1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
:mod:`abc` --- Abstract Base Classes
====================================
.. module:: abc
:synopsis: Abstract base classes according to PEP 3119.
.. moduleauthor:: Guido van Rossum
.. sectionauthor:: Georg Brandl
.. much of the content adapted from docstrings
**Source code:** :source:`Lib/abc.py`
--------------
This module provides the infrastructure for defining :term:`abstract base
classes <abstract base class>` (ABCs) in Python, as outlined in :pep:`3119`; see the PEP for why this
was added to Python. (See also :pep:`3141` and the :mod:`numbers` module
regarding a type hierarchy for numbers based on ABCs.)
The :mod:`collections` module has some concrete classes that derive from
ABCs; these can, of course, be further derived. In addition the
:mod:`collections` module has some ABCs that can be used to test whether
a class or instance provides a particular interface, for example, is it
hashable or a mapping.
This module provides the following class:
.. class:: ABCMeta
Metaclass for defining Abstract Base Classes (ABCs).
Use this metaclass to create an ABC. An ABC can be subclassed directly, and
then acts as a mix-in class. You can also register unrelated concrete
classes (even built-in classes) and unrelated ABCs as "virtual subclasses" --
these and their descendants will be considered subclasses of the registering
ABC by the built-in :func:`issubclass` function, but the registering ABC
won't show up in their MRO (Method Resolution Order) nor will method
implementations defined by the registering ABC be callable (not even via
:func:`super`). [#]_
Classes created with a metaclass of :class:`ABCMeta` have the following method:
.. method:: register(subclass)
Register *subclass* as a "virtual subclass" of this ABC. For
example::
from abc import ABCMeta
class MyABC(metaclass=ABCMeta):
pass
MyABC.register(tuple)
assert issubclass(tuple, MyABC)
assert isinstance((), MyABC)
You can also override this method in an abstract base class:
.. method:: __subclasshook__(subclass)
(Must be defined as a class method.)
Check whether *subclass* is considered a subclass of this ABC. This means
that you can customize the behavior of ``issubclass`` further without the
need to call :meth:`register` on every class you want to consider a
subclass of the ABC. (This class method is called from the
:meth:`__subclasscheck__` method of the ABC.)
This method should return ``True``, ``False`` or ``NotImplemented``. If
it returns ``True``, the *subclass* is considered a subclass of this ABC.
If it returns ``False``, the *subclass* is not considered a subclass of
this ABC, even if it would normally be one. If it returns
``NotImplemented``, the subclass check is continued with the usual
mechanism.
.. XXX explain the "usual mechanism"
For a demonstration of these concepts, look at this example ABC definition::
class Foo:
def __getitem__(self, index):
...
def __len__(self):
...
def get_iterator(self):
return iter(self)
class MyIterable(metaclass=ABCMeta):
@abstractmethod
def __iter__(self):
while False:
yield None
def get_iterator(self):
return self.__iter__()
@classmethod
def __subclasshook__(cls, C):
if cls is MyIterable:
if any("__iter__" in B.__dict__ for B in C.__mro__):
return True
return NotImplemented
MyIterable.register(Foo)
The ABC ``MyIterable`` defines the standard iterable method,
:meth:`__iter__`, as an abstract method. The implementation given here can
still be called from subclasses. The :meth:`get_iterator` method is also
part of the ``MyIterable`` abstract base class, but it does not have to be
overridden in non-abstract derived classes.
The :meth:`__subclasshook__` class method defined here says that any class
that has an :meth:`__iter__` method in its :attr:`__dict__` (or in that of
one of its base classes, accessed via the :attr:`__mro__` list) is
considered a ``MyIterable`` too.
Finally, the last line makes ``Foo`` a virtual subclass of ``MyIterable``,
even though it does not define an :meth:`__iter__` method (it uses the
old-style iterable protocol, defined in terms of :meth:`__len__` and
:meth:`__getitem__`). Note that this will not make ``get_iterator``
available as a method of ``Foo``, so it is provided separately.
It also provides the following decorators:
.. decorator:: abstractmethod(function)
A decorator indicating abstract methods.
Using this decorator requires that the class's metaclass is :class:`ABCMeta` or
is derived from it.
A class that has a metaclass derived from :class:`ABCMeta`
cannot be instantiated unless all of its abstract methods and
properties are overridden.
The abstract methods can be called using any of the normal 'super' call
mechanisms.
Dynamically adding abstract methods to a class, or attempting to modify the
abstraction status of a method or class once it is created, are not
supported. The :func:`abstractmethod` only affects subclasses derived using
regular inheritance; "virtual subclasses" registered with the ABC's
:meth:`register` method are not affected.
Usage::
class C(metaclass=ABCMeta):
@abstractmethod
def my_abstract_method(self, ...):
...
.. note::
Unlike Java abstract methods, these abstract
methods may have an implementation. This implementation can be
called via the :func:`super` mechanism from the class that
overrides it. This could be useful as an end-point for a
super-call in a framework that uses cooperative
multiple-inheritance.
.. decorator:: abstractclassmethod(function)
A subclass of the built-in :func:`classmethod`, indicating an abstract
classmethod. Otherwise it is similar to :func:`abstractmethod`.
Usage::
class C(metaclass=ABCMeta):
@abstractclassmethod
def my_abstract_classmethod(cls, ...):
...
.. versionadded:: 3.2
.. decorator:: abstractstaticmethod(function)
A subclass of the built-in :func:`staticmethod`, indicating an abstract
staticmethod. Otherwise it is similar to :func:`abstractmethod`.
Usage::
class C(metaclass=ABCMeta):
@abstractstaticmethod
def my_abstract_staticmethod(...):
...
.. versionadded:: 3.2
.. function:: abstractproperty(fget=None, fset=None, fdel=None, doc=None)
A subclass of the built-in :func:`property`, indicating an abstract property.
Using this function requires that the class's metaclass is :class:`ABCMeta` or
is derived from it.
A class that has a metaclass derived from :class:`ABCMeta` cannot be
instantiated unless all of its abstract methods and properties are overridden.
The abstract properties can be called using any of the normal
'super' call mechanisms.
Usage::
class C(metaclass=ABCMeta):
@abstractproperty
def my_abstract_property(self):
...
This defines a read-only property; you can also define a read-write abstract
property using the 'long' form of property declaration::
class C(metaclass=ABCMeta):
def getx(self): ...
def setx(self, value): ...
x = abstractproperty(getx, setx)
.. rubric:: Footnotes
.. [#] C++ programmers should note that Python's virtual base class
concept is not the same as C++'s.
|