1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
|
:mod:`imp` --- Access the :ref:`import <importsystem>` internals
================================================================
.. module:: imp
:synopsis: Access the implementation of the import statement.
:deprecated:
.. deprecated:: 3.4
The :mod:`imp` package is pending deprecation in favor of :mod:`importlib`.
.. index:: statement: import
This module provides an interface to the mechanisms used to implement the
:keyword:`import` statement. It defines the following constants and functions:
.. function:: get_magic()
.. index:: pair: file; byte-code
Return the magic string value used to recognize byte-compiled code files
(:file:`.pyc` files). (This value may be different for each Python version.)
.. deprecated:: 3.4
Use :attr:`importlib.util.MAGIC_NUMBER` instead.
.. function:: get_suffixes()
Return a list of 3-element tuples, each describing a particular type of
module. Each triple has the form ``(suffix, mode, type)``, where *suffix* is
a string to be appended to the module name to form the filename to search
for, *mode* is the mode string to pass to the built-in :func:`open` function
to open the file (this can be ``'r'`` for text files or ``'rb'`` for binary
files), and *type* is the file type, which has one of the values
:const:`PY_SOURCE`, :const:`PY_COMPILED`, or :const:`C_EXTENSION`, described
below.
.. deprecated:: 3.3
Use the constants defined on :mod:`importlib.machinery` instead.
.. function:: find_module(name[, path])
Try to find the module *name*. If *path* is omitted or ``None``, the list of
directory names given by ``sys.path`` is searched, but first a few special
places are searched: the function tries to find a built-in module with the
given name (:const:`C_BUILTIN`), then a frozen module (:const:`PY_FROZEN`),
and on some systems some other places are looked in as well (on Windows, it
looks in the registry which may point to a specific file).
Otherwise, *path* must be a list of directory names; each directory is
searched for files with any of the suffixes returned by :func:`get_suffixes`
above. Invalid names in the list are silently ignored (but all list items
must be strings).
If search is successful, the return value is a 3-element tuple ``(file,
pathname, description)``:
*file* is an open :term:`file object` positioned at the beginning, *pathname*
is the pathname of the file found, and *description* is a 3-element tuple as
contained in the list returned by :func:`get_suffixes` describing the kind of
module found.
If the module does not live in a file, the returned *file* is ``None``,
*pathname* is the empty string, and the *description* tuple contains empty
strings for its suffix and mode; the module type is indicated as given in
parentheses above. If the search is unsuccessful, :exc:`ImportError` is
raised. Other exceptions indicate problems with the arguments or
environment.
If the module is a package, *file* is ``None``, *pathname* is the package
path and the last item in the *description* tuple is :const:`PKG_DIRECTORY`.
This function does not handle hierarchical module names (names containing
dots). In order to find *P.M*, that is, submodule *M* of package *P*, use
:func:`find_module` and :func:`load_module` to find and load package *P*, and
then use :func:`find_module` with the *path* argument set to ``P.__path__``.
When *P* itself has a dotted name, apply this recipe recursively.
.. deprecated:: 3.3
Use :func:`importlib.util.find_spec` instead unless Python 3.3
compatibility is required, in which case use
:func:`importlib.find_loader`. For example usage of the former case,
see the :ref:`importlib-examples` section of the :mod:`importlib`
documentation.
.. function:: load_module(name, file, pathname, description)
Load a module that was previously found by :func:`find_module` (or by an
otherwise conducted search yielding compatible results). This function does
more than importing the module: if the module was already imported, it will
reload the module! The *name* argument indicates the full
module name (including the package name, if this is a submodule of a
package). The *file* argument is an open file, and *pathname* is the
corresponding file name; these can be ``None`` and ``''``, respectively, when
the module is a package or not being loaded from a file. The *description*
argument is a tuple, as would be returned by :func:`get_suffixes`, describing
what kind of module must be loaded.
If the load is successful, the return value is the module object; otherwise,
an exception (usually :exc:`ImportError`) is raised.
**Important:** the caller is responsible for closing the *file* argument, if
it was not ``None``, even when an exception is raised. This is best done
using a :keyword:`try` ... :keyword:`finally` statement.
.. deprecated:: 3.3
If previously used in conjunction with :func:`imp.find_module` then
consider using :func:`importlib.import_module`, otherwise use the loader
returned by the replacement you chose for :func:`imp.find_module`. If you
called :func:`imp.load_module` and related functions directly with file
path arguments then use a combination of
:func:`importlib.util.spec_from_file_location` and
:func:`importlib.util.module_from_spec`. See the :ref:`importlib-examples`
section of the :mod:`importlib` documentation for details of the various
approaches.
.. function:: new_module(name)
Return a new empty module object called *name*. This object is *not* inserted
in ``sys.modules``.
.. deprecated:: 3.4
Use :func:`importlib.util.module_from_spec` instead.
.. function:: reload(module)
Reload a previously imported *module*. The argument must be a module object, so
it must have been successfully imported before. This is useful if you have
edited the module source file using an external editor and want to try out the
new version without leaving the Python interpreter. The return value is the
module object (the same as the *module* argument).
When ``reload(module)`` is executed:
* Python modules' code is recompiled and the module-level code reexecuted,
defining a new set of objects which are bound to names in the module's
dictionary. The ``init`` function of extension modules is not called a second
time.
* As with all other objects in Python the old objects are only reclaimed after
their reference counts drop to zero.
* The names in the module namespace are updated to point to any new or changed
objects.
* Other references to the old objects (such as names external to the module) are
not rebound to refer to the new objects and must be updated in each namespace
where they occur if that is desired.
There are a number of other caveats:
When a module is reloaded, its dictionary (containing the module's global
variables) is retained. Redefinitions of names will override the old
definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition
remains. This feature can be used to the module's advantage if it maintains a
global table or cache of objects --- with a :keyword:`try` statement it can test
for the table's presence and skip its initialization if desired::
try:
cache
except NameError:
cache = {}
It is legal though generally not very useful to reload built-in or dynamically
loaded modules, except for :mod:`sys`, :mod:`__main__` and :mod:`builtins`.
In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.
If a module imports objects from another module using :keyword:`from` ...
:keyword:`import` ..., calling :func:`reload` for the other module does not
redefine the objects imported from it --- one way around this is to re-execute
the :keyword:`from` statement, another is to use :keyword:`import` and qualified
names (*module*.*name*) instead.
If a module instantiates instances of a class, reloading the module that defines
the class does not affect the method definitions of the instances --- they
continue to use the old class definition. The same is true for derived classes.
.. versionchanged:: 3.3
Relies on both ``__name__`` and ``__loader__`` being defined on the module
being reloaded instead of just ``__name__``.
.. deprecated:: 3.4
Use :func:`importlib.reload` instead.
The following functions are conveniences for handling :pep:`3147` byte-compiled
file paths.
.. versionadded:: 3.2
.. function:: cache_from_source(path, debug_override=None)
Return the :pep:`3147` path to the byte-compiled file associated with the
source *path*. For example, if *path* is ``/foo/bar/baz.py`` the return
value would be ``/foo/bar/__pycache__/baz.cpython-32.pyc`` for Python 3.2.
The ``cpython-32`` string comes from the current magic tag (see
:func:`get_tag`; if :attr:`sys.implementation.cache_tag` is not defined then
:exc:`NotImplementedError` will be raised). By passing in ``True`` or
``False`` for *debug_override* you can override the system's value for
``__debug__``, leading to optimized bytecode.
*path* need not exist.
.. versionchanged:: 3.3
If :attr:`sys.implementation.cache_tag` is ``None``, then
:exc:`NotImplementedError` is raised.
.. deprecated:: 3.4
Use :func:`importlib.util.cache_from_source` instead.
.. versionchanged:: 3.5
The *debug_override* parameter no longer creates a ``.pyo`` file.
.. function:: source_from_cache(path)
Given the *path* to a :pep:`3147` file name, return the associated source code
file path. For example, if *path* is
``/foo/bar/__pycache__/baz.cpython-32.pyc`` the returned path would be
``/foo/bar/baz.py``. *path* need not exist, however if it does not conform
to :pep:`3147` format, a ``ValueError`` is raised. If
:attr:`sys.implementation.cache_tag` is not defined,
:exc:`NotImplementedError` is raised.
.. versionchanged:: 3.3
Raise :exc:`NotImplementedError` when
:attr:`sys.implementation.cache_tag` is not defined.
.. deprecated:: 3.4
Use :func:`importlib.util.source_from_cache` instead.
.. function:: get_tag()
Return the :pep:`3147` magic tag string matching this version of Python's
magic number, as returned by :func:`get_magic`.
.. deprecated:: 3.4
Use :attr:`sys.implementation.cache_tag` directly starting
in Python 3.3.
The following functions help interact with the import system's internal
locking mechanism. Locking semantics of imports are an implementation
detail which may vary from release to release. However, Python ensures
that circular imports work without any deadlocks.
.. function:: lock_held()
Return ``True`` if the global import lock is currently held, else
``False``. On platforms without threads, always return ``False``.
On platforms with threads, a thread executing an import first holds a
global import lock, then sets up a per-module lock for the rest of the
import. This blocks other threads from importing the same module until
the original import completes, preventing other threads from seeing
incomplete module objects constructed by the original thread. An
exception is made for circular imports, which by construction have to
expose an incomplete module object at some point.
.. versionchanged:: 3.3
The locking scheme has changed to per-module locks for
the most part. A global import lock is kept for some critical tasks,
such as initializing the per-module locks.
.. deprecated:: 3.4
.. function:: acquire_lock()
Acquire the interpreter's global import lock for the current thread.
This lock should be used by import hooks to ensure thread-safety when
importing modules.
Once a thread has acquired the import lock, the same thread may acquire it
again without blocking; the thread must release it once for each time it has
acquired it.
On platforms without threads, this function does nothing.
.. versionchanged:: 3.3
The locking scheme has changed to per-module locks for
the most part. A global import lock is kept for some critical tasks,
such as initializing the per-module locks.
.. deprecated:: 3.4
.. function:: release_lock()
Release the interpreter's global import lock. On platforms without
threads, this function does nothing.
.. versionchanged:: 3.3
The locking scheme has changed to per-module locks for
the most part. A global import lock is kept for some critical tasks,
such as initializing the per-module locks.
.. deprecated:: 3.4
The following constants with integer values, defined in this module, are used
to indicate the search result of :func:`find_module`.
.. data:: PY_SOURCE
The module was found as a source file.
.. deprecated:: 3.3
.. data:: PY_COMPILED
The module was found as a compiled code object file.
.. deprecated:: 3.3
.. data:: C_EXTENSION
The module was found as dynamically loadable shared library.
.. deprecated:: 3.3
.. data:: PKG_DIRECTORY
The module was found as a package directory.
.. deprecated:: 3.3
.. data:: C_BUILTIN
The module was found as a built-in module.
.. deprecated:: 3.3
.. data:: PY_FROZEN
The module was found as a frozen module.
.. deprecated:: 3.3
.. class:: NullImporter(path_string)
The :class:`NullImporter` type is a :pep:`302` import hook that handles
non-directory path strings by failing to find any modules. Calling this type
with an existing directory or empty string raises :exc:`ImportError`.
Otherwise, a :class:`NullImporter` instance is returned.
Instances have only one method:
.. method:: NullImporter.find_module(fullname [, path])
This method always returns ``None``, indicating that the requested module could
not be found.
.. versionchanged:: 3.3
``None`` is inserted into ``sys.path_importer_cache`` instead of an
instance of :class:`NullImporter`.
.. deprecated:: 3.4
Insert ``None`` into ``sys.path_importer_cache`` instead.
.. _examples-imp:
Examples
--------
The following function emulates what was the standard import statement up to
Python 1.4 (no hierarchical module names). (This *implementation* wouldn't work
in that version, since :func:`find_module` has been extended and
:func:`load_module` has been added in 1.4.) ::
import imp
import sys
def __import__(name, globals=None, locals=None, fromlist=None):
# Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass
# If any of the following calls raises an exception,
# there's a problem we can't handle -- let the caller handle it.
fp, pathname, description = imp.find_module(name)
try:
return imp.load_module(name, fp, pathname, description)
finally:
# Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()
|