1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
:mod:`queue` --- A synchronized queue class
===========================================
.. module:: queue
:synopsis: A synchronized queue class.
**Source code:** :source:`Lib/queue.py`
--------------
The :mod:`queue` module implements multi-producer, multi-consumer queues.
It is especially useful in threaded programming when information must be
exchanged safely between multiple threads. The :class:`Queue` class in this
module implements all the required locking semantics.
The module implements three types of queue, which differ only in the order in
which the entries are retrieved. In a :abbr:`FIFO (first-in, first-out)`
queue, the first tasks added are the first retrieved. In a
:abbr:`LIFO (last-in, first-out)` queue, the most recently added entry is
the first retrieved (operating like a stack). With a priority queue,
the entries are kept sorted (using the :mod:`heapq` module) and the
lowest valued entry is retrieved first.
Internally, those three types of queues use locks to temporarily block
competing threads; however, they are not designed to handle reentrancy
within a thread.
In addition, the module implements a "simple"
:abbr:`FIFO (first-in, first-out)` queue type, :class:`SimpleQueue`, whose
specific implementation provides additional guarantees
in exchange for the smaller functionality.
The :mod:`queue` module defines the following classes and exceptions:
.. class:: Queue(maxsize=0)
Constructor for a :abbr:`FIFO (first-in, first-out)` queue. *maxsize* is
an integer that sets the upperbound
limit on the number of items that can be placed in the queue. Insertion will
block once this size has been reached, until queue items are consumed. If
*maxsize* is less than or equal to zero, the queue size is infinite.
.. class:: LifoQueue(maxsize=0)
Constructor for a :abbr:`LIFO (last-in, first-out)` queue. *maxsize* is
an integer that sets the upperbound
limit on the number of items that can be placed in the queue. Insertion will
block once this size has been reached, until queue items are consumed. If
*maxsize* is less than or equal to zero, the queue size is infinite.
.. class:: PriorityQueue(maxsize=0)
Constructor for a priority queue. *maxsize* is an integer that sets the upperbound
limit on the number of items that can be placed in the queue. Insertion will
block once this size has been reached, until queue items are consumed. If
*maxsize* is less than or equal to zero, the queue size is infinite.
The lowest valued entries are retrieved first (the lowest valued entry is the
one that would be returned by ``min(entries)``). A typical pattern for
entries is a tuple in the form: ``(priority_number, data)``.
If the *data* elements are not comparable, the data can be wrapped in a class
that ignores the data item and only compares the priority number::
from dataclasses import dataclass, field
from typing import Any
@dataclass(order=True)
class PrioritizedItem:
priority: int
item: Any=field(compare=False)
.. class:: SimpleQueue()
Constructor for an unbounded :abbr:`FIFO (first-in, first-out)` queue.
Simple queues lack advanced functionality such as task tracking.
.. versionadded:: 3.7
.. exception:: Empty
Exception raised when non-blocking :meth:`~Queue.get` (or
:meth:`~Queue.get_nowait`) is called
on a :class:`Queue` object which is empty.
.. exception:: Full
Exception raised when non-blocking :meth:`~Queue.put` (or
:meth:`~Queue.put_nowait`) is called
on a :class:`Queue` object which is full.
.. _queueobjects:
Queue Objects
-------------
Queue objects (:class:`Queue`, :class:`LifoQueue`, or :class:`PriorityQueue`)
provide the public methods described below.
.. method:: Queue.qsize()
Return the approximate size of the queue. Note, qsize() > 0 doesn't
guarantee that a subsequent get() will not block, nor will qsize() < maxsize
guarantee that put() will not block.
.. method:: Queue.empty()
Return ``True`` if the queue is empty, ``False`` otherwise. If empty()
returns ``True`` it doesn't guarantee that a subsequent call to put()
will not block. Similarly, if empty() returns ``False`` it doesn't
guarantee that a subsequent call to get() will not block.
.. method:: Queue.full()
Return ``True`` if the queue is full, ``False`` otherwise. If full()
returns ``True`` it doesn't guarantee that a subsequent call to get()
will not block. Similarly, if full() returns ``False`` it doesn't
guarantee that a subsequent call to put() will not block.
.. method:: Queue.put(item, block=True, timeout=None)
Put *item* into the queue. If optional args *block* is true and *timeout* is
``None`` (the default), block if necessary until a free slot is available. If
*timeout* is a positive number, it blocks at most *timeout* seconds and raises
the :exc:`Full` exception if no free slot was available within that time.
Otherwise (*block* is false), put an item on the queue if a free slot is
immediately available, else raise the :exc:`Full` exception (*timeout* is
ignored in that case).
.. method:: Queue.put_nowait(item)
Equivalent to ``put(item, block=False)``.
.. method:: Queue.get(block=True, timeout=None)
Remove and return an item from the queue. If optional args *block* is true and
*timeout* is ``None`` (the default), block if necessary until an item is available.
If *timeout* is a positive number, it blocks at most *timeout* seconds and
raises the :exc:`Empty` exception if no item was available within that time.
Otherwise (*block* is false), return an item if one is immediately available,
else raise the :exc:`Empty` exception (*timeout* is ignored in that case).
Prior to 3.0 on POSIX systems, and for all versions on Windows, if
*block* is true and *timeout* is ``None``, this operation goes into
an uninterruptible wait on an underlying lock. This means that no exceptions
can occur, and in particular a SIGINT will not trigger a :exc:`KeyboardInterrupt`.
.. method:: Queue.get_nowait()
Equivalent to ``get(False)``.
Two methods are offered to support tracking whether enqueued tasks have been
fully processed by daemon consumer threads.
.. method:: Queue.task_done()
Indicate that a formerly enqueued task is complete. Used by queue consumer
threads. For each :meth:`get` used to fetch a task, a subsequent call to
:meth:`task_done` tells the queue that the processing on the task is complete.
If a :meth:`join` is currently blocking, it will resume when all items have been
processed (meaning that a :meth:`task_done` call was received for every item
that had been :meth:`put` into the queue).
Raises a :exc:`ValueError` if called more times than there were items placed in
the queue.
.. method:: Queue.join()
Blocks until all items in the queue have been gotten and processed.
The count of unfinished tasks goes up whenever an item is added to the queue.
The count goes down whenever a consumer thread calls :meth:`task_done` to
indicate that the item was retrieved and all work on it is complete. When the
count of unfinished tasks drops to zero, :meth:`join` unblocks.
Example of how to wait for enqueued tasks to be completed::
import threading
import queue
q = queue.Queue()
def worker():
while True:
item = q.get()
print(f'Working on {item}')
print(f'Finished {item}')
q.task_done()
# Turn-on the worker thread.
threading.Thread(target=worker, daemon=True).start()
# Send thirty task requests to the worker.
for item in range(30):
q.put(item)
# Block until all tasks are done.
q.join()
print('All work completed')
SimpleQueue Objects
-------------------
:class:`SimpleQueue` objects provide the public methods described below.
.. method:: SimpleQueue.qsize()
Return the approximate size of the queue. Note, qsize() > 0 doesn't
guarantee that a subsequent get() will not block.
.. method:: SimpleQueue.empty()
Return ``True`` if the queue is empty, ``False`` otherwise. If empty()
returns ``False`` it doesn't guarantee that a subsequent call to get()
will not block.
.. method:: SimpleQueue.put(item, block=True, timeout=None)
Put *item* into the queue. The method never blocks and always succeeds
(except for potential low-level errors such as failure to allocate memory).
The optional args *block* and *timeout* are ignored and only provided
for compatibility with :meth:`Queue.put`.
.. impl-detail::
This method has a C implementation which is reentrant. That is, a
``put()`` or ``get()`` call can be interrupted by another ``put()``
call in the same thread without deadlocking or corrupting internal
state inside the queue. This makes it appropriate for use in
destructors such as ``__del__`` methods or :mod:`weakref` callbacks.
.. method:: SimpleQueue.put_nowait(item)
Equivalent to ``put(item, block=False)``, provided for compatibility with
:meth:`Queue.put_nowait`.
.. method:: SimpleQueue.get(block=True, timeout=None)
Remove and return an item from the queue. If optional args *block* is true and
*timeout* is ``None`` (the default), block if necessary until an item is available.
If *timeout* is a positive number, it blocks at most *timeout* seconds and
raises the :exc:`Empty` exception if no item was available within that time.
Otherwise (*block* is false), return an item if one is immediately available,
else raise the :exc:`Empty` exception (*timeout* is ignored in that case).
.. method:: SimpleQueue.get_nowait()
Equivalent to ``get(False)``.
.. seealso::
Class :class:`multiprocessing.Queue`
A queue class for use in a multi-processing (rather than multi-threading)
context.
:class:`collections.deque` is an alternative implementation of unbounded
queues with fast atomic :meth:`~collections.deque.append` and
:meth:`~collections.deque.popleft` operations that do not require locking
and also support indexing.
|