summaryrefslogtreecommitdiffstats
path: root/Doc/library/itertools.rst
blob: 3b90d7830f36812cd243bd3044411a2e8a955781 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
:mod:`!itertools` --- Functions creating iterators for efficient looping
========================================================================

.. module:: itertools
   :synopsis: Functions creating iterators for efficient looping.

.. moduleauthor:: Raymond Hettinger <python@rcn.com>
.. sectionauthor:: Raymond Hettinger <python@rcn.com>

.. testsetup::

   from itertools import *
   import collections
   import math
   import operator
   import random

--------------

This module implements a number of :term:`iterator` building blocks inspired
by constructs from APL, Haskell, and SML.  Each has been recast in a form
suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are
useful by themselves or in combination.  Together, they form an "iterator
algebra" making it possible to construct specialized tools succinctly and
efficiently in pure Python.

For instance, SML provides a tabulation tool: ``tabulate(f)`` which produces a
sequence ``f(0), f(1), ...``.  The same effect can be achieved in Python
by combining :func:`map` and :func:`count` to form ``map(f, count())``.

These tools and their built-in counterparts also work well with the high-speed
functions in the :mod:`operator` module.  For example, the multiplication
operator can be mapped across two vectors to form an efficient dot-product:
``sum(starmap(operator.mul, zip(vec1, vec2, strict=True)))``.


**Infinite iterators:**

==================  =================       =================================================               =========================================
Iterator            Arguments               Results                                                         Example
==================  =================       =================================================               =========================================
:func:`count`       [start[, step]]         start, start+step, start+2*step, ...                            ``count(10) → 10 11 12 13 14 ...``
:func:`cycle`       p                       p0, p1, ... plast, p0, p1, ...                                  ``cycle('ABCD') → A B C D A B C D ...``
:func:`repeat`      elem [,n]               elem, elem, elem, ... endlessly or up to n times                ``repeat(10, 3) → 10 10 10``
==================  =================       =================================================               =========================================

**Iterators terminating on the shortest input sequence:**

============================    ============================    =================================================   =============================================================
Iterator                        Arguments                       Results                                             Example
============================    ============================    =================================================   =============================================================
:func:`accumulate`              p [,func]                       p0, p0+p1, p0+p1+p2, ...                            ``accumulate([1,2,3,4,5]) → 1 3 6 10 15``
:func:`batched`                 p, n                            (p0, p1, ..., p_n-1), ...                           ``batched('ABCDEFG', n=3) → ABC DEF G``
:func:`chain`                   p, q, ...                       p0, p1, ... plast, q0, q1, ...                      ``chain('ABC', 'DEF') → A B C D E F``
:func:`chain.from_iterable`     iterable                        p0, p1, ... plast, q0, q1, ...                      ``chain.from_iterable(['ABC', 'DEF']) → A B C D E F``
:func:`compress`                data, selectors                 (d[0] if s[0]), (d[1] if s[1]), ...                 ``compress('ABCDEF', [1,0,1,0,1,1]) → A C E F``
:func:`dropwhile`               predicate, seq                  seq[n], seq[n+1], starting when predicate fails     ``dropwhile(lambda x: x<5, [1,4,6,3,8]) → 6 3 8``
:func:`filterfalse`             predicate, seq                  elements of seq where predicate(elem) fails         ``filterfalse(lambda x: x<5, [1,4,6,3,8]) → 6 8``
:func:`groupby`                 iterable[, key]                 sub-iterators grouped by value of key(v)            ``groupby(['A','B','DEF'], len) → (1, A B) (3, DEF)``
:func:`islice`                  seq, [start,] stop [, step]     elements from seq[start:stop:step]                  ``islice('ABCDEFG', 2, None) → C D E F G``
:func:`pairwise`                iterable                        (p[0], p[1]), (p[1], p[2])                          ``pairwise('ABCDEFG') → AB BC CD DE EF FG``
:func:`starmap`                 func, seq                       func(\*seq[0]), func(\*seq[1]), ...                 ``starmap(pow, [(2,5), (3,2), (10,3)]) → 32 9 1000``
:func:`takewhile`               predicate, seq                  seq[0], seq[1], until predicate fails               ``takewhile(lambda x: x<5, [1,4,6,3,8]) → 1 4``
:func:`tee`                     it, n                           it1, it2, ... itn  splits one iterator into n       ``tee('ABC', 2) → A B C, A B C``
:func:`zip_longest`             p, q, ...                       (p[0], q[0]), (p[1], q[1]), ...                     ``zip_longest('ABCD', 'xy', fillvalue='-') → Ax By C- D-``
============================    ============================    =================================================   =============================================================

**Combinatoric iterators:**

==============================================   ====================       =============================================================
Iterator                                         Arguments                  Results
==============================================   ====================       =============================================================
:func:`product`                                  p, q, ... [repeat=1]       cartesian product, equivalent to a nested for-loop
:func:`permutations`                             p[, r]                     r-length tuples, all possible orderings, no repeated elements
:func:`combinations`                             p, r                       r-length tuples, in sorted order, no repeated elements
:func:`combinations_with_replacement`            p, r                       r-length tuples, in sorted order, with repeated elements
==============================================   ====================       =============================================================

==============================================   =============================================================
Examples                                         Results
==============================================   =============================================================
``product('ABCD', repeat=2)``                    ``AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD``
``permutations('ABCD', 2)``                      ``AB AC AD BA BC BD CA CB CD DA DB DC``
``combinations('ABCD', 2)``                      ``AB AC AD BC BD CD``
``combinations_with_replacement('ABCD', 2)``     ``AA AB AC AD BB BC BD CC CD DD``
==============================================   =============================================================


.. _itertools-functions:

Itertool Functions
------------------

The following functions all construct and return iterators. Some provide
streams of infinite length, so they should only be accessed by functions or
loops that truncate the stream.


.. function:: accumulate(iterable[, function, *, initial=None])

    Make an iterator that returns accumulated sums or accumulated
    results from other binary functions.

    The *function* defaults to addition.  The *function* should accept
    two arguments, an accumulated total and a value from the *iterable*.

    If an *initial* value is provided, the accumulation will start with
    that value and the output will have one more element than the input
    iterable.

    Roughly equivalent to::

        def accumulate(iterable, function=operator.add, *, initial=None):
            'Return running totals'
            # accumulate([1,2,3,4,5]) → 1 3 6 10 15
            # accumulate([1,2,3,4,5], initial=100) → 100 101 103 106 110 115
            # accumulate([1,2,3,4,5], operator.mul) → 1 2 6 24 120

            iterator = iter(iterable)
            total = initial
            if initial is None:
                try:
                    total = next(iterator)
                except StopIteration:
                    return

            yield total
            for element in iterator:
                total = function(total, element)
                yield total

    To compute a running minimum, set *function* to :func:`min`.
    For a running maximum, set *function* to :func:`max`.
    Or for a running product, set *function* to :func:`operator.mul`.
    To build an `amortization table
    <https://www.ramseysolutions.com/real-estate/amortization-schedule>`_,
    accumulate the interest and apply payments:

    .. doctest::

      >>> data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
      >>> list(accumulate(data, max))              # running maximum
      [3, 4, 6, 6, 6, 9, 9, 9, 9, 9]
      >>> list(accumulate(data, operator.mul))     # running product
      [3, 12, 72, 144, 144, 1296, 0, 0, 0, 0]

      # Amortize a 5% loan of 1000 with 10 annual payments of 90
      >>> update = lambda balance, payment: round(balance * 1.05) - payment
      >>> list(accumulate(repeat(90, 10), update, initial=1_000))
      [1000, 960, 918, 874, 828, 779, 728, 674, 618, 559, 497]

    See :func:`functools.reduce` for a similar function that returns only the
    final accumulated value.

    .. versionadded:: 3.2

    .. versionchanged:: 3.3
       Added the optional *function* parameter.

    .. versionchanged:: 3.8
       Added the optional *initial* parameter.


.. function:: batched(iterable, n, *, strict=False)

   Batch data from the *iterable* into tuples of length *n*. The last
   batch may be shorter than *n*.

   If *strict* is true, will raise a :exc:`ValueError` if the final
   batch is shorter than *n*.

   Loops over the input iterable and accumulates data into tuples up to
   size *n*.  The input is consumed lazily, just enough to fill a batch.
   The result is yielded as soon as the batch is full or when the input
   iterable is exhausted:

   .. doctest::

      >>> flattened_data = ['roses', 'red', 'violets', 'blue', 'sugar', 'sweet']
      >>> unflattened = list(batched(flattened_data, 2))
      >>> unflattened
      [('roses', 'red'), ('violets', 'blue'), ('sugar', 'sweet')]

   Roughly equivalent to::

      def batched(iterable, n, *, strict=False):
          # batched('ABCDEFG', 3) → ABC DEF G
          if n < 1:
              raise ValueError('n must be at least one')
          iterator = iter(iterable)
          while batch := tuple(islice(iterator, n)):
              if strict and len(batch) != n:
                  raise ValueError('batched(): incomplete batch')
              yield batch

   .. versionadded:: 3.12

   .. versionchanged:: 3.13
      Added the *strict* option.


.. function:: chain(*iterables)

   Make an iterator that returns elements from the first iterable until
   it is exhausted, then proceeds to the next iterable, until all of the
   iterables are exhausted.  This combines multiple data sources into a
   single iterator.  Roughly equivalent to::

      def chain(*iterables):
          # chain('ABC', 'DEF') → A B C D E F
          for iterable in iterables:
              yield from iterable


.. classmethod:: chain.from_iterable(iterable)

   Alternate constructor for :func:`chain`.  Gets chained inputs from a
   single iterable argument that is evaluated lazily.  Roughly equivalent to::

      def from_iterable(iterables):
          # chain.from_iterable(['ABC', 'DEF']) → A B C D E F
          for iterable in iterables:
              yield from iterable


.. function:: combinations(iterable, r)

   Return *r* length subsequences of elements from the input *iterable*.

   The output is a subsequence of :func:`product` keeping only entries that
   are subsequences of the *iterable*.  The length of the output is given
   by :func:`math.comb` which computes ``n! / r! / (n - r)!`` when ``0 ≤ r
   ≤ n`` or zero when ``r > n``.

   The combination tuples are emitted in lexicographic order according to
   the order of the input *iterable*. If the input *iterable* is sorted,
   the output tuples will be produced in sorted order.

   Elements are treated as unique based on their position, not on their
   value.  If the input elements are unique, there will be no repeated
   values within each combination.

   Roughly equivalent to::

        def combinations(iterable, r):
            # combinations('ABCD', 2) → AB AC AD BC BD CD
            # combinations(range(4), 3) → 012 013 023 123

            pool = tuple(iterable)
            n = len(pool)
            if r > n:
                return
            indices = list(range(r))

            yield tuple(pool[i] for i in indices)
            while True:
                for i in reversed(range(r)):
                    if indices[i] != i + n - r:
                        break
                else:
                    return
                indices[i] += 1
                for j in range(i+1, r):
                    indices[j] = indices[j-1] + 1
                yield tuple(pool[i] for i in indices)


.. function:: combinations_with_replacement(iterable, r)

   Return *r* length subsequences of elements from the input *iterable*
   allowing individual elements to be repeated more than once.

   The output is a subsequence of :func:`product` that keeps only entries
   that are subsequences (with possible repeated elements) of the
   *iterable*.  The number of subsequence returned is ``(n + r - 1)! / r! /
   (n - 1)!`` when ``n > 0``.

   The combination tuples are emitted in lexicographic order according to
   the order of the input *iterable*. if the input *iterable* is sorted,
   the output tuples will be produced in sorted order.

   Elements are treated as unique based on their position, not on their
   value.  If the input elements are unique, the generated combinations
   will also be unique.

   Roughly equivalent to::

        def combinations_with_replacement(iterable, r):
            # combinations_with_replacement('ABC', 2) → AA AB AC BB BC CC

            pool = tuple(iterable)
            n = len(pool)
            if not n and r:
                return
            indices = [0] * r

            yield tuple(pool[i] for i in indices)
            while True:
                for i in reversed(range(r)):
                    if indices[i] != n - 1:
                        break
                else:
                    return
                indices[i:] = [indices[i] + 1] * (r - i)
                yield tuple(pool[i] for i in indices)

   .. versionadded:: 3.1


.. function:: compress(data, selectors)

   Make an iterator that returns elements from *data* where the
   corresponding element in *selectors* is true.  Stops when either the
   *data* or *selectors* iterables have been exhausted.  Roughly
   equivalent to::

       def compress(data, selectors):
           # compress('ABCDEF', [1,0,1,0,1,1]) → A C E F
           return (datum for datum, selector in zip(data, selectors) if selector)

   .. versionadded:: 3.1


.. function:: count(start=0, step=1)

   Make an iterator that returns evenly spaced values beginning with
   *start*. Can be used with :func:`map` to generate consecutive data
   points or with :func:`zip` to add sequence numbers.  Roughly
   equivalent to::

      def count(start=0, step=1):
          # count(10) → 10 11 12 13 14 ...
          # count(2.5, 0.5) → 2.5 3.0 3.5 ...
          n = start
          while True:
              yield n
              n += step

   When counting with floating-point numbers, better accuracy can sometimes be
   achieved by substituting multiplicative code such as: ``(start + step * i
   for i in count())``.

   .. versionchanged:: 3.1
      Added *step* argument and allowed non-integer arguments.


.. function:: cycle(iterable)

   Make an iterator returning elements from the *iterable* and saving a
   copy of each.  When the iterable is exhausted, return elements from
   the saved copy.  Repeats indefinitely.  Roughly equivalent to::

      def cycle(iterable):
          # cycle('ABCD') → A B C D A B C D A B C D ...

          saved = []
          for element in iterable:
              yield element
              saved.append(element)

          while saved:
              for element in saved:
                  yield element

   This itertool may require significant auxiliary storage (depending on
   the length of the iterable).


.. function:: dropwhile(predicate, iterable)

   Make an iterator that drops elements from the *iterable* while the
   *predicate* is true and afterwards returns every element.  Roughly
   equivalent to::

      def dropwhile(predicate, iterable):
          # dropwhile(lambda x: x<5, [1,4,6,3,8]) → 6 3 8

          iterator = iter(iterable)
          for x in iterator:
              if not predicate(x):
                  yield x
                  break

          for x in iterator:
              yield x

   Note this does not produce *any* output until the predicate first
   becomes false, so this itertool may have a lengthy start-up time.


.. function:: filterfalse(predicate, iterable)

   Make an iterator that filters elements from the *iterable* returning
   only those for which the *predicate* returns a false value.  If
   *predicate* is ``None``, returns the items that are false.  Roughly
   equivalent to::

      def filterfalse(predicate, iterable):
          # filterfalse(lambda x: x<5, [1,4,6,3,8]) → 6 8

          if predicate is None:
              predicate = bool

          for x in iterable:
              if not predicate(x):
                  yield x


.. function:: groupby(iterable, key=None)

   Make an iterator that returns consecutive keys and groups from the *iterable*.
   The *key* is a function computing a key value for each element.  If not
   specified or is ``None``, *key* defaults to an identity function and returns
   the element unchanged.  Generally, the iterable needs to already be sorted on
   the same key function.

   The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix.  It
   generates a break or new group every time the value of the key function changes
   (which is why it is usually necessary to have sorted the data using the same key
   function).  That behavior differs from SQL's GROUP BY which aggregates common
   elements regardless of their input order.

   The returned group is itself an iterator that shares the underlying iterable
   with :func:`groupby`.  Because the source is shared, when the :func:`groupby`
   object is advanced, the previous group is no longer visible.  So, if that data
   is needed later, it should be stored as a list::

      groups = []
      uniquekeys = []
      data = sorted(data, key=keyfunc)
      for k, g in groupby(data, keyfunc):
          groups.append(list(g))      # Store group iterator as a list
          uniquekeys.append(k)

   :func:`groupby` is roughly equivalent to::

      def groupby(iterable, key=None):
          # [k for k, g in groupby('AAAABBBCCDAABBB')] → A B C D A B
          # [list(g) for k, g in groupby('AAAABBBCCD')] → AAAA BBB CC D

          keyfunc = (lambda x: x) if key is None else key
          iterator = iter(iterable)
          exhausted = False

          def _grouper(target_key):
              nonlocal curr_value, curr_key, exhausted
              yield curr_value
              for curr_value in iterator:
                  curr_key = keyfunc(curr_value)
                  if curr_key != target_key:
                      return
                  yield curr_value
              exhausted = True

          try:
              curr_value = next(iterator)
          except StopIteration:
              return
          curr_key = keyfunc(curr_value)

          while not exhausted:
              target_key = curr_key
              curr_group = _grouper(target_key)
              yield curr_key, curr_group
              if curr_key == target_key:
                  for _ in curr_group:
                      pass


.. function:: islice(iterable, stop)
              islice(iterable, start, stop[, step])

   Make an iterator that returns selected elements from the iterable.
   Works like sequence slicing but does not support negative values for
   *start*, *stop*, or *step*.

   If *start* is zero or ``None``, iteration starts at zero.  Otherwise,
   elements from the iterable are skipped until *start* is reached.

   If *stop* is ``None``, iteration continues until the input is
   exhausted, if at all.  Otherwise, it stops at the specified position.

   If *step* is ``None``, the step defaults to one.  Elements are returned
   consecutively unless *step* is set higher than one which results in
   items being skipped.

   Roughly equivalent to::

      def islice(iterable, *args):
          # islice('ABCDEFG', 2) → A B
          # islice('ABCDEFG', 2, 4) → C D
          # islice('ABCDEFG', 2, None) → C D E F G
          # islice('ABCDEFG', 0, None, 2) → A C E G

          s = slice(*args)
          start = 0 if s.start is None else s.start
          stop = s.stop
          step = 1 if s.step is None else s.step
          if start < 0 or (stop is not None and stop < 0) or step <= 0:
              raise ValueError

          indices = count() if stop is None else range(max(start, stop))
          next_i = start
          for i, element in zip(indices, iterable):
              if i == next_i:
                  yield element
                  next_i += step

   If the input is an iterator, then fully consuming the *islice*
   advances the input iterator by ``max(start, stop)`` steps regardless
   of the *step* value.


.. function:: pairwise(iterable)

   Return successive overlapping pairs taken from the input *iterable*.

   The number of 2-tuples in the output iterator will be one fewer than the
   number of inputs.  It will be empty if the input iterable has fewer than
   two values.

   Roughly equivalent to::

        def pairwise(iterable):
            # pairwise('ABCDEFG') → AB BC CD DE EF FG

            iterator = iter(iterable)
            a = next(iterator, None)

            for b in iterator:
                yield a, b
                a = b

   .. versionadded:: 3.10


.. function:: permutations(iterable, r=None)

   Return successive *r* length `permutations of elements
   <https://www.britannica.com/science/permutation>`_ from the *iterable*.

   If *r* is not specified or is ``None``, then *r* defaults to the length
   of the *iterable* and all possible full-length permutations
   are generated.

   The output is a subsequence of :func:`product` where entries with
   repeated elements have been filtered out.  The length of the output is
   given by :func:`math.perm` which computes ``n! / (n - r)!`` when
   ``0 ≤ r ≤ n`` or zero when ``r > n``.

   The permutation tuples are emitted in lexicographic order according to
   the order of the input *iterable*.  If the input *iterable* is sorted,
   the output tuples will be produced in sorted order.

   Elements are treated as unique based on their position, not on their
   value.  If the input elements are unique, there will be no repeated
   values within a permutation.

   Roughly equivalent to::

        def permutations(iterable, r=None):
            # permutations('ABCD', 2) → AB AC AD BA BC BD CA CB CD DA DB DC
            # permutations(range(3)) → 012 021 102 120 201 210

            pool = tuple(iterable)
            n = len(pool)
            r = n if r is None else r
            if r > n:
                return

            indices = list(range(n))
            cycles = list(range(n, n-r, -1))
            yield tuple(pool[i] for i in indices[:r])

            while n:
                for i in reversed(range(r)):
                    cycles[i] -= 1
                    if cycles[i] == 0:
                        indices[i:] = indices[i+1:] + indices[i:i+1]
                        cycles[i] = n - i
                    else:
                        j = cycles[i]
                        indices[i], indices[-j] = indices[-j], indices[i]
                        yield tuple(pool[i] for i in indices[:r])
                        break
                else:
                    return


.. function:: product(*iterables, repeat=1)

   `Cartesian product <https://en.wikipedia.org/wiki/Cartesian_product>`_
   of the input iterables.

   Roughly equivalent to nested for-loops in a generator expression. For example,
   ``product(A, B)`` returns the same as ``((x,y) for x in A for y in B)``.

   The nested loops cycle like an odometer with the rightmost element advancing
   on every iteration.  This pattern creates a lexicographic ordering so that if
   the input's iterables are sorted, the product tuples are emitted in sorted
   order.

   To compute the product of an iterable with itself, specify the number of
   repetitions with the optional *repeat* keyword argument.  For example,
   ``product(A, repeat=4)`` means the same as ``product(A, A, A, A)``.

   This function is roughly equivalent to the following code, except that the
   actual implementation does not build up intermediate results in memory::

       def product(*iterables, repeat=1):
           # product('ABCD', 'xy') → Ax Ay Bx By Cx Cy Dx Dy
           # product(range(2), repeat=3) → 000 001 010 011 100 101 110 111

           if repeat < 0:
               raise ValueError('repeat argument cannot be negative')
           pools = [tuple(pool) for pool in iterables] * repeat

           result = [[]]
           for pool in pools:
               result = [x+[y] for x in result for y in pool]

           for prod in result:
               yield tuple(prod)

   Before :func:`product` runs, it completely consumes the input iterables,
   keeping pools of values in memory to generate the products.  Accordingly,
   it is only useful with finite inputs.


.. function:: repeat(object[, times])

   Make an iterator that returns *object* over and over again. Runs indefinitely
   unless the *times* argument is specified.

   Roughly equivalent to::

      def repeat(object, times=None):
          # repeat(10, 3) → 10 10 10
          if times is None:
              while True:
                  yield object
          else:
              for i in range(times):
                  yield object

   A common use for *repeat* is to supply a stream of constant values to *map*
   or *zip*:

   .. doctest::

      >>> list(map(pow, range(10), repeat(2)))
      [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]


.. function:: starmap(function, iterable)

   Make an iterator that computes the *function* using arguments obtained
   from the *iterable*.  Used instead of :func:`map` when argument
   parameters have already been "pre-zipped" into tuples.

   The difference between :func:`map` and :func:`starmap` parallels the
   distinction between ``function(a,b)`` and ``function(*c)``. Roughly
   equivalent to::

      def starmap(function, iterable):
          # starmap(pow, [(2,5), (3,2), (10,3)]) → 32 9 1000
          for args in iterable:
              yield function(*args)


.. function:: takewhile(predicate, iterable)

   Make an iterator that returns elements from the *iterable* as long as
   the *predicate* is true.  Roughly equivalent to::

      def takewhile(predicate, iterable):
          # takewhile(lambda x: x<5, [1,4,6,3,8]) → 1 4
          for x in iterable:
              if not predicate(x):
                  break
              yield x

   Note, the element that first fails the predicate condition is
   consumed from the input iterator and there is no way to access it.
   This could be an issue if an application wants to further consume the
   input iterator after *takewhile* has been run to exhaustion.  To work
   around this problem, consider using `more-iterools before_and_after()
   <https://more-itertools.readthedocs.io/en/stable/api.html#more_itertools.before_and_after>`_
   instead.


.. function:: tee(iterable, n=2)

   Return *n* independent iterators from a single iterable.

   Roughly equivalent to::

        def tee(iterable, n=2):
            if n < 0:
                raise ValueError
            if n == 0:
                return ()
            iterator = _tee(iterable)
            result = [iterator]
            for _ in range(n - 1):
                result.append(_tee(iterator))
            return tuple(result)

        class _tee:

            def __init__(self, iterable):
                it = iter(iterable)
                if isinstance(it, _tee):
                    self.iterator = it.iterator
                    self.link = it.link
                else:
                    self.iterator = it
                    self.link = [None, None]

            def __iter__(self):
                return self

            def __next__(self):
                link = self.link
                if link[1] is None:
                    link[0] = next(self.iterator)
                    link[1] = [None, None]
                value, self.link = link
                return value

   When the input *iterable* is already a tee iterator object, all
   members of the return tuple are constructed as if they had been
   produced by the upstream :func:`tee` call.  This "flattening step"
   allows nested :func:`tee` calls to share the same underlying data
   chain and to have a single update step rather than a chain of calls.

   The flattening property makes tee iterators efficiently peekable:

   .. testcode::

      def lookahead(tee_iterator):
           "Return the next value without moving the input forward"
           [forked_iterator] = tee(tee_iterator, 1)
           return next(forked_iterator)

   .. doctest::

      >>> iterator = iter('abcdef')
      >>> [iterator] = tee(iterator, 1)   # Make the input peekable
      >>> next(iterator)                  # Move the iterator forward
      'a'
      >>> lookahead(iterator)             # Check next value
      'b'
      >>> next(iterator)                  # Continue moving forward
      'b'

   ``tee`` iterators are not threadsafe. A :exc:`RuntimeError` may be
   raised when simultaneously using iterators returned by the same :func:`tee`
   call, even if the original *iterable* is threadsafe.

   This itertool may require significant auxiliary storage (depending on how
   much temporary data needs to be stored). In general, if one iterator uses
   most or all of the data before another iterator starts, it is faster to use
   :func:`list` instead of :func:`tee`.


.. function:: zip_longest(*iterables, fillvalue=None)

   Make an iterator that aggregates elements from each of the
   *iterables*.

   If the iterables are of uneven length, missing values are filled-in
   with *fillvalue*.  If not specified, *fillvalue* defaults to ``None``.

   Iteration continues until the longest iterable is exhausted.

   Roughly equivalent to::

      def zip_longest(*iterables, fillvalue=None):
          # zip_longest('ABCD', 'xy', fillvalue='-') → Ax By C- D-

          iterators = list(map(iter, iterables))
          num_active = len(iterators)
          if not num_active:
              return

          while True:
              values = []
              for i, iterator in enumerate(iterators):
                  try:
                      value = next(iterator)
                  except StopIteration:
                      num_active -= 1
                      if not num_active:
                          return
                      iterators[i] = repeat(fillvalue)
                      value = fillvalue
                  values.append(value)
              yield tuple(values)

   If one of the iterables is potentially infinite, then the :func:`zip_longest`
   function should be wrapped with something that limits the number of calls
   (for example :func:`islice` or :func:`takewhile`).


.. _itertools-recipes:

Itertools Recipes
-----------------

This section shows recipes for creating an extended toolset using the existing
itertools as building blocks.

The primary purpose of the itertools recipes is educational.  The recipes show
various ways of thinking about individual tools — for example, that
``chain.from_iterable`` is related to the concept of flattening.  The recipes
also give ideas about ways that the tools can be combined — for example, how
``starmap()`` and ``repeat()`` can work together.  The recipes also show patterns
for using itertools with the :mod:`operator` and :mod:`collections` modules as
well as with the built-in itertools such as ``map()``, ``filter()``,
``reversed()``, and ``enumerate()``.

A secondary purpose of the recipes is to serve as an incubator.  The
``accumulate()``, ``compress()``, and ``pairwise()`` itertools started out as
recipes.  Currently, the ``sliding_window()``, ``iter_index()``, and ``sieve()``
recipes are being tested to see whether they prove their worth.

Substantially all of these recipes and many, many others can be installed from
the :pypi:`more-itertools` project found
on the Python Package Index::

    python -m pip install more-itertools

Many of the recipes offer the same high performance as the underlying toolset.
Superior memory performance is kept by processing elements one at a time rather
than bringing the whole iterable into memory all at once. Code volume is kept
small by linking the tools together in a `functional style
<https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf>`_.  High speed
is retained by preferring "vectorized" building blocks over the use of for-loops
and :term:`generators <generator>` which incur interpreter overhead.

.. testcode::

   import collections
   import contextlib
   import functools
   import math
   import operator
   import random

   def take(n, iterable):
       "Return first n items of the iterable as a list."
       return list(islice(iterable, n))

   def prepend(value, iterable):
       "Prepend a single value in front of an iterable."
       # prepend(1, [2, 3, 4]) → 1 2 3 4
       return chain([value], iterable)

   def tabulate(function, start=0):
       "Return function(0), function(1), ..."
       return map(function, count(start))

   def repeatfunc(func, times=None, *args):
       "Repeat calls to func with specified arguments."
       if times is None:
           return starmap(func, repeat(args))
       return starmap(func, repeat(args, times))

   def flatten(list_of_lists):
       "Flatten one level of nesting."
       return chain.from_iterable(list_of_lists)

   def ncycles(iterable, n):
       "Returns the sequence elements n times."
       return chain.from_iterable(repeat(tuple(iterable), n))

   def loops(n):
       "Loop n times. Like range(n) but without creating integers."
       # for _ in loops(100): ...
       return repeat(None, n)

   def tail(n, iterable):
       "Return an iterator over the last n items."
       # tail(3, 'ABCDEFG') → E F G
       return iter(collections.deque(iterable, maxlen=n))

   def consume(iterator, n=None):
       "Advance the iterator n-steps ahead. If n is None, consume entirely."
       # Use functions that consume iterators at C speed.
       if n is None:
           collections.deque(iterator, maxlen=0)
       else:
           next(islice(iterator, n, n), None)

   def nth(iterable, n, default=None):
       "Returns the nth item or a default value."
       return next(islice(iterable, n, None), default)

   def quantify(iterable, predicate=bool):
       "Given a predicate that returns True or False, count the True results."
       return sum(map(predicate, iterable))

   def first_true(iterable, default=False, predicate=None):
       "Returns the first true value or the *default* if there is no true value."
       # first_true([a,b,c], x) → a or b or c or x
       # first_true([a,b], x, f) → a if f(a) else b if f(b) else x
       return next(filter(predicate, iterable), default)

   def all_equal(iterable, key=None):
       "Returns True if all the elements are equal to each other."
       # all_equal('4٤௪౪໔', key=int) → True
       return len(take(2, groupby(iterable, key))) <= 1

   def unique_justseen(iterable, key=None):
       "Yield unique elements, preserving order. Remember only the element just seen."
       # unique_justseen('AAAABBBCCDAABBB') → A B C D A B
       # unique_justseen('ABBcCAD', str.casefold) → A B c A D
       if key is None:
           return map(operator.itemgetter(0), groupby(iterable))
       return map(next, map(operator.itemgetter(1), groupby(iterable, key)))

   def unique_everseen(iterable, key=None):
       "Yield unique elements, preserving order. Remember all elements ever seen."
       # unique_everseen('AAAABBBCCDAABBB') → A B C D
       # unique_everseen('ABBcCAD', str.casefold) → A B c D
       seen = set()
       if key is None:
           for element in filterfalse(seen.__contains__, iterable):
               seen.add(element)
               yield element
       else:
           for element in iterable:
               k = key(element)
               if k not in seen:
                   seen.add(k)
                   yield element

   def unique(iterable, key=None, reverse=False):
      "Yield unique elements in sorted order. Supports unhashable inputs."
      # unique([[1, 2], [3, 4], [1, 2]]) → [1, 2] [3, 4]
      return unique_justseen(sorted(iterable, key=key, reverse=reverse), key=key)

   def sliding_window(iterable, n):
       "Collect data into overlapping fixed-length chunks or blocks."
       # sliding_window('ABCDEFG', 4) → ABCD BCDE CDEF DEFG
       iterator = iter(iterable)
       window = collections.deque(islice(iterator, n - 1), maxlen=n)
       for x in iterator:
           window.append(x)
           yield tuple(window)

   def grouper(iterable, n, *, incomplete='fill', fillvalue=None):
       "Collect data into non-overlapping fixed-length chunks or blocks."
       # grouper('ABCDEFG', 3, fillvalue='x') → ABC DEF Gxx
       # grouper('ABCDEFG', 3, incomplete='strict') → ABC DEF ValueError
       # grouper('ABCDEFG', 3, incomplete='ignore') → ABC DEF
       iterators = [iter(iterable)] * n
       match incomplete:
           case 'fill':
               return zip_longest(*iterators, fillvalue=fillvalue)
           case 'strict':
               return zip(*iterators, strict=True)
           case 'ignore':
               return zip(*iterators)
           case _:
               raise ValueError('Expected fill, strict, or ignore')

   def roundrobin(*iterables):
       "Visit input iterables in a cycle until each is exhausted."
       # roundrobin('ABC', 'D', 'EF') → A D E B F C
       # Algorithm credited to George Sakkis
       iterators = map(iter, iterables)
       for num_active in range(len(iterables), 0, -1):
           iterators = cycle(islice(iterators, num_active))
           yield from map(next, iterators)

   def subslices(seq):
       "Return all contiguous non-empty subslices of a sequence."
       # subslices('ABCD') → A AB ABC ABCD B BC BCD C CD D
       slices = starmap(slice, combinations(range(len(seq) + 1), 2))
       return map(operator.getitem, repeat(seq), slices)

   def iter_index(iterable, value, start=0, stop=None):
       "Return indices where a value occurs in a sequence or iterable."
       # iter_index('AABCADEAF', 'A') → 0 1 4 7
       seq_index = getattr(iterable, 'index', None)
       if seq_index is None:
           iterator = islice(iterable, start, stop)
           for i, element in enumerate(iterator, start):
               if element is value or element == value:
                   yield i
       else:
           stop = len(iterable) if stop is None else stop
           i = start
           with contextlib.suppress(ValueError):
               while True:
                   yield (i := seq_index(value, i, stop))
                   i += 1

   def iter_except(func, exception, first=None):
       "Convert a call-until-exception interface to an iterator interface."
       # iter_except(d.popitem, KeyError) → non-blocking dictionary iterator
       with contextlib.suppress(exception):
           if first is not None:
               yield first()
           while True:
               yield func()


The following recipes have a more mathematical flavor:

.. testcode::

   def powerset(iterable):
       # powerset([1,2,3]) → () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)
       s = list(iterable)
       return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

   def sum_of_squares(iterable):
       "Add up the squares of the input values."
       # sum_of_squares([10, 20, 30]) → 1400
       return math.sumprod(*tee(iterable))

   def reshape(matrix, cols):
       "Reshape a 2-D matrix to have a given number of columns."
       # reshape([(0, 1), (2, 3), (4, 5)], 3) →  (0, 1, 2), (3, 4, 5)
       return batched(chain.from_iterable(matrix), cols, strict=True)

   def transpose(matrix):
       "Swap the rows and columns of a 2-D matrix."
       # transpose([(1, 2, 3), (11, 22, 33)]) → (1, 11) (2, 22) (3, 33)
       return zip(*matrix, strict=True)

   def matmul(m1, m2):
       "Multiply two matrices."
       # matmul([(7, 5), (3, 5)], [(2, 5), (7, 9)]) → (49, 80), (41, 60)
       n = len(m2[0])
       return batched(starmap(math.sumprod, product(m1, transpose(m2))), n)

   def convolve(signal, kernel):
       """Discrete linear convolution of two iterables.
       Equivalent to polynomial multiplication.

       Convolutions are mathematically commutative; however, the inputs are
       evaluated differently.  The signal is consumed lazily and can be
       infinite. The kernel is fully consumed before the calculations begin.

       Article:  https://betterexplained.com/articles/intuitive-convolution/
       Video:    https://www.youtube.com/watch?v=KuXjwB4LzSA
       """
       # convolve([1, -1, -20], [1, -3]) → 1 -4 -17 60
       # convolve(data, [0.25, 0.25, 0.25, 0.25]) → Moving average (blur)
       # convolve(data, [1/2, 0, -1/2]) → 1st derivative estimate
       # convolve(data, [1, -2, 1]) → 2nd derivative estimate
       kernel = tuple(kernel)[::-1]
       n = len(kernel)
       padded_signal = chain(repeat(0, n-1), signal, repeat(0, n-1))
       windowed_signal = sliding_window(padded_signal, n)
       return map(math.sumprod, repeat(kernel), windowed_signal)

   def polynomial_from_roots(roots):
       """Compute a polynomial's coefficients from its roots.

          (x - 5) (x + 4) (x - 3)  expands to:   x³ -4x² -17x + 60
       """
       # polynomial_from_roots([5, -4, 3]) → [1, -4, -17, 60]
       factors = zip(repeat(1), map(operator.neg, roots))
       return list(functools.reduce(convolve, factors, [1]))

   def polynomial_eval(coefficients, x):
       """Evaluate a polynomial at a specific value.

       Computes with better numeric stability than Horner's method.
       """
       # Evaluate x³ -4x² -17x + 60 at x = 5
       # polynomial_eval([1, -4, -17, 60], x=5) → 0
       n = len(coefficients)
       if not n:
           return type(x)(0)
       powers = map(pow, repeat(x), reversed(range(n)))
       return math.sumprod(coefficients, powers)

   def polynomial_derivative(coefficients):
       """Compute the first derivative of a polynomial.

          f(x)  =  x³ -4x² -17x + 60
          f'(x) = 3x² -8x  -17
       """
       # polynomial_derivative([1, -4, -17, 60]) → [3, -8, -17]
       n = len(coefficients)
       powers = reversed(range(1, n))
       return list(map(operator.mul, coefficients, powers))

   def sieve(n):
       "Primes less than n."
       # sieve(30) → 2 3 5 7 11 13 17 19 23 29
       if n > 2:
           yield 2
       data = bytearray((0, 1)) * (n // 2)
       for p in iter_index(data, 1, start=3, stop=math.isqrt(n) + 1):
           data[p*p : n : p+p] = bytes(len(range(p*p, n, p+p)))
       yield from iter_index(data, 1, start=3)

   def factor(n):
       "Prime factors of n."
       # factor(99) → 3 3 11
       # factor(1_000_000_000_000_007) → 47 59 360620266859
       # factor(1_000_000_000_000_403) → 1000000000000403
       for prime in sieve(math.isqrt(n) + 1):
           while not n % prime:
               yield prime
               n //= prime
               if n == 1:
                   return
       if n > 1:
           yield n

   def is_prime(n):
       "Return True if n is prime."
       # is_prime(1_000_000_000_000_403) → True
       return n > 1 and next(factor(n)) == n

   def totient(n):
       "Count of natural numbers up to n that are coprime to n."
       # https://mathworld.wolfram.com/TotientFunction.html
       # totient(12) → 4 because len([1, 5, 7, 11]) == 4
       for prime in set(factor(n)):
           n -= n // prime
       return n


.. doctest::
    :hide:

    These examples no longer appear in the docs but are guaranteed
    to keep working.

    >>> amounts = [120.15, 764.05, 823.14]
    >>> for checknum, amount in zip(count(1200), amounts):
    ...     print('Check %d is for $%.2f' % (checknum, amount))
    ...
    Check 1200 is for $120.15
    Check 1201 is for $764.05
    Check 1202 is for $823.14

    >>> import operator
    >>> for cube in map(operator.pow, range(1,4), repeat(3)):
    ...    print(cube)
    ...
    1
    8
    27

    >>> reportlines = ['EuroPython', 'Roster', '', 'alex', '', 'laura', '', 'martin', '', 'walter', '', 'samuele']
    >>> for name in islice(reportlines, 3, None, 2):
    ...    print(name.title())
    ...
    Alex
    Laura
    Martin
    Walter
    Samuele

    >>> from operator import itemgetter
    >>> d = dict(a=1, b=2, c=1, d=2, e=1, f=2, g=3)
    >>> di = sorted(sorted(d.items()), key=itemgetter(1))
    >>> for k, g in groupby(di, itemgetter(1)):
    ...     print(k, list(map(itemgetter(0), g)))
    ...
    1 ['a', 'c', 'e']
    2 ['b', 'd', 'f']
    3 ['g']

    # Find runs of consecutive numbers using groupby.  The key to the solution
    # is differencing with a range so that consecutive numbers all appear in
    # same group.
    >>> data = [ 1,  4,5,6, 10, 15,16,17,18, 22, 25,26,27,28]
    >>> for k, g in groupby(enumerate(data), lambda t:t[0]-t[1]):
    ...     print(list(map(operator.itemgetter(1), g)))
    ...
    [1]
    [4, 5, 6]
    [10]
    [15, 16, 17, 18]
    [22]
    [25, 26, 27, 28]

    Now, we test all of the itertool recipes

    >>> take(10, count())
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    >>> # Verify that the input is consumed lazily
    >>> it = iter('abcdef')
    >>> take(3, it)
    ['a', 'b', 'c']
    >>> list(it)
    ['d', 'e', 'f']


    >>> list(prepend(1, [2, 3, 4]))
    [1, 2, 3, 4]


    >>> list(enumerate('abc'))
    [(0, 'a'), (1, 'b'), (2, 'c')]


    >>> list(islice(tabulate(lambda x: 2*x), 4))
    [0, 2, 4, 6]


    >>> for _ in loops(5):
    ...     print('hi')
    ...
    hi
    hi
    hi
    hi
    hi


    >>> list(tail(3, 'ABCDEFG'))
    ['E', 'F', 'G']
    >>> # Verify the input is consumed greedily
    >>> input_iterator = iter('ABCDEFG')
    >>> output_iterator = tail(3, input_iterator)
    >>> list(input_iterator)
    []


    >>> it = iter(range(10))
    >>> consume(it, 3)
    >>> # Verify the input is consumed lazily
    >>> next(it)
    3
    >>> # Verify the input is consumed completely
    >>> consume(it)
    >>> next(it, 'Done')
    'Done'


    >>> nth('abcde', 3)
    'd'
    >>> nth('abcde', 9) is None
    True
    >>> # Verify that the input is consumed lazily
    >>> it = iter('abcde')
    >>> nth(it, 2)
    'c'
    >>> list(it)
    ['d', 'e']


    >>> [all_equal(s) for s in ('', 'A', 'AAAA', 'AAAB', 'AAABA')]
    [True, True, True, False, False]
    >>> [all_equal(s, key=str.casefold) for s in ('', 'A', 'AaAa', 'AAAB', 'AAABA')]
    [True, True, True, False, False]
    >>> # Verify that the input is consumed lazily and that only
    >>> # one element of a second equivalence class is used to disprove
    >>> # the assertion that all elements are equal.
    >>> it = iter('aaabbbccc')
    >>> all_equal(it)
    False
    >>> ''.join(it)
    'bbccc'


    >>> quantify(range(99), lambda x: x%2==0)
    50
    >>> quantify([True, False, False, True, True])
    3
    >>> quantify(range(12), predicate=lambda x: x%2==1)
    6


    >>> a = [[1, 2, 3], [4, 5, 6]]
    >>> list(flatten(a))
    [1, 2, 3, 4, 5, 6]


    >>> list(ncycles('abc', 3))
    ['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c']
    >>> # Verify greedy consumption of input iterator
    >>> input_iterator = iter('abc')
    >>> output_iterator = ncycles(input_iterator, 3)
    >>> list(input_iterator)
    []


    >>> sum_of_squares([10, 20, 30])
    1400


    >>> list(reshape([(0, 1), (2, 3), (4, 5)], 3))
    [(0, 1, 2), (3, 4, 5)]
    >>> M = [(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11)]
    >>> list(reshape(M, 1))
    [(0,), (1,), (2,), (3,), (4,), (5,), (6,), (7,), (8,), (9,), (10,), (11,)]
    >>> list(reshape(M, 2))
    [(0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11)]
    >>> list(reshape(M, 3))
    [(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11)]
    >>> list(reshape(M, 4))
    [(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11)]
    >>> list(reshape(M, 5))
    Traceback (most recent call last):
    ...
    ValueError: batched(): incomplete batch
    >>> list(reshape(M, 6))
    [(0, 1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11)]
    >>> list(reshape(M, 12))
    [(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)]


    >>> list(transpose([(1, 2, 3), (11, 22, 33)]))
    [(1, 11), (2, 22), (3, 33)]
    >>> # Verify that the inputs are consumed lazily
    >>> input1 = iter([1, 2, 3])
    >>> input2 = iter([11, 22, 33])
    >>> output_iterator = transpose([input1, input2])
    >>> next(output_iterator)
    (1, 11)
    >>> list(zip(input1, input2))
    [(2, 22), (3, 33)]


    >>> list(matmul([(7, 5), (3, 5)], [[2, 5], [7, 9]]))
    [(49, 80), (41, 60)]
    >>> list(matmul([[2, 5], [7, 9], [3, 4]], [[7, 11, 5, 4, 9], [3, 5, 2, 6, 3]]))
    [(29, 47, 20, 38, 33), (76, 122, 53, 82, 90), (33, 53, 23, 36, 39)]


    >>> list(convolve([1, -1, -20], [1, -3])) == [1, -4, -17, 60]
    True
    >>> data = [20, 40, 24, 32, 20, 28, 16]
    >>> list(convolve(data, [0.25, 0.25, 0.25, 0.25]))
    [5.0, 15.0, 21.0, 29.0, 29.0, 26.0, 24.0, 16.0, 11.0, 4.0]
    >>> list(convolve(data, [1, -1]))
    [20, 20, -16, 8, -12, 8, -12, -16]
    >>> list(convolve(data, [1, -2, 1]))
    [20, 0, -36, 24, -20, 20, -20, -4, 16]
    >>> # Verify signal is consumed lazily and the kernel greedily
    >>> signal_iterator = iter([10, 20, 30, 40, 50])
    >>> kernel_iterator = iter([1, 2, 3])
    >>> output_iterator = convolve(signal_iterator, kernel_iterator)
    >>> list(kernel_iterator)
    []
    >>> next(output_iterator)
    10
    >>> next(output_iterator)
    40
    >>> list(signal_iterator)
    [30, 40, 50]


    >>> from fractions import Fraction
    >>> from decimal import Decimal
    >>> polynomial_eval([1, -4, -17, 60], x=5)
    0
    >>> x = 5; x**3 - 4*x**2 -17*x + 60
    0
    >>> polynomial_eval([1, -4, -17, 60], x=2.5)
    8.125
    >>> x = 2.5; x**3 - 4*x**2 -17*x + 60
    8.125
    >>> polynomial_eval([1, -4, -17, 60], x=Fraction(2, 3))
    Fraction(1274, 27)
    >>> x = Fraction(2, 3); x**3 - 4*x**2 -17*x + 60
    Fraction(1274, 27)
    >>> polynomial_eval([1, -4, -17, 60], x=Decimal('1.75'))
    Decimal('23.359375')
    >>> x = Decimal('1.75'); x**3 - 4*x**2 -17*x + 60
    Decimal('23.359375')
    >>> polynomial_eval([], 2)
    0
    >>> polynomial_eval([], 2.5)
    0.0
    >>> polynomial_eval([], Fraction(2, 3))
    Fraction(0, 1)
    >>> polynomial_eval([], Decimal('1.75'))
    Decimal('0')
    >>> polynomial_eval([11], 7) == 11
    True
    >>> polynomial_eval([11, 2], 7) == 11 * 7 + 2
    True


    >>> polynomial_from_roots([5, -4, 3])
    [1, -4, -17, 60]
    >>> factored = lambda x: (x - 5) * (x + 4) * (x - 3)
    >>> expanded = lambda x: x**3 -4*x**2 -17*x + 60
    >>> all(factored(x) == expanded(x) for x in range(-10, 11))
    True


    >>> polynomial_derivative([1, -4, -17, 60])
    [3, -8, -17]


    >>> list(iter_index('AABCADEAF', 'A'))
    [0, 1, 4, 7]
    >>> list(iter_index('AABCADEAF', 'B'))
    [2]
    >>> list(iter_index('AABCADEAF', 'X'))
    []
    >>> list(iter_index('', 'X'))
    []
    >>> list(iter_index('AABCADEAF', 'A', 1))
    [1, 4, 7]
    >>> list(iter_index(iter('AABCADEAF'), 'A', 1))
    [1, 4, 7]
    >>> list(iter_index('AABCADEAF', 'A', 2))
    [4, 7]
    >>> list(iter_index(iter('AABCADEAF'), 'A', 2))
    [4, 7]
    >>> list(iter_index('AABCADEAF', 'A', 10))
    []
    >>> list(iter_index(iter('AABCADEAF'), 'A', 10))
    []
    >>> list(iter_index('AABCADEAF', 'A', 1, 7))
    [1, 4]
    >>> list(iter_index(iter('AABCADEAF'), 'A', 1, 7))
    [1, 4]
    >>> # Verify that ValueErrors not swallowed (gh-107208)
    >>> def assert_no_value(iterable, forbidden_value):
    ...     for item in iterable:
    ...         if item == forbidden_value:
    ...             raise ValueError
    ...         yield item
    ...
    >>> list(iter_index(assert_no_value('AABCADEAF', 'B'), 'A'))
    Traceback (most recent call last):
    ...
    ValueError
    >>> # Verify that both paths can find identical NaN values
    >>> x = float('NaN')
    >>> y = float('NaN')
    >>> list(iter_index([0, x, x, y, 0], x))
    [1, 2]
    >>> list(iter_index(iter([0, x, x, y, 0]), x))
    [1, 2]
    >>> # Test list input. Lists do not support None for the stop argument
    >>> list(iter_index(list('AABCADEAF'), 'A'))
    [0, 1, 4, 7]
    >>> # Verify that input is consumed lazily
    >>> input_iterator = iter('AABCADEAF')
    >>> output_iterator = iter_index(input_iterator, 'A')
    >>> next(output_iterator)
    0
    >>> next(output_iterator)
    1
    >>> next(output_iterator)
    4
    >>> ''.join(input_iterator)
    'DEAF'


    >>> # Verify that the target value can be a sequence.
    >>> seq = [[10, 20], [30, 40], 30, 40, [30, 40], 50]
    >>> target = [30, 40]
    >>> list(iter_index(seq, target))
    [1, 4]


    >>> # Verify faithfulness to type specific index() method behaviors.
    >>> # For example, bytes and str perform continuous-subsequence searches
    >>> # that do not match the general behavior specified
    >>> # in collections.abc.Sequence.index().
    >>> seq = 'abracadabra'
    >>> target = 'ab'
    >>> list(iter_index(seq, target))
    [0, 7]


    >>> list(sieve(30))
    [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
    >>> small_primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
    >>> all(list(sieve(n)) == [p for p in small_primes if p < n] for n in range(101))
    True
    >>> len(list(sieve(100)))
    25
    >>> len(list(sieve(1_000)))
    168
    >>> len(list(sieve(10_000)))
    1229
    >>> len(list(sieve(100_000)))
    9592
    >>> len(list(sieve(1_000_000)))
    78498
    >>> carmichael = {561, 1105, 1729, 2465, 2821, 6601, 8911}  # https://oeis.org/A002997
    >>> set(sieve(10_000)).isdisjoint(carmichael)
    True


    >>> small_primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
    >>> list(filter(is_prime, range(-100, 100))) == small_primes
    True
    >>> carmichael = {561, 1105, 1729, 2465, 2821, 6601, 8911}  # https://oeis.org/A002997
    >>> any(map(is_prime, carmichael))
    False
    >>> # https://www.wolframalpha.com/input?i=is+128884753939+prime
    >>> is_prime(128_884_753_939)           # large prime
    True
    >>> is_prime(999953 * 999983)           # large semiprime
    False
    >>> is_prime(1_000_000_000_000_007)     # factor() example
    False
    >>> is_prime(1_000_000_000_000_403)     # factor() example
    True


    >>> list(factor(99))                    # Code example 1
    [3, 3, 11]
    >>> list(factor(1_000_000_000_000_007)) # Code example 2
    [47, 59, 360620266859]
    >>> list(factor(1_000_000_000_000_403)) # Code example 3
    [1000000000000403]
    >>> list(factor(0))
    []
    >>> list(factor(1))
    []
    >>> list(factor(2))
    [2]
    >>> list(factor(3))
    [3]
    >>> list(factor(4))
    [2, 2]
    >>> list(factor(5))
    [5]
    >>> list(factor(6))
    [2, 3]
    >>> list(factor(7))
    [7]
    >>> list(factor(8))
    [2, 2, 2]
    >>> list(factor(9))
    [3, 3]
    >>> list(factor(10))
    [2, 5]
    >>> list(factor(128_884_753_939))       # large prime
    [128884753939]
    >>> list(factor(999953 * 999983))       # large semiprime
    [999953, 999983]
    >>> list(factor(6 ** 20)) == [2] * 20 + [3] * 20   # large power
    True
    >>> list(factor(909_909_090_909))       # large multiterm composite
    [3, 3, 7, 13, 13, 751, 113797]
    >>> math.prod([3, 3, 7, 13, 13, 751, 113797])
    909909090909
    >>> all(math.prod(factor(n)) == n for n in range(1, 2_000))
    True
    >>> all(set(factor(n)) <= set(sieve(n+1)) for n in range(2_000))
    True
    >>> all(list(factor(n)) == sorted(factor(n)) for n in range(2_000))
    True


    >>> totient(0)  # https://www.wolframalpha.com/input?i=totient+0
    0
    >>> first_totients = [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6,
    ... 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18,
    ... 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36,
    ... 28, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44]  # https://oeis.org/A000010
    ...
    >>> list(map(totient, range(1, 70))) == first_totients
    True
    >>> reference_totient = lambda n: sum(math.gcd(t, n) == 1 for t in range(1, n+1))
    >>> all(totient(n) == reference_totient(n) for n in range(1000))
    True
    >>> totient(128_884_753_939) == 128_884_753_938  # large prime
    True
    >>> totient(999953 * 999983) == 999952 * 999982  # large semiprime
    True
    >>> totient(6 ** 20) == 1 * 2**19 * 2 * 3**19    # repeated primes
    True


    >>> list(flatten([('a', 'b'), (), ('c', 'd', 'e'), ('f',), ('g', 'h', 'i')]))
    ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']


    >>> list(repeatfunc(pow, 5, 2, 3))
    [8, 8, 8, 8, 8]
    >>> take(5, map(int, repeatfunc(random.random)))
    [0, 0, 0, 0, 0]
    >>> random.seed(85753098575309)
    >>> list(repeatfunc(random.random, 3))
    [0.16370491282496968, 0.45889608687313455, 0.3747076837820118]
    >>> list(repeatfunc(chr, 3, 65))
    ['A', 'A', 'A']
    >>> list(repeatfunc(pow, 3, 2, 5))
    [32, 32, 32]


    >>> list(grouper('abcdefg', 3, fillvalue='x'))
    [('a', 'b', 'c'), ('d', 'e', 'f'), ('g', 'x', 'x')]


    >>> it = grouper('abcdefg', 3, incomplete='strict')
    >>> next(it)
    ('a', 'b', 'c')
    >>> next(it)
    ('d', 'e', 'f')
    >>> next(it)
    Traceback (most recent call last):
      ...
    ValueError: zip() argument 2 is shorter than argument 1

    >>> list(grouper('abcdefg', n=3, incomplete='ignore'))
    [('a', 'b', 'c'), ('d', 'e', 'f')]


    >>> list(sliding_window('ABCDEFG', 1))
    [('A',), ('B',), ('C',), ('D',), ('E',), ('F',), ('G',)]
    >>> list(sliding_window('ABCDEFG', 2))
    [('A', 'B'), ('B', 'C'), ('C', 'D'), ('D', 'E'), ('E', 'F'), ('F', 'G')]
    >>> list(sliding_window('ABCDEFG', 3))
    [('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E'), ('D', 'E', 'F'), ('E', 'F', 'G')]
    >>> list(sliding_window('ABCDEFG', 4))
    [('A', 'B', 'C', 'D'), ('B', 'C', 'D', 'E'), ('C', 'D', 'E', 'F'), ('D', 'E', 'F', 'G')]
    >>> list(sliding_window('ABCDEFG', 5))
    [('A', 'B', 'C', 'D', 'E'), ('B', 'C', 'D', 'E', 'F'), ('C', 'D', 'E', 'F', 'G')]
    >>> list(sliding_window('ABCDEFG', 6))
    [('A', 'B', 'C', 'D', 'E', 'F'), ('B', 'C', 'D', 'E', 'F', 'G')]
    >>> list(sliding_window('ABCDEFG', 7))
    [('A', 'B', 'C', 'D', 'E', 'F', 'G')]
    >>> list(sliding_window('ABCDEFG', 8))
    []
    >>> try:
    ...     list(sliding_window('ABCDEFG', -1))
    ... except ValueError:
    ...     'zero or negative n not supported'
    ...
    'zero or negative n not supported'
    >>> try:
    ...     list(sliding_window('ABCDEFG', 0))
    ... except ValueError:
    ...     'zero or negative n not supported'
    ...
    'zero or negative n not supported'


    >>> list(roundrobin('abc', 'd', 'ef'))
    ['a', 'd', 'e', 'b', 'f', 'c']
    >>> ranges = [range(5, 1000), range(4, 3000), range(0), range(3, 2000), range(2, 5000), range(1, 3500)]
    >>> collections.Counter(roundrobin(*ranges)) == collections.Counter(chain(*ranges))
    True
    >>> # Verify that the inputs are consumed lazily
    >>> input_iterators = list(map(iter, ['abcd', 'ef', '', 'ghijk', 'l', 'mnopqr']))
    >>> output_iterator = roundrobin(*input_iterators)
    >>> ''.join(islice(output_iterator, 10))
    'aeglmbfhnc'
    >>> ''.join(chain(*input_iterators))
    'dijkopqr'


    >>> list(subslices('ABCD'))
    ['A', 'AB', 'ABC', 'ABCD', 'B', 'BC', 'BCD', 'C', 'CD', 'D']


    >>> list(powerset([1,2,3]))
    [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
    >>> all(len(list(powerset(range(n)))) == 2**n for n in range(18))
    True
    >>> list(powerset('abcde')) == sorted(sorted(set(powerset('abcde'))), key=len)
    True


    >>> list(unique_everseen('AAAABBBCCDAABBB'))
    ['A', 'B', 'C', 'D']
    >>> list(unique_everseen('ABBCcAD', str.casefold))
    ['A', 'B', 'C', 'D']
    >>> list(unique_everseen('ABBcCAD', str.casefold))
    ['A', 'B', 'c', 'D']
    >>> # Verify that the input is consumed lazily
    >>> input_iterator = iter('AAAABBBCCDAABBB')
    >>> output_iterator = unique_everseen(input_iterator)
    >>> next(output_iterator)
    'A'
    >>> ''.join(input_iterator)
    'AAABBBCCDAABBB'


    >>> list(unique_justseen('AAAABBBCCDAABBB'))
    ['A', 'B', 'C', 'D', 'A', 'B']
    >>> list(unique_justseen('ABBCcAD', str.casefold))
    ['A', 'B', 'C', 'A', 'D']
    >>> list(unique_justseen('ABBcCAD', str.casefold))
    ['A', 'B', 'c', 'A', 'D']
    >>> # Verify that the input is consumed lazily
    >>> input_iterator = iter('AAAABBBCCDAABBB')
    >>> output_iterator = unique_justseen(input_iterator)
    >>> next(output_iterator)
    'A'
    >>> ''.join(input_iterator)
    'AAABBBCCDAABBB'


    >>> list(unique([[1, 2], [3, 4], [1, 2]]))
    [[1, 2], [3, 4]]
    >>> list(unique('ABBcCAD', str.casefold))
    ['A', 'B', 'c', 'D']
    >>> list(unique('ABBcCAD', str.casefold, reverse=True))
    ['D', 'c', 'B', 'A']


    >>> d = dict(a=1, b=2, c=3)
    >>> it = iter_except(d.popitem, KeyError)
    >>> d['d'] = 4
    >>> next(it)
    ('d', 4)
    >>> next(it)
    ('c', 3)
    >>> next(it)
    ('b', 2)
    >>> d['e'] = 5
    >>> next(it)
    ('e', 5)
    >>> next(it)
    ('a', 1)
    >>> next(it, 'empty')
    'empty'


    >>> first_true('ABC0DEF1', '9', str.isdigit)
    '0'
    >>> # Verify that inputs are consumed lazily
    >>> it = iter('ABC0DEF1')
    >>> first_true(it, predicate=str.isdigit)
    '0'
    >>> ''.join(it)
    'DEF1'


.. testcode::
    :hide:

    # Old recipes and their tests which are guaranteed to continue to work.

    def sumprod(vec1, vec2):
        "Compute a sum of products."
        return sum(starmap(operator.mul, zip(vec1, vec2, strict=True)))

    def dotproduct(vec1, vec2):
        return sum(map(operator.mul, vec1, vec2))

    def pad_none(iterable):
        """Returns the sequence elements and then returns None indefinitely.

        Useful for emulating the behavior of the built-in map() function.
        """
        return chain(iterable, repeat(None))

    def triplewise(iterable):
        "Return overlapping triplets from an iterable"
        # triplewise('ABCDEFG') → ABC BCD CDE DEF EFG
        for (a, _), (b, c) in pairwise(pairwise(iterable)):
            yield a, b, c

    def nth_combination(iterable, r, index):
        "Equivalent to list(combinations(iterable, r))[index]"
        pool = tuple(iterable)
        n = len(pool)
        c = math.comb(n, r)
        if index < 0:
            index += c
        if index < 0 or index >= c:
            raise IndexError
        result = []
        while r:
            c, n, r = c*r//n, n-1, r-1
            while index >= c:
                index -= c
                c, n = c*(n-r)//n, n-1
            result.append(pool[-1-n])
        return tuple(result)

    def before_and_after(predicate, it):
       """ Variant of takewhile() that allows complete
           access to the remainder of the iterator.

           >>> it = iter('ABCdEfGhI')
           >>> all_upper, remainder = before_and_after(str.isupper, it)
           >>> ''.join(all_upper)
           'ABC'
           >>> ''.join(remainder)     # takewhile() would lose the 'd'
           'dEfGhI'

           Note that the true iterator must be fully consumed
           before the remainder iterator can generate valid results.
       """
       it = iter(it)
       transition = []

       def true_iterator():
           for elem in it:
               if predicate(elem):
                   yield elem
               else:
                   transition.append(elem)
                   return

       return true_iterator(), chain(transition, it)

    def partition(predicate, iterable):
        """Partition entries into false entries and true entries.

        If *predicate* is slow, consider wrapping it with functools.lru_cache().
        """
        # partition(is_odd, range(10)) → 0 2 4 6 8   and  1 3 5 7 9
        t1, t2 = tee(iterable)
        return filterfalse(predicate, t1), filter(predicate, t2)



.. doctest::
    :hide:

    >>> dotproduct([1,2,3], [4,5,6])
    32


    >>> sumprod([1,2,3], [4,5,6])
    32


    >>> list(islice(pad_none('abc'), 0, 6))
    ['a', 'b', 'c', None, None, None]


    >>> list(triplewise('ABCDEFG'))
    [('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E'), ('D', 'E', 'F'), ('E', 'F', 'G')]


    >>> population = 'ABCDEFGH'
    >>> for r in range(len(population) + 1):
    ...     seq = list(combinations(population, r))
    ...     for i in range(len(seq)):
    ...         assert nth_combination(population, r, i) == seq[i]
    ...     for i in range(-len(seq), 0):
    ...         assert nth_combination(population, r, i) == seq[i]
    ...
    >>> iterable = 'abcde'
    >>> r = 3
    >>> combos = list(combinations(iterable, r))
    >>> all(nth_combination(iterable, r, i) == comb for i, comb in enumerate(combos))
    True


    >>> it = iter('ABCdEfGhI')
    >>> all_upper, remainder = before_and_after(str.isupper, it)
    >>> ''.join(all_upper)
    'ABC'
    >>> ''.join(remainder)
    'dEfGhI'


    >>> def is_odd(x):
    ...     return x % 2 == 1
    ...
    >>> evens, odds = partition(is_odd, range(10))
    >>> list(evens)
    [0, 2, 4, 6, 8]
    >>> list(odds)
    [1, 3, 5, 7, 9]
    >>> # Verify that the input is consumed lazily
    >>> input_iterator = iter(range(10))
    >>> evens, odds = partition(is_odd, input_iterator)
    >>> next(odds)
    1
    >>> next(odds)
    3
    >>> next(evens)
    0
    >>> list(input_iterator)
    [4, 5, 6, 7, 8, 9]