1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
|
:mod:`!ast` --- Abstract Syntax Trees
=====================================
.. module:: ast
:synopsis: Abstract Syntax Tree classes and manipulation.
.. sectionauthor:: Martin v. Löwis <martin@v.loewis.de>
.. sectionauthor:: Georg Brandl <georg@python.org>
.. testsetup::
import ast
**Source code:** :source:`Lib/ast.py`
--------------
The :mod:`ast` module helps Python applications to process trees of the Python
abstract syntax grammar. The abstract syntax itself might change with each
Python release; this module helps to find out programmatically what the current
grammar looks like.
An abstract syntax tree can be generated by passing :data:`ast.PyCF_ONLY_AST` as
a flag to the :func:`compile` built-in function, or using the :func:`parse`
helper provided in this module. The result will be a tree of objects whose
classes all inherit from :class:`ast.AST`. An abstract syntax tree can be
compiled into a Python code object using the built-in :func:`compile` function.
.. _abstract-grammar:
Abstract Grammar
----------------
The abstract grammar is currently defined as follows:
.. literalinclude:: ../../Parser/Python.asdl
:language: asdl
Node classes
------------
.. class:: AST
This is the base of all AST node classes. The actual node classes are
derived from the :file:`Parser/Python.asdl` file, which is reproduced
:ref:`above <abstract-grammar>`. They are defined in the :mod:`!_ast` C
module and re-exported in :mod:`ast`.
There is one class defined for each left-hand side symbol in the abstract
grammar (for example, :class:`ast.stmt` or :class:`ast.expr`). In addition,
there is one class defined for each constructor on the right-hand side; these
classes inherit from the classes for the left-hand side trees. For example,
:class:`ast.BinOp` inherits from :class:`ast.expr`. For production rules
with alternatives (aka "sums"), the left-hand side class is abstract: only
instances of specific constructor nodes are ever created.
.. index:: single: ? (question mark); in AST grammar
.. index:: single: * (asterisk); in AST grammar
.. attribute:: _fields
Each concrete class has an attribute :attr:`!_fields` which gives the names
of all child nodes.
Each instance of a concrete class has one attribute for each child node,
of the type as defined in the grammar. For example, :class:`ast.BinOp`
instances have an attribute :attr:`left` of type :class:`ast.expr`.
If these attributes are marked as optional in the grammar (using a
question mark), the value might be ``None``. If the attributes can have
zero-or-more values (marked with an asterisk), the values are represented
as Python lists. All possible attributes must be present and have valid
values when compiling an AST with :func:`compile`.
.. attribute:: _field_types
The :attr:`!_field_types` attribute on each concrete class is a dictionary
mapping field names (as also listed in :attr:`_fields`) to their types.
.. doctest::
>>> ast.TypeVar._field_types
{'name': <class 'str'>, 'bound': ast.expr | None, 'default_value': ast.expr | None}
.. versionadded:: 3.13
.. attribute:: lineno
col_offset
end_lineno
end_col_offset
Instances of :class:`ast.expr` and :class:`ast.stmt` subclasses have
:attr:`lineno`, :attr:`col_offset`, :attr:`end_lineno`, and
:attr:`end_col_offset` attributes. The :attr:`lineno` and :attr:`end_lineno`
are the first and last line numbers of source text span (1-indexed so the
first line is line 1) and the :attr:`col_offset` and :attr:`end_col_offset`
are the corresponding UTF-8 byte offsets of the first and last tokens that
generated the node. The UTF-8 offset is recorded because the parser uses
UTF-8 internally.
Note that the end positions are not required by the compiler and are
therefore optional. The end offset is *after* the last symbol, for example
one can get the source segment of a one-line expression node using
``source_line[node.col_offset : node.end_col_offset]``.
The constructor of a class :class:`ast.T` parses its arguments as follows:
* If there are positional arguments, there must be as many as there are items
in :attr:`T._fields`; they will be assigned as attributes of these names.
* If there are keyword arguments, they will set the attributes of the same
names to the given values.
For example, to create and populate an :class:`ast.UnaryOp` node, you could
use ::
node = ast.UnaryOp(ast.USub(), ast.Constant(5, lineno=0, col_offset=0),
lineno=0, col_offset=0)
If a field that is optional in the grammar is omitted from the constructor,
it defaults to ``None``. If a list field is omitted, it defaults to the empty
list. If a field of type :class:`!ast.expr_context` is omitted, it defaults to
:class:`Load() <ast.Load>`. If any other field is omitted, a :exc:`DeprecationWarning` is raised
and the AST node will not have this field. In Python 3.15, this condition will
raise an error.
.. versionchanged:: 3.8
Class :class:`ast.Constant` is now used for all constants.
.. versionchanged:: 3.9
Simple indices are represented by their value, extended slices are
represented as tuples.
.. versionchanged:: 3.14
The :meth:`~object.__repr__` output of :class:`~ast.AST` nodes includes
the values of the node fields.
.. deprecated:: 3.8
Old classes :class:`!ast.Num`, :class:`!ast.Str`, :class:`!ast.Bytes`,
:class:`!ast.NameConstant` and :class:`!ast.Ellipsis` are still available,
but they will be removed in future Python releases. In the meantime,
instantiating them will return an instance of a different class.
.. deprecated:: 3.9
Old classes :class:`!ast.Index` and :class:`!ast.ExtSlice` are still
available, but they will be removed in future Python releases.
In the meantime, instantiating them will return an instance of
a different class.
.. deprecated-removed:: 3.13 3.15
Previous versions of Python allowed the creation of AST nodes that were missing
required fields. Similarly, AST node constructors allowed arbitrary keyword
arguments that were set as attributes of the AST node, even if they did not
match any of the fields of the AST node. This behavior is deprecated and will
be removed in Python 3.15.
.. note::
The descriptions of the specific node classes displayed here
were initially adapted from the fantastic `Green Tree
Snakes <https://greentreesnakes.readthedocs.io/en/latest/>`__ project and
all its contributors.
.. _ast-root-nodes:
Root nodes
^^^^^^^^^^
.. class:: Module(body, type_ignores)
A Python module, as with :ref:`file input <file-input>`.
Node type generated by :func:`ast.parse` in the default ``"exec"`` *mode*.
``body`` is a :class:`list` of the module's :ref:`ast-statements`.
``type_ignores`` is a :class:`list` of the module's type ignore comments;
see :func:`ast.parse` for more details.
.. doctest::
>>> print(ast.dump(ast.parse('x = 1'), indent=4))
Module(
body=[
Assign(
targets=[
Name(id='x', ctx=Store())],
value=Constant(value=1))])
.. class:: Expression(body)
A single Python :ref:`expression input <expression-input>`.
Node type generated by :func:`ast.parse` when *mode* is ``"eval"``.
``body`` is a single node,
one of the :ref:`expression types <ast-expressions>`.
.. doctest::
>>> print(ast.dump(ast.parse('123', mode='eval'), indent=4))
Expression(
body=Constant(value=123))
.. class:: Interactive(body)
A single :ref:`interactive input <interactive>`, like in :ref:`tut-interac`.
Node type generated by :func:`ast.parse` when *mode* is ``"single"``.
``body`` is a :class:`list` of :ref:`statement nodes <ast-statements>`.
.. doctest::
>>> print(ast.dump(ast.parse('x = 1; y = 2', mode='single'), indent=4))
Interactive(
body=[
Assign(
targets=[
Name(id='x', ctx=Store())],
value=Constant(value=1)),
Assign(
targets=[
Name(id='y', ctx=Store())],
value=Constant(value=2))])
.. class:: FunctionType(argtypes, returns)
A representation of an old-style type comments for functions,
as Python versions prior to 3.5 didn't support :pep:`484` annotations.
Node type generated by :func:`ast.parse` when *mode* is ``"func_type"``.
Such type comments would look like this::
def sum_two_number(a, b):
# type: (int, int) -> int
return a + b
``argtypes`` is a :class:`list` of :ref:`expression nodes <ast-expressions>`.
``returns`` is a single :ref:`expression node <ast-expressions>`.
.. doctest::
>>> print(ast.dump(ast.parse('(int, str) -> List[int]', mode='func_type'), indent=4))
FunctionType(
argtypes=[
Name(id='int', ctx=Load()),
Name(id='str', ctx=Load())],
returns=Subscript(
value=Name(id='List', ctx=Load()),
slice=Name(id='int', ctx=Load()),
ctx=Load()))
.. versionadded:: 3.8
Literals
^^^^^^^^
.. class:: Constant(value)
A constant value. The ``value`` attribute of the ``Constant`` literal contains the
Python object it represents. The values represented can be simple types
such as a number, string or ``None``, but also immutable container types
(tuples and frozensets) if all of their elements are constant.
.. doctest::
>>> print(ast.dump(ast.parse('123', mode='eval'), indent=4))
Expression(
body=Constant(value=123))
.. class:: FormattedValue(value, conversion, format_spec)
Node representing a single formatting field in an f-string. If the string
contains a single formatting field and nothing else the node can be
isolated otherwise it appears in :class:`JoinedStr`.
* ``value`` is any expression node (such as a literal, a variable, or a
function call).
* ``conversion`` is an integer:
* -1: no formatting
* 115: ``!s`` string formatting
* 114: ``!r`` repr formatting
* 97: ``!a`` ascii formatting
* ``format_spec`` is a :class:`JoinedStr` node representing the formatting
of the value, or ``None`` if no format was specified. Both
``conversion`` and ``format_spec`` can be set at the same time.
.. class:: JoinedStr(values)
An f-string, comprising a series of :class:`FormattedValue` and :class:`Constant`
nodes.
.. doctest::
>>> print(ast.dump(ast.parse('f"sin({a}) is {sin(a):.3}"', mode='eval'), indent=4))
Expression(
body=JoinedStr(
values=[
Constant(value='sin('),
FormattedValue(
value=Name(id='a', ctx=Load()),
conversion=-1),
Constant(value=') is '),
FormattedValue(
value=Call(
func=Name(id='sin', ctx=Load()),
args=[
Name(id='a', ctx=Load())]),
conversion=-1,
format_spec=JoinedStr(
values=[
Constant(value='.3')]))]))
.. class:: List(elts, ctx)
Tuple(elts, ctx)
A list or tuple. ``elts`` holds a list of nodes representing the elements.
``ctx`` is :class:`Store` if the container is an assignment target (i.e.
``(x,y)=something``), and :class:`Load` otherwise.
.. doctest::
>>> print(ast.dump(ast.parse('[1, 2, 3]', mode='eval'), indent=4))
Expression(
body=List(
elts=[
Constant(value=1),
Constant(value=2),
Constant(value=3)],
ctx=Load()))
>>> print(ast.dump(ast.parse('(1, 2, 3)', mode='eval'), indent=4))
Expression(
body=Tuple(
elts=[
Constant(value=1),
Constant(value=2),
Constant(value=3)],
ctx=Load()))
.. class:: Set(elts)
A set. ``elts`` holds a list of nodes representing the set's elements.
.. doctest::
>>> print(ast.dump(ast.parse('{1, 2, 3}', mode='eval'), indent=4))
Expression(
body=Set(
elts=[
Constant(value=1),
Constant(value=2),
Constant(value=3)]))
.. class:: Dict(keys, values)
A dictionary. ``keys`` and ``values`` hold lists of nodes representing the
keys and the values respectively, in matching order (what would be returned
when calling :code:`dictionary.keys()` and :code:`dictionary.values()`).
When doing dictionary unpacking using dictionary literals the expression to be
expanded goes in the ``values`` list, with a ``None`` at the corresponding
position in ``keys``.
.. doctest::
>>> print(ast.dump(ast.parse('{"a":1, **d}', mode='eval'), indent=4))
Expression(
body=Dict(
keys=[
Constant(value='a'),
None],
values=[
Constant(value=1),
Name(id='d', ctx=Load())]))
Variables
^^^^^^^^^
.. class:: Name(id, ctx)
A variable name. ``id`` holds the name as a string, and ``ctx`` is one of
the following types.
.. class:: Load()
Store()
Del()
Variable references can be used to load the value of a variable, to assign
a new value to it, or to delete it. Variable references are given a context
to distinguish these cases.
.. doctest::
>>> print(ast.dump(ast.parse('a'), indent=4))
Module(
body=[
Expr(
value=Name(id='a', ctx=Load()))])
>>> print(ast.dump(ast.parse('a = 1'), indent=4))
Module(
body=[
Assign(
targets=[
Name(id='a', ctx=Store())],
value=Constant(value=1))])
>>> print(ast.dump(ast.parse('del a'), indent=4))
Module(
body=[
Delete(
targets=[
Name(id='a', ctx=Del())])])
.. class:: Starred(value, ctx)
A ``*var`` variable reference. ``value`` holds the variable, typically a
:class:`Name` node. This type must be used when building a :class:`Call`
node with ``*args``.
.. doctest::
>>> print(ast.dump(ast.parse('a, *b = it'), indent=4))
Module(
body=[
Assign(
targets=[
Tuple(
elts=[
Name(id='a', ctx=Store()),
Starred(
value=Name(id='b', ctx=Store()),
ctx=Store())],
ctx=Store())],
value=Name(id='it', ctx=Load()))])
.. _ast-expressions:
Expressions
^^^^^^^^^^^
.. class:: Expr(value)
When an expression, such as a function call, appears as a statement by itself
with its return value not used or stored, it is wrapped in this container.
``value`` holds one of the other nodes in this section, a :class:`Constant`, a
:class:`Name`, a :class:`Lambda`, a :class:`Yield` or :class:`YieldFrom` node.
.. doctest::
>>> print(ast.dump(ast.parse('-a'), indent=4))
Module(
body=[
Expr(
value=UnaryOp(
op=USub(),
operand=Name(id='a', ctx=Load())))])
.. class:: UnaryOp(op, operand)
A unary operation. ``op`` is the operator, and ``operand`` any expression
node.
.. class:: UAdd
USub
Not
Invert
Unary operator tokens. :class:`Not` is the ``not`` keyword, :class:`Invert`
is the ``~`` operator.
.. doctest::
>>> print(ast.dump(ast.parse('not x', mode='eval'), indent=4))
Expression(
body=UnaryOp(
op=Not(),
operand=Name(id='x', ctx=Load())))
.. class:: BinOp(left, op, right)
A binary operation (like addition or division). ``op`` is the operator, and
``left`` and ``right`` are any expression nodes.
.. doctest::
>>> print(ast.dump(ast.parse('x + y', mode='eval'), indent=4))
Expression(
body=BinOp(
left=Name(id='x', ctx=Load()),
op=Add(),
right=Name(id='y', ctx=Load())))
.. class:: Add
Sub
Mult
Div
FloorDiv
Mod
Pow
LShift
RShift
BitOr
BitXor
BitAnd
MatMult
Binary operator tokens.
.. class:: BoolOp(op, values)
A boolean operation, 'or' or 'and'. ``op`` is :class:`Or` or :class:`And`.
``values`` are the values involved. Consecutive operations with the same
operator, such as ``a or b or c``, are collapsed into one node with several
values.
This doesn't include ``not``, which is a :class:`UnaryOp`.
.. doctest::
>>> print(ast.dump(ast.parse('x or y', mode='eval'), indent=4))
Expression(
body=BoolOp(
op=Or(),
values=[
Name(id='x', ctx=Load()),
Name(id='y', ctx=Load())]))
.. class:: And
Or
Boolean operator tokens.
.. class:: Compare(left, ops, comparators)
A comparison of two or more values. ``left`` is the first value in the
comparison, ``ops`` the list of operators, and ``comparators`` the list
of values after the first element in the comparison.
.. doctest::
>>> print(ast.dump(ast.parse('1 <= a < 10', mode='eval'), indent=4))
Expression(
body=Compare(
left=Constant(value=1),
ops=[
LtE(),
Lt()],
comparators=[
Name(id='a', ctx=Load()),
Constant(value=10)]))
.. class:: Eq
NotEq
Lt
LtE
Gt
GtE
Is
IsNot
In
NotIn
Comparison operator tokens.
.. class:: Call(func, args, keywords)
A function call. ``func`` is the function, which will often be a
:class:`Name` or :class:`Attribute` object. Of the arguments:
* ``args`` holds a list of the arguments passed by position.
* ``keywords`` holds a list of :class:`.keyword` objects representing
arguments passed by keyword.
The ``args`` and ``keywords`` arguments are optional and default to empty lists.
.. doctest::
>>> print(ast.dump(ast.parse('func(a, b=c, *d, **e)', mode='eval'), indent=4))
Expression(
body=Call(
func=Name(id='func', ctx=Load()),
args=[
Name(id='a', ctx=Load()),
Starred(
value=Name(id='d', ctx=Load()),
ctx=Load())],
keywords=[
keyword(
arg='b',
value=Name(id='c', ctx=Load())),
keyword(
value=Name(id='e', ctx=Load()))]))
.. class:: keyword(arg, value)
A keyword argument to a function call or class definition. ``arg`` is a raw
string of the parameter name, ``value`` is a node to pass in.
.. class:: IfExp(test, body, orelse)
An expression such as ``a if b else c``. Each field holds a single node, so
in the following example, all three are :class:`Name` nodes.
.. doctest::
>>> print(ast.dump(ast.parse('a if b else c', mode='eval'), indent=4))
Expression(
body=IfExp(
test=Name(id='b', ctx=Load()),
body=Name(id='a', ctx=Load()),
orelse=Name(id='c', ctx=Load())))
.. class:: Attribute(value, attr, ctx)
Attribute access, e.g. ``d.keys``. ``value`` is a node, typically a
:class:`Name`. ``attr`` is a bare string giving the name of the attribute,
and ``ctx`` is :class:`Load`, :class:`Store` or :class:`Del` according to how
the attribute is acted on.
.. doctest::
>>> print(ast.dump(ast.parse('snake.colour', mode='eval'), indent=4))
Expression(
body=Attribute(
value=Name(id='snake', ctx=Load()),
attr='colour',
ctx=Load()))
.. class:: NamedExpr(target, value)
A named expression. This AST node is produced by the assignment expressions
operator (also known as the walrus operator). As opposed to the :class:`Assign`
node in which the first argument can be multiple nodes, in this case both
``target`` and ``value`` must be single nodes.
.. doctest::
>>> print(ast.dump(ast.parse('(x := 4)', mode='eval'), indent=4))
Expression(
body=NamedExpr(
target=Name(id='x', ctx=Store()),
value=Constant(value=4)))
.. versionadded:: 3.8
Subscripting
~~~~~~~~~~~~
.. class:: Subscript(value, slice, ctx)
A subscript, such as ``l[1]``. ``value`` is the subscripted object
(usually sequence or mapping). ``slice`` is an index, slice or key.
It can be a :class:`Tuple` and contain a :class:`Slice`.
``ctx`` is :class:`Load`, :class:`Store` or :class:`Del`
according to the action performed with the subscript.
.. doctest::
>>> print(ast.dump(ast.parse('l[1:2, 3]', mode='eval'), indent=4))
Expression(
body=Subscript(
value=Name(id='l', ctx=Load()),
slice=Tuple(
elts=[
Slice(
lower=Constant(value=1),
upper=Constant(value=2)),
Constant(value=3)],
ctx=Load()),
ctx=Load()))
.. class:: Slice(lower, upper, step)
Regular slicing (on the form ``lower:upper`` or ``lower:upper:step``).
Can occur only inside the *slice* field of :class:`Subscript`, either
directly or as an element of :class:`Tuple`.
.. doctest::
>>> print(ast.dump(ast.parse('l[1:2]', mode='eval'), indent=4))
Expression(
body=Subscript(
value=Name(id='l', ctx=Load()),
slice=Slice(
lower=Constant(value=1),
upper=Constant(value=2)),
ctx=Load()))
Comprehensions
~~~~~~~~~~~~~~
.. class:: ListComp(elt, generators)
SetComp(elt, generators)
GeneratorExp(elt, generators)
DictComp(key, value, generators)
List and set comprehensions, generator expressions, and dictionary
comprehensions. ``elt`` (or ``key`` and ``value``) is a single node
representing the part that will be evaluated for each item.
``generators`` is a list of :class:`comprehension` nodes.
.. doctest::
>>> print(ast.dump(
... ast.parse('[x for x in numbers]', mode='eval'),
... indent=4,
... ))
Expression(
body=ListComp(
elt=Name(id='x', ctx=Load()),
generators=[
comprehension(
target=Name(id='x', ctx=Store()),
iter=Name(id='numbers', ctx=Load()),
is_async=0)]))
>>> print(ast.dump(
... ast.parse('{x: x**2 for x in numbers}', mode='eval'),
... indent=4,
... ))
Expression(
body=DictComp(
key=Name(id='x', ctx=Load()),
value=BinOp(
left=Name(id='x', ctx=Load()),
op=Pow(),
right=Constant(value=2)),
generators=[
comprehension(
target=Name(id='x', ctx=Store()),
iter=Name(id='numbers', ctx=Load()),
is_async=0)]))
>>> print(ast.dump(
... ast.parse('{x for x in numbers}', mode='eval'),
... indent=4,
... ))
Expression(
body=SetComp(
elt=Name(id='x', ctx=Load()),
generators=[
comprehension(
target=Name(id='x', ctx=Store()),
iter=Name(id='numbers', ctx=Load()),
is_async=0)]))
.. class:: comprehension(target, iter, ifs, is_async)
One ``for`` clause in a comprehension. ``target`` is the reference to use for
each element - typically a :class:`Name` or :class:`Tuple` node. ``iter``
is the object to iterate over. ``ifs`` is a list of test expressions: each
``for`` clause can have multiple ``ifs``.
``is_async`` indicates a comprehension is asynchronous (using an
``async for`` instead of ``for``). The value is an integer (0 or 1).
.. doctest::
>>> print(ast.dump(ast.parse('[ord(c) for line in file for c in line]', mode='eval'),
... indent=4)) # Multiple comprehensions in one.
Expression(
body=ListComp(
elt=Call(
func=Name(id='ord', ctx=Load()),
args=[
Name(id='c', ctx=Load())]),
generators=[
comprehension(
target=Name(id='line', ctx=Store()),
iter=Name(id='file', ctx=Load()),
is_async=0),
comprehension(
target=Name(id='c', ctx=Store()),
iter=Name(id='line', ctx=Load()),
is_async=0)]))
>>> print(ast.dump(ast.parse('(n**2 for n in it if n>5 if n<10)', mode='eval'),
... indent=4)) # generator comprehension
Expression(
body=GeneratorExp(
elt=BinOp(
left=Name(id='n', ctx=Load()),
op=Pow(),
right=Constant(value=2)),
generators=[
comprehension(
target=Name(id='n', ctx=Store()),
iter=Name(id='it', ctx=Load()),
ifs=[
Compare(
left=Name(id='n', ctx=Load()),
ops=[
Gt()],
comparators=[
Constant(value=5)]),
Compare(
left=Name(id='n', ctx=Load()),
ops=[
Lt()],
comparators=[
Constant(value=10)])],
is_async=0)]))
>>> print(ast.dump(ast.parse('[i async for i in soc]', mode='eval'),
... indent=4)) # Async comprehension
Expression(
body=ListComp(
elt=Name(id='i', ctx=Load()),
generators=[
comprehension(
target=Name(id='i', ctx=Store()),
iter=Name(id='soc', ctx=Load()),
is_async=1)]))
.. _ast-statements:
Statements
^^^^^^^^^^
.. class:: Assign(targets, value, type_comment)
An assignment. ``targets`` is a list of nodes, and ``value`` is a single node.
Multiple nodes in ``targets`` represents assigning the same value to each.
Unpacking is represented by putting a :class:`Tuple` or :class:`List`
within ``targets``.
.. attribute:: type_comment
``type_comment`` is an optional string with the type annotation as a comment.
.. doctest::
>>> print(ast.dump(ast.parse('a = b = 1'), indent=4)) # Multiple assignment
Module(
body=[
Assign(
targets=[
Name(id='a', ctx=Store()),
Name(id='b', ctx=Store())],
value=Constant(value=1))])
>>> print(ast.dump(ast.parse('a,b = c'), indent=4)) # Unpacking
Module(
body=[
Assign(
targets=[
Tuple(
elts=[
Name(id='a', ctx=Store()),
Name(id='b', ctx=Store())],
ctx=Store())],
value=Name(id='c', ctx=Load()))])
.. class:: AnnAssign(target, annotation, value, simple)
An assignment with a type annotation. ``target`` is a single node and can
be a :class:`Name`, an :class:`Attribute` or a :class:`Subscript`.
``annotation`` is the annotation, such as a :class:`Constant` or :class:`Name`
node. ``value`` is a single optional node.
``simple`` is always either 0 (indicating a "complex" target) or 1
(indicating a "simple" target). A "simple" target consists solely of a
:class:`Name` node that does not appear between parentheses; all other
targets are considered complex. Only simple targets appear in
the :attr:`~object.__annotations__` dictionary of modules and classes.
.. doctest::
>>> print(ast.dump(ast.parse('c: int'), indent=4))
Module(
body=[
AnnAssign(
target=Name(id='c', ctx=Store()),
annotation=Name(id='int', ctx=Load()),
simple=1)])
>>> print(ast.dump(ast.parse('(a): int = 1'), indent=4)) # Annotation with parenthesis
Module(
body=[
AnnAssign(
target=Name(id='a', ctx=Store()),
annotation=Name(id='int', ctx=Load()),
value=Constant(value=1),
simple=0)])
>>> print(ast.dump(ast.parse('a.b: int'), indent=4)) # Attribute annotation
Module(
body=[
AnnAssign(
target=Attribute(
value=Name(id='a', ctx=Load()),
attr='b',
ctx=Store()),
annotation=Name(id='int', ctx=Load()),
simple=0)])
>>> print(ast.dump(ast.parse('a[1]: int'), indent=4)) # Subscript annotation
Module(
body=[
AnnAssign(
target=Subscript(
value=Name(id='a', ctx=Load()),
slice=Constant(value=1),
ctx=Store()),
annotation=Name(id='int', ctx=Load()),
simple=0)])
.. class:: AugAssign(target, op, value)
Augmented assignment, such as ``a += 1``. In the following example,
``target`` is a :class:`Name` node for ``x`` (with the :class:`Store`
context), ``op`` is :class:`Add`, and ``value`` is a :class:`Constant` with
value for 1.
The ``target`` attribute cannot be of class :class:`Tuple` or :class:`List`,
unlike the targets of :class:`Assign`.
.. doctest::
>>> print(ast.dump(ast.parse('x += 2'), indent=4))
Module(
body=[
AugAssign(
target=Name(id='x', ctx=Store()),
op=Add(),
value=Constant(value=2))])
.. class:: Raise(exc, cause)
A ``raise`` statement. ``exc`` is the exception object to be raised, normally a
:class:`Call` or :class:`Name`, or ``None`` for a standalone ``raise``.
``cause`` is the optional part for ``y`` in ``raise x from y``.
.. doctest::
>>> print(ast.dump(ast.parse('raise x from y'), indent=4))
Module(
body=[
Raise(
exc=Name(id='x', ctx=Load()),
cause=Name(id='y', ctx=Load()))])
.. class:: Assert(test, msg)
An assertion. ``test`` holds the condition, such as a :class:`Compare` node.
``msg`` holds the failure message.
.. doctest::
>>> print(ast.dump(ast.parse('assert x,y'), indent=4))
Module(
body=[
Assert(
test=Name(id='x', ctx=Load()),
msg=Name(id='y', ctx=Load()))])
.. class:: Delete(targets)
Represents a ``del`` statement. ``targets`` is a list of nodes, such as
:class:`Name`, :class:`Attribute` or :class:`Subscript` nodes.
.. doctest::
>>> print(ast.dump(ast.parse('del x,y,z'), indent=4))
Module(
body=[
Delete(
targets=[
Name(id='x', ctx=Del()),
Name(id='y', ctx=Del()),
Name(id='z', ctx=Del())])])
.. class:: Pass()
A ``pass`` statement.
.. doctest::
>>> print(ast.dump(ast.parse('pass'), indent=4))
Module(
body=[
Pass()])
.. class:: TypeAlias(name, type_params, value)
A :ref:`type alias <type-aliases>` created through the :keyword:`type`
statement. ``name`` is the name of the alias, ``type_params`` is a list of
:ref:`type parameters <ast-type-params>`, and ``value`` is the value of the
type alias.
.. doctest::
>>> print(ast.dump(ast.parse('type Alias = int'), indent=4))
Module(
body=[
TypeAlias(
name=Name(id='Alias', ctx=Store()),
value=Name(id='int', ctx=Load()))])
.. versionadded:: 3.12
Other statements which are only applicable inside functions or loops are
described in other sections.
Imports
~~~~~~~
.. class:: Import(names)
An import statement. ``names`` is a list of :class:`alias` nodes.
.. doctest::
>>> print(ast.dump(ast.parse('import x,y,z'), indent=4))
Module(
body=[
Import(
names=[
alias(name='x'),
alias(name='y'),
alias(name='z')])])
.. class:: ImportFrom(module, names, level)
Represents ``from x import y``. ``module`` is a raw string of the 'from' name,
without any leading dots, or ``None`` for statements such as ``from . import foo``.
``level`` is an integer holding the level of the relative import (0 means
absolute import).
.. doctest::
>>> print(ast.dump(ast.parse('from y import x,y,z'), indent=4))
Module(
body=[
ImportFrom(
module='y',
names=[
alias(name='x'),
alias(name='y'),
alias(name='z')],
level=0)])
.. class:: alias(name, asname)
Both parameters are raw strings of the names. ``asname`` can be ``None`` if
the regular name is to be used.
.. doctest::
>>> print(ast.dump(ast.parse('from ..foo.bar import a as b, c'), indent=4))
Module(
body=[
ImportFrom(
module='foo.bar',
names=[
alias(name='a', asname='b'),
alias(name='c')],
level=2)])
Control flow
^^^^^^^^^^^^
.. note::
Optional clauses such as ``else`` are stored as an empty list if they're
not present.
.. class:: If(test, body, orelse)
An ``if`` statement. ``test`` holds a single node, such as a :class:`Compare`
node. ``body`` and ``orelse`` each hold a list of nodes.
``elif`` clauses don't have a special representation in the AST, but rather
appear as extra :class:`If` nodes within the ``orelse`` section of the
previous one.
.. doctest::
>>> print(ast.dump(ast.parse("""
... if x:
... ...
... elif y:
... ...
... else:
... ...
... """), indent=4))
Module(
body=[
If(
test=Name(id='x', ctx=Load()),
body=[
Expr(
value=Constant(value=Ellipsis))],
orelse=[
If(
test=Name(id='y', ctx=Load()),
body=[
Expr(
value=Constant(value=Ellipsis))],
orelse=[
Expr(
value=Constant(value=Ellipsis))])])])
.. class:: For(target, iter, body, orelse, type_comment)
A ``for`` loop. ``target`` holds the variable(s) the loop assigns to, as a
single :class:`Name`, :class:`Tuple`, :class:`List`, :class:`Attribute` or
:class:`Subscript` node. ``iter`` holds the item to be looped over, again
as a single node. ``body`` and ``orelse`` contain lists of nodes to execute.
Those in ``orelse`` are executed if the loop finishes normally, rather than
via a ``break`` statement.
.. attribute:: type_comment
``type_comment`` is an optional string with the type annotation as a comment.
.. doctest::
>>> print(ast.dump(ast.parse("""
... for x in y:
... ...
... else:
... ...
... """), indent=4))
Module(
body=[
For(
target=Name(id='x', ctx=Store()),
iter=Name(id='y', ctx=Load()),
body=[
Expr(
value=Constant(value=Ellipsis))],
orelse=[
Expr(
value=Constant(value=Ellipsis))])])
.. class:: While(test, body, orelse)
A ``while`` loop. ``test`` holds the condition, such as a :class:`Compare`
node.
.. doctest::
>> print(ast.dump(ast.parse("""
... while x:
... ...
... else:
... ...
... """), indent=4))
Module(
body=[
While(
test=Name(id='x', ctx=Load()),
body=[
Expr(
value=Constant(value=Ellipsis))],
orelse=[
Expr(
value=Constant(value=Ellipsis))])])
.. class:: Break
Continue
The ``break`` and ``continue`` statements.
.. doctest::
>>> print(ast.dump(ast.parse("""\
... for a in b:
... if a > 5:
... break
... else:
... continue
...
... """), indent=4))
Module(
body=[
For(
target=Name(id='a', ctx=Store()),
iter=Name(id='b', ctx=Load()),
body=[
If(
test=Compare(
left=Name(id='a', ctx=Load()),
ops=[
Gt()],
comparators=[
Constant(value=5)]),
body=[
Break()],
orelse=[
Continue()])])])
.. class:: Try(body, handlers, orelse, finalbody)
``try`` blocks. All attributes are list of nodes to execute, except for
``handlers``, which is a list of :class:`ExceptHandler` nodes.
.. doctest::
>>> print(ast.dump(ast.parse("""
... try:
... ...
... except Exception:
... ...
... except OtherException as e:
... ...
... else:
... ...
... finally:
... ...
... """), indent=4))
Module(
body=[
Try(
body=[
Expr(
value=Constant(value=Ellipsis))],
handlers=[
ExceptHandler(
type=Name(id='Exception', ctx=Load()),
body=[
Expr(
value=Constant(value=Ellipsis))]),
ExceptHandler(
type=Name(id='OtherException', ctx=Load()),
name='e',
body=[
Expr(
value=Constant(value=Ellipsis))])],
orelse=[
Expr(
value=Constant(value=Ellipsis))],
finalbody=[
Expr(
value=Constant(value=Ellipsis))])])
.. class:: TryStar(body, handlers, orelse, finalbody)
``try`` blocks which are followed by ``except*`` clauses. The attributes are the
same as for :class:`Try` but the :class:`ExceptHandler` nodes in ``handlers``
are interpreted as ``except*`` blocks rather then ``except``.
.. doctest::
>>> print(ast.dump(ast.parse("""
... try:
... ...
... except* Exception:
... ...
... """), indent=4))
Module(
body=[
TryStar(
body=[
Expr(
value=Constant(value=Ellipsis))],
handlers=[
ExceptHandler(
type=Name(id='Exception', ctx=Load()),
body=[
Expr(
value=Constant(value=Ellipsis))])])])
.. versionadded:: 3.11
.. class:: ExceptHandler(type, name, body)
A single ``except`` clause. ``type`` is the exception type it will match,
typically a :class:`Name` node (or ``None`` for a catch-all ``except:`` clause).
``name`` is a raw string for the name to hold the exception, or ``None`` if
the clause doesn't have ``as foo``. ``body`` is a list of nodes.
.. doctest::
>>> print(ast.dump(ast.parse("""\
... try:
... a + 1
... except TypeError:
... pass
... """), indent=4))
Module(
body=[
Try(
body=[
Expr(
value=BinOp(
left=Name(id='a', ctx=Load()),
op=Add(),
right=Constant(value=1)))],
handlers=[
ExceptHandler(
type=Name(id='TypeError', ctx=Load()),
body=[
Pass()])])])
.. class:: With(items, body, type_comment)
A ``with`` block. ``items`` is a list of :class:`withitem` nodes representing
the context managers, and ``body`` is the indented block inside the context.
.. attribute:: type_comment
``type_comment`` is an optional string with the type annotation as a comment.
.. class:: withitem(context_expr, optional_vars)
A single context manager in a ``with`` block. ``context_expr`` is the context
manager, often a :class:`Call` node. ``optional_vars`` is a :class:`Name`,
:class:`Tuple` or :class:`List` for the ``as foo`` part, or ``None`` if that
isn't used.
.. doctest::
>>> print(ast.dump(ast.parse("""\
... with a as b, c as d:
... something(b, d)
... """), indent=4))
Module(
body=[
With(
items=[
withitem(
context_expr=Name(id='a', ctx=Load()),
optional_vars=Name(id='b', ctx=Store())),
withitem(
context_expr=Name(id='c', ctx=Load()),
optional_vars=Name(id='d', ctx=Store()))],
body=[
Expr(
value=Call(
func=Name(id='something', ctx=Load()),
args=[
Name(id='b', ctx=Load()),
Name(id='d', ctx=Load())]))])])
Pattern matching
^^^^^^^^^^^^^^^^
.. class:: Match(subject, cases)
A ``match`` statement. ``subject`` holds the subject of the match (the object
that is being matched against the cases) and ``cases`` contains an iterable of
:class:`match_case` nodes with the different cases.
.. versionadded:: 3.10
.. class:: match_case(pattern, guard, body)
A single case pattern in a ``match`` statement. ``pattern`` contains the
match pattern that the subject will be matched against. Note that the
:class:`AST` nodes produced for patterns differ from those produced for
expressions, even when they share the same syntax.
The ``guard`` attribute contains an expression that will be evaluated if
the pattern matches the subject.
``body`` contains a list of nodes to execute if the pattern matches and
the result of evaluating the guard expression is true.
.. doctest::
>>> print(ast.dump(ast.parse("""
... match x:
... case [x] if x>0:
... ...
... case tuple():
... ...
... """), indent=4))
Module(
body=[
Match(
subject=Name(id='x', ctx=Load()),
cases=[
match_case(
pattern=MatchSequence(
patterns=[
MatchAs(name='x')]),
guard=Compare(
left=Name(id='x', ctx=Load()),
ops=[
Gt()],
comparators=[
Constant(value=0)]),
body=[
Expr(
value=Constant(value=Ellipsis))]),
match_case(
pattern=MatchClass(
cls=Name(id='tuple', ctx=Load())),
body=[
Expr(
value=Constant(value=Ellipsis))])])])
.. versionadded:: 3.10
.. class:: MatchValue(value)
A match literal or value pattern that compares by equality. ``value`` is
an expression node. Permitted value nodes are restricted as described in
the match statement documentation. This pattern succeeds if the match
subject is equal to the evaluated value.
.. doctest::
>>> print(ast.dump(ast.parse("""
... match x:
... case "Relevant":
... ...
... """), indent=4))
Module(
body=[
Match(
subject=Name(id='x', ctx=Load()),
cases=[
match_case(
pattern=MatchValue(
value=Constant(value='Relevant')),
body=[
Expr(
value=Constant(value=Ellipsis))])])])
.. versionadded:: 3.10
.. class:: MatchSingleton(value)
A match literal pattern that compares by identity. ``value`` is the
singleton to be compared against: ``None``, ``True``, or ``False``. This
pattern succeeds if the match subject is the given constant.
.. doctest::
>>> print(ast.dump(ast.parse("""
... match x:
... case None:
... ...
... """), indent=4))
Module(
body=[
Match(
subject=Name(id='x', ctx=Load()),
cases=[
match_case(
pattern=MatchSingleton(value=None),
body=[
Expr(
value=Constant(value=Ellipsis))])])])
.. versionadded:: 3.10
.. class:: MatchSequence(patterns)
A match sequence pattern. ``patterns`` contains the patterns to be matched
against the subject elements if the subject is a sequence. Matches a variable
length sequence if one of the subpatterns is a ``MatchStar`` node, otherwise
matches a fixed length sequence.
.. doctest::
>>> print(ast.dump(ast.parse("""
... match x:
... case [1, 2]:
... ...
... """), indent=4))
Module(
body=[
Match(
subject=Name(id='x', ctx=Load()),
cases=[
match_case(
pattern=MatchSequence(
patterns=[
MatchValue(
value=Constant(value=1)),
MatchValue(
value=Constant(value=2))]),
body=[
Expr(
value=Constant(value=Ellipsis))])])])
.. versionadded:: 3.10
.. class:: MatchStar(name)
Matches the rest of the sequence in a variable length match sequence pattern.
If ``name`` is not ``None``, a list containing the remaining sequence
elements is bound to that name if the overall sequence pattern is successful.
.. doctest::
>>> print(ast.dump(ast.parse("""
... match x:
... case [1, 2, *rest]:
... ...
... case [*_]:
... ...
... """), indent=4))
Module(
body=[
Match(
subject=Name(id='x', ctx=Load()),
cases=[
match_case(
pattern=MatchSequence(
patterns=[
MatchValue(
value=Constant(value=1)),
MatchValue(
value=Constant(value=2)),
MatchStar(name='rest')]),
body=[
Expr(
value=Constant(value=Ellipsis))]),
match_case(
pattern=MatchSequence(
patterns=[
MatchStar()]),
body=[
Expr(
value=Constant(value=Ellipsis))])])])
.. versionadded:: 3.10
.. class:: MatchMapping(keys, patterns, rest)
A match mapping pattern. ``keys`` is a sequence of expression nodes.
``patterns`` is a corresponding sequence of pattern nodes. ``rest`` is an
optional name that can be specified to capture the remaining mapping elements.
Permitted key expressions are restricted as described in the match statement
documentation.
This pattern succeeds if the subject is a mapping, all evaluated key
expressions are present in the mapping, and the value corresponding to each
key matches the corresponding subpattern. If ``rest`` is not ``None``, a dict
containing the remaining mapping elements is bound to that name if the overall
mapping pattern is successful.
.. doctest::
>>> print(ast.dump(ast.parse("""
... match x:
... case {1: _, 2: _}:
... ...
... case {**rest}:
... ...
... """), indent=4))
Module(
body=[
Match(
subject=Name(id='x', ctx=Load()),
cases=[
match_case(
pattern=MatchMapping(
keys=[
Constant(value=1),
Constant(value=2)],
patterns=[
MatchAs(),
MatchAs()]),
body=[
Expr(
value=Constant(value=Ellipsis))]),
match_case(
pattern=MatchMapping(rest='rest'),
body=[
Expr(
value=Constant(value=Ellipsis))])])])
.. versionadded:: 3.10
.. class:: MatchClass(cls, patterns, kwd_attrs, kwd_patterns)
A match class pattern. ``cls`` is an expression giving the nominal class to
be matched. ``patterns`` is a sequence of pattern nodes to be matched against
the class defined sequence of pattern matching attributes. ``kwd_attrs`` is a
sequence of additional attributes to be matched (specified as keyword arguments
in the class pattern), ``kwd_patterns`` are the corresponding patterns
(specified as keyword values in the class pattern).
This pattern succeeds if the subject is an instance of the nominated class,
all positional patterns match the corresponding class-defined attributes, and
any specified keyword attributes match their corresponding pattern.
Note: classes may define a property that returns self in order to match a
pattern node against the instance being matched. Several builtin types are
also matched that way, as described in the match statement documentation.
.. doctest::
>>> print(ast.dump(ast.parse("""
... match x:
... case Point2D(0, 0):
... ...
... case Point3D(x=0, y=0, z=0):
... ...
... """), indent=4))
Module(
body=[
Match(
subject=Name(id='x', ctx=Load()),
cases=[
match_case(
pattern=MatchClass(
cls=Name(id='Point2D', ctx=Load()),
patterns=[
MatchValue(
value=Constant(value=0)),
MatchValue(
value=Constant(value=0))]),
body=[
Expr(
value=Constant(value=Ellipsis))]),
match_case(
pattern=MatchClass(
cls=Name(id='Point3D', ctx=Load()),
kwd_attrs=[
'x',
'y',
'z'],
kwd_patterns=[
MatchValue(
value=Constant(value=0)),
MatchValue(
value=Constant(value=0)),
MatchValue(
value=Constant(value=0))]),
body=[
Expr(
value=Constant(value=Ellipsis))])])])
.. versionadded:: 3.10
.. class:: MatchAs(pattern, name)
A match "as-pattern", capture pattern or wildcard pattern. ``pattern``
contains the match pattern that the subject will be matched against.
If the pattern is ``None``, the node represents a capture pattern (i.e a
bare name) and will always succeed.
The ``name`` attribute contains the name that will be bound if the pattern
is successful. If ``name`` is ``None``, ``pattern`` must also be ``None``
and the node represents the wildcard pattern.
.. doctest::
>>> print(ast.dump(ast.parse("""
... match x:
... case [x] as y:
... ...
... case _:
... ...
... """), indent=4))
Module(
body=[
Match(
subject=Name(id='x', ctx=Load()),
cases=[
match_case(
pattern=MatchAs(
pattern=MatchSequence(
patterns=[
MatchAs(name='x')]),
name='y'),
body=[
Expr(
value=Constant(value=Ellipsis))]),
match_case(
pattern=MatchAs(),
body=[
Expr(
value=Constant(value=Ellipsis))])])])
.. versionadded:: 3.10
.. class:: MatchOr(patterns)
A match "or-pattern". An or-pattern matches each of its subpatterns in turn
to the subject, until one succeeds. The or-pattern is then deemed to
succeed. If none of the subpatterns succeed the or-pattern fails. The
``patterns`` attribute contains a list of match pattern nodes that will be
matched against the subject.
.. doctest::
>>> print(ast.dump(ast.parse("""
... match x:
... case [x] | (y):
... ...
... """), indent=4))
Module(
body=[
Match(
subject=Name(id='x', ctx=Load()),
cases=[
match_case(
pattern=MatchOr(
patterns=[
MatchSequence(
patterns=[
MatchAs(name='x')]),
MatchAs(name='y')]),
body=[
Expr(
value=Constant(value=Ellipsis))])])])
.. versionadded:: 3.10
.. _ast-type-params:
Type parameters
^^^^^^^^^^^^^^^
:ref:`Type parameters <type-params>` can exist on classes, functions, and type
aliases.
.. class:: TypeVar(name, bound, default_value)
A :class:`typing.TypeVar`. ``name`` is the name of the type variable.
``bound`` is the bound or constraints, if any. If ``bound`` is a :class:`Tuple`,
it represents constraints; otherwise it represents the bound. ``default_value``
is the default value; if the :class:`!TypeVar` has no default, this
attribute will be set to ``None``.
.. doctest::
>>> print(ast.dump(ast.parse("type Alias[T: int = bool] = list[T]"), indent=4))
Module(
body=[
TypeAlias(
name=Name(id='Alias', ctx=Store()),
type_params=[
TypeVar(
name='T',
bound=Name(id='int', ctx=Load()),
default_value=Name(id='bool', ctx=Load()))],
value=Subscript(
value=Name(id='list', ctx=Load()),
slice=Name(id='T', ctx=Load()),
ctx=Load()))])
.. versionadded:: 3.12
.. versionchanged:: 3.13
Added the *default_value* parameter.
.. class:: ParamSpec(name, default_value)
A :class:`typing.ParamSpec`. ``name`` is the name of the parameter specification.
``default_value`` is the default value; if the :class:`!ParamSpec` has no default,
this attribute will be set to ``None``.
.. doctest::
>>> print(ast.dump(ast.parse("type Alias[**P = (int, str)] = Callable[P, int]"), indent=4))
Module(
body=[
TypeAlias(
name=Name(id='Alias', ctx=Store()),
type_params=[
ParamSpec(
name='P',
default_value=Tuple(
elts=[
Name(id='int', ctx=Load()),
Name(id='str', ctx=Load())],
ctx=Load()))],
value=Subscript(
value=Name(id='Callable', ctx=Load()),
slice=Tuple(
elts=[
Name(id='P', ctx=Load()),
Name(id='int', ctx=Load())],
ctx=Load()),
ctx=Load()))])
.. versionadded:: 3.12
.. versionchanged:: 3.13
Added the *default_value* parameter.
.. class:: TypeVarTuple(name, default_value)
A :class:`typing.TypeVarTuple`. ``name`` is the name of the type variable tuple.
``default_value`` is the default value; if the :class:`!TypeVarTuple` has no
default, this attribute will be set to ``None``.
.. doctest::
>>> print(ast.dump(ast.parse("type Alias[*Ts = ()] = tuple[*Ts]"), indent=4))
Module(
body=[
TypeAlias(
name=Name(id='Alias', ctx=Store()),
type_params=[
TypeVarTuple(
name='Ts',
default_value=Tuple(ctx=Load()))],
value=Subscript(
value=Name(id='tuple', ctx=Load()),
slice=Tuple(
elts=[
Starred(
value=Name(id='Ts', ctx=Load()),
ctx=Load())],
ctx=Load()),
ctx=Load()))])
.. versionadded:: 3.12
.. versionchanged:: 3.13
Added the *default_value* parameter.
Function and class definitions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. class:: FunctionDef(name, args, body, decorator_list, returns, type_comment, type_params)
A function definition.
* ``name`` is a raw string of the function name.
* ``args`` is an :class:`arguments` node.
* ``body`` is the list of nodes inside the function.
* ``decorator_list`` is the list of decorators to be applied, stored outermost
first (i.e. the first in the list will be applied last).
* ``returns`` is the return annotation.
* ``type_params`` is a list of :ref:`type parameters <ast-type-params>`.
.. attribute:: type_comment
``type_comment`` is an optional string with the type annotation as a comment.
.. versionchanged:: 3.12
Added ``type_params``.
.. class:: Lambda(args, body)
``lambda`` is a minimal function definition that can be used inside an
expression. Unlike :class:`FunctionDef`, ``body`` holds a single node.
.. doctest::
>>> print(ast.dump(ast.parse('lambda x,y: ...'), indent=4))
Module(
body=[
Expr(
value=Lambda(
args=arguments(
args=[
arg(arg='x'),
arg(arg='y')]),
body=Constant(value=Ellipsis)))])
.. class:: arguments(posonlyargs, args, vararg, kwonlyargs, kw_defaults, kwarg, defaults)
The arguments for a function.
* ``posonlyargs``, ``args`` and ``kwonlyargs`` are lists of :class:`arg` nodes.
* ``vararg`` and ``kwarg`` are single :class:`arg` nodes, referring to the
``*args, **kwargs`` parameters.
* ``kw_defaults`` is a list of default values for keyword-only arguments. If
one is ``None``, the corresponding argument is required.
* ``defaults`` is a list of default values for arguments that can be passed
positionally. If there are fewer defaults, they correspond to the last n
arguments.
.. class:: arg(arg, annotation, type_comment)
A single argument in a list. ``arg`` is a raw string of the argument
name; ``annotation`` is its annotation, such as a :class:`Name` node.
.. attribute:: type_comment
``type_comment`` is an optional string with the type annotation as a comment
.. doctest::
>>> print(ast.dump(ast.parse("""\
... @decorator1
... @decorator2
... def f(a: 'annotation', b=1, c=2, *d, e, f=3, **g) -> 'return annotation':
... pass
... """), indent=4))
Module(
body=[
FunctionDef(
name='f',
args=arguments(
args=[
arg(
arg='a',
annotation=Constant(value='annotation')),
arg(arg='b'),
arg(arg='c')],
vararg=arg(arg='d'),
kwonlyargs=[
arg(arg='e'),
arg(arg='f')],
kw_defaults=[
None,
Constant(value=3)],
kwarg=arg(arg='g'),
defaults=[
Constant(value=1),
Constant(value=2)]),
body=[
Pass()],
decorator_list=[
Name(id='decorator1', ctx=Load()),
Name(id='decorator2', ctx=Load())],
returns=Constant(value='return annotation'))])
.. class:: Return(value)
A ``return`` statement.
.. doctest::
>>> print(ast.dump(ast.parse('return 4'), indent=4))
Module(
body=[
Return(
value=Constant(value=4))])
.. class:: Yield(value)
YieldFrom(value)
A ``yield`` or ``yield from`` expression. Because these are expressions, they
must be wrapped in an :class:`Expr` node if the value sent back is not used.
.. doctest::
>>> print(ast.dump(ast.parse('yield x'), indent=4))
Module(
body=[
Expr(
value=Yield(
value=Name(id='x', ctx=Load())))])
>>> print(ast.dump(ast.parse('yield from x'), indent=4))
Module(
body=[
Expr(
value=YieldFrom(
value=Name(id='x', ctx=Load())))])
.. class:: Global(names)
Nonlocal(names)
``global`` and ``nonlocal`` statements. ``names`` is a list of raw strings.
.. doctest::
>>> print(ast.dump(ast.parse('global x,y,z'), indent=4))
Module(
body=[
Global(
names=[
'x',
'y',
'z'])])
>>> print(ast.dump(ast.parse('nonlocal x,y,z'), indent=4))
Module(
body=[
Nonlocal(
names=[
'x',
'y',
'z'])])
.. class:: ClassDef(name, bases, keywords, body, decorator_list, type_params)
A class definition.
* ``name`` is a raw string for the class name
* ``bases`` is a list of nodes for explicitly specified base classes.
* ``keywords`` is a list of :class:`.keyword` nodes, principally for 'metaclass'.
Other keywords will be passed to the metaclass, as per :pep:`3115`.
* ``body`` is a list of nodes representing the code within the class
definition.
* ``decorator_list`` is a list of nodes, as in :class:`FunctionDef`.
* ``type_params`` is a list of :ref:`type parameters <ast-type-params>`.
.. doctest::
>>> print(ast.dump(ast.parse("""\
... @decorator1
... @decorator2
... class Foo(base1, base2, metaclass=meta):
... pass
... """), indent=4))
Module(
body=[
ClassDef(
name='Foo',
bases=[
Name(id='base1', ctx=Load()),
Name(id='base2', ctx=Load())],
keywords=[
keyword(
arg='metaclass',
value=Name(id='meta', ctx=Load()))],
body=[
Pass()],
decorator_list=[
Name(id='decorator1', ctx=Load()),
Name(id='decorator2', ctx=Load())])])
.. versionchanged:: 3.12
Added ``type_params``.
Async and await
^^^^^^^^^^^^^^^
.. class:: AsyncFunctionDef(name, args, body, decorator_list, returns, type_comment, type_params)
An ``async def`` function definition. Has the same fields as
:class:`FunctionDef`.
.. versionchanged:: 3.12
Added ``type_params``.
.. class:: Await(value)
An ``await`` expression. ``value`` is what it waits for.
Only valid in the body of an :class:`AsyncFunctionDef`.
.. doctest::
>>> print(ast.dump(ast.parse("""\
... async def f():
... await other_func()
... """), indent=4))
Module(
body=[
AsyncFunctionDef(
name='f',
args=arguments(),
body=[
Expr(
value=Await(
value=Call(
func=Name(id='other_func', ctx=Load()))))])])
.. class:: AsyncFor(target, iter, body, orelse, type_comment)
AsyncWith(items, body, type_comment)
``async for`` loops and ``async with`` context managers. They have the same
fields as :class:`For` and :class:`With`, respectively. Only valid in the
body of an :class:`AsyncFunctionDef`.
.. note::
When a string is parsed by :func:`ast.parse`, operator nodes (subclasses
of :class:`ast.operator`, :class:`ast.unaryop`, :class:`ast.cmpop`,
:class:`ast.boolop` and :class:`ast.expr_context`) on the returned tree
will be singletons. Changes to one will be reflected in all other
occurrences of the same value (e.g. :class:`ast.Add`).
:mod:`ast` Helpers
------------------
Apart from the node classes, the :mod:`ast` module defines these utility functions
and classes for traversing abstract syntax trees:
.. function:: parse(source, filename='<unknown>', mode='exec', *, type_comments=False, feature_version=None, optimize=-1)
Parse the source into an AST node. Equivalent to ``compile(source,
filename, mode, flags=FLAGS_VALUE, optimize=optimize)``,
where ``FLAGS_VALUE`` is ``ast.PyCF_ONLY_AST`` if ``optimize <= 0``
and ``ast.PyCF_OPTIMIZED_AST`` otherwise.
If ``type_comments=True`` is given, the parser is modified to check
and return type comments as specified by :pep:`484` and :pep:`526`.
This is equivalent to adding :data:`ast.PyCF_TYPE_COMMENTS` to the
flags passed to :func:`compile`. This will report syntax errors
for misplaced type comments. Without this flag, type comments will
be ignored, and the ``type_comment`` field on selected AST nodes
will always be ``None``. In addition, the locations of ``# type:
ignore`` comments will be returned as the ``type_ignores``
attribute of :class:`Module` (otherwise it is always an empty list).
In addition, if ``mode`` is ``'func_type'``, the input syntax is
modified to correspond to :pep:`484` "signature type comments",
e.g. ``(str, int) -> List[str]``.
Setting ``feature_version`` to a tuple ``(major, minor)`` will result in
a "best-effort" attempt to parse using that Python version's grammar.
For example, setting ``feature_version=(3, 9)`` will attempt to disallow
parsing of :keyword:`match` statements.
Currently ``major`` must equal to ``3``. The lowest supported version is
``(3, 7)`` (and this may increase in future Python versions);
the highest is ``sys.version_info[0:2]``. "Best-effort" attempt means there
is no guarantee that the parse (or success of the parse) is the same as
when run on the Python version corresponding to ``feature_version``.
If source contains a null character (``\0``), :exc:`ValueError` is raised.
.. warning::
Note that successfully parsing source code into an AST object doesn't
guarantee that the source code provided is valid Python code that can
be executed as the compilation step can raise further :exc:`SyntaxError`
exceptions. For instance, the source ``return 42`` generates a valid
AST node for a return statement, but it cannot be compiled alone (it needs
to be inside a function node).
In particular, :func:`ast.parse` won't do any scoping checks, which the
compilation step does.
.. warning::
It is possible to crash the Python interpreter with a
sufficiently large/complex string due to stack depth limitations
in Python's AST compiler.
.. versionchanged:: 3.8
Added ``type_comments``, ``mode='func_type'`` and ``feature_version``.
.. versionchanged:: 3.13
The minimum supported version for ``feature_version`` is now ``(3, 7)``.
The ``optimize`` argument was added.
.. function:: unparse(ast_obj)
Unparse an :class:`ast.AST` object and generate a string with code
that would produce an equivalent :class:`ast.AST` object if parsed
back with :func:`ast.parse`.
.. warning::
The produced code string will not necessarily be equal to the original
code that generated the :class:`ast.AST` object (without any compiler
optimizations, such as constant tuples/frozensets).
.. warning::
Trying to unparse a highly complex expression would result with
:exc:`RecursionError`.
.. versionadded:: 3.9
.. function:: literal_eval(node_or_string)
Evaluate an expression node or a string containing only a Python literal or
container display. The string or node provided may only consist of the
following Python literal structures: strings, bytes, numbers, tuples, lists,
dicts, sets, booleans, ``None`` and ``Ellipsis``.
This can be used for evaluating strings containing Python values without the
need to parse the values oneself. It is not capable of evaluating
arbitrarily complex expressions, for example involving operators or
indexing.
This function had been documented as "safe" in the past without defining
what that meant. That was misleading. This is specifically designed not to
execute Python code, unlike the more general :func:`eval`. There is no
namespace, no name lookups, or ability to call out. But it is not free from
attack: A relatively small input can lead to memory exhaustion or to C stack
exhaustion, crashing the process. There is also the possibility for
excessive CPU consumption denial of service on some inputs. Calling it on
untrusted data is thus not recommended.
.. warning::
It is possible to crash the Python interpreter due to stack depth
limitations in Python's AST compiler.
It can raise :exc:`ValueError`, :exc:`TypeError`, :exc:`SyntaxError`,
:exc:`MemoryError` and :exc:`RecursionError` depending on the malformed
input.
.. versionchanged:: 3.2
Now allows bytes and set literals.
.. versionchanged:: 3.9
Now supports creating empty sets with ``'set()'``.
.. versionchanged:: 3.10
For string inputs, leading spaces and tabs are now stripped.
.. function:: get_docstring(node, clean=True)
Return the docstring of the given *node* (which must be a
:class:`FunctionDef`, :class:`AsyncFunctionDef`, :class:`ClassDef`,
or :class:`Module` node), or ``None`` if it has no docstring.
If *clean* is true, clean up the docstring's indentation with
:func:`inspect.cleandoc`.
.. versionchanged:: 3.5
:class:`AsyncFunctionDef` is now supported.
.. function:: get_source_segment(source, node, *, padded=False)
Get source code segment of the *source* that generated *node*.
If some location information (:attr:`~ast.AST.lineno`, :attr:`~ast.AST.end_lineno`,
:attr:`~ast.AST.col_offset`, or :attr:`~ast.AST.end_col_offset`) is missing, return ``None``.
If *padded* is ``True``, the first line of a multi-line statement will
be padded with spaces to match its original position.
.. versionadded:: 3.8
.. function:: fix_missing_locations(node)
When you compile a node tree with :func:`compile`, the compiler expects
:attr:`~ast.AST.lineno` and :attr:`~ast.AST.col_offset` attributes for every node that supports
them. This is rather tedious to fill in for generated nodes, so this helper
adds these attributes recursively where not already set, by setting them to
the values of the parent node. It works recursively starting at *node*.
.. function:: increment_lineno(node, n=1)
Increment the line number and end line number of each node in the tree
starting at *node* by *n*. This is useful to "move code" to a different
location in a file.
.. function:: copy_location(new_node, old_node)
Copy source location (:attr:`~ast.AST.lineno`, :attr:`~ast.AST.col_offset`, :attr:`~ast.AST.end_lineno`,
and :attr:`~ast.AST.end_col_offset`) from *old_node* to *new_node* if possible,
and return *new_node*.
.. function:: iter_fields(node)
Yield a tuple of ``(fieldname, value)`` for each field in ``node._fields``
that is present on *node*.
.. function:: iter_child_nodes(node)
Yield all direct child nodes of *node*, that is, all fields that are nodes
and all items of fields that are lists of nodes.
.. function:: walk(node)
Recursively yield all descendant nodes in the tree starting at *node*
(including *node* itself), in no specified order. This is useful if you only
want to modify nodes in place and don't care about the context.
.. class:: NodeVisitor()
A node visitor base class that walks the abstract syntax tree and calls a
visitor function for every node found. This function may return a value
which is forwarded by the :meth:`visit` method.
This class is meant to be subclassed, with the subclass adding visitor
methods.
.. method:: visit(node)
Visit a node. The default implementation calls the method called
:samp:`self.visit_{classname}` where *classname* is the name of the node
class, or :meth:`generic_visit` if that method doesn't exist.
.. method:: generic_visit(node)
This visitor calls :meth:`visit` on all children of the node.
Note that child nodes of nodes that have a custom visitor method won't be
visited unless the visitor calls :meth:`generic_visit` or visits them
itself.
.. method:: visit_Constant(node)
Handles all constant nodes.
Don't use the :class:`NodeVisitor` if you want to apply changes to nodes
during traversal. For this a special visitor exists
(:class:`NodeTransformer`) that allows modifications.
.. deprecated:: 3.8
Methods :meth:`!visit_Num`, :meth:`!visit_Str`, :meth:`!visit_Bytes`,
:meth:`!visit_NameConstant` and :meth:`!visit_Ellipsis` are deprecated
now and will not be called in future Python versions. Add the
:meth:`visit_Constant` method to handle all constant nodes.
.. class:: NodeTransformer()
A :class:`NodeVisitor` subclass that walks the abstract syntax tree and
allows modification of nodes.
The :class:`NodeTransformer` will walk the AST and use the return value of
the visitor methods to replace or remove the old node. If the return value
of the visitor method is ``None``, the node will be removed from its
location, otherwise it is replaced with the return value. The return value
may be the original node in which case no replacement takes place.
Here is an example transformer that rewrites all occurrences of name lookups
(``foo``) to ``data['foo']``::
class RewriteName(NodeTransformer):
def visit_Name(self, node):
return Subscript(
value=Name(id='data', ctx=Load()),
slice=Constant(value=node.id),
ctx=node.ctx
)
Keep in mind that if the node you're operating on has child nodes you must
either transform the child nodes yourself or call the :meth:`~ast.NodeVisitor.generic_visit`
method for the node first.
For nodes that were part of a collection of statements (that applies to all
statement nodes), the visitor may also return a list of nodes rather than
just a single node.
If :class:`NodeTransformer` introduces new nodes (that weren't part of
original tree) without giving them location information (such as
:attr:`~ast.AST.lineno`), :func:`fix_missing_locations` should be called with
the new sub-tree to recalculate the location information::
tree = ast.parse('foo', mode='eval')
new_tree = fix_missing_locations(RewriteName().visit(tree))
Usually you use the transformer like this::
node = YourTransformer().visit(node)
.. function:: dump(node, annotate_fields=True, include_attributes=False, *, indent=None, show_empty=False)
Return a formatted dump of the tree in *node*. This is mainly useful for
debugging purposes. If *annotate_fields* is true (by default),
the returned string will show the names and the values for fields.
If *annotate_fields* is false, the result string will be more compact by
omitting unambiguous field names. Attributes such as line
numbers and column offsets are not dumped by default. If this is wanted,
*include_attributes* can be set to true.
If *indent* is a non-negative integer or string, then the tree will be
pretty-printed with that indent level. An indent level
of 0, negative, or ``""`` will only insert newlines. ``None`` (the default)
selects the single line representation. Using a positive integer indent
indents that many spaces per level. If *indent* is a string (such as ``"\t"``),
that string is used to indent each level.
If *show_empty* is ``False`` (the default), empty lists and fields that are ``None``
will be omitted from the output.
.. versionchanged:: 3.9
Added the *indent* option.
.. versionchanged:: 3.13
Added the *show_empty* option.
.. doctest::
>>> print(ast.dump(ast.parse("""\
... async def f():
... await other_func()
... """), indent=4, show_empty=True))
Module(
body=[
AsyncFunctionDef(
name='f',
args=arguments(
posonlyargs=[],
args=[],
kwonlyargs=[],
kw_defaults=[],
defaults=[]),
body=[
Expr(
value=Await(
value=Call(
func=Name(id='other_func', ctx=Load()),
args=[],
keywords=[])))],
decorator_list=[],
type_params=[])],
type_ignores=[])
.. _ast-compiler-flags:
Compiler Flags
--------------
The following flags may be passed to :func:`compile` in order to change
effects on the compilation of a program:
.. data:: PyCF_ALLOW_TOP_LEVEL_AWAIT
Enables support for top-level ``await``, ``async for``, ``async with``
and async comprehensions.
.. versionadded:: 3.8
.. data:: PyCF_ONLY_AST
Generates and returns an abstract syntax tree instead of returning a
compiled code object.
.. data:: PyCF_OPTIMIZED_AST
The returned AST is optimized according to the *optimize* argument
in :func:`compile` or :func:`ast.parse`.
.. versionadded:: 3.13
.. data:: PyCF_TYPE_COMMENTS
Enables support for :pep:`484` and :pep:`526` style type comments
(``# type: <type>``, ``# type: ignore <stuff>``).
.. versionadded:: 3.8
.. function:: compare(a, b, /, *, compare_attributes=False)
Recursively compares two ASTs.
*compare_attributes* affects whether AST attributes are considered
in the comparison. If *compare_attributes* is ``False`` (default), then
attributes are ignored. Otherwise they must all be equal. This
option is useful to check whether the ASTs are structurally equal but
differ in whitespace or similar details. Attributes include line numbers
and column offsets.
.. versionadded:: 3.14
.. _ast-cli:
Command-Line Usage
------------------
.. versionadded:: 3.9
The :mod:`ast` module can be executed as a script from the command line.
It is as simple as:
.. code-block:: sh
python -m ast [-m <mode>] [-a] [infile]
The following options are accepted:
.. program:: ast
.. option:: -h, --help
Show the help message and exit.
.. option:: -m <mode>
--mode <mode>
Specify what kind of code must be compiled, like the *mode* argument
in :func:`parse`.
.. option:: --no-type-comments
Don't parse type comments.
.. option:: -a, --include-attributes
Include attributes such as line numbers and column offsets.
.. option:: -i <indent>
--indent <indent>
Indentation of nodes in AST (number of spaces).
If :file:`infile` is specified its contents are parsed to AST and dumped
to stdout. Otherwise, the content is read from stdin.
.. seealso::
`Green Tree Snakes <https://greentreesnakes.readthedocs.io/>`_, an external
documentation resource, has good details on working with Python ASTs.
`ASTTokens <https://asttokens.readthedocs.io/en/latest/user-guide.html>`_
annotates Python ASTs with the positions of tokens and text in the source
code that generated them. This is helpful for tools that make source code
transformations.
`leoAst.py <https://leo-editor.github.io/leo-editor/appendices.html#leoast-py>`_
unifies the
token-based and parse-tree-based views of python programs by inserting
two-way links between tokens and ast nodes.
`LibCST <https://libcst.readthedocs.io/>`_ parses code as a Concrete Syntax
Tree that looks like an ast tree and keeps all formatting details. It's
useful for building automated refactoring (codemod) applications and
linters.
`Parso <https://parso.readthedocs.io>`_ is a Python parser that supports
error recovery and round-trip parsing for different Python versions (in
multiple Python versions). Parso is also able to list multiple syntax errors
in your Python file.
|