summaryrefslogtreecommitdiffstats
path: root/Doc/library/hashlib.rst
blob: d22efa23015c6cb7d03deda5dd01174d83bd197d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
:mod:`hashlib` --- Secure hashes and message digests
====================================================

.. module:: hashlib
   :synopsis: Secure hash and message digest algorithms.

.. moduleauthor:: Gregory P. Smith <greg@krypto.org>
.. sectionauthor:: Gregory P. Smith <greg@krypto.org>

**Source code:** :source:`Lib/hashlib.py`

.. index::
   single: message digest, MD5
   single: secure hash algorithm, SHA1, SHA224, SHA256, SHA384, SHA512

.. testsetup::

   import hashlib


--------------

This module implements a common interface to many different secure hash and
message digest algorithms.  Included are the FIPS secure hash algorithms SHA1,
SHA224, SHA256, SHA384, and SHA512 (defined in FIPS 180-2) as well as RSA's MD5
algorithm (defined in internet :rfc:`1321`).  The terms "secure hash" and
"message digest" are interchangeable.  Older algorithms were called message
digests.  The modern term is secure hash.

.. note::

   If you want the adler32 or crc32 hash functions, they are available in
   the :mod:`zlib` module.

.. warning::

   Some algorithms have known hash collision weaknesses, refer to the "See
   also" section at the end.


.. _hash-algorithms:

Hash algorithms
---------------

There is one constructor method named for each type of :dfn:`hash`.  All return
a hash object with the same simple interface. For example: use :func:`sha256` to
create a SHA-256 hash object. You can now feed this object with :term:`bytes-like
objects <bytes-like object>` (normally :class:`bytes`) using the :meth:`update` method.
At any point you can ask it for the :dfn:`digest` of the
concatenation of the data fed to it so far using the :meth:`digest` or
:meth:`hexdigest` methods.

.. note::

   For better multithreading performance, the Python :term:`GIL` is released for
   data larger than 2047 bytes at object creation or on update.

.. note::

   Feeding string objects into :meth:`update` is not supported, as hashes work
   on bytes, not on characters.

.. index:: single: OpenSSL; (use in module hashlib)

Constructors for hash algorithms that are always present in this module are
:func:`sha1`, :func:`sha224`, :func:`sha256`, :func:`sha384`,
:func:`sha512`, :func:`blake2b`, and :func:`blake2s`.
:func:`md5` is normally available as well, though it
may be missing or blocked if you are using a rare "FIPS compliant" build of Python.
Additional algorithms may also be available depending upon the OpenSSL
library that Python uses on your platform. On most platforms the
:func:`sha3_224`, :func:`sha3_256`, :func:`sha3_384`, :func:`sha3_512`,
:func:`shake_128`, :func:`shake_256` are also available.

.. versionadded:: 3.6
   SHA3 (Keccak) and SHAKE constructors :func:`sha3_224`, :func:`sha3_256`,
   :func:`sha3_384`, :func:`sha3_512`, :func:`shake_128`, :func:`shake_256`.

.. versionadded:: 3.6
   :func:`blake2b` and :func:`blake2s` were added.

.. versionchanged:: 3.9
   All hashlib constructors take a keyword-only argument *usedforsecurity*
   with default value ``True``. A false value allows the use of insecure and
   blocked hashing algorithms in restricted environments. ``False`` indicates
   that the hashing algorithm is not used in a security context, e.g. as a
   non-cryptographic one-way compression function.

   Hashlib now uses SHA3 and SHAKE from OpenSSL 1.1.1 and newer.

For example, to obtain the digest of the byte string ``b'Nobody inspects the
spammish repetition'``::

   >>> import hashlib
   >>> m = hashlib.sha256()
   >>> m.update(b"Nobody inspects")
   >>> m.update(b" the spammish repetition")
   >>> m.digest()
   b'\x03\x1e\xdd}Ae\x15\x93\xc5\xfe\\\x00o\xa5u+7\xfd\xdf\xf7\xbcN\x84:\xa6\xaf\x0c\x95\x0fK\x94\x06'
   >>> m.digest_size
   32
   >>> m.block_size
   64

More condensed:

   >>> hashlib.sha224(b"Nobody inspects the spammish repetition").hexdigest()
   'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2'

.. function:: new(name[, data], *, usedforsecurity=True)

   Is a generic constructor that takes the string *name* of the desired
   algorithm as its first parameter.  It also exists to allow access to the
   above listed hashes as well as any other algorithms that your OpenSSL
   library may offer.  The named constructors are much faster than :func:`new`
   and should be preferred.

Using :func:`new` with an algorithm provided by OpenSSL:

   >>> h = hashlib.new('sha512_256')
   >>> h.update(b"Nobody inspects the spammish repetition")
   >>> h.hexdigest()
   '19197dc4d03829df858011c6c87600f994a858103bbc19005f20987aa19a97e2'

Hashlib provides the following constant attributes:

.. data:: algorithms_guaranteed

   A set containing the names of the hash algorithms guaranteed to be supported
   by this module on all platforms.  Note that 'md5' is in this list despite
   some upstream vendors offering an odd "FIPS compliant" Python build that
   excludes it.

   .. versionadded:: 3.2

.. data:: algorithms_available

   A set containing the names of the hash algorithms that are available in the
   running Python interpreter.  These names will be recognized when passed to
   :func:`new`.  :attr:`algorithms_guaranteed` will always be a subset.  The
   same algorithm may appear multiple times in this set under different names
   (thanks to OpenSSL).

   .. versionadded:: 3.2

The following values are provided as constant attributes of the hash objects
returned by the constructors:


.. data:: hash.digest_size

   The size of the resulting hash in bytes.

.. data:: hash.block_size

   The internal block size of the hash algorithm in bytes.

A hash object has the following attributes:

.. attribute:: hash.name

   The canonical name of this hash, always lowercase and always suitable as a
   parameter to :func:`new` to create another hash of this type.

   .. versionchanged:: 3.4
      The name attribute has been present in CPython since its inception, but
      until Python 3.4 was not formally specified, so may not exist on some
      platforms.

A hash object has the following methods:


.. method:: hash.update(data)

   Update the hash object with the :term:`bytes-like object`.
   Repeated calls are equivalent to a single call with the
   concatenation of all the arguments: ``m.update(a); m.update(b)`` is
   equivalent to ``m.update(a+b)``.

   .. versionchanged:: 3.1
      The Python GIL is released to allow other threads to run while hash
      updates on data larger than 2047 bytes is taking place when using hash
      algorithms supplied by OpenSSL.


.. method:: hash.digest()

   Return the digest of the data passed to the :meth:`update` method so far.
   This is a bytes object of size :attr:`digest_size` which may contain bytes in
   the whole range from 0 to 255.


.. method:: hash.hexdigest()

   Like :meth:`digest` except the digest is returned as a string object of
   double length, containing only hexadecimal digits.  This may be used to
   exchange the value safely in email or other non-binary environments.


.. method:: hash.copy()

   Return a copy ("clone") of the hash object.  This can be used to efficiently
   compute the digests of data sharing a common initial substring.


SHAKE variable length digests
-----------------------------

The :func:`shake_128` and :func:`shake_256` algorithms provide variable
length digests with length_in_bits//2 up to 128 or 256 bits of security.
As such, their digest methods require a length. Maximum length is not limited
by the SHAKE algorithm.

.. method:: shake.digest(length)

   Return the digest of the data passed to the :meth:`update` method so far.
   This is a bytes object of size *length* which may contain bytes in
   the whole range from 0 to 255.


.. method:: shake.hexdigest(length)

   Like :meth:`digest` except the digest is returned as a string object of
   double length, containing only hexadecimal digits.  This may be used to
   exchange the value safely in email or other non-binary environments.


Key derivation
--------------

Key derivation and key stretching algorithms are designed for secure password
hashing. Naive algorithms such as ``sha1(password)`` are not resistant against
brute-force attacks. A good password hashing function must be tunable, slow, and
include a `salt <https://en.wikipedia.org/wiki/Salt_%28cryptography%29>`_.


.. function:: pbkdf2_hmac(hash_name, password, salt, iterations, dklen=None)

   The function provides PKCS#5 password-based key derivation function 2. It
   uses HMAC as pseudorandom function.

   The string *hash_name* is the desired name of the hash digest algorithm for
   HMAC, e.g. 'sha1' or 'sha256'. *password* and *salt* are interpreted as
   buffers of bytes. Applications and libraries should limit *password* to
   a sensible length (e.g. 1024). *salt* should be about 16 or more bytes from
   a proper source, e.g. :func:`os.urandom`.

   The number of *iterations* should be chosen based on the hash algorithm and
   computing power. As of 2013, at least 100,000 iterations of SHA-256 are
   suggested.

   *dklen* is the length of the derived key. If *dklen* is ``None`` then the
   digest size of the hash algorithm *hash_name* is used, e.g. 64 for SHA-512.

   >>> import hashlib
   >>> dk = hashlib.pbkdf2_hmac('sha256', b'password', b'salt', 100000)
   >>> dk.hex()
   '0394a2ede332c9a13eb82e9b24631604c31df978b4e2f0fbd2c549944f9d79a5'

   .. versionadded:: 3.4

   .. note::

      A fast implementation of *pbkdf2_hmac* is available with OpenSSL.  The
      Python implementation uses an inline version of :mod:`hmac`. It is about
      three times slower and doesn't release the GIL.

   .. deprecated:: 3.10

      Slow Python implementation of *pbkdf2_hmac* is deprecated. In the
      future the function will only be available when Python is compiled
      with OpenSSL.

.. function:: scrypt(password, *, salt, n, r, p, maxmem=0, dklen=64)

   The function provides scrypt password-based key derivation function as
   defined in :rfc:`7914`.

   *password* and *salt* must be :term:`bytes-like objects
   <bytes-like object>`.  Applications and libraries should limit *password*
   to a sensible length (e.g. 1024).  *salt* should be about 16 or more
   bytes from a proper source, e.g. :func:`os.urandom`.

   *n* is the CPU/Memory cost factor, *r* the block size, *p* parallelization
   factor and *maxmem* limits memory (OpenSSL 1.1.0 defaults to 32 MiB).
   *dklen* is the length of the derived key.

   .. versionadded:: 3.6


BLAKE2
------

.. sectionauthor:: Dmitry Chestnykh

.. index::
   single: blake2b, blake2s

BLAKE2_ is a cryptographic hash function defined in :rfc:`7693` that comes in two
flavors:

* **BLAKE2b**, optimized for 64-bit platforms and produces digests of any size
  between 1 and 64 bytes,

* **BLAKE2s**, optimized for 8- to 32-bit platforms and produces digests of any
  size between 1 and 32 bytes.

BLAKE2 supports **keyed mode** (a faster and simpler replacement for HMAC_),
**salted hashing**, **personalization**, and **tree hashing**.

Hash objects from this module follow the API of standard library's
:mod:`hashlib` objects.


Creating hash objects
^^^^^^^^^^^^^^^^^^^^^

New hash objects are created by calling constructor functions:


.. function:: blake2b(data=b'', *, digest_size=64, key=b'', salt=b'', \
                person=b'', fanout=1, depth=1, leaf_size=0, node_offset=0,  \
                node_depth=0, inner_size=0, last_node=False, \
                usedforsecurity=True)

.. function:: blake2s(data=b'', *, digest_size=32, key=b'', salt=b'', \
                person=b'', fanout=1, depth=1, leaf_size=0, node_offset=0,  \
                node_depth=0, inner_size=0, last_node=False, \
                usedforsecurity=True)


These functions return the corresponding hash objects for calculating
BLAKE2b or BLAKE2s. They optionally take these general parameters:

* *data*: initial chunk of data to hash, which must be
  :term:`bytes-like object`.  It can be passed only as positional argument.

* *digest_size*: size of output digest in bytes.

* *key*: key for keyed hashing (up to 64 bytes for BLAKE2b, up to 32 bytes for
  BLAKE2s).

* *salt*: salt for randomized hashing (up to 16 bytes for BLAKE2b, up to 8
  bytes for BLAKE2s).

* *person*: personalization string (up to 16 bytes for BLAKE2b, up to 8 bytes
  for BLAKE2s).

The following table shows limits for general parameters (in bytes):

======= =========== ======== ========= ===========
Hash    digest_size len(key) len(salt) len(person)
======= =========== ======== ========= ===========
BLAKE2b     64         64       16        16
BLAKE2s     32         32       8         8
======= =========== ======== ========= ===========

.. note::

    BLAKE2 specification defines constant lengths for salt and personalization
    parameters, however, for convenience, this implementation accepts byte
    strings of any size up to the specified length. If the length of the
    parameter is less than specified, it is padded with zeros, thus, for
    example, ``b'salt'`` and ``b'salt\x00'`` is the same value. (This is not
    the case for *key*.)

These sizes are available as module `constants`_ described below.

Constructor functions also accept the following tree hashing parameters:

* *fanout*: fanout (0 to 255, 0 if unlimited, 1 in sequential mode).

* *depth*: maximal depth of tree (1 to 255, 255 if unlimited, 1 in
  sequential mode).

* *leaf_size*: maximal byte length of leaf (0 to 2**32-1, 0 if unlimited or in
  sequential mode).

* *node_offset*: node offset (0 to 2**64-1 for BLAKE2b, 0 to 2**48-1 for
  BLAKE2s, 0 for the first, leftmost, leaf, or in sequential mode).

* *node_depth*: node depth (0 to 255, 0 for leaves, or in sequential mode).

* *inner_size*: inner digest size (0 to 64 for BLAKE2b, 0 to 32 for
  BLAKE2s, 0 in sequential mode).

* *last_node*: boolean indicating whether the processed node is the last
  one (`False` for sequential mode).

.. figure:: hashlib-blake2-tree.png
   :alt: Explanation of tree mode parameters.

See section 2.10 in `BLAKE2 specification
<https://blake2.net/blake2_20130129.pdf>`_ for comprehensive review of tree
hashing.


Constants
^^^^^^^^^

.. data:: blake2b.SALT_SIZE
.. data:: blake2s.SALT_SIZE

Salt length (maximum length accepted by constructors).


.. data:: blake2b.PERSON_SIZE
.. data:: blake2s.PERSON_SIZE

Personalization string length (maximum length accepted by constructors).


.. data:: blake2b.MAX_KEY_SIZE
.. data:: blake2s.MAX_KEY_SIZE

Maximum key size.


.. data:: blake2b.MAX_DIGEST_SIZE
.. data:: blake2s.MAX_DIGEST_SIZE

Maximum digest size that the hash function can output.


Examples
^^^^^^^^

Simple hashing
""""""""""""""

To calculate hash of some data, you should first construct a hash object by
calling the appropriate constructor function (:func:`blake2b` or
:func:`blake2s`), then update it with the data by calling :meth:`update` on the
object, and, finally, get the digest out of the object by calling
:meth:`digest` (or :meth:`hexdigest` for hex-encoded string).

    >>> from hashlib import blake2b
    >>> h = blake2b()
    >>> h.update(b'Hello world')
    >>> h.hexdigest()
    '6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'


As a shortcut, you can pass the first chunk of data to update directly to the
constructor as the positional argument:

    >>> from hashlib import blake2b
    >>> blake2b(b'Hello world').hexdigest()
    '6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'

You can call :meth:`hash.update` as many times as you need to iteratively
update the hash:

    >>> from hashlib import blake2b
    >>> items = [b'Hello', b' ', b'world']
    >>> h = blake2b()
    >>> for item in items:
    ...     h.update(item)
    >>> h.hexdigest()
    '6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'


Using different digest sizes
""""""""""""""""""""""""""""

BLAKE2 has configurable size of digests up to 64 bytes for BLAKE2b and up to 32
bytes for BLAKE2s. For example, to replace SHA-1 with BLAKE2b without changing
the size of output, we can tell BLAKE2b to produce 20-byte digests:

    >>> from hashlib import blake2b
    >>> h = blake2b(digest_size=20)
    >>> h.update(b'Replacing SHA1 with the more secure function')
    >>> h.hexdigest()
    'd24f26cf8de66472d58d4e1b1774b4c9158b1f4c'
    >>> h.digest_size
    20
    >>> len(h.digest())
    20

Hash objects with different digest sizes have completely different outputs
(shorter hashes are *not* prefixes of longer hashes); BLAKE2b and BLAKE2s
produce different outputs even if the output length is the same:

    >>> from hashlib import blake2b, blake2s
    >>> blake2b(digest_size=10).hexdigest()
    '6fa1d8fcfd719046d762'
    >>> blake2b(digest_size=11).hexdigest()
    'eb6ec15daf9546254f0809'
    >>> blake2s(digest_size=10).hexdigest()
    '1bf21a98c78a1c376ae9'
    >>> blake2s(digest_size=11).hexdigest()
    '567004bf96e4a25773ebf4'


Keyed hashing
"""""""""""""

Keyed hashing can be used for authentication as a faster and simpler
replacement for `Hash-based message authentication code
<https://en.wikipedia.org/wiki/Hash-based_message_authentication_code>`_ (HMAC).
BLAKE2 can be securely used in prefix-MAC mode thanks to the
indifferentiability property inherited from BLAKE.

This example shows how to get a (hex-encoded) 128-bit authentication code for
message ``b'message data'`` with key ``b'pseudorandom key'``::

    >>> from hashlib import blake2b
    >>> h = blake2b(key=b'pseudorandom key', digest_size=16)
    >>> h.update(b'message data')
    >>> h.hexdigest()
    '3d363ff7401e02026f4a4687d4863ced'


As a practical example, a web application can symmetrically sign cookies sent
to users and later verify them to make sure they weren't tampered with::

    >>> from hashlib import blake2b
    >>> from hmac import compare_digest
    >>>
    >>> SECRET_KEY = b'pseudorandomly generated server secret key'
    >>> AUTH_SIZE = 16
    >>>
    >>> def sign(cookie):
    ...     h = blake2b(digest_size=AUTH_SIZE, key=SECRET_KEY)
    ...     h.update(cookie)
    ...     return h.hexdigest().encode('utf-8')
    >>>
    >>> def verify(cookie, sig):
    ...     good_sig = sign(cookie)
    ...     return compare_digest(good_sig, sig)
    >>>
    >>> cookie = b'user-alice'
    >>> sig = sign(cookie)
    >>> print("{0},{1}".format(cookie.decode('utf-8'), sig))
    user-alice,b'43b3c982cf697e0c5ab22172d1ca7421'
    >>> verify(cookie, sig)
    True
    >>> verify(b'user-bob', sig)
    False
    >>> verify(cookie, b'0102030405060708090a0b0c0d0e0f00')
    False

Even though there's a native keyed hashing mode, BLAKE2 can, of course, be used
in HMAC construction with :mod:`hmac` module::

    >>> import hmac, hashlib
    >>> m = hmac.new(b'secret key', digestmod=hashlib.blake2s)
    >>> m.update(b'message')
    >>> m.hexdigest()
    'e3c8102868d28b5ff85fc35dda07329970d1a01e273c37481326fe0c861c8142'


Randomized hashing
""""""""""""""""""

By setting *salt* parameter users can introduce randomization to the hash
function. Randomized hashing is useful for protecting against collision attacks
on the hash function used in digital signatures.

    Randomized hashing is designed for situations where one party, the message
    preparer, generates all or part of a message to be signed by a second
    party, the message signer. If the message preparer is able to find
    cryptographic hash function collisions (i.e., two messages producing the
    same hash value), then they might prepare meaningful versions of the message
    that would produce the same hash value and digital signature, but with
    different results (e.g., transferring $1,000,000 to an account, rather than
    $10). Cryptographic hash functions have been designed with collision
    resistance as a major goal, but the current concentration on attacking
    cryptographic hash functions may result in a given cryptographic hash
    function providing less collision resistance than expected. Randomized
    hashing offers the signer additional protection by reducing the likelihood
    that a preparer can generate two or more messages that ultimately yield the
    same hash value during the digital signature generation process --- even if
    it is practical to find collisions for the hash function. However, the use
    of randomized hashing may reduce the amount of security provided by a
    digital signature when all portions of the message are prepared
    by the signer.

    (`NIST SP-800-106 "Randomized Hashing for Digital Signatures"
    <https://csrc.nist.gov/publications/detail/sp/800-106/final>`_)

In BLAKE2 the salt is processed as a one-time input to the hash function during
initialization, rather than as an input to each compression function.

.. warning::

    *Salted hashing* (or just hashing) with BLAKE2 or any other general-purpose
    cryptographic hash function, such as SHA-256, is not suitable for hashing
    passwords.  See `BLAKE2 FAQ <https://blake2.net/#qa>`_ for more
    information.
..

    >>> import os
    >>> from hashlib import blake2b
    >>> msg = b'some message'
    >>> # Calculate the first hash with a random salt.
    >>> salt1 = os.urandom(blake2b.SALT_SIZE)
    >>> h1 = blake2b(salt=salt1)
    >>> h1.update(msg)
    >>> # Calculate the second hash with a different random salt.
    >>> salt2 = os.urandom(blake2b.SALT_SIZE)
    >>> h2 = blake2b(salt=salt2)
    >>> h2.update(msg)
    >>> # The digests are different.
    >>> h1.digest() != h2.digest()
    True


Personalization
"""""""""""""""

Sometimes it is useful to force hash function to produce different digests for
the same input for different purposes. Quoting the authors of the Skein hash
function:

    We recommend that all application designers seriously consider doing this;
    we have seen many protocols where a hash that is computed in one part of
    the protocol can be used in an entirely different part because two hash
    computations were done on similar or related data, and the attacker can
    force the application to make the hash inputs the same. Personalizing each
    hash function used in the protocol summarily stops this type of attack.

    (`The Skein Hash Function Family
    <http://www.skein-hash.info/sites/default/files/skein1.3.pdf>`_,
    p. 21)

BLAKE2 can be personalized by passing bytes to the *person* argument::

    >>> from hashlib import blake2b
    >>> FILES_HASH_PERSON = b'MyApp Files Hash'
    >>> BLOCK_HASH_PERSON = b'MyApp Block Hash'
    >>> h = blake2b(digest_size=32, person=FILES_HASH_PERSON)
    >>> h.update(b'the same content')
    >>> h.hexdigest()
    '20d9cd024d4fb086aae819a1432dd2466de12947831b75c5a30cf2676095d3b4'
    >>> h = blake2b(digest_size=32, person=BLOCK_HASH_PERSON)
    >>> h.update(b'the same content')
    >>> h.hexdigest()
    'cf68fb5761b9c44e7878bfb2c4c9aea52264a80b75005e65619778de59f383a3'

Personalization together with the keyed mode can also be used to derive different
keys from a single one.

    >>> from hashlib import blake2s
    >>> from base64 import b64decode, b64encode
    >>> orig_key = b64decode(b'Rm5EPJai72qcK3RGBpW3vPNfZy5OZothY+kHY6h21KM=')
    >>> enc_key = blake2s(key=orig_key, person=b'kEncrypt').digest()
    >>> mac_key = blake2s(key=orig_key, person=b'kMAC').digest()
    >>> print(b64encode(enc_key).decode('utf-8'))
    rbPb15S/Z9t+agffno5wuhB77VbRi6F9Iv2qIxU7WHw=
    >>> print(b64encode(mac_key).decode('utf-8'))
    G9GtHFE1YluXY1zWPlYk1e/nWfu0WSEb0KRcjhDeP/o=

Tree mode
"""""""""

Here's an example of hashing a minimal tree with two leaf nodes::

       10
      /  \
     00  01

This example uses 64-byte internal digests, and returns the 32-byte final
digest::

    >>> from hashlib import blake2b
    >>>
    >>> FANOUT = 2
    >>> DEPTH = 2
    >>> LEAF_SIZE = 4096
    >>> INNER_SIZE = 64
    >>>
    >>> buf = bytearray(6000)
    >>>
    >>> # Left leaf
    ... h00 = blake2b(buf[0:LEAF_SIZE], fanout=FANOUT, depth=DEPTH,
    ...               leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
    ...               node_offset=0, node_depth=0, last_node=False)
    >>> # Right leaf
    ... h01 = blake2b(buf[LEAF_SIZE:], fanout=FANOUT, depth=DEPTH,
    ...               leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
    ...               node_offset=1, node_depth=0, last_node=True)
    >>> # Root node
    ... h10 = blake2b(digest_size=32, fanout=FANOUT, depth=DEPTH,
    ...               leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
    ...               node_offset=0, node_depth=1, last_node=True)
    >>> h10.update(h00.digest())
    >>> h10.update(h01.digest())
    >>> h10.hexdigest()
    '3ad2a9b37c6070e374c7a8c508fe20ca86b6ed54e286e93a0318e95e881db5aa'

Credits
^^^^^^^

BLAKE2_ was designed by *Jean-Philippe Aumasson*, *Samuel Neves*, *Zooko
Wilcox-O'Hearn*, and *Christian Winnerlein* based on SHA-3_ finalist BLAKE_
created by *Jean-Philippe Aumasson*, *Luca Henzen*, *Willi Meier*, and
*Raphael C.-W. Phan*.

It uses core algorithm from ChaCha_ cipher designed by *Daniel J.  Bernstein*.

The stdlib implementation is based on pyblake2_ module. It was written by
*Dmitry Chestnykh* based on C implementation written by *Samuel Neves*. The
documentation was copied from pyblake2_ and written by *Dmitry Chestnykh*.

The C code was partly rewritten for Python by *Christian Heimes*.

The following public domain dedication applies for both C hash function
implementation, extension code, and this documentation:

   To the extent possible under law, the author(s) have dedicated all copyright
   and related and neighboring rights to this software to the public domain
   worldwide. This software is distributed without any warranty.

   You should have received a copy of the CC0 Public Domain Dedication along
   with this software. If not, see
   https://creativecommons.org/publicdomain/zero/1.0/.

The following people have helped with development or contributed their changes
to the project and the public domain according to the Creative Commons Public
Domain Dedication 1.0 Universal:

* *Alexandr Sokolovskiy*

.. _BLAKE2: https://blake2.net
.. _HMAC: https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
.. _BLAKE: https://131002.net/blake/
.. _SHA-3: https://en.wikipedia.org/wiki/NIST_hash_function_competition
.. _ChaCha: https://cr.yp.to/chacha.html
.. _pyblake2: https://pythonhosted.org/pyblake2/



.. seealso::

   Module :mod:`hmac`
      A module to generate message authentication codes using hashes.

   Module :mod:`base64`
      Another way to encode binary hashes for non-binary environments.

   https://blake2.net
      Official BLAKE2 website.

   https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
      The FIPS 180-2 publication on Secure Hash Algorithms.

   https://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms
      Wikipedia article with information on which algorithms have known issues and
      what that means regarding their use.

   https://www.ietf.org/rfc/rfc8018.txt
      PKCS #5: Password-Based Cryptography Specification Version 2.1