summaryrefslogtreecommitdiffstats
path: root/Doc/library/functools.rst
blob: c46b7997c1b41c654cb24d5b9deda32813d248ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
:mod:`functools` --- Higher-order functions and operations on callable objects
==============================================================================

.. module:: functools
   :synopsis: Higher-order functions and operations on callable objects.
.. moduleauthor:: Peter Harris <scav@blueyonder.co.uk>
.. moduleauthor:: Raymond Hettinger <python@rcn.com>
.. moduleauthor:: Nick Coghlan <ncoghlan@gmail.com>
.. moduleauthor:: Ɓukasz Langa <lukasz@langa.pl>
.. sectionauthor:: Peter Harris <scav@blueyonder.co.uk>

**Source code:** :source:`Lib/functools.py`

--------------

The :mod:`functools` module is for higher-order functions: functions that act on
or return other functions. In general, any callable object can be treated as a
function for the purposes of this module.

The :mod:`functools` module defines the following functions:

.. function:: cmp_to_key(func)

   Transform an old-style comparison function to a key function.  Used with
   tools that accept key functions (such as :func:`sorted`, :func:`min`,
   :func:`max`, :func:`heapq.nlargest`, :func:`heapq.nsmallest`,
   :func:`itertools.groupby`).  This function is primarily used as a transition
   tool for programs being converted from Python 2 which supported the use of
   comparison functions.

   A comparison function is any callable that accept two arguments, compares them,
   and returns a negative number for less-than, zero for equality, or a positive
   number for greater-than.  A key function is a callable that accepts one
   argument and returns another value indicating the position in the desired
   collation sequence.

   Example::

       sorted(iterable, key=cmp_to_key(locale.strcoll))  # locale-aware sort order

   .. versionadded:: 3.2


.. decorator:: lru_cache(maxsize=128, typed=False)

   Decorator to wrap a function with a memoizing callable that saves up to the
   *maxsize* most recent calls.  It can save time when an expensive or I/O bound
   function is periodically called with the same arguments.

   Since a dictionary is used to cache results, the positional and keyword
   arguments to the function must be hashable.

   If *maxsize* is set to None, the LRU feature is disabled and the cache can
   grow without bound.  The LRU feature performs best when *maxsize* is a
   power-of-two.

   If *typed* is set to True, function arguments of different types will be
   cached separately.  For example, ``f(3)`` and ``f(3.0)`` will be treated
   as distinct calls with distinct results.

   To help measure the effectiveness of the cache and tune the *maxsize*
   parameter, the wrapped function is instrumented with a :func:`cache_info`
   function that returns a :term:`named tuple` showing *hits*, *misses*,
   *maxsize* and *currsize*.  In a multi-threaded environment, the hits
   and misses are approximate.

   The decorator also provides a :func:`cache_clear` function for clearing or
   invalidating the cache.

   The original underlying function is accessible through the
   :attr:`__wrapped__` attribute.  This is useful for introspection, for
   bypassing the cache, or for rewrapping the function with a different cache.

   An `LRU (least recently used) cache
   <http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used>`_ works
   best when the most recent calls are the best predictors of upcoming calls (for
   example, the most popular articles on a news server tend to change each day).
   The cache's size limit assures that the cache does not grow without bound on
   long-running processes such as web servers.

   Example of an LRU cache for static web content::

        @lru_cache(maxsize=32)
        def get_pep(num):
            'Retrieve text of a Python Enhancement Proposal'
            resource = 'http://www.python.org/dev/peps/pep-%04d/' % num
            try:
                with urllib.request.urlopen(resource) as s:
                    return s.read()
            except urllib.error.HTTPError:
                return 'Not Found'

        >>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:
        ...     pep = get_pep(n)
        ...     print(n, len(pep))

        >>> get_pep.cache_info()
        CacheInfo(hits=3, misses=8, maxsize=32, currsize=8)

   Example of efficiently computing
   `Fibonacci numbers <http://en.wikipedia.org/wiki/Fibonacci_number>`_
   using a cache to implement a
   `dynamic programming <http://en.wikipedia.org/wiki/Dynamic_programming>`_
   technique::

        @lru_cache(maxsize=None)
        def fib(n):
            if n < 2:
                return n
            return fib(n-1) + fib(n-2)

        >>> [fib(n) for n in range(16)]
        [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

        >>> fib.cache_info()
        CacheInfo(hits=28, misses=16, maxsize=None, currsize=16)

   .. versionadded:: 3.2

   .. versionchanged:: 3.3
      Added the *typed* option.

.. decorator:: total_ordering

   Given a class defining one or more rich comparison ordering methods, this
   class decorator supplies the rest.  This simplifies the effort involved
   in specifying all of the possible rich comparison operations:

   The class must define one of :meth:`__lt__`, :meth:`__le__`,
   :meth:`__gt__`, or :meth:`__ge__`.
   In addition, the class should supply an :meth:`__eq__` method.

   For example::

       @total_ordering
       class Student:
           def _is_valid_operand(self, other):
               return (hasattr(other, "lastname") and
                       hasattr(other, "firstname"))
           def __eq__(self, other):
               if not self._is_valid_operand(other):
                   return NotImplemented
               return ((self.lastname.lower(), self.firstname.lower()) ==
                       (other.lastname.lower(), other.firstname.lower()))
           def __lt__(self, other):
               if not self._is_valid_operand(other):
                   return NotImplemented
               return ((self.lastname.lower(), self.firstname.lower()) <
                       (other.lastname.lower(), other.firstname.lower()))

   .. note::

      While this decorator makes it easy to create well behaved totally
      ordered types, it *does* come at the cost of slower execution and
      more complex stack traces for the derived comparison methods. If
      performance benchmarking indicates this is a bottleneck for a given
      application, implementing all six rich comparison methods instead is
      likely to provide an easy speed boost.

   .. versionadded:: 3.2

   .. versionchanged:: 3.4
      Returning NotImplemented from the underlying comparison function for
      unrecognised types is now supported.

.. function:: partial(func, *args, **keywords)

   Return a new :class:`partial` object which when called will behave like *func*
   called with the positional arguments *args* and keyword arguments *keywords*. If
   more arguments are supplied to the call, they are appended to *args*. If
   additional keyword arguments are supplied, they extend and override *keywords*.
   Roughly equivalent to::

      def partial(func, *args, **keywords):
          def newfunc(*fargs, **fkeywords):
              newkeywords = keywords.copy()
              newkeywords.update(fkeywords)
              return func(*(args + fargs), **newkeywords)
          newfunc.func = func
          newfunc.args = args
          newfunc.keywords = keywords
          return newfunc

   The :func:`partial` is used for partial function application which "freezes"
   some portion of a function's arguments and/or keywords resulting in a new object
   with a simplified signature.  For example, :func:`partial` can be used to create
   a callable that behaves like the :func:`int` function where the *base* argument
   defaults to two:

      >>> from functools import partial
      >>> basetwo = partial(int, base=2)
      >>> basetwo.__doc__ = 'Convert base 2 string to an int.'
      >>> basetwo('10010')
      18


.. class:: partialmethod(func, *args, **keywords)

   Return a new :class:`partialmethod` descriptor which behaves
   like :class:`partial` except that it is designed to be used as a method
   definition rather than being directly callable.

   *func* must be a :term:`descriptor` or a callable (objects which are both,
   like normal functions, are handled as descriptors).

   When *func* is a descriptor (such as a normal Python function,
   :func:`classmethod`, :func:`staticmethod`, :func:`abstractmethod` or
   another instance of :class:`partialmethod`), calls to ``__get__`` are
   delegated to the underlying descriptor, and an appropriate
   :class:`partial` object returned as the result.

   When *func* is a non-descriptor callable, an appropriate bound method is
   created dynamically. This behaves like a normal Python function when
   used as a method: the *self* argument will be inserted as the first
   positional argument, even before the *args* and *keywords* supplied to
   the :class:`partialmethod` constructor.

   Example::

      >>> class Cell(object):
      ...     def __init__(self):
      ...         self._alive = False
      ...     @property
      ...     def alive(self):
      ...         return self._alive
      ...     def set_state(self, state):
      ...         self._alive = bool(state)
      ...     set_alive = partialmethod(set_state, True)
      ...     set_dead = partialmethod(set_state, False)
      ...
      >>> c = Cell()
      >>> c.alive
      False
      >>> c.set_alive()
      >>> c.alive
      True

   .. versionadded:: 3.4


.. function:: reduce(function, iterable[, initializer])

   Apply *function* of two arguments cumulatively to the items of *sequence*, from
   left to right, so as to reduce the sequence to a single value.  For example,
   ``reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])`` calculates ``((((1+2)+3)+4)+5)``.
   The left argument, *x*, is the accumulated value and the right argument, *y*, is
   the update value from the *sequence*.  If the optional *initializer* is present,
   it is placed before the items of the sequence in the calculation, and serves as
   a default when the sequence is empty.  If *initializer* is not given and
   *sequence* contains only one item, the first item is returned.

   Equivalent to::

      def reduce(function, iterable, initializer=None):
          it = iter(iterable)
          if initializer is None:
              value = next(it)
          else:
              value = initializer
          for element in it:
              value = function(value, element)
          return value


.. decorator:: singledispatch(default)

   Transforms a function into a :term:`single-dispatch <single
   dispatch>` :term:`generic function`.

   To define a generic function, decorate it with the ``@singledispatch``
   decorator. Note that the dispatch happens on the type of the first argument,
   create your function accordingly::

     >>> from functools import singledispatch
     >>> @singledispatch
     ... def fun(arg, verbose=False):
     ...     if verbose:
     ...         print("Let me just say,", end=" ")
     ...     print(arg)

   To add overloaded implementations to the function, use the :func:`register`
   attribute of the generic function.  It is a decorator, taking a type
   parameter and decorating a function implementing the operation for that
   type::

     >>> @fun.register(int)
     ... def _(arg, verbose=False):
     ...     if verbose:
     ...         print("Strength in numbers, eh?", end=" ")
     ...     print(arg)
     ...
     >>> @fun.register(list)
     ... def _(arg, verbose=False):
     ...     if verbose:
     ...         print("Enumerate this:")
     ...     for i, elem in enumerate(arg):
     ...         print(i, elem)

   To enable registering lambdas and pre-existing functions, the
   :func:`register` attribute can be used in a functional form::

     >>> def nothing(arg, verbose=False):
     ...     print("Nothing.")
     ...
     >>> fun.register(type(None), nothing)

   The :func:`register` attribute returns the undecorated function which
   enables decorator stacking, pickling, as well as creating unit tests for
   each variant independently::

     >>> @fun.register(float)
     ... @fun.register(Decimal)
     ... def fun_num(arg, verbose=False):
     ...     if verbose:
     ...         print("Half of your number:", end=" ")
     ...     print(arg / 2)
     ...
     >>> fun_num is fun
     False

   When called, the generic function dispatches on the type of the first
   argument::

     >>> fun("Hello, world.")
     Hello, world.
     >>> fun("test.", verbose=True)
     Let me just say, test.
     >>> fun(42, verbose=True)
     Strength in numbers, eh? 42
     >>> fun(['spam', 'spam', 'eggs', 'spam'], verbose=True)
     Enumerate this:
     0 spam
     1 spam
     2 eggs
     3 spam
     >>> fun(None)
     Nothing.
     >>> fun(1.23)
     0.615

   Where there is no registered implementation for a specific type, its
   method resolution order is used to find a more generic implementation.
   The original function decorated with ``@singledispatch`` is registered
   for the base ``object`` type, which means it is used if no better
   implementation is found.

   To check which implementation will the generic function choose for
   a given type, use the ``dispatch()`` attribute::

     >>> fun.dispatch(float)
     <function fun_num at 0x1035a2840>
     >>> fun.dispatch(dict)    # note: default implementation
     <function fun at 0x103fe0000>

   To access all registered implementations, use the read-only ``registry``
   attribute::

    >>> fun.registry.keys()
    dict_keys([<class 'NoneType'>, <class 'int'>, <class 'object'>,
              <class 'decimal.Decimal'>, <class 'list'>,
              <class 'float'>])
    >>> fun.registry[float]
    <function fun_num at 0x1035a2840>
    >>> fun.registry[object]
    <function fun at 0x103fe0000>

   .. versionadded:: 3.4


.. function:: update_wrapper(wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)

   Update a *wrapper* function to look like the *wrapped* function. The optional
   arguments are tuples to specify which attributes of the original function are
   assigned directly to the matching attributes on the wrapper function and which
   attributes of the wrapper function are updated with the corresponding attributes
   from the original function. The default values for these arguments are the
   module level constants *WRAPPER_ASSIGNMENTS* (which assigns to the wrapper
   function's *__name__*, *__module__*, *__annotations__* and *__doc__*, the
   documentation string) and *WRAPPER_UPDATES* (which updates the wrapper
   function's *__dict__*, i.e. the instance dictionary).

   To allow access to the original function for introspection and other purposes
   (e.g. bypassing a caching decorator such as :func:`lru_cache`), this function
   automatically adds a ``__wrapped__`` attribute to the wrapper that refers to
   the function being wrapped.

   The main intended use for this function is in :term:`decorator` functions which
   wrap the decorated function and return the wrapper. If the wrapper function is
   not updated, the metadata of the returned function will reflect the wrapper
   definition rather than the original function definition, which is typically less
   than helpful.

   :func:`update_wrapper` may be used with callables other than functions. Any
   attributes named in *assigned* or *updated* that are missing from the object
   being wrapped are ignored (i.e. this function will not attempt to set them
   on the wrapper function). :exc:`AttributeError` is still raised if the
   wrapper function itself is missing any attributes named in *updated*.

   .. versionadded:: 3.2
      Automatic addition of the ``__wrapped__`` attribute.

   .. versionadded:: 3.2
      Copying of the ``__annotations__`` attribute by default.

   .. versionchanged:: 3.2
      Missing attributes no longer trigger an :exc:`AttributeError`.

   .. versionchanged:: 3.4
      The ``__wrapped__`` attribute now always refers to the wrapped
      function, even if that function defined a ``__wrapped__`` attribute.
      (see :issue:`17482`)


.. decorator:: wraps(wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)

   This is a convenience function for invoking ``partial(update_wrapper,
   wrapped=wrapped, assigned=assigned, updated=updated)`` as a function decorator
   when defining a wrapper function. For example:

      >>> from functools import wraps
      >>> def my_decorator(f):
      ...     @wraps(f)
      ...     def wrapper(*args, **kwds):
      ...         print('Calling decorated function')
      ...         return f(*args, **kwds)
      ...     return wrapper
      ...
      >>> @my_decorator
      ... def example():
      ...     """Docstring"""
      ...     print('Called example function')
      ...
      >>> example()
      Calling decorated function
      Called example function
      >>> example.__name__
      'example'
      >>> example.__doc__
      'Docstring'

   Without the use of this decorator factory, the name of the example function
   would have been ``'wrapper'``, and the docstring of the original :func:`example`
   would have been lost.


.. _partial-objects:

:class:`partial` Objects
------------------------

:class:`partial` objects are callable objects created by :func:`partial`. They
have three read-only attributes:


.. attribute:: partial.func

   A callable object or function.  Calls to the :class:`partial` object will be
   forwarded to :attr:`func` with new arguments and keywords.


.. attribute:: partial.args

   The leftmost positional arguments that will be prepended to the positional
   arguments provided to a :class:`partial` object call.


.. attribute:: partial.keywords

   The keyword arguments that will be supplied when the :class:`partial` object is
   called.

:class:`partial` objects are like :class:`function` objects in that they are
callable, weak referencable, and can have attributes.  There are some important
differences.  For instance, the :attr:`__name__` and :attr:`__doc__` attributes
are not created automatically.  Also, :class:`partial` objects defined in
classes behave like static methods and do not transform into bound methods
during instance attribute look-up.