1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
|
\section{\module{codecs} ---
Codec registry and base classes}
\declaremodule{standard}{codecs}
\modulesynopsis{Encode and decode data and streams.}
\moduleauthor{Marc-Andre Lemburg}{mal@lemburg.com}
\sectionauthor{Marc-Andre Lemburg}{mal@lemburg.com}
\sectionauthor{Martin v. L\"owis}{martin@v.loewis.de}
\index{Unicode}
\index{Codecs}
\indexii{Codecs}{encode}
\indexii{Codecs}{decode}
\index{streams}
\indexii{stackable}{streams}
This module defines base classes for standard Python codecs (encoders
and decoders) and provides access to the internal Python codec
registry which manages the codec and error handling lookup process.
It defines the following functions:
\begin{funcdesc}{register}{search_function}
Register a codec search function. Search functions are expected to
take one argument, the encoding name in all lower case letters, and
return a \class{CodecInfo} object having the following attributes:
\begin{itemize}
\item \code{name} The name of the encoding;
\item \code{encoder} The stateless encoding function;
\item \code{decoder} The stateless decoding function;
\item \code{incrementalencoder} An incremental encoder class or factory function;
\item \code{incrementaldecoder} An incremental decoder class or factory function;
\item \code{streamwriter} A stream writer class or factory function;
\item \code{streamreader} A stream reader class or factory function.
\end{itemize}
The various functions or classes take the following arguments:
\var{encoder} and \var{decoder}: These must be functions or methods
which have the same interface as the
\method{encode()}/\method{decode()} methods of Codec instances (see
Codec Interface). The functions/methods are expected to work in a
stateless mode.
\var{incrementalencoder} and \var{incrementalencoder}: These have to be
factory functions providing the following interface:
\code{factory(\var{errors}='strict')}
The factory functions must return objects providing the interfaces
defined by the base classes \class{IncrementalEncoder} and
\class{IncrementalEncoder}, respectively. Incremental codecs can maintain
state.
\var{streamreader} and \var{streamwriter}: These have to be
factory functions providing the following interface:
\code{factory(\var{stream}, \var{errors}='strict')}
The factory functions must return objects providing the interfaces
defined by the base classes \class{StreamWriter} and
\class{StreamReader}, respectively. Stream codecs can maintain
state.
Possible values for errors are \code{'strict'} (raise an exception
in case of an encoding error), \code{'replace'} (replace malformed
data with a suitable replacement marker, such as \character{?}),
\code{'ignore'} (ignore malformed data and continue without further
notice), \code{'xmlcharrefreplace'} (replace with the appropriate XML
character reference (for encoding only)) and \code{'backslashreplace'}
(replace with backslashed escape sequences (for encoding only)) as
well as any other error handling name defined via
\function{register_error()}.
In case a search function cannot find a given encoding, it should
return \code{None}.
\end{funcdesc}
\begin{funcdesc}{lookup}{encoding}
Looks up the codec info in the Python codec registry and returns a
\class{CodecInfo} object as defined above.
Encodings are first looked up in the registry's cache. If not found,
the list of registered search functions is scanned. If no \class{CodecInfo}
object is found, a \exception{LookupError} is raised. Otherwise, the
\class{CodecInfo} object is stored in the cache and returned to the caller.
\end{funcdesc}
To simplify access to the various codecs, the module provides these
additional functions which use \function{lookup()} for the codec
lookup:
\begin{funcdesc}{getencoder}{encoding}
Look up the codec for the given encoding and return its encoder
function.
Raises a \exception{LookupError} in case the encoding cannot be found.
\end{funcdesc}
\begin{funcdesc}{getdecoder}{encoding}
Look up the codec for the given encoding and return its decoder
function.
Raises a \exception{LookupError} in case the encoding cannot be found.
\end{funcdesc}
\begin{funcdesc}{getincrementalencoder}{encoding}
Look up the codec for the given encoding and return its incremental encoder
class or factory function.
Raises a \exception{LookupError} in case the encoding cannot be found or the
codec doesn't support an incremental encoder.
\versionadded{2.5}
\end{funcdesc}
\begin{funcdesc}{getincrementaldecoder}{encoding}
Look up the codec for the given encoding and return its incremental decoder
class or factory function.
Raises a \exception{LookupError} in case the encoding cannot be found or the
codec doesn't support an incremental decoder.
\versionadded{2.5}
\end{funcdesc}
\begin{funcdesc}{getreader}{encoding}
Look up the codec for the given encoding and return its StreamReader
class or factory function.
Raises a \exception{LookupError} in case the encoding cannot be found.
\end{funcdesc}
\begin{funcdesc}{getwriter}{encoding}
Look up the codec for the given encoding and return its StreamWriter
class or factory function.
Raises a \exception{LookupError} in case the encoding cannot be found.
\end{funcdesc}
\begin{funcdesc}{register_error}{name, error_handler}
Register the error handling function \var{error_handler} under the
name \var{name}. \var{error_handler} will be called during encoding
and decoding in case of an error, when \var{name} is specified as the
errors parameter.
For encoding \var{error_handler} will be called with a
\exception{UnicodeEncodeError} instance, which contains information about
the location of the error. The error handler must either raise this or
a different exception or return a tuple with a replacement for the
unencodable part of the input and a position where encoding should
continue. The encoder will encode the replacement and continue encoding
the original input at the specified position. Negative position values
will be treated as being relative to the end of the input string. If the
resulting position is out of bound an \exception{IndexError} will be raised.
Decoding and translating works similar, except \exception{UnicodeDecodeError}
or \exception{UnicodeTranslateError} will be passed to the handler and
that the replacement from the error handler will be put into the output
directly.
\end{funcdesc}
\begin{funcdesc}{lookup_error}{name}
Return the error handler previously register under the name \var{name}.
Raises a \exception{LookupError} in case the handler cannot be found.
\end{funcdesc}
\begin{funcdesc}{strict_errors}{exception}
Implements the \code{strict} error handling.
\end{funcdesc}
\begin{funcdesc}{replace_errors}{exception}
Implements the \code{replace} error handling.
\end{funcdesc}
\begin{funcdesc}{ignore_errors}{exception}
Implements the \code{ignore} error handling.
\end{funcdesc}
\begin{funcdesc}{xmlcharrefreplace_errors_errors}{exception}
Implements the \code{xmlcharrefreplace} error handling.
\end{funcdesc}
\begin{funcdesc}{backslashreplace_errors_errors}{exception}
Implements the \code{backslashreplace} error handling.
\end{funcdesc}
To simplify working with encoded files or stream, the module
also defines these utility functions:
\begin{funcdesc}{open}{filename, mode\optional{, encoding\optional{,
errors\optional{, buffering}}}}
Open an encoded file using the given \var{mode} and return
a wrapped version providing transparent encoding/decoding.
\note{The wrapped version will only accept the object format
defined by the codecs, i.e.\ Unicode objects for most built-in
codecs. Output is also codec-dependent and will usually be Unicode as
well.}
\var{encoding} specifies the encoding which is to be used for the
file.
\var{errors} may be given to define the error handling. It defaults
to \code{'strict'} which causes a \exception{ValueError} to be raised
in case an encoding error occurs.
\var{buffering} has the same meaning as for the built-in
\function{open()} function. It defaults to line buffered.
\end{funcdesc}
\begin{funcdesc}{EncodedFile}{file, input\optional{,
output\optional{, errors}}}
Return a wrapped version of file which provides transparent
encoding translation.
Strings written to the wrapped file are interpreted according to the
given \var{input} encoding and then written to the original file as
strings using the \var{output} encoding. The intermediate encoding will
usually be Unicode but depends on the specified codecs.
If \var{output} is not given, it defaults to \var{input}.
\var{errors} may be given to define the error handling. It defaults to
\code{'strict'}, which causes \exception{ValueError} to be raised in case
an encoding error occurs.
\end{funcdesc}
\begin{funcdesc}{iterencode}{iterable, encoding\optional{, errors}}
Uses an incremental encoder to iteratively encode the input provided by
\var{iterable}. This function is a generator. \var{errors} (as well as
any other keyword argument) is passed through to the incremental encoder.
\versionadded{2.5}
\end{funcdesc}
\begin{funcdesc}{iterdecode}{iterable, encoding\optional{, errors}}
Uses an incremental decoder to iteratively decode the input provided by
\var{iterable}. This function is a generator. \var{errors} (as well as
any other keyword argument) is passed through to the incremental encoder.
\versionadded{2.5}
\end{funcdesc}
The module also provides the following constants which are useful
for reading and writing to platform dependent files:
\begin{datadesc}{BOM}
\dataline{BOM_BE}
\dataline{BOM_LE}
\dataline{BOM_UTF8}
\dataline{BOM_UTF16}
\dataline{BOM_UTF16_BE}
\dataline{BOM_UTF16_LE}
\dataline{BOM_UTF32}
\dataline{BOM_UTF32_BE}
\dataline{BOM_UTF32_LE}
These constants define various encodings of the Unicode byte order mark
(BOM) used in UTF-16 and UTF-32 data streams to indicate the byte order
used in the stream or file and in UTF-8 as a Unicode signature.
\constant{BOM_UTF16} is either \constant{BOM_UTF16_BE} or
\constant{BOM_UTF16_LE} depending on the platform's native byte order,
\constant{BOM} is an alias for \constant{BOM_UTF16}, \constant{BOM_LE}
for \constant{BOM_UTF16_LE} and \constant{BOM_BE} for \constant{BOM_UTF16_BE}.
The others represent the BOM in UTF-8 and UTF-32 encodings.
\end{datadesc}
\subsection{Codec Base Classes \label{codec-base-classes}}
The \module{codecs} module defines a set of base classes which define the
interface and can also be used to easily write you own codecs for use
in Python.
Each codec has to define four interfaces to make it usable as codec in
Python: stateless encoder, stateless decoder, stream reader and stream
writer. The stream reader and writers typically reuse the stateless
encoder/decoder to implement the file protocols.
The \class{Codec} class defines the interface for stateless
encoders/decoders.
To simplify and standardize error handling, the \method{encode()} and
\method{decode()} methods may implement different error handling
schemes by providing the \var{errors} string argument. The following
string values are defined and implemented by all standard Python
codecs:
\begin{tableii}{l|l}{code}{Value}{Meaning}
\lineii{'strict'}{Raise \exception{UnicodeError} (or a subclass);
this is the default.}
\lineii{'ignore'}{Ignore the character and continue with the next.}
\lineii{'replace'}{Replace with a suitable replacement character;
Python will use the official U+FFFD REPLACEMENT
CHARACTER for the built-in Unicode codecs on
decoding and '?' on encoding.}
\lineii{'xmlcharrefreplace'}{Replace with the appropriate XML
character reference (only for encoding).}
\lineii{'backslashreplace'}{Replace with backslashed escape sequences
(only for encoding).}
\end{tableii}
The set of allowed values can be extended via \method{register_error}.
\subsubsection{Codec Objects \label{codec-objects}}
The \class{Codec} class defines these methods which also define the
function interfaces of the stateless encoder and decoder:
\begin{methoddesc}{encode}{input\optional{, errors}}
Encodes the object \var{input} and returns a tuple (output object,
length consumed). While codecs are not restricted to use with Unicode, in
a Unicode context, encoding converts a Unicode object to a plain string
using a particular character set encoding (e.g., \code{cp1252} or
\code{iso-8859-1}).
\var{errors} defines the error handling to apply. It defaults to
\code{'strict'} handling.
The method may not store state in the \class{Codec} instance. Use
\class{StreamCodec} for codecs which have to keep state in order to
make encoding/decoding efficient.
The encoder must be able to handle zero length input and return an
empty object of the output object type in this situation.
\end{methoddesc}
\begin{methoddesc}{decode}{input\optional{, errors}}
Decodes the object \var{input} and returns a tuple (output object,
length consumed). In a Unicode context, decoding converts a plain string
encoded using a particular character set encoding to a Unicode object.
\var{input} must be an object which provides the \code{bf_getreadbuf}
buffer slot. Python strings, buffer objects and memory mapped files
are examples of objects providing this slot.
\var{errors} defines the error handling to apply. It defaults to
\code{'strict'} handling.
The method may not store state in the \class{Codec} instance. Use
\class{StreamCodec} for codecs which have to keep state in order to
make encoding/decoding efficient.
The decoder must be able to handle zero length input and return an
empty object of the output object type in this situation.
\end{methoddesc}
The \class{IncrementalEncoder} and \class{IncrementalDecoder} classes provide
the basic interface for incremental encoding and decoding. Encoding/decoding the
input isn't done with one call to the stateless encoder/decoder function,
but with multiple calls to the \method{encode}/\method{decode} method of the
incremental encoder/decoder. The incremental encoder/decoder keeps track of
the encoding/decoding process during method calls.
The joined output of calls to the \method{encode}/\method{decode} method is the
same as if all the single inputs were joined into one, and this input was
encoded/decoded with the stateless encoder/decoder.
\subsubsection{IncrementalEncoder Objects \label{incremental-encoder-objects}}
\versionadded{2.5}
The \class{IncrementalEncoder} class is used for encoding an input in multiple
steps. It defines the following methods which every incremental encoder must
define in order to be compatible with the Python codec registry.
\begin{classdesc}{IncrementalEncoder}{\optional{errors}}
Constructor for a \class{IncrementalEncoder} instance.
All incremental encoders must provide this constructor interface. They are
free to add additional keyword arguments, but only the ones defined
here are used by the Python codec registry.
The \class{IncrementalEncoder} may implement different error handling
schemes by providing the \var{errors} keyword argument. These
parameters are predefined:
\begin{itemize}
\item \code{'strict'} Raise \exception{ValueError} (or a subclass);
this is the default.
\item \code{'ignore'} Ignore the character and continue with the next.
\item \code{'replace'} Replace with a suitable replacement character
\item \code{'xmlcharrefreplace'} Replace with the appropriate XML
character reference
\item \code{'backslashreplace'} Replace with backslashed escape sequences.
\end{itemize}
The \var{errors} argument will be assigned to an attribute of the
same name. Assigning to this attribute makes it possible to switch
between different error handling strategies during the lifetime
of the \class{IncrementalEncoder} object.
The set of allowed values for the \var{errors} argument can
be extended with \function{register_error()}.
\end{classdesc}
\begin{methoddesc}{encode}{object\optional{, final}}
Encodes \var{object} (taking the current state of the encoder into account)
and returns the resulting encoded object. If this is the last call to
\method{encode} \var{final} must be true (the default is false).
\end{methoddesc}
\begin{methoddesc}{reset}{}
Reset the encoder to the initial state.
\end{methoddesc}
\subsubsection{IncrementalDecoder Objects \label{incremental-decoder-objects}}
The \class{IncrementalDecoder} class is used for decoding an input in multiple
steps. It defines the following methods which every incremental decoder must
define in order to be compatible with the Python codec registry.
\begin{classdesc}{IncrementalDecoder}{\optional{errors}}
Constructor for a \class{IncrementalDecoder} instance.
All incremental decoders must provide this constructor interface. They are
free to add additional keyword arguments, but only the ones defined
here are used by the Python codec registry.
The \class{IncrementalDecoder} may implement different error handling
schemes by providing the \var{errors} keyword argument. These
parameters are predefined:
\begin{itemize}
\item \code{'strict'} Raise \exception{ValueError} (or a subclass);
this is the default.
\item \code{'ignore'} Ignore the character and continue with the next.
\item \code{'replace'} Replace with a suitable replacement character.
\end{itemize}
The \var{errors} argument will be assigned to an attribute of the
same name. Assigning to this attribute makes it possible to switch
between different error handling strategies during the lifetime
of the \class{IncrementalEncoder} object.
The set of allowed values for the \var{errors} argument can
be extended with \function{register_error()}.
\end{classdesc}
\begin{methoddesc}{decode}{object\optional{, final}}
Decodes \var{object} (taking the current state of the decoder into account)
and returns the resulting decoded object. If this is the last call to
\method{decode} \var{final} must be true (the default is false).
If \var{final} is true the decoder must decode the input completely and must
flush all buffers. If this isn't possible (e.g. because of incomplete byte
sequences at the end of the input) it must initiate error handling just like
in the stateless case (which might raise an exception).
\end{methoddesc}
\begin{methoddesc}{reset}{}
Reset the decoder to the initial state.
\end{methoddesc}
The \class{StreamWriter} and \class{StreamReader} classes provide
generic working interfaces which can be used to implement new
encoding submodules very easily. See \module{encodings.utf_8} for an
example of how this is done.
\subsubsection{StreamWriter Objects \label{stream-writer-objects}}
The \class{StreamWriter} class is a subclass of \class{Codec} and
defines the following methods which every stream writer must define in
order to be compatible with the Python codec registry.
\begin{classdesc}{StreamWriter}{stream\optional{, errors}}
Constructor for a \class{StreamWriter} instance.
All stream writers must provide this constructor interface. They are
free to add additional keyword arguments, but only the ones defined
here are used by the Python codec registry.
\var{stream} must be a file-like object open for writing binary
data.
The \class{StreamWriter} may implement different error handling
schemes by providing the \var{errors} keyword argument. These
parameters are predefined:
\begin{itemize}
\item \code{'strict'} Raise \exception{ValueError} (or a subclass);
this is the default.
\item \code{'ignore'} Ignore the character and continue with the next.
\item \code{'replace'} Replace with a suitable replacement character
\item \code{'xmlcharrefreplace'} Replace with the appropriate XML
character reference
\item \code{'backslashreplace'} Replace with backslashed escape sequences.
\end{itemize}
The \var{errors} argument will be assigned to an attribute of the
same name. Assigning to this attribute makes it possible to switch
between different error handling strategies during the lifetime
of the \class{StreamWriter} object.
The set of allowed values for the \var{errors} argument can
be extended with \function{register_error()}.
\end{classdesc}
\begin{methoddesc}{write}{object}
Writes the object's contents encoded to the stream.
\end{methoddesc}
\begin{methoddesc}{writelines}{list}
Writes the concatenated list of strings to the stream (possibly by
reusing the \method{write()} method).
\end{methoddesc}
\begin{methoddesc}{reset}{}
Flushes and resets the codec buffers used for keeping state.
Calling this method should ensure that the data on the output is put
into a clean state that allows appending of new fresh data without
having to rescan the whole stream to recover state.
\end{methoddesc}
In addition to the above methods, the \class{StreamWriter} must also
inherit all other methods and attributes from the underlying stream.
\subsubsection{StreamReader Objects \label{stream-reader-objects}}
The \class{StreamReader} class is a subclass of \class{Codec} and
defines the following methods which every stream reader must define in
order to be compatible with the Python codec registry.
\begin{classdesc}{StreamReader}{stream\optional{, errors}}
Constructor for a \class{StreamReader} instance.
All stream readers must provide this constructor interface. They are
free to add additional keyword arguments, but only the ones defined
here are used by the Python codec registry.
\var{stream} must be a file-like object open for reading (binary)
data.
The \class{StreamReader} may implement different error handling
schemes by providing the \var{errors} keyword argument. These
parameters are defined:
\begin{itemize}
\item \code{'strict'} Raise \exception{ValueError} (or a subclass);
this is the default.
\item \code{'ignore'} Ignore the character and continue with the next.
\item \code{'replace'} Replace with a suitable replacement character.
\end{itemize}
The \var{errors} argument will be assigned to an attribute of the
same name. Assigning to this attribute makes it possible to switch
between different error handling strategies during the lifetime
of the \class{StreamReader} object.
The set of allowed values for the \var{errors} argument can
be extended with \function{register_error()}.
\end{classdesc}
\begin{methoddesc}{read}{\optional{size\optional{, chars, \optional{firstline}}}}
Decodes data from the stream and returns the resulting object.
\var{chars} indicates the number of characters to read from the
stream. \function{read()} will never return more than \var{chars}
characters, but it might return less, if there are not enough
characters available.
\var{size} indicates the approximate maximum number of bytes to read
from the stream for decoding purposes. The decoder can modify this
setting as appropriate. The default value -1 indicates to read and
decode as much as possible. \var{size} is intended to prevent having
to decode huge files in one step.
\var{firstline} indicates that it would be sufficient to only return
the first line, if there are decoding errors on later lines.
The method should use a greedy read strategy meaning that it should
read as much data as is allowed within the definition of the encoding
and the given size, e.g. if optional encoding endings or state
markers are available on the stream, these should be read too.
\versionchanged[\var{chars} argument added]{2.4}
\versionchanged[\var{firstline} argument added]{2.4.2}
\end{methoddesc}
\begin{methoddesc}{readline}{\optional{size\optional{, keepends}}}
Read one line from the input stream and return the
decoded data.
\var{size}, if given, is passed as size argument to the stream's
\method{readline()} method.
If \var{keepends} is false line-endings will be stripped from the
lines returned.
\versionchanged[\var{keepends} argument added]{2.4}
\end{methoddesc}
\begin{methoddesc}{readlines}{\optional{sizehint\optional{, keepends}}}
Read all lines available on the input stream and return them as a list
of lines.
Line-endings are implemented using the codec's decoder method and are
included in the list entries if \var{keepends} is true.
\var{sizehint}, if given, is passed as the \var{size} argument to the
stream's \method{read()} method.
\end{methoddesc}
\begin{methoddesc}{reset}{}
Resets the codec buffers used for keeping state.
Note that no stream repositioning should take place. This method is
primarily intended to be able to recover from decoding errors.
\end{methoddesc}
In addition to the above methods, the \class{StreamReader} must also
inherit all other methods and attributes from the underlying stream.
The next two base classes are included for convenience. They are not
needed by the codec registry, but may provide useful in practice.
\subsubsection{StreamReaderWriter Objects \label{stream-reader-writer}}
The \class{StreamReaderWriter} allows wrapping streams which work in
both read and write modes.
The design is such that one can use the factory functions returned by
the \function{lookup()} function to construct the instance.
\begin{classdesc}{StreamReaderWriter}{stream, Reader, Writer, errors}
Creates a \class{StreamReaderWriter} instance.
\var{stream} must be a file-like object.
\var{Reader} and \var{Writer} must be factory functions or classes
providing the \class{StreamReader} and \class{StreamWriter} interface
resp.
Error handling is done in the same way as defined for the
stream readers and writers.
\end{classdesc}
\class{StreamReaderWriter} instances define the combined interfaces of
\class{StreamReader} and \class{StreamWriter} classes. They inherit
all other methods and attributes from the underlying stream.
\subsubsection{StreamRecoder Objects \label{stream-recoder-objects}}
The \class{StreamRecoder} provide a frontend - backend view of
encoding data which is sometimes useful when dealing with different
encoding environments.
The design is such that one can use the factory functions returned by
the \function{lookup()} function to construct the instance.
\begin{classdesc}{StreamRecoder}{stream, encode, decode,
Reader, Writer, errors}
Creates a \class{StreamRecoder} instance which implements a two-way
conversion: \var{encode} and \var{decode} work on the frontend (the
input to \method{read()} and output of \method{write()}) while
\var{Reader} and \var{Writer} work on the backend (reading and
writing to the stream).
You can use these objects to do transparent direct recodings from
e.g.\ Latin-1 to UTF-8 and back.
\var{stream} must be a file-like object.
\var{encode}, \var{decode} must adhere to the \class{Codec}
interface. \var{Reader}, \var{Writer} must be factory functions or
classes providing objects of the \class{StreamReader} and
\class{StreamWriter} interface respectively.
\var{encode} and \var{decode} are needed for the frontend
translation, \var{Reader} and \var{Writer} for the backend
translation. The intermediate format used is determined by the two
sets of codecs, e.g. the Unicode codecs will use Unicode as the
intermediate encoding.
Error handling is done in the same way as defined for the
stream readers and writers.
\end{classdesc}
\class{StreamRecoder} instances define the combined interfaces of
\class{StreamReader} and \class{StreamWriter} classes. They inherit
all other methods and attributes from the underlying stream.
\subsection{Encodings and Unicode\label{encodings-overview}}
Unicode strings are stored internally as sequences of codepoints (to
be precise as \ctype{Py_UNICODE} arrays). Depending on the way Python is
compiled (either via \longprogramopt{enable-unicode=ucs2} or
\longprogramopt{enable-unicode=ucs4}, with the former being the default)
\ctype{Py_UNICODE} is either a 16-bit or
32-bit data type. Once a Unicode object is used outside of CPU and
memory, CPU endianness and how these arrays are stored as bytes become
an issue. Transforming a unicode object into a sequence of bytes is
called encoding and recreating the unicode object from the sequence of
bytes is known as decoding. There are many different methods for how this
transformation can be done (these methods are also called encodings).
The simplest method is to map the codepoints 0-255 to the bytes
\code{0x0}-\code{0xff}. This means that a unicode object that contains
codepoints above \code{U+00FF} can't be encoded with this method (which
is called \code{'latin-1'} or \code{'iso-8859-1'}).
\function{unicode.encode()} will raise a \exception{UnicodeEncodeError}
that looks like this: \samp{UnicodeEncodeError: 'latin-1' codec can't
encode character u'\e u1234' in position 3: ordinal not in range(256)}.
There's another group of encodings (the so called charmap encodings)
that choose a different subset of all unicode code points and how
these codepoints are mapped to the bytes \code{0x0}-\code{0xff.}
To see how this is done simply open e.g. \file{encodings/cp1252.py}
(which is an encoding that is used primarily on Windows).
There's a string constant with 256 characters that shows you which
character is mapped to which byte value.
All of these encodings can only encode 256 of the 65536 (or 1114111)
codepoints defined in unicode. A simple and straightforward way that
can store each Unicode code point, is to store each codepoint as two
consecutive bytes. There are two possibilities: Store the bytes in big
endian or in little endian order. These two encodings are called
UTF-16-BE and UTF-16-LE respectively. Their disadvantage is that if
e.g. you use UTF-16-BE on a little endian machine you will always have
to swap bytes on encoding and decoding. UTF-16 avoids this problem:
Bytes will always be in natural endianness. When these bytes are read
by a CPU with a different endianness, then bytes have to be swapped
though. To be able to detect the endianness of a UTF-16 byte sequence,
there's the so called BOM (the "Byte Order Mark"). This is the Unicode
character \code{U+FEFF}. This character will be prepended to every UTF-16
byte sequence. The byte swapped version of this character (\code{0xFFFE}) is
an illegal character that may not appear in a Unicode text. So when
the first character in an UTF-16 byte sequence appears to be a \code{U+FFFE}
the bytes have to be swapped on decoding. Unfortunately upto Unicode
4.0 the character \code{U+FEFF} had a second purpose as a \samp{ZERO WIDTH
NO-BREAK SPACE}: A character that has no width and doesn't allow a
word to be split. It can e.g. be used to give hints to a ligature
algorithm. With Unicode 4.0 using \code{U+FEFF} as a \samp{ZERO WIDTH NO-BREAK
SPACE} has been deprecated (with \code{U+2060} (\samp{WORD JOINER}) assuming
this role). Nevertheless Unicode software still must be able to handle
\code{U+FEFF} in both roles: As a BOM it's a device to determine the storage
layout of the encoded bytes, and vanishes once the byte sequence has
been decoded into a Unicode string; as a \samp{ZERO WIDTH NO-BREAK SPACE}
it's a normal character that will be decoded like any other.
There's another encoding that is able to encoding the full range of
Unicode characters: UTF-8. UTF-8 is an 8-bit encoding, which means
there are no issues with byte order in UTF-8. Each byte in a UTF-8
byte sequence consists of two parts: Marker bits (the most significant
bits) and payload bits. The marker bits are a sequence of zero to six
1 bits followed by a 0 bit. Unicode characters are encoded like this
(with x being payload bits, which when concatenated give the Unicode
character):
\begin{tableii}{l|l}{textrm}{Range}{Encoding}
\lineii{\code{U-00000000} ... \code{U-0000007F}}{0xxxxxxx}
\lineii{\code{U-00000080} ... \code{U-000007FF}}{110xxxxx 10xxxxxx}
\lineii{\code{U-00000800} ... \code{U-0000FFFF}}{1110xxxx 10xxxxxx 10xxxxxx}
\lineii{\code{U-00010000} ... \code{U-001FFFFF}}{11110xxx 10xxxxxx 10xxxxxx 10xxxxxx}
\lineii{\code{U-00200000} ... \code{U-03FFFFFF}}{111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx}
\lineii{\code{U-04000000} ... \code{U-7FFFFFFF}}{1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx}
\end{tableii}
The least significant bit of the Unicode character is the rightmost x
bit.
As UTF-8 is an 8-bit encoding no BOM is required and any \code{U+FEFF}
character in the decoded Unicode string (even if it's the first
character) is treated as a \samp{ZERO WIDTH NO-BREAK SPACE}.
Without external information it's impossible to reliably determine
which encoding was used for encoding a Unicode string. Each charmap
encoding can decode any random byte sequence. However that's not
possible with UTF-8, as UTF-8 byte sequences have a structure that
doesn't allow arbitrary byte sequence. To increase the reliability
with which a UTF-8 encoding can be detected, Microsoft invented a
variant of UTF-8 (that Python 2.5 calls \code{"utf-8-sig"}) for its Notepad
program: Before any of the Unicode characters is written to the file,
a UTF-8 encoded BOM (which looks like this as a byte sequence: \code{0xef},
\code{0xbb}, \code{0xbf}) is written. As it's rather improbable that any
charmap encoded file starts with these byte values (which would e.g. map to
LATIN SMALL LETTER I WITH DIAERESIS \\
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK \\
INVERTED QUESTION MARK
in iso-8859-1), this increases the probability that a utf-8-sig
encoding can be correctly guessed from the byte sequence. So here the
BOM is not used to be able to determine the byte order used for
generating the byte sequence, but as a signature that helps in
guessing the encoding. On encoding the utf-8-sig codec will write
\code{0xef}, \code{0xbb}, \code{0xbf} as the first three bytes to the file.
On decoding utf-8-sig will skip those three bytes if they appear as the
first three bytes in the file.
\subsection{Standard Encodings\label{standard-encodings}}
Python comes with a number of codecs built-in, either implemented as C
functions or with dictionaries as mapping tables. The following table
lists the codecs by name, together with a few common aliases, and the
languages for which the encoding is likely used. Neither the list of
aliases nor the list of languages is meant to be exhaustive. Notice
that spelling alternatives that only differ in case or use a hyphen
instead of an underscore are also valid aliases.
Many of the character sets support the same languages. They vary in
individual characters (e.g. whether the EURO SIGN is supported or
not), and in the assignment of characters to code positions. For the
European languages in particular, the following variants typically
exist:
\begin{itemize}
\item an ISO 8859 codeset
\item a Microsoft Windows code page, which is typically derived from
a 8859 codeset, but replaces control characters with additional
graphic characters
\item an IBM EBCDIC code page
\item an IBM PC code page, which is \ASCII{} compatible
\end{itemize}
\begin{longtableiii}{l|l|l}{textrm}{Codec}{Aliases}{Languages}
\lineiii{ascii}
{646, us-ascii}
{English}
\lineiii{big5}
{big5-tw, csbig5}
{Traditional Chinese}
\lineiii{big5hkscs}
{big5-hkscs, hkscs}
{Traditional Chinese}
\lineiii{cp037}
{IBM037, IBM039}
{English}
\lineiii{cp424}
{EBCDIC-CP-HE, IBM424}
{Hebrew}
\lineiii{cp437}
{437, IBM437}
{English}
\lineiii{cp500}
{EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500}
{Western Europe}
\lineiii{cp737}
{}
{Greek}
\lineiii{cp775}
{IBM775}
{Baltic languages}
\lineiii{cp850}
{850, IBM850}
{Western Europe}
\lineiii{cp852}
{852, IBM852}
{Central and Eastern Europe}
\lineiii{cp855}
{855, IBM855}
{Bulgarian, Byelorussian, Macedonian, Russian, Serbian}
\lineiii{cp856}
{}
{Hebrew}
\lineiii{cp857}
{857, IBM857}
{Turkish}
\lineiii{cp860}
{860, IBM860}
{Portuguese}
\lineiii{cp861}
{861, CP-IS, IBM861}
{Icelandic}
\lineiii{cp862}
{862, IBM862}
{Hebrew}
\lineiii{cp863}
{863, IBM863}
{Canadian}
\lineiii{cp864}
{IBM864}
{Arabic}
\lineiii{cp865}
{865, IBM865}
{Danish, Norwegian}
\lineiii{cp866}
{866, IBM866}
{Russian}
\lineiii{cp869}
{869, CP-GR, IBM869}
{Greek}
\lineiii{cp874}
{}
{Thai}
\lineiii{cp875}
{}
{Greek}
\lineiii{cp932}
{932, ms932, mskanji, ms-kanji}
{Japanese}
\lineiii{cp949}
{949, ms949, uhc}
{Korean}
\lineiii{cp950}
{950, ms950}
{Traditional Chinese}
\lineiii{cp1006}
{}
{Urdu}
\lineiii{cp1026}
{ibm1026}
{Turkish}
\lineiii{cp1140}
{ibm1140}
{Western Europe}
\lineiii{cp1250}
{windows-1250}
{Central and Eastern Europe}
\lineiii{cp1251}
{windows-1251}
{Bulgarian, Byelorussian, Macedonian, Russian, Serbian}
\lineiii{cp1252}
{windows-1252}
{Western Europe}
\lineiii{cp1253}
{windows-1253}
{Greek}
\lineiii{cp1254}
{windows-1254}
{Turkish}
\lineiii{cp1255}
{windows-1255}
{Hebrew}
\lineiii{cp1256}
{windows1256}
{Arabic}
\lineiii{cp1257}
{windows-1257}
{Baltic languages}
\lineiii{cp1258}
{windows-1258}
{Vietnamese}
\lineiii{euc_jp}
{eucjp, ujis, u-jis}
{Japanese}
\lineiii{euc_jis_2004}
{jisx0213, eucjis2004}
{Japanese}
\lineiii{euc_jisx0213}
{eucjisx0213}
{Japanese}
\lineiii{euc_kr}
{euckr, korean, ksc5601, ks_c-5601, ks_c-5601-1987, ksx1001, ks_x-1001}
{Korean}
\lineiii{gb2312}
{chinese, csiso58gb231280, euc-cn, euccn, eucgb2312-cn, gb2312-1980,
gb2312-80, iso-ir-58}
{Simplified Chinese}
\lineiii{gbk}
{936, cp936, ms936}
{Unified Chinese}
\lineiii{gb18030}
{gb18030-2000}
{Unified Chinese}
\lineiii{hz}
{hzgb, hz-gb, hz-gb-2312}
{Simplified Chinese}
\lineiii{iso2022_jp}
{csiso2022jp, iso2022jp, iso-2022-jp}
{Japanese}
\lineiii{iso2022_jp_1}
{iso2022jp-1, iso-2022-jp-1}
{Japanese}
\lineiii{iso2022_jp_2}
{iso2022jp-2, iso-2022-jp-2}
{Japanese, Korean, Simplified Chinese, Western Europe, Greek}
\lineiii{iso2022_jp_2004}
{iso2022jp-2004, iso-2022-jp-2004}
{Japanese}
\lineiii{iso2022_jp_3}
{iso2022jp-3, iso-2022-jp-3}
{Japanese}
\lineiii{iso2022_jp_ext}
{iso2022jp-ext, iso-2022-jp-ext}
{Japanese}
\lineiii{iso2022_kr}
{csiso2022kr, iso2022kr, iso-2022-kr}
{Korean}
\lineiii{latin_1}
{iso-8859-1, iso8859-1, 8859, cp819, latin, latin1, L1}
{West Europe}
\lineiii{iso8859_2}
{iso-8859-2, latin2, L2}
{Central and Eastern Europe}
\lineiii{iso8859_3}
{iso-8859-3, latin3, L3}
{Esperanto, Maltese}
\lineiii{iso8859_4}
{iso-8859-4, latin4, L4}
{Baltic languagues}
\lineiii{iso8859_5}
{iso-8859-5, cyrillic}
{Bulgarian, Byelorussian, Macedonian, Russian, Serbian}
\lineiii{iso8859_6}
{iso-8859-6, arabic}
{Arabic}
\lineiii{iso8859_7}
{iso-8859-7, greek, greek8}
{Greek}
\lineiii{iso8859_8}
{iso-8859-8, hebrew}
{Hebrew}
\lineiii{iso8859_9}
{iso-8859-9, latin5, L5}
{Turkish}
\lineiii{iso8859_10}
{iso-8859-10, latin6, L6}
{Nordic languages}
\lineiii{iso8859_13}
{iso-8859-13}
{Baltic languages}
\lineiii{iso8859_14}
{iso-8859-14, latin8, L8}
{Celtic languages}
\lineiii{iso8859_15}
{iso-8859-15}
{Western Europe}
\lineiii{johab}
{cp1361, ms1361}
{Korean}
\lineiii{koi8_r}
{}
{Russian}
\lineiii{koi8_u}
{}
{Ukrainian}
\lineiii{mac_cyrillic}
{maccyrillic}
{Bulgarian, Byelorussian, Macedonian, Russian, Serbian}
\lineiii{mac_greek}
{macgreek}
{Greek}
\lineiii{mac_iceland}
{maciceland}
{Icelandic}
\lineiii{mac_latin2}
{maclatin2, maccentraleurope}
{Central and Eastern Europe}
\lineiii{mac_roman}
{macroman}
{Western Europe}
\lineiii{mac_turkish}
{macturkish}
{Turkish}
\lineiii{ptcp154}
{csptcp154, pt154, cp154, cyrillic-asian}
{Kazakh}
\lineiii{shift_jis}
{csshiftjis, shiftjis, sjis, s_jis}
{Japanese}
\lineiii{shift_jis_2004}
{shiftjis2004, sjis_2004, sjis2004}
{Japanese}
\lineiii{shift_jisx0213}
{shiftjisx0213, sjisx0213, s_jisx0213}
{Japanese}
\lineiii{utf_16}
{U16, utf16}
{all languages}
\lineiii{utf_16_be}
{UTF-16BE}
{all languages (BMP only)}
\lineiii{utf_16_le}
{UTF-16LE}
{all languages (BMP only)}
\lineiii{utf_7}
{U7, unicode-1-1-utf-7}
{all languages}
\lineiii{utf_8}
{U8, UTF, utf8}
{all languages}
\lineiii{utf_8_sig}
{}
{all languages}
\end{longtableiii}
A number of codecs are specific to Python, so their codec names have
no meaning outside Python. Some of them don't convert from Unicode
strings to byte strings, but instead use the property of the Python
codecs machinery that any bijective function with one argument can be
considered as an encoding.
For the codecs listed below, the result in the ``encoding'' direction
is always a byte string. The result of the ``decoding'' direction is
listed as operand type in the table.
\begin{tableiv}{l|l|l|l}{textrm}{Codec}{Aliases}{Operand type}{Purpose}
\lineiv{base64_codec}
{base64, base-64}
{byte string}
{Convert operand to MIME base64}
\lineiv{bz2_codec}
{bz2}
{byte string}
{Compress the operand using bz2}
\lineiv{hex_codec}
{hex}
{byte string}
{Convert operand to hexadecimal representation, with two
digits per byte}
\lineiv{idna}
{}
{Unicode string}
{Implements \rfc{3490}.
\versionadded{2.3}
See also \refmodule{encodings.idna}}
\lineiv{mbcs}
{dbcs}
{Unicode string}
{Windows only: Encode operand according to the ANSI codepage (CP_ACP)}
\lineiv{palmos}
{}
{Unicode string}
{Encoding of PalmOS 3.5}
\lineiv{punycode}
{}
{Unicode string}
{Implements \rfc{3492}.
\versionadded{2.3}}
\lineiv{quopri_codec}
{quopri, quoted-printable, quotedprintable}
{byte string}
{Convert operand to MIME quoted printable}
\lineiv{raw_unicode_escape}
{}
{Unicode string}
{Produce a string that is suitable as raw Unicode literal in
Python source code}
\lineiv{rot_13}
{rot13}
{Unicode string}
{Returns the Caesar-cypher encryption of the operand}
\lineiv{string_escape}
{}
{byte string}
{Produce a string that is suitable as string literal in
Python source code}
\lineiv{undefined}
{}
{any}
{Raise an exception for all conversions. Can be used as the
system encoding if no automatic coercion between byte and
Unicode strings is desired.}
\lineiv{unicode_escape}
{}
{Unicode string}
{Produce a string that is suitable as Unicode literal in
Python source code}
\lineiv{unicode_internal}
{}
{Unicode string}
{Return the internal representation of the operand}
\lineiv{uu_codec}
{uu}
{byte string}
{Convert the operand using uuencode}
\lineiv{zlib_codec}
{zip, zlib}
{byte string}
{Compress the operand using gzip}
\end{tableiv}
\subsection{\module{encodings.idna} ---
Internationalized Domain Names in Applications}
\declaremodule{standard}{encodings.idna}
\modulesynopsis{Internationalized Domain Names implementation}
% XXX The next line triggers a formatting bug, so it's commented out
% until that can be fixed.
%\moduleauthor{Martin v. L\"owis}
\versionadded{2.3}
This module implements \rfc{3490} (Internationalized Domain Names in
Applications) and \rfc{3492} (Nameprep: A Stringprep Profile for
Internationalized Domain Names (IDN)). It builds upon the
\code{punycode} encoding and \refmodule{stringprep}.
These RFCs together define a protocol to support non-\ASCII{} characters
in domain names. A domain name containing non-\ASCII{} characters (such
as ``www.Alliancefran\c caise.nu'') is converted into an
\ASCII-compatible encoding (ACE, such as
``www.xn--alliancefranaise-npb.nu''). The ACE form of the domain name
is then used in all places where arbitrary characters are not allowed
by the protocol, such as DNS queries, HTTP \mailheader{Host} fields, and so
on. This conversion is carried out in the application; if possible
invisible to the user: The application should transparently convert
Unicode domain labels to IDNA on the wire, and convert back ACE labels
to Unicode before presenting them to the user.
Python supports this conversion in several ways: The \code{idna} codec
allows to convert between Unicode and the ACE. Furthermore, the
\refmodule{socket} module transparently converts Unicode host names to
ACE, so that applications need not be concerned about converting host
names themselves when they pass them to the socket module. On top of
that, modules that have host names as function parameters, such as
\refmodule{httplib} and \refmodule{ftplib}, accept Unicode host names
(\refmodule{httplib} then also transparently sends an IDNA hostname in
the \mailheader{Host} field if it sends that field at all).
When receiving host names from the wire (such as in reverse name
lookup), no automatic conversion to Unicode is performed: Applications
wishing to present such host names to the user should decode them to
Unicode.
The module \module{encodings.idna} also implements the nameprep
procedure, which performs certain normalizations on host names, to
achieve case-insensitivity of international domain names, and to unify
similar characters. The nameprep functions can be used directly if
desired.
\begin{funcdesc}{nameprep}{label}
Return the nameprepped version of \var{label}. The implementation
currently assumes query strings, so \code{AllowUnassigned} is
true.
\end{funcdesc}
\begin{funcdesc}{ToASCII}{label}
Convert a label to \ASCII, as specified in \rfc{3490}.
\code{UseSTD3ASCIIRules} is assumed to be false.
\end{funcdesc}
\begin{funcdesc}{ToUnicode}{label}
Convert a label to Unicode, as specified in \rfc{3490}.
\end{funcdesc}
\subsection{\module{encodings.utf_8_sig} ---
UTF-8 codec with BOM signature}
\declaremodule{standard}{encodings.utf-8-sig} % XXX utf_8_sig gives TeX errors
\modulesynopsis{UTF-8 codec with BOM signature}
\moduleauthor{Walter D\"orwald}{}
\versionadded{2.5}
This module implements a variant of the UTF-8 codec: On encoding a
UTF-8 encoded BOM will be prepended to the UTF-8 encoded bytes. For
the stateful encoder this is only done once (on the first write to the
byte stream). For decoding an optional UTF-8 encoded BOM at the start
of the data will be skipped.
|