1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
:mod:`signal` --- Set handlers for asynchronous events
======================================================
.. module:: signal
:synopsis: Set handlers for asynchronous events.
This module provides mechanisms to use signal handlers in Python. Some general
rules for working with signals and their handlers:
* A handler for a particular signal, once set, remains installed until it is
explicitly reset (Python emulates the BSD style interface regardless of the
underlying implementation), with the exception of the handler for
:const:`SIGCHLD`, which follows the underlying implementation.
* There is no way to "block" signals temporarily from critical sections (since
this is not supported by all Unix flavors).
* Although Python signal handlers are called asynchronously as far as the Python
user is concerned, they can only occur between the "atomic" instructions of the
Python interpreter. This means that signals arriving during long calculations
implemented purely in C (such as regular expression matches on large bodies of
text) may be delayed for an arbitrary amount of time.
* When a signal arrives during an I/O operation, it is possible that the I/O
operation raises an exception after the signal handler returns. This is
dependent on the underlying Unix system's semantics regarding interrupted system
calls.
* Because the C signal handler always returns, it makes little sense to catch
synchronous errors like :const:`SIGFPE` or :const:`SIGSEGV`.
* Python installs a small number of signal handlers by default: :const:`SIGPIPE`
is ignored (so write errors on pipes and sockets can be reported as ordinary
Python exceptions) and :const:`SIGINT` is translated into a
:exc:`KeyboardInterrupt` exception. All of these can be overridden.
* Some care must be taken if both signals and threads are used in the same
program. The fundamental thing to remember in using signals and threads
simultaneously is: always perform :func:`signal` operations in the main thread
of execution. Any thread can perform an :func:`alarm`, :func:`getsignal`,
:func:`pause`, :func:`setitimer` or :func:`getitimer`; only the main thread
can set a new signal handler, and the main thread will be the only one to
receive signals (this is enforced by the Python :mod:`signal` module, even
if the underlying thread implementation supports sending signals to
individual threads). This means that signals can't be used as a means of
inter-thread communication. Use locks instead.
The variables defined in the :mod:`signal` module are:
.. data:: SIG_DFL
This is one of two standard signal handling options; it will simply perform the
default function for the signal. For example, on most systems the default
action for :const:`SIGQUIT` is to dump core and exit, while the default action
for :const:`SIGCLD` is to simply ignore it.
.. data:: SIG_IGN
This is another standard signal handler, which will simply ignore the given
signal.
.. data:: SIG*
All the signal numbers are defined symbolically. For example, the hangup signal
is defined as :const:`signal.SIGHUP`; the variable names are identical to the
names used in C programs, as found in ``<signal.h>``. The Unix man page for
':cfunc:`signal`' lists the existing signals (on some systems this is
:manpage:`signal(2)`, on others the list is in :manpage:`signal(7)`). Note that
not all systems define the same set of signal names; only those names defined by
the system are defined by this module.
.. data:: NSIG
One more than the number of the highest signal number.
.. data:: ITIMER_REAL
Decrements interval timer in real time, and delivers :const:`SIGALRM` upon expiration.
.. data:: ITIMER_VIRTUAL
Decrements interval timer only when the process is executing, and delivers
SIGVTALRM upon expiration.
.. data:: ITIMER_PROF
Decrements interval timer both when the process executes and when the
system is executing on behalf of the process. Coupled with ITIMER_VIRTUAL,
this timer is usually used to profile the time spent by the application
in user and kernel space. SIGPROF is delivered upon expiration.
The :mod:`signal` module defines one exception:
.. exception:: ItimerError
Raised to signal an error from the underlying :func:`setitimer` or
:func:`getitimer` implementation. Expect this error if an invalid
interval timer or a negative time is passed to :func:`setitimer`.
This error is a subtype of :exc:`IOError`.
The :mod:`signal` module defines the following functions:
.. function:: alarm(time)
If *time* is non-zero, this function requests that a :const:`SIGALRM` signal be
sent to the process in *time* seconds. Any previously scheduled alarm is
canceled (only one alarm can be scheduled at any time). The returned value is
then the number of seconds before any previously set alarm was to have been
delivered. If *time* is zero, no alarm is scheduled, and any scheduled alarm is
canceled. If the return value is zero, no alarm is currently scheduled. (See
the Unix man page :manpage:`alarm(2)`.) Availability: Unix.
.. function:: getsignal(signalnum)
Return the current signal handler for the signal *signalnum*. The returned value
may be a callable Python object, or one of the special values
:const:`signal.SIG_IGN`, :const:`signal.SIG_DFL` or :const:`None`. Here,
:const:`signal.SIG_IGN` means that the signal was previously ignored,
:const:`signal.SIG_DFL` means that the default way of handling the signal was
previously in use, and ``None`` means that the previous signal handler was not
installed from Python.
.. function:: pause()
Cause the process to sleep until a signal is received; the appropriate handler
will then be called. Returns nothing. Not on Windows. (See the Unix man page
:manpage:`signal(2)`.)
.. function:: setitimer(which, seconds[, interval])
Sets given interval timer (one of :const:`signal.ITIMER_REAL`,
:const:`signal.ITIMER_VIRTUAL` or :const:`signal.ITIMER_PROF`) specified
by *which* to fire after *seconds* (float is accepted, different from
:func:`alarm`) and after that every *interval* seconds. The interval
timer specified by *which* can be cleared by setting seconds to zero.
When an interval timer fires, a signal is sent to the process.
The signal sent is dependent on the timer being used;
:const:`signal.ITIMER_REAL` will deliver :const:`SIGALRM`,
:const:`signal.ITIMER_VIRTUAL` sends :const:`SIGVTALRM`,
and :const:`signal.ITIMER_PROF` will deliver :const:`SIGPROF`.
The old values are returned as a tuple: (delay, interval).
Attempting to pass an invalid interval timer will cause a
:exc:`ItimerError`.
.. function:: getitimer(which)
Returns current value of a given interval timer specified by *which*.
.. function:: set_wakeup_fd(fd)
Set the wakeup fd to *fd*. When a signal is received, a ``'\0'`` byte is
written to the fd. This can be used by a library to wakeup a poll or select
call, allowing the signal to be fully processed.
The old wakeup fd is returned. *fd* must be non-blocking. It is up to the
library to remove any bytes before calling poll or select again.
When threads are enabled, this function can only be called from the main thread;
attempting to call it from other threads will cause a :exc:`ValueError`
exception to be raised.
.. function:: siginterrupt(signalnum, flag)
Change system call restart behaviour: if *flag* is :const:`False`, system calls
will be restarted when interrupted by signal *signalnum*, otherwise system calls will
be interrupted. Returns nothing. Availability: Unix, Mac (see the man page
:manpage:`siginterrupt(3)` for further information).
Note that installing a signal handler with :func:`signal` will reset the restart
behaviour to interruptible by implicitly calling :cfunc:`siginterrupt` with a true *flag*
value for the given signal.
.. function:: signal(signalnum, handler)
Set the handler for signal *signalnum* to the function *handler*. *handler* can
be a callable Python object taking two arguments (see below), or one of the
special values :const:`signal.SIG_IGN` or :const:`signal.SIG_DFL`. The previous
signal handler will be returned (see the description of :func:`getsignal`
above). (See the Unix man page :manpage:`signal(2)`.)
When threads are enabled, this function can only be called from the main thread;
attempting to call it from other threads will cause a :exc:`ValueError`
exception to be raised.
The *handler* is called with two arguments: the signal number and the current
stack frame (``None`` or a frame object; for a description of frame objects, see
the reference manual section on the standard type hierarchy or see the attribute
descriptions in the :mod:`inspect` module).
.. _signal-example:
Example
-------
Here is a minimal example program. It uses the :func:`alarm` function to limit
the time spent waiting to open a file; this is useful if the file is for a
serial device that may not be turned on, which would normally cause the
:func:`os.open` to hang indefinitely. The solution is to set a 5-second alarm
before opening the file; if the operation takes too long, the alarm signal will
be sent, and the handler raises an exception. ::
import signal, os
def handler(signum, frame):
print('Signal handler called with signal', signum)
raise IOError("Couldn't open device!")
# Set the signal handler and a 5-second alarm
signal.signal(signal.SIGALRM, handler)
signal.alarm(5)
# This open() may hang indefinitely
fd = os.open('/dev/ttyS0', os.O_RDWR)
signal.alarm(0) # Disable the alarm
|