summaryrefslogtreecommitdiffstats
path: root/Doc/howto/sorting.rst
blob: 00bc6f70d9ba7e3e3adbc2be3ea63a2fa8feda1e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
.. _sortinghowto:

Sorting HOW TO
**************

:Author: Andrew Dalke and Raymond Hettinger
:Release: 0.1


Python lists have a built-in :meth:`list.sort` method that modifies the list
in-place.  There is also a :func:`sorted` built-in function that builds a new
sorted list from an iterable.

In this document, we explore the various techniques for sorting data using Python.


Sorting Basics
==============

A simple ascending sort is very easy: just call the :func:`sorted` function. It
returns a new sorted list::

    >>> sorted([5, 2, 3, 1, 4])
    [1, 2, 3, 4, 5]

You can also use the :meth:`list.sort` method. It modifies the list
in-place (and returns *None* to avoid confusion). Usually it's less convenient
than :func:`sorted` - but if you don't need the original list, it's slightly
more efficient.

    >>> a = [5, 2, 3, 1, 4]
    >>> a.sort()
    >>> a
    [1, 2, 3, 4, 5]

Another difference is that the :meth:`list.sort` method is only defined for
lists. In contrast, the :func:`sorted` function accepts any iterable.

    >>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})
    [1, 2, 3, 4, 5]

Key Functions
=============

Both :meth:`list.sort` and :func:`sorted` have a *key* parameter to specify a
function to be called on each list element prior to making comparisons.

For example, here's a case-insensitive string comparison:

    >>> sorted("This is a test string from Andrew".split(), key=str.lower)
    ['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']

The value of the *key* parameter should be a function that takes a single argument
and returns a key to use for sorting purposes. This technique is fast because
the key function is called exactly once for each input record.

A common pattern is to sort complex objects using some of the object's indices
as keys. For example:

    >>> student_tuples = [
        ('john', 'A', 15),
        ('jane', 'B', 12),
        ('dave', 'B', 10),
    ]
    >>> sorted(student_tuples, key=lambda student: student[2])   # sort by age
    [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

The same technique works for objects with named attributes. For example:

    >>> class Student:
            def __init__(self, name, grade, age):
                self.name = name
                self.grade = grade
                self.age = age
            def __repr__(self):
                return repr((self.name, self.grade, self.age))

    >>> student_objects = [
        Student('john', 'A', 15),
        Student('jane', 'B', 12),
        Student('dave', 'B', 10),
    ]
    >>> sorted(student_objects, key=lambda student: student.age)   # sort by age
    [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

Operator Module Functions
=========================

The key-function patterns shown above are very common, so Python provides
convenience functions to make accessor functions easier and faster. The
:mod:`operator` module has :func:`~operator.itemgetter`,
:func:`~operator.attrgetter`, and a :func:`~operator.methodcaller` function.

Using those functions, the above examples become simpler and faster:

    >>> from operator import itemgetter, attrgetter

    >>> sorted(student_tuples, key=itemgetter(2))
    [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

    >>> sorted(student_objects, key=attrgetter('age'))
    [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

The operator module functions allow multiple levels of sorting. For example, to
sort by *grade* then by *age*:

    >>> sorted(student_tuples, key=itemgetter(1,2))
    [('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

    >>> sorted(student_objects, key=attrgetter('grade', 'age'))
    [('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

Ascending and Descending
========================

Both :meth:`list.sort` and :func:`sorted` accept a *reverse* parameter with a
boolean value. This is used to flag descending sorts. For example, to get the
student data in reverse *age* order:

    >>> sorted(student_tuples, key=itemgetter(2), reverse=True)
    [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

    >>> sorted(student_objects, key=attrgetter('age'), reverse=True)
    [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

Sort Stability and Complex Sorts
================================

Sorts are guaranteed to be `stable
<http://en.wikipedia.org/wiki/Sorting_algorithm#Stability>`_\. That means that
when multiple records have the same key, their original order is preserved.

    >>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
    >>> sorted(data, key=itemgetter(0))
    [('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]

Notice how the two records for *blue* retain their original order so that
``('blue', 1)`` is guaranteed to precede ``('blue', 2)``.

This wonderful property lets you build complex sorts in a series of sorting
steps. For example, to sort the student data by descending *grade* and then
ascending *age*, do the *age* sort first and then sort again using *grade*:

    >>> s = sorted(student_objects, key=attrgetter('age'))     # sort on secondary key
    >>> sorted(s, key=attrgetter('grade'), reverse=True)       # now sort on primary key, descending
    [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

The `Timsort <http://en.wikipedia.org/wiki/Timsort>`_ algorithm used in Python
does multiple sorts efficiently because it can take advantage of any ordering
already present in a dataset.

The Old Way Using Decorate-Sort-Undecorate
==========================================

This idiom is called Decorate-Sort-Undecorate after its three steps:

* First, the initial list is decorated with new values that control the sort order.

* Second, the decorated list is sorted.

* Finally, the decorations are removed, creating a list that contains only the
  initial values in the new order.

For example, to sort the student data by *grade* using the DSU approach:

    >>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)]
    >>> decorated.sort()
    >>> [student for grade, i, student in decorated]               # undecorate
    [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

This idiom works because tuples are compared lexicographically; the first items
are compared; if they are the same then the second items are compared, and so
on.

It is not strictly necessary in all cases to include the index *i* in the
decorated list, but including it gives two benefits:

* The sort is stable -- if two items have the same key, their order will be
  preserved in the sorted list.

* The original items do not have to be comparable because the ordering of the
  decorated tuples will be determined by at most the first two items. So for
  example the original list could contain complex numbers which cannot be sorted
  directly.

Another name for this idiom is
`Schwartzian transform <http://en.wikipedia.org/wiki/Schwartzian_transform>`_\,
after Randal L. Schwartz, who popularized it among Perl programmers.

Now that Python sorting provides key-functions, this technique is not often needed.


The Old Way Using the *cmp* Parameter
=====================================

Many constructs given in this HOWTO assume Python 2.4 or later. Before that,
there was no :func:`sorted` builtin and :meth:`list.sort` took no keyword
arguments. Instead, all of the Py2.x versions supported a *cmp* parameter to
handle user specified comparison functions.

In Py3.0, the *cmp* parameter was removed entirely (as part of a larger effort to
simplify and unify the language, eliminating the conflict between rich
comparisons and the :meth:`__cmp__` magic method).

In Py2.x, sort allowed an optional function which can be called for doing the
comparisons. That function should take two arguments to be compared and then
return a negative value for less-than, return zero if they are equal, or return
a positive value for greater-than. For example, we can do:

    >>> def numeric_compare(x, y):
            return x - y
    >>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare)
    [1, 2, 3, 4, 5]

Or you can reverse the order of comparison with:

    >>> def reverse_numeric(x, y):
            return y - x
    >>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric)
    [5, 4, 3, 2, 1]

When porting code from Python 2.x to 3.x, the situation can arise when you have
the user supplying a comparison function and you need to convert that to a key
function. The following wrapper makes that easy to do::

    def cmp_to_key(mycmp):
        'Convert a cmp= function into a key= function'
        class K(object):
            def __init__(self, obj, *args):
                self.obj = obj
            def __lt__(self, other):
                return mycmp(self.obj, other.obj) < 0
            def __gt__(self, other):
                return mycmp(self.obj, other.obj) > 0
            def __eq__(self, other):
                return mycmp(self.obj, other.obj) == 0
            def __le__(self, other):
                return mycmp(self.obj, other.obj) <= 0
            def __ge__(self, other):
                return mycmp(self.obj, other.obj) >= 0
            def __ne__(self, other):
                return mycmp(self.obj, other.obj) != 0
        return K

To convert to a key function, just wrap the old comparison function:

    >>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric))
    [5, 4, 3, 2, 1]

In Python 3.2, the :func:`functools.cmp_to_key` function was added to the
:mod:`functools` module in the standard library.

Odd and Ends
============

* For locale aware sorting, use :func:`locale.strxfrm` for a key function or
  :func:`locale.strcoll` for a comparison function.

* The *reverse* parameter still maintains sort stability (so that records with
  equal keys retain the original order). Interestingly, that effect can be
  simulated without the parameter by using the builtin :func:`reversed` function
  twice:

    >>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
    >>> assert sorted(data, reverse=True) == list(reversed(sorted(reversed(data))))

* The sort routines are guaranteed to use :meth:`__lt__` when making comparisons
  between two objects. So, it is easy to add a standard sort order to a class by
  defining an :meth:`__lt__` method::

    >>> Student.__lt__ = lambda self, other: self.age < other.age
    >>> sorted(student_objects)
    [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

* Key functions need not depend directly on the objects being sorted. A key
  function can also access external resources. For instance, if the student grades
  are stored in a dictionary, they can be used to sort a separate list of student
  names:

    >>> students = ['dave', 'john', 'jane']
    >>> newgrades = {'john': 'F', 'jane':'A', 'dave': 'C'}
    >>> sorted(students, key=newgrades.__getitem__)
    ['jane', 'dave', 'john']