1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
|
:mod:`random` --- Generate pseudo-random numbers
================================================
.. module:: random
:synopsis: Generate pseudo-random numbers with various common distributions.
**Source code:** :source:`Lib/random.py`
--------------
This module implements pseudo-random number generators for various
distributions.
For integers, there is uniform selection from a range. For sequences, there is
uniform selection of a random element, a function to generate a random
permutation of a list in-place, and a function for random sampling without
replacement.
On the real line, there are functions to compute uniform, normal (Gaussian),
lognormal, negative exponential, gamma, and beta distributions. For generating
distributions of angles, the von Mises distribution is available.
Almost all module functions depend on the basic function :func:`.random`, which
generates a random float uniformly in the half-open range ``0.0 <= X < 1.0``.
Python uses the Mersenne Twister as the core generator. It produces 53-bit precision
floats and has a period of 2\*\*19937-1. The underlying implementation in C is
both fast and threadsafe. The Mersenne Twister is one of the most extensively
tested random number generators in existence. However, being completely
deterministic, it is not suitable for all purposes, and is completely unsuitable
for cryptographic purposes.
The functions supplied by this module are actually bound methods of a hidden
instance of the :class:`random.Random` class. You can instantiate your own
instances of :class:`Random` to get generators that don't share state.
Class :class:`Random` can also be subclassed if you want to use a different
basic generator of your own devising: in that case, override the :meth:`~Random.random`,
:meth:`~Random.seed`, :meth:`~Random.getstate`, and :meth:`~Random.setstate` methods.
Optionally, a new generator can supply a :meth:`~Random.getrandbits` method --- this
allows :meth:`randrange` to produce selections over an arbitrarily large range.
The :mod:`random` module also provides the :class:`SystemRandom` class which
uses the system function :func:`os.urandom` to generate random numbers
from sources provided by the operating system.
.. warning::
The pseudo-random generators of this module should not be used for
security purposes. For security or cryptographic uses, see the
:mod:`secrets` module.
.. seealso::
M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator", ACM Transactions on
Modeling and Computer Simulation Vol. 8, No. 1, January pp.3--30 1998.
`Complementary-Multiply-with-Carry recipe
<https://code.activestate.com/recipes/576707/>`_ for a compatible alternative
random number generator with a long period and comparatively simple update
operations.
Bookkeeping functions
---------------------
.. function:: seed(a=None, version=2)
Initialize the random number generator.
If *a* is omitted or ``None``, the current system time is used. If
randomness sources are provided by the operating system, they are used
instead of the system time (see the :func:`os.urandom` function for details
on availability).
If *a* is an int, it is used directly.
With version 2 (the default), a :class:`str`, :class:`bytes`, or :class:`bytearray`
object gets converted to an :class:`int` and all of its bits are used.
With version 1 (provided for reproducing random sequences from older versions
of Python), the algorithm for :class:`str` and :class:`bytes` generates a
narrower range of seeds.
.. versionchanged:: 3.2
Moved to the version 2 scheme which uses all of the bits in a string seed.
.. versionchanged:: 3.11
The *seed* must be one of the following types:
*NoneType*, :class:`int`, :class:`float`, :class:`str`,
:class:`bytes`, or :class:`bytearray`.
.. function:: getstate()
Return an object capturing the current internal state of the generator. This
object can be passed to :func:`setstate` to restore the state.
.. function:: setstate(state)
*state* should have been obtained from a previous call to :func:`getstate`, and
:func:`setstate` restores the internal state of the generator to what it was at
the time :func:`getstate` was called.
Functions for bytes
-------------------
.. function:: randbytes(n)
Generate *n* random bytes.
This method should not be used for generating security tokens.
Use :func:`secrets.token_bytes` instead.
.. versionadded:: 3.9
Functions for integers
----------------------
.. function:: randrange(stop)
randrange(start, stop[, step])
Return a randomly selected element from ``range(start, stop, step)``.
This is roughly equivalent to ``choice(range(start, stop, step))`` but
supports arbitrarily large ranges and is optimized for common cases.
The positional argument pattern matches the :func:`range` function.
Keyword arguments should not be used because they can be interpreted
in unexpected ways. For example ``randrange(start=100)`` is interpreted
as ``randrange(0, 100, 1)``.
.. versionchanged:: 3.2
:meth:`randrange` is more sophisticated about producing equally distributed
values. Formerly it used a style like ``int(random()*n)`` which could produce
slightly uneven distributions.
.. versionchanged:: 3.12
Automatic conversion of non-integer types is no longer supported.
Calls such as ``randrange(10.0)`` and ``randrange(Fraction(10, 1))``
now raise a :exc:`TypeError`.
.. function:: randint(a, b)
Return a random integer *N* such that ``a <= N <= b``. Alias for
``randrange(a, b+1)``.
.. function:: getrandbits(k)
Returns a non-negative Python integer with *k* random bits. This method
is supplied with the Mersenne Twister generator and some other generators
may also provide it as an optional part of the API. When available,
:meth:`getrandbits` enables :meth:`randrange` to handle arbitrarily large
ranges.
.. versionchanged:: 3.9
This method now accepts zero for *k*.
Functions for sequences
-----------------------
.. function:: choice(seq)
Return a random element from the non-empty sequence *seq*. If *seq* is empty,
raises :exc:`IndexError`.
.. function:: choices(population, weights=None, *, cum_weights=None, k=1)
Return a *k* sized list of elements chosen from the *population* with replacement.
If the *population* is empty, raises :exc:`IndexError`.
If a *weights* sequence is specified, selections are made according to the
relative weights. Alternatively, if a *cum_weights* sequence is given, the
selections are made according to the cumulative weights (perhaps computed
using :func:`itertools.accumulate`). For example, the relative weights
``[10, 5, 30, 5]`` are equivalent to the cumulative weights
``[10, 15, 45, 50]``. Internally, the relative weights are converted to
cumulative weights before making selections, so supplying the cumulative
weights saves work.
If neither *weights* nor *cum_weights* are specified, selections are made
with equal probability. If a weights sequence is supplied, it must be
the same length as the *population* sequence. It is a :exc:`TypeError`
to specify both *weights* and *cum_weights*.
The *weights* or *cum_weights* can use any numeric type that interoperates
with the :class:`float` values returned by :func:`random` (that includes
integers, floats, and fractions but excludes decimals). Weights are assumed
to be non-negative and finite. A :exc:`ValueError` is raised if all
weights are zero.
For a given seed, the :func:`choices` function with equal weighting
typically produces a different sequence than repeated calls to
:func:`choice`. The algorithm used by :func:`choices` uses floating
point arithmetic for internal consistency and speed. The algorithm used
by :func:`choice` defaults to integer arithmetic with repeated selections
to avoid small biases from round-off error.
.. versionadded:: 3.6
.. versionchanged:: 3.9
Raises a :exc:`ValueError` if all weights are zero.
.. function:: shuffle(x)
Shuffle the sequence *x* in place.
To shuffle an immutable sequence and return a new shuffled list, use
``sample(x, k=len(x))`` instead.
Note that even for small ``len(x)``, the total number of permutations of *x*
can quickly grow larger than the period of most random number generators.
This implies that most permutations of a long sequence can never be
generated. For example, a sequence of length 2080 is the largest that
can fit within the period of the Mersenne Twister random number generator.
.. deprecated-removed:: 3.9 3.11
The optional parameter *random*.
.. function:: sample(population, k, *, counts=None)
Return a *k* length list of unique elements chosen from the population
sequence. Used for random sampling without replacement.
Returns a new list containing elements from the population while leaving the
original population unchanged. The resulting list is in selection order so that
all sub-slices will also be valid random samples. This allows raffle winners
(the sample) to be partitioned into grand prize and second place winners (the
subslices).
Members of the population need not be :term:`hashable` or unique. If the population
contains repeats, then each occurrence is a possible selection in the sample.
Repeated elements can be specified one at a time or with the optional
keyword-only *counts* parameter. For example, ``sample(['red', 'blue'],
counts=[4, 2], k=5)`` is equivalent to ``sample(['red', 'red', 'red', 'red',
'blue', 'blue'], k=5)``.
To choose a sample from a range of integers, use a :func:`range` object as an
argument. This is especially fast and space efficient for sampling from a large
population: ``sample(range(10000000), k=60)``.
If the sample size is larger than the population size, a :exc:`ValueError`
is raised.
.. versionchanged:: 3.9
Added the *counts* parameter.
.. versionchanged:: 3.11
The *population* must be a sequence. Automatic conversion of sets
to lists is no longer supported.
Discrete distributions
----------------------
The following function generates a discrete distribution.
.. function:: binomialvariate(n=1, p=0.5)
`Binomial distribution
<https://mathworld.wolfram.com/BinomialDistribution.html>`_.
Return the number of successes for *n* independent trials with the
probability of success in each trial being *p*:
Mathematically equivalent to::
sum(random() < p for i in range(n))
The number of trials *n* should be a non-negative integer.
The probability of success *p* should be between ``0.0 <= p <= 1.0``.
The result is an integer in the range ``0 <= X <= n``.
.. versionadded:: 3.12
.. _real-valued-distributions:
Real-valued distributions
-------------------------
The following functions generate specific real-valued distributions. Function
parameters are named after the corresponding variables in the distribution's
equation, as used in common mathematical practice; most of these equations can
be found in any statistics text.
.. function:: random()
Return the next random floating point number in the range ``0.0 <= X < 1.0``
.. function:: uniform(a, b)
Return a random floating point number *N* such that ``a <= N <= b`` for
``a <= b`` and ``b <= N <= a`` for ``b < a``.
The end-point value ``b`` may or may not be included in the range
depending on floating-point rounding in the equation ``a + (b-a) * random()``.
.. function:: triangular(low, high, mode)
Return a random floating point number *N* such that ``low <= N <= high`` and
with the specified *mode* between those bounds. The *low* and *high* bounds
default to zero and one. The *mode* argument defaults to the midpoint
between the bounds, giving a symmetric distribution.
.. function:: betavariate(alpha, beta)
Beta distribution. Conditions on the parameters are ``alpha > 0`` and
``beta > 0``. Returned values range between 0 and 1.
.. function:: expovariate(lambd = 1.0)
Exponential distribution. *lambd* is 1.0 divided by the desired
mean. It should be nonzero. (The parameter would be called
"lambda", but that is a reserved word in Python.) Returned values
range from 0 to positive infinity if *lambd* is positive, and from
negative infinity to 0 if *lambd* is negative.
.. versionchanged:: 3.12
Added the default value for ``lambd``.
.. function:: gammavariate(alpha, beta)
Gamma distribution. (*Not* the gamma function!) Conditions on the
parameters are ``alpha > 0`` and ``beta > 0``.
The probability distribution function is::
x ** (alpha - 1) * math.exp(-x / beta)
pdf(x) = --------------------------------------
math.gamma(alpha) * beta ** alpha
.. function:: gauss(mu=0.0, sigma=1.0)
Normal distribution, also called the Gaussian distribution. *mu* is the mean,
and *sigma* is the standard deviation. This is slightly faster than
the :func:`normalvariate` function defined below.
Multithreading note: When two threads call this function
simultaneously, it is possible that they will receive the
same return value. This can be avoided in three ways.
1) Have each thread use a different instance of the random
number generator. 2) Put locks around all calls. 3) Use the
slower, but thread-safe :func:`normalvariate` function instead.
.. versionchanged:: 3.11
*mu* and *sigma* now have default arguments.
.. function:: lognormvariate(mu, sigma)
Log normal distribution. If you take the natural logarithm of this
distribution, you'll get a normal distribution with mean *mu* and standard
deviation *sigma*. *mu* can have any value, and *sigma* must be greater than
zero.
.. function:: normalvariate(mu=0.0, sigma=1.0)
Normal distribution. *mu* is the mean, and *sigma* is the standard deviation.
.. versionchanged:: 3.11
*mu* and *sigma* now have default arguments.
.. function:: vonmisesvariate(mu, kappa)
*mu* is the mean angle, expressed in radians between 0 and 2\*\ *pi*, and *kappa*
is the concentration parameter, which must be greater than or equal to zero. If
*kappa* is equal to zero, this distribution reduces to a uniform random angle
over the range 0 to 2\*\ *pi*.
.. function:: paretovariate(alpha)
Pareto distribution. *alpha* is the shape parameter.
.. function:: weibullvariate(alpha, beta)
Weibull distribution. *alpha* is the scale parameter and *beta* is the shape
parameter.
Alternative Generator
---------------------
.. class:: Random([seed])
Class that implements the default pseudo-random number generator used by the
:mod:`random` module.
.. deprecated-removed:: 3.9 3.11
Formerly the *seed* could be any hashable object. Now it is limited to:
:class:`NoneType`, :class:`int`, :class:`float`, :class:`str`,
:class:`bytes`, or :class:`bytearray`.
.. class:: SystemRandom([seed])
Class that uses the :func:`os.urandom` function for generating random numbers
from sources provided by the operating system. Not available on all systems.
Does not rely on software state, and sequences are not reproducible. Accordingly,
the :meth:`seed` method has no effect and is ignored.
The :meth:`getstate` and :meth:`setstate` methods raise
:exc:`NotImplementedError` if called.
Notes on Reproducibility
------------------------
Sometimes it is useful to be able to reproduce the sequences given by a
pseudo-random number generator. By reusing a seed value, the same sequence should be
reproducible from run to run as long as multiple threads are not running.
Most of the random module's algorithms and seeding functions are subject to
change across Python versions, but two aspects are guaranteed not to change:
* If a new seeding method is added, then a backward compatible seeder will be
offered.
* The generator's :meth:`~Random.random` method will continue to produce the same
sequence when the compatible seeder is given the same seed.
.. _random-examples:
Examples
--------
Basic examples::
>>> random() # Random float: 0.0 <= x < 1.0
0.37444887175646646
>>> uniform(2.5, 10.0) # Random float: 2.5 <= x <= 10.0
3.1800146073117523
>>> expovariate(1 / 5) # Interval between arrivals averaging 5 seconds
5.148957571865031
>>> randrange(10) # Integer from 0 to 9 inclusive
7
>>> randrange(0, 101, 2) # Even integer from 0 to 100 inclusive
26
>>> choice(['win', 'lose', 'draw']) # Single random element from a sequence
'draw'
>>> deck = 'ace two three four'.split()
>>> shuffle(deck) # Shuffle a list
>>> deck
['four', 'two', 'ace', 'three']
>>> sample([10, 20, 30, 40, 50], k=4) # Four samples without replacement
[40, 10, 50, 30]
Simulations::
>>> # Six roulette wheel spins (weighted sampling with replacement)
>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
['red', 'green', 'black', 'black', 'red', 'black']
>>> # Deal 20 cards without replacement from a deck
>>> # of 52 playing cards, and determine the proportion of cards
>>> # with a ten-value: ten, jack, queen, or king.
>>> deal = sample(['tens', 'low cards'], counts=[16, 36], k=20)
>>> deal.count('tens') / 20
0.15
>>> # Estimate the probability of getting 5 or more heads from 7 spins
>>> # of a biased coin that settles on heads 60% of the time.
>>> sum(binomialvariate(n=7, p=0.6) >= 5 for i in range(10_000)) / 10_000
0.4169
>>> # Probability of the median of 5 samples being in middle two quartiles
>>> def trial():
... return 2_500 <= sorted(choices(range(10_000), k=5))[2] < 7_500
...
>>> sum(trial() for i in range(10_000)) / 10_000
0.7958
Example of `statistical bootstrapping
<https://en.wikipedia.org/wiki/Bootstrapping_(statistics)>`_ using resampling
with replacement to estimate a confidence interval for the mean of a sample::
# https://www.thoughtco.com/example-of-bootstrapping-3126155
from statistics import fmean as mean
from random import choices
data = [41, 50, 29, 37, 81, 30, 73, 63, 20, 35, 68, 22, 60, 31, 95]
means = sorted(mean(choices(data, k=len(data))) for i in range(100))
print(f'The sample mean of {mean(data):.1f} has a 90% confidence '
f'interval from {means[5]:.1f} to {means[94]:.1f}')
Example of a `resampling permutation test
<https://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests>`_
to determine the statistical significance or `p-value
<https://en.wikipedia.org/wiki/P-value>`_ of an observed difference
between the effects of a drug versus a placebo::
# Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
from statistics import fmean as mean
from random import shuffle
drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
observed_diff = mean(drug) - mean(placebo)
n = 10_000
count = 0
combined = drug + placebo
for i in range(n):
shuffle(combined)
new_diff = mean(combined[:len(drug)]) - mean(combined[len(drug):])
count += (new_diff >= observed_diff)
print(f'{n} label reshufflings produced only {count} instances with a difference')
print(f'at least as extreme as the observed difference of {observed_diff:.1f}.')
print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
print(f'hypothesis that there is no difference between the drug and the placebo.')
Simulation of arrival times and service deliveries for a multiserver queue::
from heapq import heapify, heapreplace
from random import expovariate, gauss
from statistics import mean, quantiles
average_arrival_interval = 5.6
average_service_time = 15.0
stdev_service_time = 3.5
num_servers = 3
waits = []
arrival_time = 0.0
servers = [0.0] * num_servers # time when each server becomes available
heapify(servers)
for i in range(1_000_000):
arrival_time += expovariate(1.0 / average_arrival_interval)
next_server_available = servers[0]
wait = max(0.0, next_server_available - arrival_time)
waits.append(wait)
service_duration = max(0.0, gauss(average_service_time, stdev_service_time))
service_completed = arrival_time + wait + service_duration
heapreplace(servers, service_completed)
print(f'Mean wait: {mean(waits):.1f} Max wait: {max(waits):.1f}')
print('Quartiles:', [round(q, 1) for q in quantiles(waits)])
.. seealso::
`Statistics for Hackers <https://www.youtube.com/watch?v=Iq9DzN6mvYA>`_
a video tutorial by
`Jake Vanderplas <https://us.pycon.org/2016/speaker/profile/295/>`_
on statistical analysis using just a few fundamental concepts
including simulation, sampling, shuffling, and cross-validation.
`Economics Simulation
<https://nbviewer.jupyter.org/url/norvig.com/ipython/Economics.ipynb>`_
a simulation of a marketplace by
`Peter Norvig <https://norvig.com/bio.html>`_ that shows effective
use of many of the tools and distributions provided by this module
(gauss, uniform, sample, betavariate, choice, triangular, and randrange).
`A Concrete Introduction to Probability (using Python)
<https://nbviewer.jupyter.org/url/norvig.com/ipython/Probability.ipynb>`_
a tutorial by `Peter Norvig <https://norvig.com/bio.html>`_ covering
the basics of probability theory, how to write simulations, and
how to perform data analysis using Python.
Recipes
-------
These recipes show how to efficiently make random selections
from the combinatoric iterators in the :mod:`itertools` module:
.. testcode::
import random
def random_product(*args, repeat=1):
"Random selection from itertools.product(*args, **kwds)"
pools = [tuple(pool) for pool in args] * repeat
return tuple(map(random.choice, pools))
def random_permutation(iterable, r=None):
"Random selection from itertools.permutations(iterable, r)"
pool = tuple(iterable)
r = len(pool) if r is None else r
return tuple(random.sample(pool, r))
def random_combination(iterable, r):
"Random selection from itertools.combinations(iterable, r)"
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.sample(range(n), r))
return tuple(pool[i] for i in indices)
def random_combination_with_replacement(iterable, r):
"Choose r elements with replacement. Order the result to match the iterable."
# Result will be in set(itertools.combinations_with_replacement(iterable, r)).
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.choices(range(n), k=r))
return tuple(pool[i] for i in indices)
The default :func:`.random` returns multiples of 2⁻⁵³ in the range
*0.0 ≤ x < 1.0*. All such numbers are evenly spaced and are exactly
representable as Python floats. However, many other representable
floats in that interval are not possible selections. For example,
``0.05954861408025609`` isn't an integer multiple of 2⁻⁵³.
The following recipe takes a different approach. All floats in the
interval are possible selections. The mantissa comes from a uniform
distribution of integers in the range *2⁵² ≤ mantissa < 2⁵³*. The
exponent comes from a geometric distribution where exponents smaller
than *-53* occur half as often as the next larger exponent.
::
from random import Random
from math import ldexp
class FullRandom(Random):
def random(self):
mantissa = 0x10_0000_0000_0000 | self.getrandbits(52)
exponent = -53
x = 0
while not x:
x = self.getrandbits(32)
exponent += x.bit_length() - 32
return ldexp(mantissa, exponent)
All :ref:`real valued distributions <real-valued-distributions>`
in the class will use the new method::
>>> fr = FullRandom()
>>> fr.random()
0.05954861408025609
>>> fr.expovariate(0.25)
8.87925541791544
The recipe is conceptually equivalent to an algorithm that chooses from
all the multiples of 2⁻¹⁰⁷⁴ in the range *0.0 ≤ x < 1.0*. All such
numbers are evenly spaced, but most have to be rounded down to the
nearest representable Python float. (The value 2⁻¹⁰⁷⁴ is the smallest
positive unnormalized float and is equal to ``math.ulp(0.0)``.)
.. seealso::
`Generating Pseudo-random Floating-Point Values
<https://allendowney.com/research/rand/downey07randfloat.pdf>`_ a
paper by Allen B. Downey describing ways to generate more
fine-grained floats than normally generated by :func:`.random`.
|