summaryrefslogtreecommitdiffstats
path: root/Doc/library/collections.rst
blob: 88d7981eb987dafa6f8d250e854a98cab747de71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
:mod:`collections` --- Container datatypes
==========================================

.. module:: collections
    :synopsis: Container datatypes
.. moduleauthor:: Raymond Hettinger <python@rcn.com>
.. sectionauthor:: Raymond Hettinger <python@rcn.com>

.. testsetup:: *

    from collections import *
    import itertools
    __name__ = '<doctest>'

**Source code:** :source:`Lib/collections/__init__.py`

--------------

This module implements specialized container datatypes providing alternatives to
Python's general purpose built-in containers, :class:`dict`, :class:`list`,
:class:`set`, and :class:`tuple`.

=====================   ====================================================================
:func:`namedtuple`      factory function for creating tuple subclasses with named fields
:class:`deque`          list-like container with fast appends and pops on either end
:class:`ChainMap`       dict-like class for creating a single view of multiple mappings
:class:`Counter`        dict subclass for counting hashable objects
:class:`OrderedDict`    dict subclass that remembers the order entries were added
:class:`defaultdict`    dict subclass that calls a factory function to supply missing values
:class:`UserDict`       wrapper around dictionary objects for easier dict subclassing
:class:`UserList`       wrapper around list objects for easier list subclassing
:class:`UserString`     wrapper around string objects for easier string subclassing
=====================   ====================================================================

.. versionchanged:: 3.3
    Moved :ref:`collections-abstract-base-classes` to the :mod:`collections.abc` module.
    For backwards compatibility, they continue to be visible in this module
    as well.


:class:`ChainMap` objects
-------------------------

.. versionadded:: 3.3

A :class:`ChainMap` class is provided for quickly linking a number of mappings
so they can be treated as a single unit.  It is often much faster than creating
a new dictionary and running multiple :meth:`~dict.update` calls.

The class can be used to simulate nested scopes and is useful in templating.

.. class:: ChainMap(*maps)

    A :class:`ChainMap` groups multiple dicts or other mappings together to
    create a single, updateable view.  If no *maps* are specified, a single empty
    dictionary is provided so that a new chain always has at least one mapping.

    The underlying mappings are stored in a list.  That list is public and can
    accessed or updated using the *maps* attribute.  There is no other state.

    Lookups search the underlying mappings successively until a key is found.  In
    contrast, writes, updates, and deletions only operate on the first mapping.

    A :class:`ChainMap` incorporates the underlying mappings by reference.  So, if
    one of the underlying mappings gets updated, those changes will be reflected
    in :class:`ChainMap`.

    All of the usual dictionary methods are supported.  In addition, there is a
    *maps* attribute, a method for creating new subcontexts, and a property for
    accessing all but the first mapping:

    .. attribute:: maps

        A user updateable list of mappings.  The list is ordered from
        first-searched to last-searched.  It is the only stored state and can
        be modified to change which mappings are searched.  The list should
        always contain at least one mapping.

    .. method:: new_child()

        Returns a new :class:`ChainMap` containing a new :class:`dict` followed by
        all of the maps in the current instance.  A call to ``d.new_child()`` is
        equivalent to: ``ChainMap({}, *d.maps)``.  This method is used for
        creating subcontexts that can be updated without altering values in any
        of the parent mappings.

    .. attribute:: parents

        Property returning a new :class:`ChainMap` containing all of the maps in
        the current instance except the first one.  This is useful for skipping
        the first map in the search.  Use cases are similar to those for the
        :keyword:`nonlocal` keyword used in :term:`nested scopes <nested
        scope>`.  The use cases also parallel those for the built-in
        :func:`super` function.  A reference to ``d.parents`` is equivalent to:
        ``ChainMap(*d.maps[1:])``.


.. seealso::

    * The `MultiContext class
      <http://svn.enthought.com/svn/enthought/CodeTools/trunk/enthought/contexts/multi_context.py>`_
      in the Enthought `CodeTools package
      <https://github.com/enthought/codetools>`_ has options to support
      writing to any mapping in the chain.

    * Django's `Context class
      <http://code.djangoproject.com/browser/django/trunk/django/template/context.py>`_
      for templating is a read-only chain of mappings.  It also features
      pushing and popping of contexts similar to the
      :meth:`~collections.ChainMap.new_child` method and the
      :meth:`~collections.ChainMap.parents` property.

    * The `Nested Contexts recipe
      <http://code.activestate.com/recipes/577434/>`_ has options to control
      whether writes and other mutations apply only to the first mapping or to
      any mapping in the chain.

    * A `greatly simplified read-only version of Chainmap
      <http://code.activestate.com/recipes/305268/>`_.


:class:`ChainMap` Examples and Recipes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This section shows various approaches to working with chained maps.


Example of simulating Python's internal lookup chain::

        import builtins
        pylookup = ChainMap(locals(), globals(), vars(builtins))

Example of letting user specified command-line arguments take precedence over
environment variables which in turn take precedence over default values::

        import os, argparse

        defaults = {'color': 'red', 'user': 'guest'}

        parser = argparse.ArgumentParser()
        parser.add_argument('-u', '--user')
        parser.add_argument('-c', '--color')
        namespace = parser.parse_args()
        command_line_args = {k:v for k, v in vars(namespace).items() if v}

        combined = ChainMap(command_line_args, os.environ, defaults)
        print(combined['color'])
        print(combined['user'])

Example patterns for using the :class:`ChainMap` class to simulate nested
contexts::

        c = ChainMap()        # Create root context
        d = c.new_child()     # Create nested child context
        e = c.new_child()     # Child of c, independent from d
        e.maps[0]             # Current context dictionary -- like Python's locals()
        e.maps[-1]            # Root context -- like Python's globals()
        e.parents             # Enclosing context chain -- like Python's nonlocals

        d['x']                # Get first key in the chain of contexts
        d['x'] = 1            # Set value in current context
        del['x']              # Delete from current context
        list(d)               # All nested values
        k in d                # Check all nested values
        len(d)                # Number of nested values
        d.items()             # All nested items
        dict(d)               # Flatten into a regular dictionary

The :class:`ChainMap` class only makes updates (writes and deletions) to the
first mapping in the chain while lookups will search the full chain.  However,
if deep writes and deletions are desired, it is easy to make a subclass that
updates keys found deeper in the chain::

    class DeepChainMap(ChainMap):
        'Variant of ChainMap that allows direct updates to inner scopes'

        def __setitem__(self, key, value):
            for mapping in self.maps:
                if key in mapping:
                    mapping[key] = value
                    return
            self.maps[0][key] = value

        def __delitem__(self, key):
            for mapping in self.maps:
                if key in mapping:
                    del mapping[key]
                    return
            raise KeyError(key)

    >>> d = DeepChainMap({'zebra': 'black'}, {'elephant' : 'blue'}, {'lion' : 'yellow'})
    >>> d['lion'] = 'orange'         # update an existing key two levels down
    >>> d['snake'] = 'red'           # new keys get added to the topmost dict
    >>> del d['elephant']            # remove an existing key one level down
    DeepChainMap({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})


:class:`Counter` objects
------------------------

A counter tool is provided to support convenient and rapid tallies.
For example::

    >>> # Tally occurrences of words in a list
    >>> cnt = Counter()
    >>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:
    ...     cnt[word] += 1
    >>> cnt
    Counter({'blue': 3, 'red': 2, 'green': 1})

    >>> # Find the ten most common words in Hamlet
    >>> import re
    >>> words = re.findall('\w+', open('hamlet.txt').read().lower())
    >>> Counter(words).most_common(10)
    [('the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
     ('you', 554),  ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]

.. class:: Counter([iterable-or-mapping])

    A :class:`Counter` is a :class:`dict` subclass for counting hashable objects.
    It is an unordered collection where elements are stored as dictionary keys
    and their counts are stored as dictionary values.  Counts are allowed to be
    any integer value including zero or negative counts.  The :class:`Counter`
    class is similar to bags or multisets in other languages.

    Elements are counted from an *iterable* or initialized from another
    *mapping* (or counter):

        >>> c = Counter()                           # a new, empty counter
        >>> c = Counter('gallahad')                 # a new counter from an iterable
        >>> c = Counter({'red': 4, 'blue': 2})      # a new counter from a mapping
        >>> c = Counter(cats=4, dogs=8)             # a new counter from keyword args

    Counter objects have a dictionary interface except that they return a zero
    count for missing items instead of raising a :exc:`KeyError`:

        >>> c = Counter(['eggs', 'ham'])
        >>> c['bacon']                              # count of a missing element is zero
        0

    Setting a count to zero does not remove an element from a counter.
    Use ``del`` to remove it entirely:

        >>> c['sausage'] = 0                        # counter entry with a zero count
        >>> del c['sausage']                        # del actually removes the entry

    .. versionadded:: 3.1


    Counter objects support three methods beyond those available for all
    dictionaries:

    .. method:: elements()

        Return an iterator over elements repeating each as many times as its
        count.  Elements are returned in arbitrary order.  If an element's count
        is less than one, :meth:`elements` will ignore it.

            >>> c = Counter(a=4, b=2, c=0, d=-2)
            >>> list(c.elements())
            ['a', 'a', 'a', 'a', 'b', 'b']

    .. method:: most_common([n])

        Return a list of the *n* most common elements and their counts from the
        most common to the least.  If *n* is not specified, :func:`most_common`
        returns *all* elements in the counter.  Elements with equal counts are
        ordered arbitrarily:

            >>> Counter('abracadabra').most_common(3)
            [('a', 5), ('r', 2), ('b', 2)]

    .. method:: subtract([iterable-or-mapping])

        Elements are subtracted from an *iterable* or from another *mapping*
        (or counter).  Like :meth:`dict.update` but subtracts counts instead
        of replacing them.  Both inputs and outputs may be zero or negative.

            >>> c = Counter(a=4, b=2, c=0, d=-2)
            >>> d = Counter(a=1, b=2, c=3, d=4)
            >>> c.subtract(d)
            Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})

        .. versionadded:: 3.2

    The usual dictionary methods are available for :class:`Counter` objects
    except for two which work differently for counters.

    .. method:: fromkeys(iterable)

        This class method is not implemented for :class:`Counter` objects.

    .. method:: update([iterable-or-mapping])

        Elements are counted from an *iterable* or added-in from another
        *mapping* (or counter).  Like :meth:`dict.update` but adds counts
        instead of replacing them.  Also, the *iterable* is expected to be a
        sequence of elements, not a sequence of ``(key, value)`` pairs.

Common patterns for working with :class:`Counter` objects::

    sum(c.values())                 # total of all counts
    c.clear()                       # reset all counts
    list(c)                         # list unique elements
    set(c)                          # convert to a set
    dict(c)                         # convert to a regular dictionary
    c.items()                       # convert to a list of (elem, cnt) pairs
    Counter(dict(list_of_pairs))    # convert from a list of (elem, cnt) pairs
    c.most_common()[:-n:-1]         # n least common elements
    +c                              # remove zero and negative counts

Several mathematical operations are provided for combining :class:`Counter`
objects to produce multisets (counters that have counts greater than zero).
Addition and subtraction combine counters by adding or subtracting the counts
of corresponding elements.  Intersection and union return the minimum and
maximum of corresponding counts.  Each operation can accept inputs with signed
counts, but the output will exclude results with counts of zero or less.

    >>> c = Counter(a=3, b=1)
    >>> d = Counter(a=1, b=2)
    >>> c + d                       # add two counters together:  c[x] + d[x]
    Counter({'a': 4, 'b': 3})
    >>> c - d                       # subtract (keeping only positive counts)
    Counter({'a': 2})
    >>> c & d                       # intersection:  min(c[x], d[x])
    Counter({'a': 1, 'b': 1})
    >>> c | d                       # union:  max(c[x], d[x])
    Counter({'a': 3, 'b': 2})

Unary addition and substraction are shortcuts for adding an empty counter
or subtracting from an empty counter.

    >>> c = Counter(a=2, b=-4)
    >>> +c
    Counter({'a': 2})
    >>> -c
    Counter({'b': 4})

.. versionadded:: 3.3
    Added support for unary plus, unary minus, and in-place multiset operations.

.. note::

    Counters were primarily designed to work with positive integers to represent
    running counts; however, care was taken to not unnecessarily preclude use
    cases needing other types or negative values.  To help with those use cases,
    this section documents the minimum range and type restrictions.

    * The :class:`Counter` class itself is a dictionary subclass with no
        restrictions on its keys and values.  The values are intended to be numbers
        representing counts, but you *could* store anything in the value field.

    * The :meth:`most_common` method requires only that the values be orderable.

    * For in-place operations such as ``c[key] += 1``, the value type need only
        support addition and subtraction.  So fractions, floats, and decimals would
        work and negative values are supported.  The same is also true for
        :meth:`update` and :meth:`subtract` which allow negative and zero values
        for both inputs and outputs.

    * The multiset methods are designed only for use cases with positive values.
        The inputs may be negative or zero, but only outputs with positive values
        are created.  There are no type restrictions, but the value type needs to
        support addition, subtraction, and comparison.

    * The :meth:`elements` method requires integer counts.  It ignores zero and
        negative counts.

.. seealso::

    * `Counter class <http://code.activestate.com/recipes/576611/>`_
      adapted for Python 2.5 and an early `Bag recipe
      <http://code.activestate.com/recipes/259174/>`_ for Python 2.4.

    * `Bag class <http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html>`_
      in Smalltalk.

    * Wikipedia entry for `Multisets <http://en.wikipedia.org/wiki/Multiset>`_.

    * `C++ multisets <http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm>`_
      tutorial with examples.

    * For mathematical operations on multisets and their use cases, see
      *Knuth, Donald. The Art of Computer Programming Volume II,
      Section 4.6.3, Exercise 19*.

    * To enumerate all distinct multisets of a given size over a given set of
      elements, see :func:`itertools.combinations_with_replacement`.

            map(Counter, combinations_with_replacement('ABC', 2)) --> AA AB AC BB BC CC


:class:`deque` objects
----------------------

.. class:: deque([iterable, [maxlen]])

    Returns a new deque object initialized left-to-right (using :meth:`append`) with
    data from *iterable*.  If *iterable* is not specified, the new deque is empty.

    Deques are a generalization of stacks and queues (the name is pronounced "deck"
    and is short for "double-ended queue").  Deques support thread-safe, memory
    efficient appends and pops from either side of the deque with approximately the
    same O(1) performance in either direction.

    Though :class:`list` objects support similar operations, they are optimized for
    fast fixed-length operations and incur O(n) memory movement costs for
    ``pop(0)`` and ``insert(0, v)`` operations which change both the size and
    position of the underlying data representation.


    If *maxlen* is not specified or is *None*, deques may grow to an
    arbitrary length.  Otherwise, the deque is bounded to the specified maximum
    length.  Once a bounded length deque is full, when new items are added, a
    corresponding number of items are discarded from the opposite end.  Bounded
    length deques provide functionality similar to the ``tail`` filter in
    Unix. They are also useful for tracking transactions and other pools of data
    where only the most recent activity is of interest.


    Deque objects support the following methods:

    .. method:: append(x)

        Add *x* to the right side of the deque.


    .. method:: appendleft(x)

        Add *x* to the left side of the deque.


    .. method:: clear()

        Remove all elements from the deque leaving it with length 0.


    .. method:: count(x)

        Count the number of deque elements equal to *x*.

        .. versionadded:: 3.2


    .. method:: extend(iterable)

        Extend the right side of the deque by appending elements from the iterable
        argument.


    .. method:: extendleft(iterable)

        Extend the left side of the deque by appending elements from *iterable*.
        Note, the series of left appends results in reversing the order of
        elements in the iterable argument.


    .. method:: pop()

        Remove and return an element from the right side of the deque. If no
        elements are present, raises an :exc:`IndexError`.


    .. method:: popleft()

        Remove and return an element from the left side of the deque. If no
        elements are present, raises an :exc:`IndexError`.


    .. method:: remove(value)

        Removed the first occurrence of *value*.  If not found, raises a
        :exc:`ValueError`.


    .. method:: reverse()

        Reverse the elements of the deque in-place and then return ``None``.

        .. versionadded:: 3.2


    .. method:: rotate(n)

        Rotate the deque *n* steps to the right.  If *n* is negative, rotate to
        the left.  Rotating one step to the right is equivalent to:
        ``d.appendleft(d.pop())``.


    Deque objects also provide one read-only attribute:

    .. attribute:: maxlen

        Maximum size of a deque or *None* if unbounded.

        .. versionadded:: 3.1


In addition to the above, deques support iteration, pickling, ``len(d)``,
``reversed(d)``, ``copy.copy(d)``, ``copy.deepcopy(d)``, membership testing with
the :keyword:`in` operator, and subscript references such as ``d[-1]``.  Indexed
access is O(1) at both ends but slows to O(n) in the middle.  For fast random
access, use lists instead.

Example:

.. doctest::

    >>> from collections import deque
    >>> d = deque('ghi')                 # make a new deque with three items
    >>> for elem in d:                   # iterate over the deque's elements
    ...     print(elem.upper())
    G
    H
    I

    >>> d.append('j')                    # add a new entry to the right side
    >>> d.appendleft('f')                # add a new entry to the left side
    >>> d                                # show the representation of the deque
    deque(['f', 'g', 'h', 'i', 'j'])

    >>> d.pop()                          # return and remove the rightmost item
    'j'
    >>> d.popleft()                      # return and remove the leftmost item
    'f'
    >>> list(d)                          # list the contents of the deque
    ['g', 'h', 'i']
    >>> d[0]                             # peek at leftmost item
    'g'
    >>> d[-1]                            # peek at rightmost item
    'i'

    >>> list(reversed(d))                # list the contents of a deque in reverse
    ['i', 'h', 'g']
    >>> 'h' in d                         # search the deque
    True
    >>> d.extend('jkl')                  # add multiple elements at once
    >>> d
    deque(['g', 'h', 'i', 'j', 'k', 'l'])
    >>> d.rotate(1)                      # right rotation
    >>> d
    deque(['l', 'g', 'h', 'i', 'j', 'k'])
    >>> d.rotate(-1)                     # left rotation
    >>> d
    deque(['g', 'h', 'i', 'j', 'k', 'l'])

    >>> deque(reversed(d))               # make a new deque in reverse order
    deque(['l', 'k', 'j', 'i', 'h', 'g'])
    >>> d.clear()                        # empty the deque
    >>> d.pop()                          # cannot pop from an empty deque
    Traceback (most recent call last):
        File "<pyshell#6>", line 1, in -toplevel-
            d.pop()
    IndexError: pop from an empty deque

    >>> d.extendleft('abc')              # extendleft() reverses the input order
    >>> d
    deque(['c', 'b', 'a'])


:class:`deque` Recipes
^^^^^^^^^^^^^^^^^^^^^^

This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the ``tail`` filter
in Unix::

    def tail(filename, n=10):
        'Return the last n lines of a file'
        with open(filename) as f:
            return deque(f, n)

Another approach to using deques is to maintain a sequence of recently
added elements by appending to the right and popping to the left::

    def moving_average(iterable, n=3):
        # moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0
        # http://en.wikipedia.org/wiki/Moving_average
        it = iter(iterable)
        d = deque(itertools.islice(it, n-1))
        d.appendleft(0)
        s = sum(d)
        for elem in it:
            s += elem - d.popleft()
            d.append(elem)
            yield s / n

The :meth:`rotate` method provides a way to implement :class:`deque` slicing and
deletion.  For example, a pure Python implementation of ``del d[n]`` relies on
the :meth:`rotate` method to position elements to be popped::

    def delete_nth(d, n):
        d.rotate(-n)
        d.popleft()
        d.rotate(n)

To implement :class:`deque` slicing, use a similar approach applying
:meth:`rotate` to bring a target element to the left side of the deque. Remove
old entries with :meth:`popleft`, add new entries with :meth:`extend`, and then
reverse the rotation.
With minor variations on that approach, it is easy to implement Forth style
stack manipulations such as ``dup``, ``drop``, ``swap``, ``over``, ``pick``,
``rot``, and ``roll``.


:class:`defaultdict` objects
----------------------------

.. class:: defaultdict([default_factory[, ...]])

    Returns a new dictionary-like object.  :class:`defaultdict` is a subclass of the
    built-in :class:`dict` class.  It overrides one method and adds one writable
    instance variable.  The remaining functionality is the same as for the
    :class:`dict` class and is not documented here.

    The first argument provides the initial value for the :attr:`default_factory`
    attribute; it defaults to ``None``. All remaining arguments are treated the same
    as if they were passed to the :class:`dict` constructor, including keyword
    arguments.


    :class:`defaultdict` objects support the following method in addition to the
    standard :class:`dict` operations:

    .. method:: __missing__(key)

        If the :attr:`default_factory` attribute is ``None``, this raises a
        :exc:`KeyError` exception with the *key* as argument.

        If :attr:`default_factory` is not ``None``, it is called without arguments
        to provide a default value for the given *key*, this value is inserted in
        the dictionary for the *key*, and returned.

        If calling :attr:`default_factory` raises an exception this exception is
        propagated unchanged.

        This method is called by the :meth:`__getitem__` method of the
        :class:`dict` class when the requested key is not found; whatever it
        returns or raises is then returned or raised by :meth:`__getitem__`.

        Note that :meth:`__missing__` is *not* called for any operations besides
        :meth:`__getitem__`. This means that :meth:`get` will, like normal
        dictionaries, return ``None`` as a default rather than using
        :attr:`default_factory`.


    :class:`defaultdict` objects support the following instance variable:


    .. attribute:: default_factory

        This attribute is used by the :meth:`__missing__` method; it is
        initialized from the first argument to the constructor, if present, or to
        ``None``, if absent.


:class:`defaultdict` Examples
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Using :class:`list` as the :attr:`default_factory`, it is easy to group a
sequence of key-value pairs into a dictionary of lists:

    >>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
    >>> d = defaultdict(list)
    >>> for k, v in s:
    ...     d[k].append(v)
    ...
    >>> list(d.items())
    [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

When each key is encountered for the first time, it is not already in the
mapping; so an entry is automatically created using the :attr:`default_factory`
function which returns an empty :class:`list`.  The :meth:`list.append`
operation then attaches the value to the new list.  When keys are encountered
again, the look-up proceeds normally (returning the list for that key) and the
:meth:`list.append` operation adds another value to the list. This technique is
simpler and faster than an equivalent technique using :meth:`dict.setdefault`:

    >>> d = {}
    >>> for k, v in s:
    ...     d.setdefault(k, []).append(v)
    ...
    >>> list(d.items())
    [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

Setting the :attr:`default_factory` to :class:`int` makes the
:class:`defaultdict` useful for counting (like a bag or multiset in other
languages):

    >>> s = 'mississippi'
    >>> d = defaultdict(int)
    >>> for k in s:
    ...     d[k] += 1
    ...
    >>> list(d.items())
    [('i', 4), ('p', 2), ('s', 4), ('m', 1)]

When a letter is first encountered, it is missing from the mapping, so the
:attr:`default_factory` function calls :func:`int` to supply a default count of
zero.  The increment operation then builds up the count for each letter.

The function :func:`int` which always returns zero is just a special case of
constant functions.  A faster and more flexible way to create constant functions
is to use a lambda function which can supply any constant value (not just
zero):

    >>> def constant_factory(value):
    ...     return lambda: value
    >>> d = defaultdict(constant_factory('<missing>'))
    >>> d.update(name='John', action='ran')
    >>> '%(name)s %(action)s to %(object)s' % d
    'John ran to <missing>'

Setting the :attr:`default_factory` to :class:`set` makes the
:class:`defaultdict` useful for building a dictionary of sets:

    >>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
    >>> d = defaultdict(set)
    >>> for k, v in s:
    ...     d[k].add(v)
    ...
    >>> list(d.items())
    [('blue', {2, 4}), ('red', {1, 3})]


:func:`namedtuple` Factory Function for Tuples with Named Fields
----------------------------------------------------------------

Named tuples assign meaning to each position in a tuple and allow for more readable,
self-documenting code.  They can be used wherever regular tuples are used, and
they add the ability to access fields by name instead of position index.

.. function:: namedtuple(typename, field_names, verbose=False, rename=False)

    Returns a new tuple subclass named *typename*.  The new subclass is used to
    create tuple-like objects that have fields accessible by attribute lookup as
    well as being indexable and iterable.  Instances of the subclass also have a
    helpful docstring (with typename and field_names) and a helpful :meth:`__repr__`
    method which lists the tuple contents in a ``name=value`` format.

    The *field_names* are a single string with each fieldname separated by whitespace
    and/or commas, for example ``'x y'`` or ``'x, y'``.  Alternatively, *field_names*
    can be a sequence of strings such as ``['x', 'y']``.

    Any valid Python identifier may be used for a fieldname except for names
    starting with an underscore.  Valid identifiers consist of letters, digits,
    and underscores but do not start with a digit or underscore and cannot be
    a :mod:`keyword` such as *class*, *for*, *return*, *global*, *pass*,
    or *raise*.

    If *rename* is true, invalid fieldnames are automatically replaced
    with positional names.  For example, ``['abc', 'def', 'ghi', 'abc']`` is
    converted to ``['abc', '_1', 'ghi', '_3']``, eliminating the keyword
    ``def`` and the duplicate fieldname ``abc``.

    If *verbose* is true, the class definition is printed after it is
    built.  This option is outdated; instead, it is simpler to print the
    :attr:`_source` attribute.

    Named tuple instances do not have per-instance dictionaries, so they are
    lightweight and require no more memory than regular tuples.

    .. versionchanged:: 3.1
        Added support for *rename*.


.. doctest::
    :options: +NORMALIZE_WHITESPACE

    >>> # Basic example
    >>> Point = namedtuple('Point', ['x', 'y'])
    >>> p = Point(11, y=22)     # instantiate with positional or keyword arguments
    >>> p[0] + p[1]             # indexable like the plain tuple (11, 22)
    33
    >>> x, y = p                # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y               # fields also accessible by name
    33
    >>> p                       # readable __repr__ with a name=value style
    Point(x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned
by the :mod:`csv` or :mod:`sqlite3` modules::

    EmployeeRecord = namedtuple('EmployeeRecord', 'name, age, title, department, paygrade')

    import csv
    for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):
        print(emp.name, emp.title)

    import sqlite3
    conn = sqlite3.connect('/companydata')
    cursor = conn.cursor()
    cursor.execute('SELECT name, age, title, department, paygrade FROM employees')
    for emp in map(EmployeeRecord._make, cursor.fetchall()):
        print(emp.name, emp.title)

In addition to the methods inherited from tuples, named tuples support
three additional methods and two attributes.  To prevent conflicts with
field names, the method and attribute names start with an underscore.

.. classmethod:: somenamedtuple._make(iterable)

    Class method that makes a new instance from an existing sequence or iterable.

    .. doctest::

        >>> t = [11, 22]
        >>> Point._make(t)
        Point(x=11, y=22)

.. method:: somenamedtuple._asdict()

    Return a new :class:`OrderedDict` which maps field names to their corresponding
    values.  Note, this method is no longer needed now that the same effect can
    be achieved by using the built-in :func:`vars` function::

        >>> vars(p)
        OrderedDict([('x', 11), ('y', 22)])

    .. versionchanged:: 3.1
        Returns an :class:`OrderedDict` instead of a regular :class:`dict`.

.. method:: somenamedtuple._replace(kwargs)

    Return a new instance of the named tuple replacing specified fields with new
    values::

        >>> p = Point(x=11, y=22)
        >>> p._replace(x=33)
        Point(x=33, y=22)

        >>> for partnum, record in inventory.items():
        ...     inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())

.. attribute:: somenamedtuple._source

    A string with the pure Python source code used to create the named
    tuple class.  The source makes the named tuple self-documenting.
    It can be printed, executed using :func:`exec`, or saved to a file
    and imported.

    .. versionadded:: 3.3

.. attribute:: somenamedtuple._fields

    Tuple of strings listing the field names.  Useful for introspection
    and for creating new named tuple types from existing named tuples.

    .. doctest::

        >>> p._fields            # view the field names
        ('x', 'y')

        >>> Color = namedtuple('Color', 'red green blue')
        >>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
        >>> Pixel(11, 22, 128, 255, 0)
        Pixel(x=11, y=22, red=128, green=255, blue=0)

To retrieve a field whose name is stored in a string, use the :func:`getattr`
function:

    >>> getattr(p, 'x')
    11

To convert a dictionary to a named tuple, use the double-star-operator
(as described in :ref:`tut-unpacking-arguments`):

    >>> d = {'x': 11, 'y': 22}
    >>> Point(**d)
    Point(x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change
functionality with a subclass.  Here is how to add a calculated field and
a fixed-width print format:

    >>> class Point(namedtuple('Point', 'x y')):
        __slots__ = ()
        @property
        def hypot(self):
            return (self.x ** 2 + self.y ** 2) ** 0.5
        def __str__(self):
            return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)

    >>> for p in Point(3, 4), Point(14, 5/7):
        print(p)
    Point: x= 3.000  y= 4.000  hypot= 5.000
    Point: x=14.000  y= 0.714  hypot=14.018

The subclass shown above sets ``__slots__`` to an empty tuple.  This helps
keep memory requirements low by preventing the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields.  Instead, simply
create a new named tuple type from the :attr:`_fields` attribute:

    >>> Point3D = namedtuple('Point3D', Point._fields + ('z',))

Default values can be implemented by using :meth:`_replace` to
customize a prototype instance:

    >>> Account = namedtuple('Account', 'owner balance transaction_count')
    >>> default_account = Account('<owner name>', 0.0, 0)
    >>> johns_account = default_account._replace(owner='John')
    >>> janes_account = default_account._replace(owner='Jane')

Enumerated constants can be implemented with named tuples, but it is simpler
and more efficient to use a simple class declaration:

    >>> Status = namedtuple('Status', 'open pending closed')._make(range(3))
    >>> Status.open, Status.pending, Status.closed
    (0, 1, 2)
    >>> class Status:
        open, pending, closed = range(3)

.. seealso::

    * `Named tuple recipe <http://code.activestate.com/recipes/500261/>`_
      adapted for Python 2.4.

    * `Recipe for named tuple abstract base class with a metaclass mix-in
      <http://code.activestate.com/recipes/577629-namedtupleabc-abstract-base-class-mix-in-for-named/>`_
      by Jan Kaliszewski.  Besides providing an :term:`abstract base class` for
      named tuples, it also supports an alternate :term:`metaclass`-based
      constructor that is convenient for use cases where named tuples are being
      subclassed.


:class:`OrderedDict` objects
----------------------------

Ordered dictionaries are just like regular dictionaries but they remember the
order that items were inserted.  When iterating over an ordered dictionary,
the items are returned in the order their keys were first added.

.. class:: OrderedDict([items])

    Return an instance of a dict subclass, supporting the usual :class:`dict`
    methods.  An *OrderedDict* is a dict that remembers the order that keys
    were first inserted. If a new entry overwrites an existing entry, the
    original insertion position is left unchanged.  Deleting an entry and
    reinserting it will move it to the end.

    .. versionadded:: 3.1

    .. method:: popitem(last=True)

        The :meth:`popitem` method for ordered dictionaries returns and removes a
        (key, value) pair.  The pairs are returned in LIFO order if *last* is true
        or FIFO order if false.

    .. method:: move_to_end(key, last=True)

        Move an existing *key* to either end of an ordered dictionary.  The item
        is moved to the right end if *last* is true (the default) or to the
        beginning if *last* is false.  Raises :exc:`KeyError` if the *key* does
        not exist::

            >>> d = OrderedDict.fromkeys('abcde')
            >>> d.move_to_end('b')
            >>> ''.join(d.keys())
            'acdeb'
            >>> d.move_to_end('b', last=False)
            >>> ''.join(d.keys())
            'bacde'

        .. versionadded:: 3.2

In addition to the usual mapping methods, ordered dictionaries also support
reverse iteration using :func:`reversed`.

Equality tests between :class:`OrderedDict` objects are order-sensitive
and are implemented as ``list(od1.items())==list(od2.items())``.
Equality tests between :class:`OrderedDict` objects and other
:class:`Mapping` objects are order-insensitive like regular dictionaries.
This allows :class:`OrderedDict` objects to be substituted anywhere a
regular dictionary is used.

The :class:`OrderedDict` constructor and :meth:`update` method both accept
keyword arguments, but their order is lost because Python's function call
semantics pass-in keyword arguments using a regular unordered dictionary.

.. seealso::

    `Equivalent OrderedDict recipe <http://code.activestate.com/recipes/576693/>`_
    that runs on Python 2.4 or later.

:class:`OrderedDict` Examples and Recipes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Since an ordered dictionary remembers its insertion order, it can be used
in conjuction with sorting to make a sorted dictionary::

    >>> # regular unsorted dictionary
    >>> d = {'banana': 3, 'apple':4, 'pear': 1, 'orange': 2}

    >>> # dictionary sorted by key
    >>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
    OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])

    >>> # dictionary sorted by value
    >>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
    OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])

    >>> # dictionary sorted by length of the key string
    >>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
    OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])

The new sorted dictionaries maintain their sort order when entries
are deleted.  But when new keys are added, the keys are appended
to the end and the sort is not maintained.

It is also straight-forward to create an ordered dictionary variant
that the remembers the order the keys were *last* inserted.
If a new entry overwrites an existing entry, the
original insertion position is changed and moved to the end::

    class LastUpdatedOrderedDict(OrderedDict):
        'Store items in the order the keys were last added'

        def __setitem__(self, key, value):
            if key in self:
                del self[key]
            OrderedDict.__setitem__(self, key, value)

An ordered dictionary can be combined with the :class:`Counter` class
so that the counter remembers the order elements are first encountered::

    class OrderedCounter(Counter, OrderedDict):
        'Counter that remembers the order elements are first encountered'

        def __repr__(self):
            return '%s(%r)' % (self.__class__.__name__, OrderedDict(self))

        def __reduce__(self):
            return self.__class__, (OrderedDict(self),)


:class:`UserDict` objects
-------------------------

The class, :class:`UserDict` acts as a wrapper around dictionary objects.
The need for this class has been partially supplanted by the ability to
subclass directly from :class:`dict`; however, this class can be easier
to work with because the underlying dictionary is accessible as an
attribute.

.. class:: UserDict([initialdata])

    Class that simulates a dictionary.  The instance's contents are kept in a
    regular dictionary, which is accessible via the :attr:`data` attribute of
    :class:`UserDict` instances.  If *initialdata* is provided, :attr:`data` is
    initialized with its contents; note that a reference to *initialdata* will not
    be kept, allowing it be used for other purposes.

    In addition to supporting the methods and operations of mappings,
    :class:`UserDict` instances provide the following attribute:

    .. attribute:: data

        A real dictionary used to store the contents of the :class:`UserDict`
        class.



:class:`UserList` objects
-------------------------

This class acts as a wrapper around list objects.  It is a useful base class
for your own list-like classes which can inherit from them and override
existing methods or add new ones.  In this way, one can add new behaviors to
lists.

The need for this class has been partially supplanted by the ability to
subclass directly from :class:`list`; however, this class can be easier
to work with because the underlying list is accessible as an attribute.

.. class:: UserList([list])

    Class that simulates a list.  The instance's contents are kept in a regular
    list, which is accessible via the :attr:`data` attribute of :class:`UserList`
    instances.  The instance's contents are initially set to a copy of *list*,
    defaulting to the empty list ``[]``.  *list* can be any iterable, for
    example a real Python list or a :class:`UserList` object.

    In addition to supporting the methods and operations of mutable sequences,
    :class:`UserList` instances provide the following attribute:

    .. attribute:: data

        A real :class:`list` object used to store the contents of the
        :class:`UserList` class.

**Subclassing requirements:** Subclasses of :class:`UserList` are expect to
offer a constructor which can be called with either no arguments or one
argument.  List operations which return a new sequence attempt to create an
instance of the actual implementation class.  To do so, it assumes that the
constructor can be called with a single parameter, which is a sequence object
used as a data source.

If a derived class does not wish to comply with this requirement, all of the
special methods supported by this class will need to be overridden; please
consult the sources for information about the methods which need to be provided
in that case.

:class:`UserString` objects
---------------------------

The class, :class:`UserString` acts as a wrapper around string objects.
The need for this class has been partially supplanted by the ability to
subclass directly from :class:`str`; however, this class can be easier
to work with because the underlying string is accessible as an
attribute.

.. class:: UserString([sequence])

    Class that simulates a string or a Unicode string object.  The instance's
    content is kept in a regular string object, which is accessible via the
    :attr:`data` attribute of :class:`UserString` instances.  The instance's
    contents are initially set to a copy of *sequence*.  The *sequence* can
    be an instance of :class:`bytes`, :class:`str`, :class:`UserString` (or a
    subclass) or an arbitrary sequence which can be converted into a string using
    the built-in :func:`str` function.