1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
|
\section{\module{decimal} ---
Decimal floating point arithmetic}
\declaremodule{standard}{decimal}
\modulesynopsis{Implementation of the General Decimal Arithmetic
Specification.}
\moduleauthor{Eric Price}{eprice at tjhsst.edu}
\moduleauthor{Facundo Batista}{facundo at taniquetil.com.ar}
\moduleauthor{Raymond Hettinger}{python at rcn.com}
\moduleauthor{Aahz}{aahz at pobox.com}
\moduleauthor{Tim Peters}{tim.one at comcast.net}
\sectionauthor{Raymond D. Hettinger}{python at rcn.com}
\versionadded{2.4}
The \module{decimal} module provides support for decimal floating point
arithmetic. It offers several advantages over the \class{float()} datatype:
\begin{itemize}
\item Decimal numbers can be represented exactly. In contrast, numbers like
\constant{1.1} do not have an exact representations in binary floating point.
End users typically wound not expect \constant{1.1} to display as
\constant{1.1000000000000001} as it does with binary floating point.
\item The exactness carries over into arithmetic. In decimal floating point,
\samp{0.1 + 0.1 + 0.1 - 0.3} is exactly equal to zero. In binary floating
point, result is \constant{5.5511151231257827e-017}. While near to zero, the
differences prevent reliable equality testing and differences can accumulate.
For this reason, decimal would be preferred in accounting applications which
have strict equality invariants.
\item The decimal module incorporates notion of significant places so that
\samp{1.30 + 1.20} is \constant{2.50}. The trailing zero is kept to indicate
significance. This is the customary presentation for monetary applications. For
multiplication, the ``schoolbook'' approach uses all the figures in the
multiplicands. For instance, \samp{1.3 * 1.2} gives \constant{1.56} while
\samp{1.30 * 1.20} gives \constant{1.5600}.
\item Unlike hardware based binary floating point, the decimal module has a user
settable precision (defaulting to 28 places) which can be as large as needed for
a given problem:
\begin{verbatim}
>>> getcontext().prec = 6
>>> Decimal(1) / Decimal(7)
Decimal("0.142857")
>>> getcontext().prec = 28
>>> Decimal(1) / Decimal(7)
Decimal("0.1428571428571428571428571429")
\end{verbatim}
\item Both binary and decimal floating point are implemented in terms of published
standards. While the built-in float type exposes only a modest portion of its
capabilities, the decimal module exposes all required parts of the standard.
When needed, the programmer has full control over rounding and signal handling.
\end{itemize}
The module design is centered around three concepts: the decimal number, the
context for arithmetic, and signals.
A decimal number is immutable. It has a sign, coefficient digits, and an
exponent. To preserve significance, the coefficient digits do not truncate
trailing zeroes. Decimals also include special values such as
\constant{Infinity} (the result of \samp{1 / 0}), \constant{-Infinity},
(the result of \samp{-1 / 0}), and \constant{NaN} (the result of
\samp{0 / 0}). The standard also differentiates \constant{-0} from
\constant{+0}.
The context for arithmetic is an environment specifying precision, rounding
rules, limits on exponents, flags that indicate the results of operations,
and trap enablers which determine whether signals are to be treated as
exceptions. Rounding options include \constant{ROUND_CEILING},
\constant{ROUND_DOWN}, \constant{ROUND_FLOOR}, \constant{ROUND_HALF_DOWN},
\constant{ROUND_HALF_EVEN}, \constant{ROUND_HALF_UP}, and \constant{ROUND_UP}.
Signals are types of information that arise during the course of a
computation. Depending on the needs of the application, some signals may be
ignored, considered as informational, or treated as exceptions. The signals in
the decimal module are: \constant{Clamped}, \constant{InvalidOperation},
\constant{ConversionSyntax}, \constant{DivisionByZero},
\constant{DivisionImpossible}, \constant{DivisionUndefined},
\constant{Inexact}, \constant{InvalidContext}, \constant{Rounded},
\constant{Subnormal}, \constant{Overflow}, and \constant{Underflow}.
For each signal there is a flag and a trap enabler. When a signal is
encountered, its flag incremented from zero and, then, if the trap enabler
is set to one, an exception is raised. Flags are sticky, so the user
needs to reset them before monitoring a calculation.
\begin{seealso}
\seetext{IBM's General Decimal Arithmetic Specification,
\citetitle[http://www2.hursley.ibm.com/decimal/decarith.html]
{The General Decimal Arithmetic Specification}.}
\seetext{IEEE standard 854-1987,
\citetitle[http://www.cs.berkeley.edu/\textasciitilde ejr/projects/754/private/drafts/854-1987/dir.html]
{Unofficial IEEE 854 Text}.}
\end{seealso}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Quick-start Tutorial \label{decimal-tutorial}}
The normal start to using decimals is to import the module, and then use
\function{getcontext()} to view the context and, if necessary, set the context
precision, rounding, or trap enablers:
\begin{verbatim}
>>> from decimal import *
>>> getcontext()
Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
setflags=[], settraps=[])
>>> getcontext().prec = 7
\end{verbatim}
Decimal instances can be constructed from integers, strings or tuples. To
create a Decimal from a \class{float}, first convert it to a string. This
serves as an explicit reminder of the details of the conversion (including
representation error). Malformed strings signal \constant{ConversionSyntax}
and return a special kind of Decimal called a \constant{NaN} which stands for
``Not a number''. Positive and negative \constant{Infinity} is yet another
special kind of Decimal.
\begin{verbatim}
>>> Decimal(10)
Decimal("10")
>>> Decimal("3.14")
Decimal("3.14")
>>> Decimal((0, (3, 1, 4), -2))
Decimal("3.14")
>>> Decimal(str(2.0 ** 0.5))
Decimal("1.41421356237")
>>> Decimal("NaN")
Decimal("NaN")
>>> Decimal("-Infinity")
Decimal("-Infinity")
\end{verbatim}
Creating decimals is unaffected by context precision. Their level of
significance is completely determined by the number of digits input. It is
the arithmetic operations that are governed by context.
\begin{verbatim}
>>> getcontext().prec = 6
>>> Decimal('3.0000')
Decimal("3.0000")
>>> Decimal('3.0')
Decimal("3.0")
>>> Decimal('3.1415926535')
Decimal("3.1415926535")
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
Decimal("5.85987")
>>> getcontext().rounding = ROUND_UP
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
Decimal("5.85988")
\end{verbatim}
Decimals interact well with much of the rest of python. Here is a small
decimal floating point flying circus:
\begin{verbatim}
>>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
>>> max(data)
Decimal("9.25")
>>> min(data)
Decimal("0.03")
>>> sorted(data)
[Decimal("0.03"), Decimal("1.00"), Decimal("1.34"), Decimal("1.87"),
Decimal("2.35"), Decimal("3.45"), Decimal("9.25")]
>>> sum(data)
Decimal("19.29")
>>> a,b,c = data[:3]
>>> str(a)
'1.34'
>>> float(a)
1.3400000000000001
>>> round(a, 1)
1.3
>>> int(a)
1
>>> a * 5
Decimal("6.70")
>>> a * b
Decimal("2.5058")
>>> c % a
Decimal("0.77")
\end{verbatim}
The \function{getcontext()} function accesses the current context. This one
context is sufficient for many applications; however, for more advanced work,
multiple contexts can be created using the Context() constructor. To make a
new context active, use the \function{setcontext()} function.
In accordance with the standard, the \module{Decimal} module provides two
ready to use standard contexts, \constant{BasicContext} and
\constant{ExtendedContext}. The former is especially useful for debugging
because many of the traps are enabled:
\begin{verbatim}
>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
>>> myothercontext
Context(prec=60, rounding=ROUND_HALF_DOWN, Emin=-999999999, Emax=999999999,
setflags=[], settraps=[])
>>> ExtendedContext
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
setflags=[], settraps=[])
>>> setcontext(myothercontext)
>>> Decimal(1) / Decimal(7)
Decimal("0.142857142857142857142857142857142857142857142857142857142857")
>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(7)
Decimal("0.142857143")
>>> Decimal(42) / Decimal(0)
Decimal("Infinity")
>>> setcontext(BasicContext)
>>> Decimal(42) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal(42) / Decimal(0)
DivisionByZero: x / 0
\end{verbatim}
Besides using contexts to control precision, rounding, and trapping signals,
they can be used to monitor flags which give information collected during
computation. The flags remain set until explicitly cleared, so it is best to
clear the flags before each set of monitored computations by using the
\method{clear_flags()} method.
\begin{verbatim}
>>> setcontext(ExtendedContext)
>>> Decimal(355) / Decimal(113)
Decimal("3.14159292")
>>> getcontext()
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
setflags=['Inexact', 'Rounded'], settraps=[])
\end{verbatim}
The \var{setflags} entry shows that the rational approximation to
\constant{Pi} was rounded (digits beyond the context precision were thrown
away) and that the result is inexact (some of the discarded digits were
non-zero).
Individual traps are set using the dictionary in the \member{trap_enablers}
field of a context:
\begin{verbatim}
>>> Decimal(1) / Decimal(0)
Decimal("Infinity")
>>> getcontext().trap_enablers[DivisionByZero] = 1
>>> Decimal(1) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#112>", line 1, in -toplevel-
Decimal(1) / Decimal(0)
DivisionByZero: x / 0
\end{verbatim}
To turn all the traps on or off all at once, use a loop. Also, the
\method{dict.update()} method is useful for changing a handfull of values.
\begin{verbatim}
>>> getcontext.clear_flags()
>>> for sig in getcontext().trap_enablers:
... getcontext().trap_enablers[sig] = 1
>>> getcontext().trap_enablers.update({Rounded:0, Inexact:0, Subnormal:0})
>>> getcontext()
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
setflags=[], settraps=['Underflow', 'DecimalException', 'Clamped',
'InvalidContext', 'InvalidOperation', 'ConversionSyntax',
'DivisionByZero', 'DivisionImpossible', 'DivisionUndefined',
'Overflow'])
\end{verbatim}
Applications typically set the context once at the beginning of a program
and no further changes are needed. For many applications, the data resides
in a resource external to the program and is converted to \class{Decimal} with
a single cast inside a loop. Afterwards, decimals are as easily manipulated
as other Python numeric types.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Decimal objects \label{decimal-decimal}}
\begin{classdesc}{Decimal}{\optional{value \optional{, context}}}
Constructs a new \class{Decimal} object based from \var{value}.
\var{value} can be an integer, string, tuple, or another \class{Decimal}
object. If no \var{value} is given, returns \code{Decimal("0")}. If
\var{value} is a string, it should conform to the decimal numeric string
syntax:
\begin{verbatim}
sign ::= '+' | '-'
digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
indicator ::= 'e' | 'E'
digits ::= digit [digit]...
decimal-part ::= digits '.' [digits] | ['.'] digits
exponent-part ::= indicator [sign] digits
infinity ::= 'Infinity' | 'Inf'
nan ::= 'NaN' [digits] | 'sNaN' [digits]
numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan
\end{verbatim}
If \var{value} is a \class{tuple}, it should have three components,
a sign (\constant{0} for positive or \constant{1} for negative),
a \class{tuple} of digits, and an exponent represented as an integer.
For example, \samp{Decimal((0, (1, 4, 1, 4), -3))} returns
\code{Decimal("1.414")}.
The supplied \var{context} or, if not specified, the current context
governs only the handling of malformed strings not conforming to the
numeric string syntax. If the context traps \constant{ConversionSyntax},
an exception is raised; otherwise, the constructor returns a new Decimal
with the value of \constant{NaN}.
The context serves no other purpose. The number of significant digits
recorded is determined solely by the \var{value} and the \var{context}
precision is not a factor. For example, \samp{Decimal("3.0000")} records
all four zeroes even if the context precision is only three.
Once constructed, \class{Decimal} objects are immutable.
\end{classdesc}
Decimal floating point objects share many properties with the other builtin
numeric types such as \class{float} and \class{int}. All of the usual
math operations and special methods apply. Likewise, decimal objects can
be copied, pickled, printed, used as dictionary keys, used as set elements,
compared, sorted, and coerced to another type (such as \class{float}
or \class{long}).
In addition to the standard numeric properties, decimal floating point objects
have a number of more specialized methods:
\begin{methoddesc}{adjusted}{}
Return the adjusted exponent after shifting out the coefficient's rightmost
digits until only the lead digit remains: \code{Decimal("321e+5").adjusted()}
returns seven. Used for determining the place value of the most significant
digit.
\end{methoddesc}
\begin{methoddesc}{as_tuple}{}
Returns a tuple representation of the number:
\samp{(sign, digittuple, exponent)}.
\end{methoddesc}
\begin{methoddesc}{compare}{other\optional{, context}}
Compares like \method{__cmp__()} but returns a decimal instance:
\begin{verbatim}
a or b is a NaN ==> Decimal("NaN")
a < b ==> Decimal("-1")
a == b ==> Decimal("0")
a > b ==> Decimal("1")
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}{max}{other\optional{, context}}
Like \samp{max(self, other)} but returns \constant{NaN} if either is a
\constant{NaN}. Applies the context rounding rule before returning.
\end{methoddesc}
\begin{methoddesc}{min}{other\optional{, context}}
Like \samp{min(self, other)} but returns \constant{NaN} if either is a
\constant{NaN}. Applies the context rounding rule before returning.
\end{methoddesc}
\begin{methoddesc}{normalize}{\optional{context}}
Normalize the number by stripping the rightmost trailing zeroes and
converting any result equal to \constant{Decimal("0")} to
\constant{Decimal("0e0")}. Used for producing canonical values for members
of an equivalence class. For example, \code{Decimal("32.100")} and
\code{Decimal("0.321000e+2")} both normalize to the equivalent value
\code{Decimal("32.1")},
\end{methoddesc}
\begin{methoddesc}{quantize}
{\optional{exp \optional{, rounding\optional{, context\optional{, watchexp}}}}}
Quantize makes the exponent the same as \var{exp}. Searches for a
rounding method in \var{rounding}, then in \var{context}, and then
in the current context.
If \var{watchexp} is set (default), then an error is returned whenever
the resulting exponent is greater than \member{Emax} or less than
\member{Etiny}.
\end{methoddesc}
\begin{methoddesc}{remainder_near}{other\optional{, context}}
Computed the modulo as either a positive or negative value depending
on which is closest to zero. For instance,
\samp{Decimal(10).remainder_near(6)} returns \code{Decimal("-2")}
which is closer to zero than \code{Decimal("4")}.
If both are equally close, the one chosen will have the same sign
as \var{self}.
\end{methoddesc}
\begin{methoddesc}{same_quantum}{other\optional{, context}}
Test whether self and other have the same exponent or whether both
are \constant{NaN}.
\end{methoddesc}
\begin{methoddesc}{sqrt}{\optional{context}}
Return the square root to full precision.
\end{methoddesc}
\begin{methoddesc}{to_eng_string}{\optional{context}}
Convert to an engineering-type string.
Engineering notation has an exponent which is a multiple of 3, so there
are up to 3 digits left of the decimal place. For example, converts
\code{Decimal('123E+1')} to \code{Decimal("1.23E+3")}
\end{methoddesc}
\begin{methoddesc}{to_integral}{\optional{rounding\optional{, context}}}
Rounds to the nearest integer without signaling \constant{Inexact}
or \constant{Rounded}. If given, applies \var{rounding}; otherwise,
uses the rounding method in either the supplied \var{context} or the
current context.
\end{methoddesc}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Context objects \label{decimal-decimal}}
Contexts are environments for arithmetic operations. They govern the precision,
rules for rounding, determine which signals are treated as exceptions, and set limits
on the range for exponents.
Each thread has its own current context which is accessed or changed using
the \function{getcontext()} and \function{setcontext()} functions:
\begin{funcdesc}{getcontext}{}
Return the current context for the active thread.
\end{funcdesc}
\begin{funcdesc}{setcontext}{c}
Set the current context for the active thread to \var{c}.
\end{funcdesc}
New contexts can formed using the \class{Context} constructor described below.
In addition, the module provides three pre-made contexts:
\begin{classdesc*}{BasicContext}
This is a standard context defined by the General Decimal Arithmetic
Specification. Precision is set to nine. Rounding is set to
\constant{ROUND_HALF_UP}. All flags are cleared. All traps are enabled
(treated as exceptions) except \constant{Inexact}, \constant{Rounded}, and
\constant{Subnormal}.
Because many of the traps are enabled, this context is useful for debugging.
\end{classdesc*}
\begin{classdesc*}{ExtendedContext}
This is a standard context defined by the General Decimal Arithmetic
Specification. Precision is set to nine. Rounding is set to
\constant{ROUND_HALF_EVEN}. All flags are cleared. No traps are enabled
(so that exceptions are not raised during computations).
Because the trapped are disabled, this context is useful for applications
that prefer to have result value of \constant{NaN} or \constant{Infinity}
instead of raising exceptions. This allows an application to complete a
run in the presense of conditions that would otherwise halt the program.
\end{classdesc*}
\begin{classdesc*}{DefaultContext}
This class is used by the \class{Context} constructor as a prototype for
new contexts. Changing a field (such a precision) has the effect of
changing the default for new contexts creating by the \class{Context}
constructor.
This context is most useful in multi-threaded environments. Changing one of
the fields before threads are started has the effect of setting system-wide
defaults. Changing the fields after threads have started is not recommended
as it would require thread synchronization to prevent race conditions.
In single threaded environments, it is preferable to not use this context
at all. Instead, simply create contexts explicitly. This is especially
important because the default values context may change between releases
(with initial release having precision=28, rounding=ROUND_HALF_EVEN,
cleared flags, and no traps enabled).
\end{classdesc*}
In addition to the three supplied contexts, new contexts can be created
with the \class{Context} constructor.
\begin{classdesc}{Context}{prec=None, rounding=None, trap_enablers=None,
flags=None, Emin=None, Emax=None, capitals=1}
Creates a new context. If a field is not specified or is \constant{None},
the default values are copied from the \constant{DefaultContext}. If the
\var{flags} field is not specified or is \constant{None}, all flags are
cleared.
The \var{prec} field is a positive integer that sets the precision for
arithmetic operations in the context.
The \var{rounding} option is one of:
\constant{ROUND_CEILING} (towards \constant{Infinity}),
\constant{ROUND_DOWN} (towards zero),
\constant{ROUND_FLOOR} (towards \constant{-Infinity}),
\constant{ROUND_HALF_DOWN} (towards zero),
\constant{ROUND_HALF_EVEN},
\constant{ROUND_HALF_UP} (away from zero), or
\constant{ROUND_UP} (away from zero).
The \var{trap_enablers} and \var{flags} fields are mappings from signals
to either \constant{0} or \constant{1}.
The \var{Emin} and \var{Emax} fields are integers specifying the outer
limits allowable for exponents.
The \var{capitals} field is either \constant{0} or \constant{1} (the
default). If set to \constant{1}, exponents are printed with a capital
\constant{E}; otherwise, lowercase is used: \constant{Decimal('6.02e+23')}.
\end{classdesc}
The \class{Context} class defines several general methods as well as a
large number of methods for doing arithmetic directly from the context.
\begin{methoddesc}{clear_flags}{}
Sets all of the flags to \constant{0}.
\end{methoddesc}
\begin{methoddesc}{copy}{}
Returns a duplicate of the context.
\end{methoddesc}
\begin{methoddesc}{create_decimal}{num}
Creates a new Decimal instance but using \var{self} as context.
Unlike the \class{Decimal} constructor, context precision,
rounding method, flags, and traps are applied to the conversion.
This is useful because constants are often given to a greater
precision than is needed by the application.
\end{methoddesc}
\begin{methoddesc}{Etiny}{}
Returns a value equal to \samp{Emin - prec + 1} which is the minimum
exponent value for subnormal results. When underflow occurs, the
exponont is set to \constant{Etiny}.
\end{methoddesc}
\begin{methoddesc}{Etop}{}
Returns a value equal to \samp{Emax - prec + 1}.
\end{methoddesc}
The usual approach to working with decimals is to create \class{Decimal}
instances and then apply arithmetic operations which take place within the
current context for the active thread. An alternate approach is to use
context methods for calculating within s specific context. The methods are
similar to those for the \class{Decimal} class and are only briefly recounted
here.
\begin{methoddesc}{abs}{x}
Returns the absolute value of \var{x}.
\end{methoddesc}
\begin{methoddesc}{add}{x, y}
Return the sum of \var{x} and \var{y}.
\end{methoddesc}
\begin{methoddesc}{compare}{x, y}
Compares values numerically.
Like \method{__cmp__()} but returns a decimal instance:
\begin{verbatim}
a or b is a NaN ==> Decimal("NaN")
a < b ==> Decimal("-1")
a == b ==> Decimal("0")
a > b ==> Decimal("1")
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}{divide}{x, y}
Return \var{x} divided by \var{y}.
\end{methoddesc}
\begin{methoddesc}{divmod}{x, y}
Divides two numbers and returns the integer part of the result.
\end{methoddesc}
\begin{methoddesc}{max}{x, y}
Compare two values numerically and returns the maximum.
If they are numerically equal then the left-hand operand is chosen as the
result.
\end{methoddesc}
\begin{methoddesc}{min}{x, y}
Compare two values numerically and returns the minimum.
If they are numerically equal then the left-hand operand is chosen as the
result.
\end{methoddesc}
\begin{methoddesc}{minus}{x}
Minus corresponds to the unary prefix minus operator in Python.
\end{methoddesc}
\begin{methoddesc}{multiply}{x, y}
Return the product of \var{x} and \var{y}.
\end{methoddesc}
\begin{methoddesc}{normalize}{x}
Normalize reduces an operand to its simplest form.
Essentially a plus operation with all trailing zeros removed from the
result.
\end{methoddesc}
\begin{methoddesc}{plus}{x}
Minus corresponds to the unary prefix plus operator in Python.
\end{methoddesc}
\begin{methoddesc}{power}{x, y\optional{, modulo}}
Return \samp{x ** y} to the \var{modulo} if given.
The right-hand operand must be a whole number whose integer part (after any
exponent has been applied) has no more than 9 digits and whose fractional
part (if any) is all zeros before any rounding. The operand may be positive,
negative, or zero; if negative, the absolute value of the power is used, and
the left-hand operand is inverted (divided into 1) before use.
If the increased precision needed for the intermediate calculations exceeds
the capabilities of the implementation then an \constant{InvalidOperation}
condition is signaled.
If, when raising to a negative power, an underflow occurs during the
division into 1, the operation is not halted at that point but continues.
\end{methoddesc}
\begin{methoddesc}{quantize}{x, y}
Returns a value equal to \var{x} after rounding and having the
exponent of v\var{y}.
Unlike other operations, if the length of the coefficient after the quantize
operation would be greater than precision then an
\constant{InvalidOperation} is signaled. This guarantees that, unless there
is an error condition, the exponent of the result of a quantize is always
equal to that of the right-hand operand.
Also unlike other operations, quantize never signals Underflow, even
if the result is subnormal and inexact.
\end{methoddesc}
\begin{methoddesc}{remainder}{x, y}
Returns the remainder from integer division.
The sign of the result, if non-zero, is the same as that of the original
dividend.
\end{methoddesc}
\begin{methoddesc}{remainder_near}{x, y}
Computed the modulo as either a positive or negative value depending
on which is closest to zero. For instance,
\samp{Decimal(10).remainder_near(6)} returns \code{Decimal("-2")}
which is closer to zero than \code{Decimal("4")}.
If both are equally close, the one chosen will have the same sign
as \var{self}.
\end{methoddesc}
\begin{methoddesc}{same_quantum}{x, y}
Test whether \var{x} and \var{y} have the same exponent or whether both are
\constant{NaN}.
\end{methoddesc}
\begin{methoddesc}{sqrt}{}
Return the square root to full precision.
\end{methoddesc}
\begin{methoddesc}{substract}{x, y}
Return the difference between \var{x} and \var{y}.
\end{methoddesc}
\begin{methoddesc}{to_eng_string}{}
Convert to engineering-type string.
Engineering notation has an exponent which is a multiple of 3, so there
are up to 3 digits left of the decimal place. For example, converts
\code{Decimal('123E+1')} to \code{Decimal("1.23E+3")}
\end{methoddesc}
\begin{methoddesc}{to_integral}{x}
Rounds to the nearest integer without signaling \constant{Inexact}
or \constant{Rounded}.
\end{methoddesc}
\begin{methoddesc}{to_sci_string}{}
Converts a number to a string using scientific notation.
\end{methoddesc}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Signals \label{decimal-signals}}
Signals represent conditions that arise during computation.
Each corresponds to one context flag and one context trap enabler.
The context flag is incremented whenever the condition is encountered.
After the computation, flags may be checked for informational
purposes (for instance, to determine whether a computation was exact).
After checking the flags, be sure to clear all flags before starting
the next computation.
If the context's trap enabler is set for the signal, then the condition
causes a Python exception to be raised. For example, if the
\class{DivisionByZero} trap is set, the a \exception{DivisionByZero}
exception is raised upon encountering the condition.
\begin{classdesc*}{Clamped}
Altered an exponent to fit representation constraints.
Typically, clamping occurs when an exponent falls outside the context's
\member{Emin} and \member{Emax} limits. If possible, the exponent is
reduced to fit by adding zeroes to the coefficient.
\end{classdesc*}
\begin{classdesc*}{ConversionSyntax}
Trying to convert a malformed string such as: \code{Decimal('jump')}.
Decimal converts only strings conforming to the numeric string
syntax. If this signal is not trapped, returns \constant{NaN}.
\end{classdesc*}
\begin{classdesc*}{DecimalException}
Base class for other signals.
\end{classdesc*}
\begin{classdesc*}{DivisionByZero}
Signals the division of a non-infinite number by zero.
Can occur with division, modulo division, or when raising a number to
a negative power. If this signal is not trapped, return
\constant{Infinity} or \constant{-Infinity} with sign determined by
the inputs to the calculation.
\end{classdesc*}
\begin{classdesc*}{DivisionImpossible}
Error performing a division operation. Caused when an intermediate result
has more digits that the allowed by the current precision. If not trapped,
returns \constant{NaN}.
\end{classdesc*}
\begin{classdesc*}{DivisionUndefined}
This is a subclass of \class{DivisionByZero}.
It occurs only in the context of division operations.
\end{classdesc*}
\begin{classdesc*}{Inexact}
Indicates that rounding occurred and the result is not exact.
Signals whenever non-zero digits were discarded during rounding.
The rounded result is returned. The signal flag or trap is used
to detect when results are inexact.
\end{classdesc*}
\begin{classdesc*}{InvalidContext}
This is a subclass of \class{InvalidOperation}.
Indicates an error within the Context object such as an unknown
rounding operation. If not trapped, returns \constant{NaN}.
\end{classdesc*}
\begin{classdesc*}{InvalidOperation}
An invalid operation was performed.
Indicates that an operation was requested that does not make sense.
If not trapped, returns \constant{NaN}. Possible causes include:
\begin{verbatim}
Infinity - Infinity
0 * Infinity
Infinity / Infinity
x % 0
Infinity % x
x._rescale( non-integer )
sqrt(-x) and x > 0
0 ** 0
x ** (non-integer)
x ** Infinity
\end{verbatim}
\end{classdesc*}
\begin{classdesc*}{Overflow}
Numerical overflow.
Indicates the exponent is larger than \member{Emax} after rounding has
occurred. If not trapped, the result depends on the rounding mode, either
pulling inward to the largest representable finite number or rounding
outward to \constant{Infinity}. In either case, \class{Inexact} and
\class{Rounded} are also signaled.
\end{classdesc*}
\begin{classdesc*}{Rounded}
Rounding occurred though possibly no information was lost.
Signaled whenever rounding discards digits; even if those digits are
zero (such as rounding \constant{5.00} to \constant{5.0}). If not
trapped, returns the result unchanged. This signal is used to detect
loss of significant digits.
\end{classdesc*}
\begin{classdesc*}{Subnormal}
Exponent was lower than \member{Emin} prior to rounding.
Occurs when an operation result is subnormal (the exponent is too small).
If not trapped, returns the result unchanged.
\end{classdesc*}
\begin{classdesc*}{Underflow}
Numerical underflow with result rounded to zero.
Occurs when a subnormal result is pushed to zero by rounding.
\class{Inexact} and \class{Subnormal} are also signaled.
\end{classdesc*}
The following table summarizes the hierarchy of signals:
\begin{verbatim}
exceptions.ArithmeticError(exceptions.StandardError)
DecimalException
Clamped
DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow(Inexact, Rounded)
Underflow(Inexact, Rounded, Subnormal)
InvalidOperation
ConversionSyntax
DivisionImpossible
DivisionUndefined(InvalidOperation, exceptions.ZeroDivisionError)
InvalidContext
Rounded
Subnormal
\end{verbatim}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Working with threads \label{decimal-threads}}
The \function{getcontext()} function accesses a different \class{Context}
object for each thread. Having separate thread contexts means that threads
may make changes (such as \code{getcontext.prec=10}) without interfering with
other threads and without needing mutexes.
Likewise, the \function{setcontext()} function automatically assigns its target
to the current thread.
If \function{setcontext()} has not been called before \function{getcontext()},
then \function{getcontext()} will automatically create a new context for use
in the current thread.
The new context is copied from a prototype context called \var{DefaultContext}.
To control the defaults so that each thread will use the same values
throughout the application, directly modify the \var{DefaultContext} object.
This should be done \emph{before} any threads are started so that there won't
be a race condition with threads calling \function{getcontext()}. For example:
\begin{verbatim}
# Set applicationwide defaults for all threads about to be launched
DefaultContext.prec=12
DefaultContext.rounding=ROUND_DOWN
DefaultContext.trap_enablers=dict.fromkeys(Signals, 0)
setcontext(DefaultContext)
# Now start all of the threads
t1.start()
t2.start()
t3.start()
. . .
\end{verbatim}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Recipes \label{decimal-recipes}}
Here are some functions demonstrating ways to work with the
\class{Decimal} class:
\begin{verbatim}
from decimal import Decimal, getcontext
getcontext().prec = 28
def moneyfmt(value, places=2, curr='$', sep=',', dp='.', pos='', neg='-'):
"""Convert Decimal to a money formatted string.
places: required number of places after the decimal point
curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, or blank)
dp: decimal point indicator (comma or period)
only set to blank if places is zero
pos: optional sign for positive numbers ("+" or blank)
neg: optional sign for negative numbers ("-" or blank)
leave blank to separately add brackets or a trailing minus
>>> d = Decimal('-1234567.8901')
>>> moneyfmt(d)
'-$1,234,567.89'
>>> moneyfmt(d, places=0, curr='', sep='.', dp='')
'-1.234.568'
>>> '($%s)' % moneyfmt(d, curr='', neg='')
'($1,234,567.89)'
"""
q = Decimal((0, (1,), -places)) # 2 places --> '0.01'
sign, digits, exp = value.quantize(q).as_tuple()
result = []
digits = map(str, digits)
build, next = result.append, digits.pop
for i in range(places):
build(next())
build(dp)
try:
while 1:
for i in range(3):
build(next())
if digits:
build(sep)
except IndexError:
pass
build(curr)
if sign:
build(neg)
else:
build(pos)
result.reverse()
return ''.join(result)
def pi():
"""Compute Pi to the current precision.
>>> print pi()
3.141592653589793238462643383
"""
getcontext().prec += 2 # extra digits for intermediate steps
three = Decimal(3) # substitute "three=3.0" for regular floats
lastc, t, c, n, na, d, da = 0, three, 3, 1, 0, 0, 24
while c != lastc:
lastc = c
n, na = n+na, na+8
d, da = d+da, da+32
t = (t * n) / d
c += t
getcontext().prec -= 2
return c + 0 # Adding zero causes rounding to the new precision
def exp(x):
"""Return e raised to the power of x. Result type matches input type.
>>> print exp(Decimal(1))
2.718281828459045235360287471
>>> print exp(Decimal(2))
7.389056098930650227230427461
>>> print exp(2.0)
7.38905609893
>>> print exp(2+0j)
(7.38905609893+0j)
"""
getcontext().prec += 2 # extra digits for intermediate steps
i, laste, e, fact, num = 0, 0, 1, 1, 1
while e != laste:
laste = e
i += 1
fact *= i
num *= x
e += num / fact
getcontext().prec -= 2
return e + 0
def cos(x):
"""Return the cosine of x as measured in radians.
>>> print cos(Decimal('0.5'))
0.8775825618903727161162815826
>>> print cos(0.5)
0.87758256189
>>> print cos(0.5+0j)
(0.87758256189+0j)
"""
getcontext().prec += 2 # extra digits for intermediate steps
i, laste, e, fact, num, sign = 0, 0, 1, 1, 1, 1
while e != laste:
laste = e
i += 2
fact *= i * (i-1)
num *= x * x
sign *= -1
e += num / fact * sign
getcontext().prec -= 2
return e + 0
def sin(x):
"""Return the cosine of x as measured in radians.
>>> print sin(Decimal('0.5'))
0.4794255386042030002732879352
>>> print sin(0.5)
0.479425538604
>>> print sin(0.5+0j)
(0.479425538604+0j)
"""
getcontext().prec += 2 # extra digits for intermediate steps
i, laste, e, fact, num, sign = 1, 0, x, 1, x, 1
while e != laste:
laste = e
i += 2
fact *= i * (i-1)
num *= x * x
sign *= -1
e += num / fact * sign
getcontext().prec -= 2
return e + 0
\end{verbatim}
|