1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
:mod:`fractions` --- Rational numbers
=====================================
.. module:: fractions
:synopsis: Rational numbers.
.. moduleauthor:: Jeffrey Yasskin <jyasskin at gmail.com>
.. sectionauthor:: Jeffrey Yasskin <jyasskin at gmail.com>
The :mod:`fractions` module provides support for rational number arithmetic.
A Fraction instance can be constructed from a pair of integers, from
another rational number, or from a string.
.. class:: Fraction(numerator=0, denominator=1)
Fraction(other_fraction)
Fraction(string)
The first version requires that *numerator* and *denominator* are
instances of :class:`numbers.Integral` and returns a new
:class:`Fraction` instance with value ``numerator/denominator``. If
*denominator* is :const:`0`, it raises a
:exc:`ZeroDivisionError`. The second version requires that
*other_fraction* is an instance of :class:`numbers.Rational` and
returns an :class:`Fraction` instance with the same value. The
last version of the constructor expects a string
instance in one of two possible forms. The first form is::
[sign] numerator ['/' denominator]
where the optional ``sign`` may be either '+' or '-' and
``numerator`` and ``denominator`` (if present) are strings of
decimal digits. The second permitted form is that of a number
containing a decimal point::
[sign] integer '.' [fraction] | [sign] '.' fraction
where ``integer`` and ``fraction`` are strings of digits. In
either form the input string may also have leading and/or trailing
whitespace. Here are some examples::
>>> from fractions import Fraction
>>> Fraction(16, -10)
Fraction(-8, 5)
>>> Fraction(123)
Fraction(123, 1)
>>> Fraction()
Fraction(0, 1)
>>> Fraction('3/7')
Fraction(3, 7)
[40794 refs]
>>> Fraction(' -3/7 ')
Fraction(-3, 7)
>>> Fraction('1.414213 \t\n')
Fraction(1414213, 1000000)
>>> Fraction('-.125')
Fraction(-1, 8)
The :class:`Fraction` class inherits from the abstract base class
:class:`numbers.Rational`, and implements all of the methods and
operations from that class. :class:`Fraction` instances are hashable,
and should be treated as immutable. In addition,
:class:`Fraction` has the following methods:
.. method:: from_float(flt)
This class method constructs a :class:`Fraction` representing the exact
value of *flt*, which must be a :class:`float`. Beware that
``Fraction.from_float(0.3)`` is not the same value as ``Fraction(3, 10)``
.. method:: from_decimal(dec)
This class method constructs a :class:`Fraction` representing the exact
value of *dec*, which must be a :class:`decimal.Decimal` instance.
.. method:: limit_denominator(max_denominator=1000000)
Finds and returns the closest :class:`Fraction` to ``self`` that has
denominator at most max_denominator. This method is useful for finding
rational approximations to a given floating-point number:
>>> from fractions import Fraction
>>> Fraction('3.1415926535897932').limit_denominator(1000)
Fraction(355, 113)
or for recovering a rational number that's represented as a float:
>>> from math import pi, cos
>>> Fraction.from_float(cos(pi/3))
Fraction(4503599627370497, 9007199254740992)
>>> Fraction.from_float(cos(pi/3)).limit_denominator()
Fraction(1, 2)
.. method:: __floor__()
Returns the greatest :class:`int` ``<= self``. This method can
also be accessed through the :func:`math.floor` function:
>>> from math import floor
>>> floor(Fraction(355, 113))
3
.. method:: __ceil__()
Returns the least :class:`int` ``>= self``. This method can
also be accessed through the :func:`math.ceil` function.
.. method:: __round__()
__round__(ndigits)
The first version returns the nearest :class:`int` to ``self``,
rounding half to even. The second version rounds ``self`` to the
nearest multiple of ``Fraction(1, 10**ndigits)`` (logically, if
``ndigits`` is negative), again rounding half toward even. This
method can also be accessed through the :func:`round` function.
.. function:: gcd(a, b)
Return the greatest common divisor of the integers *a* and *b*. If either
*a* or *b* is nonzero, then the absolute value of ``gcd(a, b)`` is the
largest integer that divides both *a* and *b*. ``gcd(a,b)`` has the same
sign as *b* if *b* is nonzero; otherwise it takes the sign of *a*. ``gcd(0,
0)`` returns ``0``.
.. seealso::
Module :mod:`numbers`
The abstract base classes making up the numeric tower.
|