()
# Workers all done, listening can now stop.
# Logging in the parent still works normally.
logger.info('Telling listener to stop ...')
stop_event.set()
lp.join()
logger.info('All done.')
if __name__ == '__main__':
main()
Inserting a BOM into messages sent to a SysLogHandler
-----------------------------------------------------
`RFC 5424 <http://tools.ietf.org/html/rfc5424>`_ requires that a
Unicode message be sent to a syslog daemon as a set of bytes which have the
following structure: an optional pure-ASCII component, followed by a UTF-8 Byte
Order Mark (BOM), followed by Unicode encoded using UTF-8. (See the `relevant
section of the specification <http://tools.ietf.org/html/rfc5424#section-6>`_.)
In Python 3.1, code was added to
:class:`~logging.handlers.SysLogHandler` to insert a BOM into the message, but
unfortunately, it was implemented incorrectly, with the BOM appearing at the
beginning of the message and hence not allowing any pure-ASCII component to
appear before it.
As this behaviour is broken, the incorrect BOM insertion code is being removed
from Python 3.2.4 and later. However, it is not being replaced, and if you
want to produce RFC 5424-compliant messages which include a BOM, an optional
pure-ASCII sequence before it and arbitrary Unicode after it, encoded using
UTF-8, then you need to do the following:
#. Attach a :class:`~logging.Formatter` instance to your
:class:`~logging.handlers.SysLogHandler` instance, with a format string
such as::
'ASCII section\ufeffUnicode section'
The Unicode code point U+FEFF, when encoded using UTF-8, will be
encoded as a UTF-8 BOM -- the byte-string ``b'\xef\xbb\xbf'``.
#. Replace the ASCII section with whatever placeholders you like, but make sure
that the data that appears in there after substitution is always ASCII (that
way, it will remain unchanged after UTF-8 encoding).
#. Replace the Unicode section with whatever placeholders you like; if the data
which appears there after substitution contains characters outside the ASCII
range, that's fine -- it will be encoded using UTF-8.
The formatted message *will* be encoded using UTF-8 encoding by
``SysLogHandler``. If you follow the above rules, you should be able to produce
RFC 5424-compliant messages. If you don't, logging may not complain, but your
messages will not be RFC 5424-compliant, and your syslog daemon may complain.
Implementing structured logging
-------------------------------
Although most logging messages are intended for reading by humans, and thus not
readily machine-parseable, there might be cirumstances where you want to output
messages in a structured format which *is* capable of being parsed by a program
(without needing complex regular expressions to parse the log message). This is
straightforward to achieve using the logging package. There are a number of
ways in which this could be achieved, but the following is a simple approach
which uses JSON to serialise the event in a machine-parseable manner::
import json
import logging
class StructuredMessage(object):
def __init__(self, message, **kwargs):
self.message = message
self.kwargs = kwargs
def __str__(self):
return '%s >>> %s' % (self.message, json.dumps(self.kwargs))
_ = StructuredMessage # optional, to improve readability
logging.basicConfig(level=logging.INFO, format='%(message)s')
logging.info(_('message 1', foo='bar', bar='baz', num=123, fnum=123.456))
If the above script is run, it prints::
message 1 >>> {"fnum": 123.456, "num": 123, "bar": "baz", "foo": "bar"}
Note that the order of items might be different according to the version of
Python used.
If you need more specialised processing, you can use a custom JSON encoder,
as in the following complete example::
from __future__ import unicode_literals
import json
import logging
# This next bit is to ensure the script runs unchanged on 2.x and 3.x
try:
unicode
except NameError:
unicode = str
class Encoder(json.JSONEncoder):
def default(self, o):
if isinstance(o, set):
return tuple(o)
elif isinstance(o, unicode):
return o.encode('unicode_escape').decode('ascii')
return super(Encoder, self).default(o)
class StructuredMessage(object):
def __init__(self, message, **kwargs):
self.message = message
self.kwargs = kwargs
def __str__(self):
s = Encoder().encode(self.kwargs)
return '%s >>> %s' % (self.message, s)
_ = StructuredMessage # optional, to improve readability
def main():
logging.basicConfig(level=logging.INFO, format='%(message)s')
logging.info(_('message 1', set_value=set([1, 2, 3]), snowman='\u2603'))
if __name__ == '__main__':
main()
When the above script is run, it prints::
message 1 >>> {"snowman": "\u2603", "set_value": [1, 2, 3]}
Note that the order of items might be different according to the version of
Python used.
.. _custom-handlers:
.. currentmodule:: logging.config
Customizing handlers with :func:`dictConfig`
--------------------------------------------
There are times when you want to customize logging handlers in particular ways,
and if you use :func:`dictConfig` you may be able to do this without
subclassing. As an example, consider that you may want to set the ownership of a
log file. On POSIX, this is easily done using :func:`shutil.chown`, but the file
handlers in the stdlib don't offer built-in support. You can customize handler
creation using a plain function such as::
def owned_file_handler(filename, mode='a', encoding=None, owner=None):
if owner:
if not os.path.exists(filename):
open(filename, 'a').close()
shutil.chown(filename, *owner)
return logging.FileHandler(filename, mode, encoding)
You can then specify, in a logging configuration passed to :func:`dictConfig`,
that a logging handler be created by calling this function::
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'default': {
'format': '%(asctime)s %(levelname)s %(name)s %(message)s'
},
},
'handlers': {
'file':{
# The values below are popped from this dictionary and
# used to create the handler, set the handler's level and
# its formatter.
'()': owned_file_handler,
'level':'DEBUG',
'formatter': 'default',
# The values below are passed to the handler creator callable
# as keyword arguments.
'owner': ['pulse', 'pulse'],
'filename': 'chowntest.log',
'mode': 'w',
'encoding': 'utf-8',
},
},
'root': {
'handlers': ['file'],
'level': 'DEBUG',
},
}
In this example I am setting the ownership using the ``pulse`` user and group,
just for the purposes of illustration. Putting it together into a working
script, ``chowntest.py``::
import logging, logging.config, os, shutil
def owned_file_handler(filename, mode='a', encoding=None, owner=None):
if owner:
if not os.path.exists(filename):
open(filename, 'a').close()
shutil.chown(filename, *owner)
return logging.FileHandler(filename, mode, encoding)
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'default': {
'format': '%(asctime)s %(levelname)s %(name)s %(message)s'
},
},
'handlers': {
'file':{
# The values below are popped from this dictionary and
# used to create the handler, set the handler's level and
# its formatter.
'()': owned_file_handler,
'level':'DEBUG',
'formatter': 'default',
# The values below are passed to the handler creator callable
# as keyword arguments.
'owner': ['pulse', 'pulse'],
'filename': 'chowntest.log',
'mode': 'w',
'encoding': 'utf-8',
},
},
'root': {
'handlers': ['file'],
'level': 'DEBUG',
},
}
logging.config.dictConfig(LOGGING)
logger = logging.getLogger('mylogger')
logger.debug('A debug message')
To run this, you will probably need to run as ``root``::
$ sudo python3.3 chowntest.py
$ cat chowntest.log
2013-11-05 09:34:51,128 DEBUG mylogger A debug message
$ ls -l chowntest.log
-rw-r--r-- 1 pulse pulse 55 2013-11-05 09:34 chowntest.log
Note that this example uses Python 3.3 because that's where :func:`shutil.chown`
makes an appearance. This approach should work with any Python version that
supports :func:`dictConfig` - namely, Python 2.7, 3.2 or later. With pre-3.3
versions, you would need to implement the actual ownership change using e.g.
:func:`os.chown`.
In practice, the handler-creating function may be in a utility module somewhere
in your project. Instead of the line in the configuration::
'()': owned_file_handler,
you could use e.g.::
'()': 'ext://project.util.owned_file_handler',
where ``project.util`` can be replaced with the actual name of the package
where the function resides. In the above working script, using
``'ext://__main__.owned_file_handler'`` should work. Here, the actual callable
is resolved by :func:`dictConfig` from the ``ext://`` specification.
This example hopefully also points the way to how you could implement other
types of file change - e.g. setting specific POSIX permission bits - in the
same way, using :func:`os.chmod`.
Of course, the approach could also be extended to types of handler other than a
:class:`~logging.FileHandler` - for example, one of the rotating file handlers,
or a different type of handler altogether.
.. currentmodule:: logging
.. _formatting-styles:
Using particular formatting styles throughout your application
--------------------------------------------------------------
In Python 3.2, the :class:`~logging.Formatter` gained a ``style`` keyword
parameter which, while defaulting to ``%`` for backward compatibility, allowed
the specification of ``{`` or ``$`` to support the formatting approaches
supported by :meth:`str.format` and :class:`string.Template`. Note that this
governs the formatting of logging messages for final output to logs, and is
completely orthogonal to how an individual logging message is constructed.
Logging calls (:meth:`~Logger.debug`, :meth:`~Logger.info` etc.) only take
positional parameters for the actual logging message itself, with keyword
parameters used only for determining options for how to handle the logging call
(e.g. the ``exc_info`` keyword parameter to indicate that traceback information
should be logged, or the ``extra`` keyword parameter to indicate additional
contextual information to be added to the log). So you cannot directly make
logging calls using :meth:`str.format` or :class:`string.Template` syntax,
because internally the logging package uses %-formatting to merge the format
string and the variable arguments. There would no changing this while preserving
backward compatibility, since all logging calls which are out there in existing
code will be using %-format strings.
There have been suggestions to associate format styles with specific loggers,
but that approach also runs into backward compatibility problems because any
existing code could be using a given logger name and using %-formatting.
For logging to work interoperably between any third-party libraries and your
code, decisions about formatting need to be made at the level of the
individual logging call. This opens up a couple of ways in which alternative
formatting styles can be accommodated.
Using LogRecord factories
^^^^^^^^^^^^^^^^^^^^^^^^^
In Python 3.2, along with the :class:`~logging.Formatter` changes mentioned
above, the logging package gained the ability to allow users to set their own
:class:`LogRecord` subclasses, using the :func:`setLogRecordFactory` function.
You can use this to set your own subclass of :class:`LogRecord`, which does the
Right Thing by overriding the :meth:`~LogRecord.getMessage` method. The base
class implementation of this method is where the ``msg % args`` formatting
happens, and where you can substitute your alternate formatting; however, you
should be careful to support all formatting styles and allow %-formatting as
the default, to ensure interoperability with other code. Care should also be
taken to call ``str(self.msg)``, just as the base implementation does.
Refer to the reference documentation on :func:`setLogRecordFactory` and
:class:`LogRecord` for more information.
Using custom message objects
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
There is another, perhaps simpler way that you can use {}- and $- formatting to
construct your individual log messages. You may recall (from
:ref:`arbitrary-object-messages`) that when logging you can use an arbitrary
object as a message format string, and that the logging package will call
:func:`str` on that object to get the actual format string. Consider the
following two classes::
class BraceMessage(object):
def __init__(self, fmt, *args, **kwargs):
self.fmt = fmt
self.args = args
self.kwargs = kwargs
def __str__(self):
return self.fmt.format(*self.args, **self.kwargs)
class DollarMessage(object):
def __init__(self, fmt, **kwargs):
self.fmt = fmt
self.kwargs = kwargs
def __str__(self):
from string import Template
return Template(self.fmt).substitute(**self.kwargs)
Either of these can be used in place of a format string, to allow {}- or
$-formatting to be used to build the actual "message" part which appears in the
formatted log output in place of “%(message)s” or “{message}” or “$message”.
If you find it a little unwieldy to use the class names whenever you want to log
something, you can make it more palatable if you use an alias such as ``M`` or
``_`` for the message (or perhaps ``__``, if you are using ``_`` for
localization).
Examples of this approach are given below. Firstly, formatting with
:meth:`str.format`::
>>> __ = BraceMessage
>>> print(__('Message with {0} {1}', 2, 'placeholders'))
Message with 2 placeholders
>>> class Point: pass
...
>>> p = Point()
>>> p.x = 0.5
>>> p.y = 0.5
>>> print(__('Message with coordinates: ({point.x:.2f}, {point.y:.2f})', point=p))
Message with coordinates: (0.50, 0.50)
Secondly, formatting with :class:`string.Template`::
>>> __ = DollarMessage
>>> print(__('Message with $num $what', num=2, what='placeholders'))
Message with 2 placeholders
>>>
One thing to note is that you pay no significant performance penalty with this
approach: the actual formatting happens not when you make the logging call, but
when (and if) the logged message is actually about to be output to a log by a
handler. So the only slightly unusual thing which might trip you up is that the
parentheses go around the format string and the arguments, not just the format
string. That’s because the __ notation is just syntax sugar for a constructor
call to one of the ``XXXMessage`` classes shown above.
.. _filters-dictconfig:
.. currentmodule:: logging.config
Configuring filters with :func:`dictConfig`
-------------------------------------------
You *can* configure filters using :func:`~logging.config.dictConfig`, though it
might not be obvious at first glance how to do it (hence this recipe). Since
:class:`~logging.Filter` is the only filter class included in the standard
library, and it is unlikely to cater to many requirements (it's only there as a
base class), you will typically need to define your own :class:`~logging.Filter`
subclass with an overridden :meth:`~logging.Filter.filter` method. To do this,
specify the ``()`` key in the configuration dictionary for the filter,
specifying a callable which will be used to create the filter (a class is the
most obvious, but you can provide any callable which returns a
:class:`~logging.Filter` instance). Here is a complete example::
import logging
import logging.config
import sys
class MyFilter(logging.Filter):
def __init__(self, param=None):
self.param = param
def filter(self, record):
if self.param is None:
allow = True
else:
allow = self.param not in record.msg
if allow:
record.msg = 'changed: ' + record.msg
return allow
LOGGING = {
'version': 1,
'filters': {
'myfilter': {
'()': MyFilter,
'param': 'noshow',
}
},
'handlers': {
'console': {
'class': 'logging.StreamHandler',
'filters': ['myfilter']
}
},
'root': {
'level': 'DEBUG',
'handlers': ['console']
},
}
if __name__ == '__main__':
logging.config.dictConfig(LOGGING)
logging.debug('hello')
logging.debug('hello - noshow')
This example shows how you can pass configuration data to the callable which
constructs the instance, in the form of keyword parameters. When run, the above
script will print::
changed: hello
which shows that the filter is working as configured.
A couple of extra points to note:
* If you can't refer to the callable directly in the configuration (e.g. if it
lives in a different module, and you can't import it directly where the
configuration dictionary is), you can use the form ``ext://...`` as described
in :ref:`logging-config-dict-externalobj`. For example, you could have used
the text ``'ext://__main__.MyFilter'`` instead of ``MyFilter`` in the above
example.
* As well as for filters, this technique can also be used to configure custom
handlers and formatters. See :ref:`logging-config-dict-userdef` for more
information on how logging supports using user-defined objects in its
configuration, and see the other cookbook recipe :ref:`custom-handlers` above.
.. _custom-format-exception:
Customized exception formatting
-------------------------------
There might be times when you want to do customized exception formatting - for
argument's sake, let's say you want exactly one line per logged event, even
when exception information is present. You can do this with a custom formatter
class, as shown in the following example::
import logging
class OneLineExceptionFormatter(logging.Formatter):
def formatException(self, exc_info):
"""
Format an exception so that it prints on a single line.
"""
result = super(OneLineExceptionFormatter, self).formatException(exc_info)
return repr(result) # or format into one line however you want to
def format(self, record):
s = super(OneLineExceptionFormatter, self).format(record)
if record.exc_text:
s = s.replace('\n', '') + '|'
return s
def configure_logging():
fh = logging.FileHandler('output.txt', 'w')
f = OneLineExceptionFormatter('%(asctime)s|%(levelname)s|%(message)s|',
'%d/%m/%Y %H:%M:%S')
fh.setFormatter(f)
root = logging.getLogger()
root.setLevel(logging.DEBUG)
root.addHandler(fh)
def main():
configure_logging()
logging.info('Sample message')
try:
x = 1 / 0
except ZeroDivisionError as e:
logging.exception('ZeroDivisionError: %s', e)
if __name__ == '__main__':
main()
When run, this produces a file with exactly two lines::
28/01/2015 07:21:23|INFO|Sample message|
28/01/2015 07:21:23|ERROR|ZeroDivisionError: integer division or modulo by zero|'Traceback (most recent call last):\n File "logtest7.py", line 30, in main\n x = 1 / 0\nZeroDivisionError: integer division or modulo by zero'|
While the above treatment is simplistic, it points the way to how exception
information can be formatted to your liking. The :mod:`traceback` module may be
helpful for more specialized needs.
.. _spoken-messages:
Speaking logging messages
-------------------------
There might be situations when it is desirable to have logging messages rendered
in an audible rather than a visible format. This is easy to do if you have text-
to-speech (TTS) functionality available in your system, even if it doesn't have
a Python binding. Most TTS systems have a command line program you can run, and
this can be invoked from a handler using :mod:`subprocess`. It's assumed here
that TTS command line programs won't expect to interact with users or take a
long time to complete, and that the frequency of logged messages will be not so
high as to swamp the user with messages, and that it's acceptable to have the
messages spoken one at a time rather than concurrently, The example implementation
below waits for one message to be spoken before the next is processed, and this
might cause other handlers to be kept waiting. Here is a short example showing
the approach, which assumes that the ``espeak`` TTS package is available::
import logging
import subprocess
import sys
class TTSHandler(logging.Handler):
def emit(self, record):
msg = self.format(record)
# Speak slowly in a female English voice
cmd = ['espeak', '-s150', '-ven+f3', msg]
p = subprocess.Popen(cmd, stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
# wait for the program to finish
p.communicate()
def configure_logging():
h = TTSHandler()
root = logging.getLogger()
root.addHandler(h)
# the default formatter just returns the message
root.setLevel(logging.DEBUG)
def main():
logging.info('Hello')
logging.debug('Goodbye')
if __name__ == '__main__':
configure_logging()
sys.exit(main())
When run, this script should say "Hello" and then "Goodbye" in a female voice.
The above approach can, of course, be adapted to other TTS systems and even
other systems altogether which can process messages via external programs run
from a command line.
|