summaryrefslogtreecommitdiffstats
path: root/Doc/library/math.rst
blob: 024897f1be91400db12647d3a4a71a4f59c4fd4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

:mod:`math` --- Mathematical functions
======================================

.. module:: math
   :synopsis: Mathematical functions (sin() etc.).


This module is always available.  It provides access to the mathematical
functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the
same name from the :mod:`cmath` module if you require support for complex
numbers.  The distinction between functions which support complex numbers and
those which don't is made since most users do not want to learn quite as much
mathematics as required to understand complex numbers.  Receiving an exception
instead of a complex result allows earlier detection of the unexpected complex
number used as a parameter, so that the programmer can determine how and why it
was generated in the first place.

The following functions are provided by this module.  Except when explicitly
noted otherwise, all return values are floats.

Number-theoretic and representation functions:


.. function:: ceil(x)

   Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
   If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
   :class:`Integral` value.


.. function:: copysign(x, y)

   Return *x* with the sign of *y*. ``copysign`` copies the sign bit of an IEEE
   754 float, ``copysign(1, -0.0)`` returns *-1.0*.


.. function:: fabs(x)

   Return the absolute value of *x*.


.. function:: floor(x)

   Return the floor of *x*, the largest integer less than or equal to *x*.
   If *x* is not a float, delegates to ``x.__floor__()``, which should return an
   :class:`Integral` value.


.. function:: fmod(x, y)

   Return ``fmod(x, y)``, as defined by the platform C library. Note that the
   Python expression ``x % y`` may not return the same result.  The intent of the C
   standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
   precision) equal to ``x - n*y`` for some integer *n* such that the result has
   the same sign as *x* and magnitude less than ``abs(y)``.  Python's ``x % y``
   returns a result with the sign of *y* instead, and may not be exactly computable
   for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
   the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
   represented exactly as a float, and rounds to the surprising ``1e100``.  For
   this reason, function :func:`fmod` is generally preferred when working with
   floats, while Python's ``x % y`` is preferred when working with integers.


.. function:: frexp(x)

   Return the mantissa and exponent of *x* as the pair ``(m, e)``.  *m* is a float
   and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
   returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``.  This is used to "pick
   apart" the internal representation of a float in a portable way.


.. function:: isinf(x)

   Checks if the float *x* is positive or negative infinite.


.. function:: isnan(x)

   Checks if the float *x* is a NaN (not a number). NaNs are part of the
   IEEE 754 standards. Operation like but not limited to ``inf * 0``, 
   ``inf / inf`` or any operation involving a NaN, e.g. ``nan * 1``, return
   a NaN.


.. function:: ldexp(x, i)

   Return ``x * (2**i)``.  This is essentially the inverse of function
   :func:`frexp`.


.. function:: modf(x)

   Return the fractional and integer parts of *x*.  Both results carry the sign of
   *x*, and both are floats.


.. function:: trunc(x)

   Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
   a long integer). Delegates to ``x.__trunc__()``.

   .. versionadded:: 2.6

Note that :func:`frexp` and :func:`modf` have a different call/return pattern
than their C equivalents: they take a single argument and return a pair of
values, rather than returning their second return value through an 'output
parameter' (there is no such thing in Python).

For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
floating-point numbers of sufficiently large magnitude are exact integers.
Python floats typically carry no more than 53 bits of precision (the same as the
platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
necessarily has no fractional bits.

Power and logarithmic functions:

.. function:: exp(x)

   Return ``e**x``.


.. function:: log(x[, base])

   Return the logarithm of *x* to the given *base*. If the *base* is not specified,
   return the natural logarithm of *x* (that is, the logarithm to base *e*).


.. function:: log1p(x)

   Return the natural logarithm of *1+x* (base *e*). The
   result is calculated in a way which is accurate for *x* near zero.

   .. versionadded:: 2.6


.. function:: log10(x)

   Return the base-10 logarithm of *x*.


.. function:: pow(x, y)

   Return ``x**y``. ``1.0**y`` returns *1.0*, even for ``1.0**nan``. ``0**y``
   returns *0.* for all positive *y*, *0* and *NAN*.

   .. versionchanged:: 2.6
      The outcome of ``1**nan`` and ``0**nan`` was undefined.


.. function:: sqrt(x)

   Return the square root of *x*.

Trigonometric functions:


.. function:: acos(x)

   Return the arc cosine of *x*, in radians.


.. function:: asin(x)

   Return the arc sine of *x*, in radians.


.. function:: atan(x)

   Return the arc tangent of *x*, in radians.


.. function:: atan2(y, x)

   Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
   The vector in the plane from the origin to point ``(x, y)`` makes this angle
   with the positive X axis. The point of :func:`atan2` is that the signs of both
   inputs are known to it, so it can compute the correct quadrant for the angle.
   For example, ``atan(1``) and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
   -1)`` is ``-3*pi/4``.


.. function:: cos(x)

   Return the cosine of *x* radians.


.. function:: hypot(x, y)

   Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
   from the origin to point ``(x, y)``.


.. function:: sin(x)

   Return the sine of *x* radians.


.. function:: asinh(x)

   Return the inverse hyperbolic sine of *x*, in radians.

   .. versionadded:: 2.6


.. function:: tan(x)

   Return the tangent of *x* radians.

Angular conversion:


.. function:: degrees(x)

   Converts angle *x* from radians to degrees.


.. function:: radians(x)

   Converts angle *x* from degrees to radians.

Hyperbolic functions:


.. function:: cosh(x)

   Return the hyperbolic cosine of *x*.


.. function:: acosh(x)

   Return the inverse hyperbolic cosine of *x*, in radians.

   .. versionadded:: 2.6


.. function:: sinh(x)

   Return the hyperbolic sine of *x*.


.. function:: tanh(x)

   Return the hyperbolic tangent of *x*.


.. function:: atanh(x)

   Return the inverse hyperbolic tangent of *x*, in radians.

   .. versionadded:: 2.6


The module also defines two mathematical constants:


.. data:: pi

   The mathematical constant *pi*.


.. data:: e

   The mathematical constant *e*.


.. note::

   The :mod:`math` module consists mostly of thin wrappers around the platform C
   math library functions.  Behavior in exceptional cases is loosely specified
   by the C standards, and Python inherits much of its math-function
   error-reporting behavior from the platform C implementation.  As a result,
   the specific exceptions raised in error cases (and even whether some
   arguments are considered to be exceptional at all) are not defined in any
   useful cross-platform or cross-release way.  For example, whether
   ``math.log(0)`` returns ``-Inf`` or raises :exc:`ValueError` or
   :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises
   :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead.

   All functions return a quite *NaN* if at least one of the args is *NaN*.
   Signaling *NaN*s raise an exception. The exception type still depends on the
   platform and libm implementation. It's usually :exc:`ValueError` for *EDOM*
   and :exc:`OverflowError` for errno *ERANGE*.

   ..versionchanged:: 2.6
      In earlier versions of Python the outcome of an operation with NaN as
      input depended on platform and libm implementation.


.. seealso::

   Module :mod:`cmath`
      Complex number versions of many of these functions.