summaryrefslogtreecommitdiffstats
path: root/Doc/library/collections.rst
blob: e18dfcfc34488127a91be85811302c8e61e13b70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

:mod:`collections` --- Container datatypes
==========================================

.. module:: collections
   :synopsis: Container datatypes
.. moduleauthor:: Raymond Hettinger <python@rcn.com>
.. sectionauthor:: Raymond Hettinger <python@rcn.com>


This module implements high-performance container datatypes.  Currently,
there are two datatypes, :class:`deque` and :class:`defaultdict`, and
one datatype factory function, :func:`namedtuple`. 

Besides the containers provided here, the optional :mod:`bsddb`
module offers the ability to create in-memory or file based ordered 
dictionaries with string keys using the :meth:`bsddb.btopen` method.

In addition to containers, the collections module provides some ABCs
(abstract base classes) that can be used to test whether a class 
provides a particular interface, for example, is it hashable or
a mapping. 

The specialized containers provided in this module provide alternatives
to Python's general purpose built-in containers, :class:`dict`, 
:class:`list`, :class:`set`, and :class:`tuple`.
Besides the containers provided here, the optional :mod:`bsddb`
module offers the ability to create in-memory or file based ordered 
dictionaries with string keys using the :meth:`bsddb.btopen` method.

In addition to containers, the collections module provides some ABCs
(abstract base classes) that can be used to test whether a class 
provides a particular interface, for example, is it hashable or
a mapping. 

ABCs - abstract base classes
----------------------------

The collections module offers the following ABCs:

=========================  ====================  ======================  ====================================================
ABC                        Inherits              Abstract Methods        Mixin Methods
=========================  ====================  ======================  ====================================================
:class:`Container`                               ``__contains__``
:class:`Hashable`                                ``__hash__``
:class:`Iterable`                                ``__iter__``
:class:`Iterator`          :class:`Iterable`     ``__next__``            ``__iter__``
:class:`Sized`          			 ``__len__``

:class:`Mapping`           :class:`Sized`,       ``__getitem__``,        ``__contains__``, ``keys``, ``items``, ``values``,
                           :class:`Iterable`,    ``__len__``. and        ``get``, ``__eq__``, and ``__ne__``
                           :class:`Container`    ``__iter__``

:class:`MutableMapping`    :class:`Mapping`      ``__getitem__``         Inherited Mapping methods and
                                                 ``__setitem__``,        ``pop``, ``popitem``, ``clear``, ``update``,
                                                 ``__delitem__``,        and ``setdefault``
						 ``__iter__``, and
                                                 ``__len__``

:class:`Sequence`          :class:`Sized`,       ``__getitem__``         ``__contains__``. ``__iter__``, ``__reversed__``.
                           :class:`Iterable`,    and ``__len__``         ``index``, and ``count``
                           :class:`Container`

:class:`MutableSequnce`    :class:`Sequence`     ``__getitem__``         Inherited Sequence methods and
                                                 ``__delitem__``,        ``append``, ``reverse``, ``extend``, ``pop``,
                                                 ``insert``,             ``remove``, and ``__iadd__``
                                                 and ``__len__``

:class:`Set`               :class:`Sized`,       ``__len__``,            ``__le__``, ``__lt__``, ``__eq__``, ``__ne__``,
                           :class:`Iterable`,    ``__iter__``, and       ``__gt__``, ``__ge__``, ``__and__``, ``__or__``
                           :class:`Container`    ``__contains__``        ``__sub__``, ``__xor__``, and ``isdisjoint``

:class:`MutableSet`        :class:`Set`          ``add`` and             Inherited Set methods and
                                                 ``discard``             ``clear``, ``pop``, ``remove``, ``__ior__``,
                                                                         ``__iand__``, ``__ixor__``, and ``__isub__``
=========================  ====================  ======================  ====================================================

These ABCs allow us to ask classes or instances if they provide
particular functionality, for example::

    size = None
    if isinstance(myvar, collections.Sized):
	size = len(myvar)

Several of the ABCs are also useful as mixins that make it easier to develop
classes supporting container APIs.  For example, to write a class supporting
the full :class:`Set` API, it only necessary to supply the three underlying
abstract methods: :meth:`__contains__`, :meth:`__iter__`, and :meth:`__len__`.
The ABC supplies the remaining methods such as :meth:`__and__` and
:meth:`isdisjoint` ::

    class ListBasedSet(collections.Set):
         ''' Alternate set implementation favoring space over speed
             and not requiring the set elements to be hashable. '''
         def __init__(self, iterable):
             self.elements = lst = []
             for value in iterable:
                 if value not in lst:
                     lst.append(value)
         def __iter__(self):
             return iter(self.elements)
         def __contains__(self, value):
             return value in self.elements
         def __len__(self):
             return len(self.elements)

    s1 = ListBasedSet('abcdef')
    s2 = ListBasedSet('defghi')
    overlap = s1 & s2            # The __and__() method is supported automatically

Notes on using :class:`Set` and :class:`MutableSet` as a mixin:

(1) 
   Since some set operations create new sets, the default mixin methods need
   a way to create new instances from an iterable. The class constructor is 
   assumed to have a signature in the form ``ClassName(iterable)``.  
   That assumption is factored-out to a singleinternal classmethod called
   :meth:`_from_iterable` which calls ``cls(iterable)`` to produce a new set.
   If the :class:`Set` mixin is being used in a class with a different
   constructor signature, you will need to override :meth:`from_iterable` 
   with a classmethod that can construct new instances from 
   an iterable argument.

(2)
   To override the comparisons (presumably for speed, as the
   semantics are fixed), redefine :meth:`__le__` and
   then the other operations will automatically follow suit.

(3)
   The :class:`Set` mixin provides a :meth:`_hash` method to compute a hash value
   for the set; however, :meth:`__hash__` is not defined because not all sets
   are hashable or immutable.  To add set hashabilty using mixins,
   inherit from both :meth:`Set` and :meth:`Hashable`, then define
   ``__hash__ = Set._hash``.

(For more about ABCs, see the :mod:`abc` module and :pep:`3119`.)


.. _deque-objects:

:class:`deque` objects
----------------------


.. class:: deque([iterable[, maxlen]])

   Returns a new deque object initialized left-to-right (using :meth:`append`) with
   data from *iterable*.  If *iterable* is not specified, the new deque is empty.

   Deques are a generalization of stacks and queues (the name is pronounced "deck"
   and is short for "double-ended queue").  Deques support thread-safe, memory
   efficient appends and pops from either side of the deque with approximately the
   same O(1) performance in either direction.

   Though :class:`list` objects support similar operations, they are optimized for
   fast fixed-length operations and incur O(n) memory movement costs for
   ``pop(0)`` and ``insert(0, v)`` operations which change both the size and
   position of the underlying data representation.


   If *maxlen* is not specified or is *None*, deques may grow to an
   arbitrary length.  Otherwise, the deque is bounded to the specified maximum
   length.  Once a bounded length deque is full, when new items are added, a
   corresponding number of items are discarded from the opposite end.  Bounded
   length deques provide functionality similar to the ``tail`` filter in
   Unix. They are also useful for tracking transactions and other pools of data
   where only the most recent activity is of interest.


Deque objects support the following methods:

.. method:: deque.append(x)

   Add *x* to the right side of the deque.


.. method:: deque.appendleft(x)

   Add *x* to the left side of the deque.


.. method:: deque.clear()

   Remove all elements from the deque leaving it with length 0.


.. method:: deque.extend(iterable)

   Extend the right side of the deque by appending elements from the iterable
   argument.


.. method:: deque.extendleft(iterable)

   Extend the left side of the deque by appending elements from *iterable*.  Note,
   the series of left appends results in reversing the order of elements in the
   iterable argument.


.. method:: deque.pop()

   Remove and return an element from the right side of the deque. If no elements
   are present, raises an :exc:`IndexError`.


.. method:: deque.popleft()

   Remove and return an element from the left side of the deque. If no elements are
   present, raises an :exc:`IndexError`.


.. method:: deque.remove(value)

   Removed the first occurrence of *value*.  If not found, raises a
   :exc:`ValueError`.


.. method:: deque.rotate(n)

   Rotate the deque *n* steps to the right.  If *n* is negative, rotate to the
   left.  Rotating one step to the right is equivalent to:
   ``d.appendleft(d.pop())``.

In addition to the above, deques support iteration, pickling, ``len(d)``,
``reversed(d)``, ``copy.copy(d)``, ``copy.deepcopy(d)``, membership testing with
the :keyword:`in` operator, and subscript references such as ``d[-1]``.

Example::

   >>> from collections import deque
   >>> d = deque('ghi')                 # make a new deque with three items
   >>> for elem in d:                   # iterate over the deque's elements
   ...     print(elem.upper())
   G
   H
   I

   >>> d.append('j')                    # add a new entry to the right side
   >>> d.appendleft('f')                # add a new entry to the left side
   >>> d                                # show the representation of the deque
   deque(['f', 'g', 'h', 'i', 'j'])

   >>> d.pop()                          # return and remove the rightmost item
   'j'
   >>> d.popleft()                      # return and remove the leftmost item
   'f'
   >>> list(d)                          # list the contents of the deque
   ['g', 'h', 'i']
   >>> d[0]                             # peek at leftmost item
   'g'
   >>> d[-1]                            # peek at rightmost item
   'i'

   >>> list(reversed(d))                # list the contents of a deque in reverse
   ['i', 'h', 'g']
   >>> 'h' in d                         # search the deque
   True
   >>> d.extend('jkl')                  # add multiple elements at once
   >>> d
   deque(['g', 'h', 'i', 'j', 'k', 'l'])
   >>> d.rotate(1)                      # right rotation
   >>> d
   deque(['l', 'g', 'h', 'i', 'j', 'k'])
   >>> d.rotate(-1)                     # left rotation
   >>> d
   deque(['g', 'h', 'i', 'j', 'k', 'l'])

   >>> deque(reversed(d))               # make a new deque in reverse order
   deque(['l', 'k', 'j', 'i', 'h', 'g'])
   >>> d.clear()                        # empty the deque
   >>> d.pop()                          # cannot pop from an empty deque
   Traceback (most recent call last):
     File "<pyshell#6>", line 1, in -toplevel-
       d.pop()
   IndexError: pop from an empty deque

   >>> d.extendleft('abc')              # extendleft() reverses the input order
   >>> d
   deque(['c', 'b', 'a'])


.. _deque-recipes:

:class:`deque` Recipes
^^^^^^^^^^^^^^^^^^^^^^

This section shows various approaches to working with deques.

The :meth:`rotate` method provides a way to implement :class:`deque` slicing and
deletion.  For example, a pure python implementation of ``del d[n]`` relies on
the :meth:`rotate` method to position elements to be popped::

   def delete_nth(d, n):
       d.rotate(-n)
       d.popleft()
       d.rotate(n)

To implement :class:`deque` slicing, use a similar approach applying
:meth:`rotate` to bring a target element to the left side of the deque. Remove
old entries with :meth:`popleft`, add new entries with :meth:`extend`, and then
reverse the rotation.
With minor variations on that approach, it is easy to implement Forth style
stack manipulations such as ``dup``, ``drop``, ``swap``, ``over``, ``pick``,
``rot``, and ``roll``.

Multi-pass data reduction algorithms can be succinctly expressed and efficiently
coded by extracting elements with multiple calls to :meth:`popleft`, applying
a reduction function, and calling :meth:`append` to add the result back to the
deque.

For example, building a balanced binary tree of nested lists entails reducing
two adjacent nodes into one by grouping them in a list::

   >>> def maketree(iterable):
   ...     d = deque(iterable)
   ...     while len(d) > 1:
   ...         pair = [d.popleft(), d.popleft()]
   ...         d.append(pair)
   ...     return list(d)
   ...
   >>> print(maketree('abcdefgh'))
   [[[['a', 'b'], ['c', 'd']], [['e', 'f'], ['g', 'h']]]]

Bounded length deques provide functionality similar to the ``tail`` filter
in Unix::

   def tail(filename, n=10):
       'Return the last n lines of a file'
       return deque(open(filename), n)

.. _defaultdict-objects:

:class:`defaultdict` objects
----------------------------


.. class:: defaultdict([default_factory[, ...]])

   Returns a new dictionary-like object.  :class:`defaultdict` is a subclass of the
   builtin :class:`dict` class.  It overrides one method and adds one writable
   instance variable.  The remaining functionality is the same as for the
   :class:`dict` class and is not documented here.

   The first argument provides the initial value for the :attr:`default_factory`
   attribute; it defaults to ``None``. All remaining arguments are treated the same
   as if they were passed to the :class:`dict` constructor, including keyword
   arguments.


:class:`defaultdict` objects support the following method in addition to the
standard :class:`dict` operations:

.. method:: defaultdict.__missing__(key)

   If the :attr:`default_factory` attribute is ``None``, this raises an
   :exc:`KeyError` exception with the *key* as argument.

   If :attr:`default_factory` is not ``None``, it is called without arguments to
   provide a default value for the given *key*, this value is inserted in the
   dictionary for the *key*, and returned.

   If calling :attr:`default_factory` raises an exception this exception is
   propagated unchanged.

   This method is called by the :meth:`__getitem__` method of the :class:`dict`
   class when the requested key is not found; whatever it returns or raises is then
   returned or raised by :meth:`__getitem__`.

:class:`defaultdict` objects support the following instance variable:


.. attribute:: defaultdict.default_factory

   This attribute is used by the :meth:`__missing__` method; it is initialized from
   the first argument to the constructor, if present, or to ``None``,  if absent.


.. _defaultdict-examples:

:class:`defaultdict` Examples
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Using :class:`list` as the :attr:`default_factory`, it is easy to group a
sequence of key-value pairs into a dictionary of lists::

   >>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
   >>> d = defaultdict(list)
   >>> for k, v in s:
   ...     d[k].append(v)
   ...
   >>> d.items()
   [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

When each key is encountered for the first time, it is not already in the
mapping; so an entry is automatically created using the :attr:`default_factory`
function which returns an empty :class:`list`.  The :meth:`list.append`
operation then attaches the value to the new list.  When keys are encountered
again, the look-up proceeds normally (returning the list for that key) and the
:meth:`list.append` operation adds another value to the list. This technique is
simpler and faster than an equivalent technique using :meth:`dict.setdefault`::

   >>> d = {}
   >>> for k, v in s:
   ...     d.setdefault(k, []).append(v)
   ...
   >>> d.items()
   [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

Setting the :attr:`default_factory` to :class:`int` makes the
:class:`defaultdict` useful for counting (like a bag or multiset in other
languages)::

   >>> s = 'mississippi'
   >>> d = defaultdict(int)
   >>> for k in s:
   ...     d[k] += 1
   ...
   >>> d.items()
   [('i', 4), ('p', 2), ('s', 4), ('m', 1)]

When a letter is first encountered, it is missing from the mapping, so the
:attr:`default_factory` function calls :func:`int` to supply a default count of
zero.  The increment operation then builds up the count for each letter.

The function :func:`int` which always returns zero is just a special case of
constant functions.  A faster and more flexible way to create constant functions
is to use a lambda function which can supply any constant value (not just
zero)::

   >>> def constant_factory(value):
   ...     return lambda: value
   >>> d = defaultdict(constant_factory('<missing>'))
   >>> d.update(name='John', action='ran')
   >>> '%(name)s %(action)s to %(object)s' % d
   'John ran to <missing>'

Setting the :attr:`default_factory` to :class:`set` makes the
:class:`defaultdict` useful for building a dictionary of sets::

   >>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
   >>> d = defaultdict(set)
   >>> for k, v in s:
   ...     d[k].add(v)
   ...
   >>> d.items()
   [('blue', set([2, 4])), ('red', set([1, 3]))]


.. _named-tuple-factory:

:func:`namedtuple` Factory Function for Tuples with Named Fields
----------------------------------------------------------------

Named tuples assign meaning to each position in a tuple and allow for more readable,
self-documenting code.  They can be used wherever regular tuples are used, and
they add the ability to access fields by name instead of position index.

.. function:: namedtuple(typename, fieldnames, [verbose])

   Returns a new tuple subclass named *typename*.  The new subclass is used to
   create tuple-like objects that have fields accessable by attribute lookup as
   well as being indexable and iterable.  Instances of the subclass also have a
   helpful docstring (with typename and fieldnames) and a helpful :meth:`__repr__`
   method which lists the tuple contents in a ``name=value`` format.

   The *fieldnames* are a single string with each fieldname separated by whitespace
   and/or commas, for example ``'x y'`` or ``'x, y'``.  Alternatively, *fieldnames*
   can be a sequence of strings such as ``['x', 'y']``.

   Any valid Python identifier may be used for a fieldname except for names
   starting with an underscore.  Valid identifiers consist of letters, digits,
   and underscores but do not start with a digit or underscore and cannot be
   a :mod:`keyword` such as *class*, *for*, *return*, *global*, *pass*,
   or *raise*.

   If *verbose* is true, the class definition is printed just before being built.

   Named tuple instances do not have per-instance dictionaries, so they are
   lightweight and require no more memory than regular tuples.

Example::

   >>> Point = namedtuple('Point', 'x y', verbose=True)
   class Point(tuple):
           'Point(x, y)'

           __slots__ = ()

           _fields = ('x', 'y')

           def __new__(cls, x, y):
               return tuple.__new__(cls, (x, y))

           @classmethod
           def _make(cls, iterable):
               'Make a new Point object from a sequence or iterable'
               result = tuple.__new__(cls, iterable)
               if len(result) != 2:
                   raise TypeError('Expected 2 arguments, got %d' % len(result))
               return result

           def __repr__(self):
               return 'Point(x=%r, y=%r)' % self

           def _asdict(t):
               'Return a new dict which maps field names to their values'
               return {'x': t[0], 'y': t[1]}

           def _replace(self, **kwds):
               'Return a new Point object replacing specified fields with new values'
               result = self._make(map(kwds.pop, ('x', 'y'), self))
               if kwds:
                   raise ValueError('Got unexpected field names: %r' % kwds.keys())
               return result

           x = property(itemgetter(0))
           y = property(itemgetter(1))

   >>> p = Point(11, y=22)     # instantiate with positional or keyword arguments
   >>> p[0] + p[1]             # indexable like the plain tuple (11, 22)
   33
   >>> x, y = p                # unpack like a regular tuple
   >>> x, y
   (11, 22)
   >>> p.x + p.y               # fields also accessable by name
   33
   >>> p                       # readable __repr__ with a name=value style
   Point(x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned
by the :mod:`csv` or :mod:`sqlite3` modules::

   EmployeeRecord = namedtuple('EmployeeRecord', 'name, age, title, department, paygrade')

   import csv
   for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):
       print(emp.name, emp.title)

   import sqlite3
   conn = sqlite3.connect('/companydata')
   cursor = conn.cursor()
   cursor.execute('SELECT name, age, title, department, paygrade FROM employees')
   for emp in map(EmployeeRecord._make, cursor.fetchall()):
       print(emp.name, emp.title)

In addition to the methods inherited from tuples, named tuples support
three additional methods and one attribute.  To prevent conflicts with
field names, the method and attribute names start with an underscore.

.. method:: somenamedtuple._make(iterable)

   Class method that makes a new instance from an existing sequence or iterable.

::

      >>> t = [11, 22]
      >>> Point._make(t)
      Point(x=11, y=22)

.. method:: somenamedtuple._asdict()

   Return a new dict which maps field names to their corresponding values:

::

      >>> p._asdict()
      {'x': 11, 'y': 22}
      
.. method:: somenamedtuple._replace(kwargs)

   Return a new instance of the named tuple replacing specified fields with new values:

::

      >>> p = Point(x=11, y=22)
      >>> p._replace(x=33)
      Point(x=33, y=22)

      >>> for partnum, record in inventory.items():
      ...     inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())

.. attribute:: somenamedtuple._fields

   Tuple of strings listing the field names.  Useful for introspection
   and for creating new named tuple types from existing named tuples.

::

      >>> p._fields            # view the field names
      ('x', 'y')

      >>> Color = namedtuple('Color', 'red green blue')
      >>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
      >>> Pixel(11, 22, 128, 255, 0)
      Pixel(x=11, y=22, red=128, green=255, blue=0)

To retrieve a field whose name is stored in a string, use the :func:`getattr`
function::

    >>> getattr(p, 'x')
    11

To convert a dictionary to a named tuple, use the double-star-operator [#]_::

   >>> d = {'x': 11, 'y': 22}
   >>> Point(**d)
   Point(x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change
functionality with a subclass.  Here is how to add a calculated field and
a fixed-width print format::

    >>> class Point(namedtuple('Point', 'x y')):
    ...     __slots__ = ()
    ...     @property
    ...     def hypot(self):
    ...         return (self.x ** 2 + self.y ** 2) ** 0.5
    ...     def __str__(self):
    ...         return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)

    >>> for p in Point(3, 4), Point(14, 5/7.):
    ...     print(p)

    Point: x= 3.000  y= 4.000  hypot= 5.000
    Point: x=14.000  y= 0.714  hypot=14.018

The subclass shown above sets ``__slots__`` to an empty tuple.  This keeps
keep memory requirements low by preventing the creation of instance dictionaries.


Subclassing is not useful for adding new, stored fields.  Instead, simply
create a new named tuple type from the :attr:`_fields` attribute::

    >>> Point3D = namedtuple('Point3D', Point._fields + ('z',))

Default values can be implemented by using :meth:`_replace` to
customize a prototype instance::

    >>> Account = namedtuple('Account', 'owner balance transaction_count')
    >>> default_account = Account('<owner name>', 0.0, 0)
    >>> johns_account = default_account._replace(owner='John')

.. rubric:: Footnotes

.. [#] For information on the double-star-operator see
   :ref:`tut-unpacking-arguments` and :ref:`calls`.



:class:`UserDict` objects
-------------------------

The class, :class:`UserDict` acts as a wrapper around dictionary objects.  
The need for this class has been partially supplanted by the ability to 
subclass directly from :class:`dict`; however, this class can be easier
to work with because the underlying dictionary is accessible as an
attribute.

.. class:: UserDict([initialdata])

   Class that simulates a dictionary.  The instance's contents are kept in a
   regular dictionary, which is accessible via the :attr:`data` attribute of
   :class:`UserDict` instances.  If *initialdata* is provided, :attr:`data` is
   initialized with its contents; note that a reference to *initialdata* will not
   be kept, allowing it be used for other purposes.

In addition to supporting the methods and operations of mappings, 
:class:`UserDict` instances provide the following attribute:

.. attribute:: UserDict.data

   A real dictionary used to store the contents of the :class:`UserDict` class.



:class:`UserList` objects
-------------------------

This class acts as a wrapper around list objects.  It is a useful base class
for your own list-like classes which can inherit from them and override 
existing methods or add new ones.  In this way, one can add new behaviors to
lists.

The need for this class has been partially supplanted by the ability to 
subclass directly from :class:`list`; however, this class can be easier
to work with because the underlying list is accessible as an attribute.

.. class:: UserList([list])

   Class that simulates a list.  The instance's contents are kept in a regular
   list, which is accessible via the :attr:`data` attribute of :class:`UserList`
   instances.  The instance's contents are initially set to a copy of *list*,
   defaulting to the empty list ``[]``.  *list* can be any iterable, for
   example a real Python list or a :class:`UserList` object.

In addition to supporting the methods and operations of mutable sequences, 
:class:`UserList` instances provide the following attribute:

.. attribute:: UserList.data

   A real :class:`list` object used to store the contents of the 
   :class:`UserList` class.

**Subclassing requirements:** Subclasses of :class:`UserList` are expect to
offer a constructor which can be called with either no arguments or one
argument.  List operations which return a new sequence attempt to create an
instance of the actual implementation class.  To do so, it assumes that the
constructor can be called with a single parameter, which is a sequence object
used as a data source.

If a derived class does not wish to comply with this requirement, all of the
special methods supported by this class will need to be overridden; please
consult the sources for information about the methods which need to be provided
in that case.