summaryrefslogtreecommitdiffstats
path: root/Doc/lib/libsunaudio.tex
blob: cc7c1edd7b523325b98b1e121a72717bb069958f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
\section{\module{sunaudiodev} ---
         Access to Sun audio hardware.}
\declaremodule{builtin}{sunaudiodev}

\modulesynopsis{Access to Sun audio hardware.}


This module allows you to access the Sun audio interface. The Sun
audio hardware is capable of recording and playing back audio data
in u-LAW\index{u-LAW} format with a sample rate of 8K per second. A
full description can be found in the \manpage{audio}{7I} manual page.

The module defines the following variables and functions:

\begin{excdesc}{error}
This exception is raised on all errors. The argument is a string
describing what went wrong.
\end{excdesc}

\begin{funcdesc}{open}{mode}
This function opens the audio device and returns a sun audio device
object. This object can then be used to do I/O on. The \var{mode} parameter
is one of \code{'r'} for record-only access, \code{'w'} for play-only
access, \code{'rw'} for both and \code{'control'} for access to the
control device. Since only one process is allowed to have the recorder
or player open at the same time it is a good idea to open the device
only for the activity needed. See \manpage{audio}{7I} for details.
\end{funcdesc}


\subsection{Audio Device Objects}
\label{audio-device-objects}

The audio device objects are returned by \function{open()} define the
following methods (except \code{control} objects which only provide
\method{getinfo()}, \method{setinfo()} and \method{drain()}):

\begin{methoddesc}[audio device]{close}{}
This method explicitly closes the device. It is useful in situations
where deleting the object does not immediately close it since there
are other references to it. A closed device should not be used again.
\end{methoddesc}

\begin{methoddesc}[audio device]{drain}{}
This method waits until all pending output is processed and then returns.
Calling this method is often not necessary: destroying the object will
automatically close the audio device and this will do an implicit drain.
\end{methoddesc}

\begin{methoddesc}[audio device]{flush}{}
This method discards all pending output. It can be used avoid the
slow response to a user's stop request (due to buffering of up to one
second of sound).
\end{methoddesc}

\begin{methoddesc}[audio device]{getinfo}{}
This method retrieves status information like input and output volume,
etc. and returns it in the form of
an audio status object. This object has no methods but it contains a
number of attributes describing the current device status. The names
and meanings of the attributes are described in
\file{/usr/include/sun/audioio.h} and in the \manpage{audio}{7I}
manual page.  Member names
are slightly different from their \C{} counterparts: a status object is
only a single structure. Members of the \cdata{play} substructure have
\samp{o_} prepended to their name and members of the \cdata{record}
structure have \samp{i_}. So, the \C{} member \cdata{play.sample_rate} is
accessed as \member{o_sample_rate}, \cdata{record.gain} as \member{i_gain}
and \cdata{monitor_gain} plainly as \member{monitor_gain}.
\end{methoddesc}

\begin{methoddesc}[audio device]{ibufcount}{}
This method returns the number of samples that are buffered on the
recording side, i.e.\ the program will not block on a
\function{read()} call of so many samples.
\end{methoddesc}

\begin{methoddesc}[audio device]{obufcount}{}
This method returns the number of samples buffered on the playback
side. Unfortunately, this number cannot be used to determine a number
of samples that can be written without blocking since the kernel
output queue length seems to be variable.
\end{methoddesc}

\begin{methoddesc}[audio device]{read}{size}
This method reads \var{size} samples from the audio input and returns
them as a Python string. The function blocks until enough data is available.
\end{methoddesc}

\begin{methoddesc}[audio device]{setinfo}{status}
This method sets the audio device status parameters. The \var{status}
parameter is an device status object as returned by \function{getinfo()} and
possibly modified by the program.
\end{methoddesc}

\begin{methoddesc}[audio device]{write}{samples}
Write is passed a Python string containing audio samples to be played.
If there is enough buffer space free it will immediately return,
otherwise it will block.
\end{methoddesc}

There is a companion module,
\module{SUNAUDIODEV}\refstmodindex{SUNAUDIODEV}, which defines useful
symbolic constants like \constant{MIN_GAIN}, \constant{MAX_GAIN},
\constant{SPEAKER}, etc. The names of the constants are the same names
as used in the \C{} include file \code{<sun/audioio.h>}, with the
leading string \samp{AUDIO_} stripped.

Useability of the control device is limited at the moment, since there
is no way to use the ``wait for something to happen'' feature the
device provides.