summaryrefslogtreecommitdiffstats
path: root/Doc/lib/libitertools.tex
blob: 8f6c655506814a50f85001ab64ded0fc953fe645 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
\section{\module{itertools} ---
         Functions creating iterators for efficient looping}

\declaremodule{standard}{itertools}
\modulesynopsis{Functions creating iterators for efficient looping.}
\moduleauthor{Raymond Hettinger}{python@rcn.com}
\sectionauthor{Raymond Hettinger}{python@rcn.com}
\versionadded{2.3}


This module implements a number of iterator building blocks inspired
by constructs from the Haskell and SML programming languages.  Each
has been recast in a form suitable for Python.

With the advent of iterators and generators in Python 2.3, each of
these tools can be expressed easily and succinctly in pure python.
Rather duplicating what can already be done, this module emphasizes
providing value in other ways:

\begin{itemize}

    \item Instead of constructing an over-specialized toolset, this module
        provides basic building blocks that can be readily combined.

        For instance, SML provides a tabulation tool: \code{tabulate(\var{f})}
        which produces a sequence \code{f(0), f(1), ...}.  This toolbox
        takes a different approach of providing \function{imap()} and
        \function{count()} which can be combined to form
        \code{imap(\var{f}, count())} and produce an equivalent result.

    \item Some tools were dropped because they offer no advantage over their
        pure python counterparts or because their behavior was too
        surprising.

        For instance, SML provides a tool:  \code{cycle(\var{seq})} which
        loops over the sequence elements and then starts again when the
        sequence is exhausted.  The surprising behavior is the need for
        significant auxiliary storage (unusual for iterators).  Also, it
        is trivially implemented in python with almost no performance
        penalty.

    \item Another source of value comes from standardizing a core set of tools
        to avoid the readability and reliability problems that arise when many
        different individuals create their own slightly varying implementations
        each with their own quirks and naming conventions.

    \item Whether cast in pure python form or C code, tools that use iterators
        are more memory efficient (and faster) than their list based counterparts.
        Adopting the principles of just-in-time manufacturing, they create
        data when and where needed instead of consuming memory with the
        computer equivalent of ``inventory''.

\end{itemize}

\begin{seealso}
  \seetext{The Standard ML Basis Library,
           \citetitle[http://www.standardml.org/Basis/]
           {The Standard ML Basis Library}.}

  \seetext{Haskell, A Purely Functional Language,
           \citetitle[http://www.haskell.org/definition/]
           {Definition of Haskell and the Standard Libraries}.}
\end{seealso}


\subsection{Itertool functions \label{itertools-functions}}

The following module functions all construct and return iterators.
Some provide streams of infinite length, so they should only be accessed
by functions or loops that truncate the stream.

\begin{funcdesc}{count}{\optional{n}}
  Make an iterator that returns consecutive integers starting with \var{n}.
  Does not currently support python long integers.  Often used as an
  argument to \function{imap()} to generate consecutive data points.
  Also, used in \function{izip()} to add sequence numbers.  Equivalent to:

  \begin{verbatim}
     def count(n=0):
         cnt = n
         while True:
             yield cnt
             cnt += 1
  \end{verbatim}

  Note, \function{count()} does not check for overflow and will return
  negative numbers after exceeding \code{sys.maxint}.  This behavior
  may change in the future.
\end{funcdesc}

\begin{funcdesc}{dropwhile}{predicate, iterable}
  Make an iterator that drops elements from the iterable as long as
  the predicate is true; afterwards, returns every element.  Note,
  the iterator does not produce \emph{any} output until the predicate
  is true, so it may have a lengthy start-up time.  Equivalent to:

  \begin{verbatim}
     def dropwhile(predicate, iterable):
         iterable = iter(iterable)
         while True:
             x = iterable.next()
             if predicate(x): continue # drop when predicate is true
             yield x
             break
         while True:
             yield iterable.next()
  \end{verbatim}
\end{funcdesc}

\begin{funcdesc}{ifilter}{predicate, iterable \optional{, invert}}
  Make an iterator that filters elements from iterable returning only
  those for which the predicate is \code{True}.  If
  \var{invert} is \code{True}, then reverse the process and pass through
  only those elements for which the predicate is \code{False}.
  If \var{predicate} is \code{None}, return the items that are true
  (or false if \var{invert} has been set).  Equivalent to:

  \begin{verbatim}
     def ifilter(predicate, iterable, invert=False):
         iterable = iter(iterable)
         while True:
             x = iterable.next()
             if predicate is None:
                  b = bool(x)
             else:
                  b = bool(predicate(x))
             if not invert and b or invert and not b:
                 yield x
  \end{verbatim}
\end{funcdesc}

\begin{funcdesc}{imap}{function, *iterables}
  Make an iterator that computes the function using arguments from
  each of the iterables.  If \var{function} is set to \code{None}, then
  \function{imap()} returns the arguments as a tuple.  Like
  \function{map()} but stops when the shortest iterable is exhausted
  instead of filling in \code{None} for shorter iterables.  The reason
  for the difference is that infinite iterator arguments are typically
  an error for \function{map()} (because the output is fully evaluated)
  but represent a common and useful way of supplying arguments to
  \function{imap()}.
  Equivalent to:

  \begin{verbatim}
     def imap(function, *iterables):
         iterables = map(iter, iterables)
         while True:
             args = [i.next() for i in iterables]
             if function is None:
                 yield tuple(args)
             else:
                 yield function(*args)
  \end{verbatim}
\end{funcdesc}

\begin{funcdesc}{islice}{iterable, \optional{start,} stop \optional{, step}}
  Make an iterator that returns selected elements from the iterable.
  If \var{start} is non-zero, then elements from the iterable are skipped
  until start is reached.  Afterward, elements are returned consecutively
  unless \var{step} is set higher than one which results in items being
  skipped.  If \var{stop} is specified, then iteration stops at the
  specified element position; otherwise, it continues indefinitely or
  until the iterable is exhausted.  Unlike regular slicing,
  \function{islice()} does not support negative values for \var{start},
  \var{stop}, or \var{step}.  Can be used to extract related fields
  from data where the internal structure has been flattened (for
  example, a multi-line report may list a name field on every
  third line).  Equivalent to:

  \begin{verbatim}
     def islice(iterable, *args):
         iterable = iter(iterable)
         s = slice(*args)
         next = s.start or 0
         stop = s.stop
         step = s.step or 1
         cnt = 0
         while True:
              while cnt < next:
                   dummy = iterable.next()
                   cnt += 1
              if cnt >= stop:
                   break
              yield iterable.next()
              cnt += 1
              next += step
  \end{verbatim}
\end{funcdesc}

\begin{funcdesc}{izip}{*iterables}
  Make an iterator that aggregates elements from each of the iterables.
  Like \function{zip()} except that it returns an iterator instead of
  a list.  Used for lock-step iteration over several iterables at a
  time.  Equivalent to:

  \begin{verbatim}
     def izip(*iterables):
         iterables = map(iter, iterables)
         while True:
             result = [i.next() for i in iterables]
             yield tuple(result)
  \end{verbatim}
\end{funcdesc}

\begin{funcdesc}{repeat}{obj}
  Make an iterator that returns \var{obj} over and over again.
  Used as argument to \function{imap()} for invariant parameters
  to the called function.  Also used with function{izip()} to create
  an invariant part of a tuple record.  Equivalent to:

  \begin{verbatim}
     def repeat(x):
         while True:
             yield x
  \end{verbatim}
\end{funcdesc}

\begin{funcdesc}{starmap}{function, iterable}
  Make an iterator that computes the function using arguments tuples
  obtained from the iterable.  Used instead of \function{imap()} when
  argument parameters are already grouped in tuples from a single iterable
  (the data has been ``pre-zipped'').  The difference between
  \function{imap()} and \function{starmap} parallels the distinction
  between \code{function(a,b)} and \code{function(*c)}.
  Equivalent to:

  \begin{verbatim}
     def starmap(function, iterable):
         iterable = iter(iterable)
         while True:
             yield function(*iterable.next())
  \end{verbatim}
\end{funcdesc}

\begin{funcdesc}{takewhile}{predicate, iterable}
  Make an iterator that returns elements from the iterable as long as
  the predicate is true.  Equivalent to:

  \begin{verbatim}
     def takewhile(predicate, iterable):
         iterable = iter(iterable)
         while True:
             x = iterable.next()
             if predicate(x):
                 yield x
             else:
                 break
  \end{verbatim}
\end{funcdesc}

\begin{funcdesc}{times}{n, \optional{object}}
  Make an iterator that returns \var{object} \var{n} times.
  \var{object} defaults to \code{None}.  Used for looping a specific
  number of times without creating a number object on each pass.
  Equivalent to:

  \begin{verbatim}
     def times(n, object=None):
         if n<0 : raise ValueError
         for i in xrange(n):
             yield object
  \end{verbatim}
\end{funcdesc}


\subsection{Examples \label{itertools-example}}

The following examples show common uses for each tool and
demonstrate ways they can be combined.

\begin{verbatim}
>>> for i in times(3):
...     print "Hello"
...
Hello
Hello
Hello

>>> amounts = [120.15, 764.05, 823.14]
>>> for checknum, amount in izip(count(1200), amounts):
...     print 'Check %d is for $%.2f' % (checknum, amount)
...
Check 1200 is for $120.15
Check 1201 is for $764.05
Check 1202 is for $823.14

>>> import operator
>>> for cube in imap(operator.pow, xrange(1,4), repeat(3)):
...    print cube
...
1
8
27

>>> reportlines = ['EuroPython', 'Roster', '', 'alex', '', 'laura',
                  '', 'martin', '', 'walter', '', 'samuele']
>>> for name in islice(reportlines, 3, len(reportlines), 2):
...    print name.title()
...
Alex
Laura
Martin
Walter
Samuele

\end{verbatim}

This section has further examples of how itertools can be combined.
Note that \function{enumerate()} and \method{iteritems()} already
have highly efficient implementations in Python.  They are only
included here to illustrate how higher level tools can be created
from building blocks.

\begin{verbatim}
>>> def enumerate(iterable):
...     return izip(count(), iterable)

>>> def tabulate(function):
...     "Return function(0), function(1), ..."
...     return imap(function, count())

>>> def iteritems(mapping):
...     return izip(mapping.iterkeys(), mapping.itervalues())

>>> def nth(iterable, n):
...     "Returns the nth item"
...     return islice(iterable, n, n+1).next()

\end{verbatim}