summaryrefslogtreecommitdiffstats
path: root/Doc/howto/perf_profiling.rst
blob: 6af5536166f58add51041ae77e8b816cb5d3960b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
.. highlight:: shell-session

.. _perf_profiling:

==============================================
Python support for the Linux ``perf`` profiler
==============================================

:author: Pablo Galindo

`The Linux perf profiler <https://perf.wiki.kernel.org>`_
is a very powerful tool that allows you to profile and obtain
information about the performance of your application.
``perf`` also has a very vibrant ecosystem of tools
that aid with the analysis of the data that it produces.

The main problem with using the ``perf`` profiler with Python applications is that
``perf`` only gets information about native symbols, that is, the names of
functions and procedures written in C. This means that the names and file names
of Python functions in your code will not appear in the output of ``perf``.

Since Python 3.12, the interpreter can run in a special mode that allows Python
functions to appear in the output of the ``perf`` profiler. When this mode is
enabled, the interpreter will interpose a small piece of code compiled on the
fly before the execution of every Python function and it will teach ``perf`` the
relationship between this piece of code and the associated Python function using
`perf map files`_.

.. note::

    Support for the ``perf`` profiler is currently only available for Linux on
    select architectures. Check the output of the ``configure`` build step or
    check the output of ``python -m sysconfig | grep HAVE_PERF_TRAMPOLINE``
    to see if your system is supported.

For example, consider the following script:

.. code-block:: python

    def foo(n):
        result = 0
        for _ in range(n):
            result += 1
        return result

    def bar(n):
        foo(n)

    def baz(n):
        bar(n)

    if __name__ == "__main__":
        baz(1000000)

We can run ``perf`` to sample CPU stack traces at 9999 hertz::

    $ perf record -F 9999 -g -o perf.data python my_script.py

Then we can use ``perf report`` to analyze the data:

.. code-block:: shell-session

    $ perf report --stdio -n -g

    # Children      Self       Samples  Command     Shared Object       Symbol
    # ........  ........  ............  ..........  ..................  ..........................................
    #
        91.08%     0.00%             0  python.exe  python.exe          [.] _start
                |
                ---_start
                |
                    --90.71%--__libc_start_main
                            Py_BytesMain
                            |
                            |--56.88%--pymain_run_python.constprop.0
                            |          |
                            |          |--56.13%--_PyRun_AnyFileObject
                            |          |          _PyRun_SimpleFileObject
                            |          |          |
                            |          |          |--55.02%--run_mod
                            |          |          |          |
                            |          |          |           --54.65%--PyEval_EvalCode
                            |          |          |                     _PyEval_EvalFrameDefault
                            |          |          |                     PyObject_Vectorcall
                            |          |          |                     _PyEval_Vector
                            |          |          |                     _PyEval_EvalFrameDefault
                            |          |          |                     PyObject_Vectorcall
                            |          |          |                     _PyEval_Vector
                            |          |          |                     _PyEval_EvalFrameDefault
                            |          |          |                     PyObject_Vectorcall
                            |          |          |                     _PyEval_Vector
                            |          |          |                     |
                            |          |          |                     |--51.67%--_PyEval_EvalFrameDefault
                            |          |          |                     |          |
                            |          |          |                     |          |--11.52%--_PyLong_Add
                            |          |          |                     |          |          |
                            |          |          |                     |          |          |--2.97%--_PyObject_Malloc
    ...

As you can see, the Python functions are not shown in the output, only ``_Py_Eval_EvalFrameDefault``
(the function that evaluates the Python bytecode) shows up. Unfortunately that's not very useful because all Python
functions use the same C function to evaluate bytecode so we cannot know which Python function corresponds to which
bytecode-evaluating function.

Instead, if we run the same experiment with ``perf`` support enabled we get:

.. code-block:: shell-session

    $ perf report --stdio -n -g

    # Children      Self       Samples  Command     Shared Object       Symbol
    # ........  ........  ............  ..........  ..................  .....................................................................
    #
        90.58%     0.36%             1  python.exe  python.exe          [.] _start
                |
                ---_start
                |
                    --89.86%--__libc_start_main
                            Py_BytesMain
                            |
                            |--55.43%--pymain_run_python.constprop.0
                            |          |
                            |          |--54.71%--_PyRun_AnyFileObject
                            |          |          _PyRun_SimpleFileObject
                            |          |          |
                            |          |          |--53.62%--run_mod
                            |          |          |          |
                            |          |          |           --53.26%--PyEval_EvalCode
                            |          |          |                     py::<module>:/src/script.py
                            |          |          |                     _PyEval_EvalFrameDefault
                            |          |          |                     PyObject_Vectorcall
                            |          |          |                     _PyEval_Vector
                            |          |          |                     py::baz:/src/script.py
                            |          |          |                     _PyEval_EvalFrameDefault
                            |          |          |                     PyObject_Vectorcall
                            |          |          |                     _PyEval_Vector
                            |          |          |                     py::bar:/src/script.py
                            |          |          |                     _PyEval_EvalFrameDefault
                            |          |          |                     PyObject_Vectorcall
                            |          |          |                     _PyEval_Vector
                            |          |          |                     py::foo:/src/script.py
                            |          |          |                     |
                            |          |          |                     |--51.81%--_PyEval_EvalFrameDefault
                            |          |          |                     |          |
                            |          |          |                     |          |--13.77%--_PyLong_Add
                            |          |          |                     |          |          |
                            |          |          |                     |          |          |--3.26%--_PyObject_Malloc



How to enable ``perf`` profiling support
----------------------------------------

``perf`` profiling support can be enabled either from the start using
the environment variable :envvar:`PYTHONPERFSUPPORT` or the
:option:`-X perf <-X>` option,
or dynamically using :func:`sys.activate_stack_trampoline` and
:func:`sys.deactivate_stack_trampoline`.

The :mod:`!sys` functions take precedence over the :option:`!-X` option,
the :option:`!-X` option takes precedence over the environment variable.

Example, using the environment variable::

   $ PYTHONPERFSUPPORT=1
   $ python script.py
   $ perf report -g -i perf.data

Example, using the :option:`!-X` option::

   $ python -X perf script.py
   $ perf report -g -i perf.data

Example, using the :mod:`sys` APIs in file :file:`example.py`:

.. code-block:: python

   import sys

   sys.activate_stack_trampoline("perf")
   do_profiled_stuff()
   sys.deactivate_stack_trampoline()

   non_profiled_stuff()

...then::

   $ python ./example.py
   $ perf report -g -i perf.data


How to obtain the best results
------------------------------

For best results, Python should be compiled with
``CFLAGS="-fno-omit-frame-pointer -mno-omit-leaf-frame-pointer"`` as this allows
profilers to unwind using only the frame pointer and not on DWARF debug
information. This is because as the code that is interposed to allow ``perf``
support is dynamically generated it doesn't have any DWARF debugging information
available.

You can check if your system has been compiled with this flag by running::

    $ python -m sysconfig | grep 'no-omit-frame-pointer'

If you don't see any output it means that your interpreter has not been compiled with
frame pointers and therefore it may not be able to show Python functions in the output
of ``perf``.

.. _perf map files: https://github.com/torvalds/linux/blob/0513e464f9007b70b96740271a948ca5ab6e7dd7/tools/perf/Documentation/jit-interface.txt